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Abstract

Previous attempts at the modeling of film flows down an inclined
plane are reviewed, focusing on the limit of each formulation. A Padé
approximant technique has been applied to derive a regularized model
formulated in terms of two coupled evolution equations for the film
thickness h and the flow rate q. This model accounts for inertia ef-
fects due to the deviations of the velocity profile from the parabolic
shape, and closely sticks to the asymptotic long-wave expansion in
the appropriate limit. The regularized model is next extended to in-
clude spanwise dependence. The stability of two-dimensional trav-
eling waves against three-dimensional perturbations is investigated.
The secondary instability is found to be not really selective which
explains the widespread presence of the synchronous instability ob-
served in the experiments by Liu et al. (1995), though theory pre-
dicts in most cases a subharmonic scenario. Three-dimensional wave
patterns are next computed assuming periodic boundary conditions.
Transition from 2D to 3D flows is shown to be strongly dependent
on initial conditions. The herringbone patterns, the synchronously
deformed fronts and the three-dimensional solitary waves observed in
experiments (Liu et al., 1995; Park & Nosoko, 2003; Alekseenko et al.,
1994) are recovered using our three-equation regularized model, which
is found to be an excellent compromise between the complete model,
which has seven equations, and the simplified model, which does not
include the second-order inertia corrections. Those corrections were
found to be decisive in capturing the nature of the secondary insta-
bility as well as the spanwise wavelength of the emerging pattern.
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1 Introduction

Thin films flowing down inclines have a rich dynamics extensively studied
for a long time since Kapitza’s experimental and theoretical pioneering work
at the end of the forties (Kapitza, 1948; Kapitza & Kapitza, 1949). Besides
their importance for engineering applications (e.g. evaporators or chemical
reactors), their interest mainly stems from the fact that their evolution is
amenable to thorough theoretical analysis. This situation happens mostly
due to the two-dimensional, long-wavelengthed, supercritical character of
the primary instability mode. Thickness modulations which develop over
initially uniform films are usually spanwise homogeneous and slowly varying
both in time and in space. Technically, the slow space dependence allows
gradient expansions in terms of a small parameter ε, called the film param-
eter , basically measuring the slope of the interface in order of magnitude.
A lubrication approximation relying on this expansion further allows the
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elimination of most of the cross-stream dependence of the flow. The ap-
proach is thus similar to that followed in the study of boundary layers and
deep analogies can be found in the transition to turbulence of each system,
especially at the level of secondary instabilities.
These notes are divided in two parts. Part I focuses on the film’s dynamics
when spanwise modulations are forbidden, a case called two-dimensional
in the following. This assumption is relaxed in Part II devoted to the
full three-dimensional case, secondary instabilities and comparisons with
experimental results.∗ The rest of this introduction is devoted to a brief
review of the phenomenology and theoretical settings, motivated by the lack
of a clear presentation of the limits and hypotheses sustaining the different
approaches in the literature, and the connection of the modeling developed
here to the work by Ooshida (1999).

1.1 Phenomenology

Many experimental studies have been devoted to the wavy regime of film
flows since the first observations by Kapitza (1948) and Kapitza & Kapitza
(1949). Most of them are referred to in the review by Alekseenko et al.
(1994). More recent experimental results are presented for example in
Nosoko et al. (1996), Vlachogiannis & Bontozoglou (2001), Park & Nosoko
(2003), Nosoko & Miyara (2004), or Argyriadi et al. (2004). Gollub and
coworkers have performed an extensive study of water-glycerin mixtures
flowing down weakly inclined planes, see Liu et al. (1993), Liu & Gollub
(1993), Liu & Gollub (1994), and Liu et al. (1995). Controlling the en-
trance flow rate, they applied a periodic forcing at the inlet and observed
the response of the film at given frequency. Their experiments give the
clearest picture of the phenomenology of interacting waves on film flows,
coming and completing the review by Chang et al. (1994). The observa-
tions are schematically summarized in figure 1. Four stages corresponding
each to a different region can be identified by following the flow along the
inclined plane.
The inception region is the domain close to the inlet where the primary linear
instability of the flat film develops in space. Squire’s theorem stipulating
that the most dangerous perturbations are spanwise-independent has been
shown to apply to free surface flows by Yih (1955), which theoretically backs
the fact that observed primary waves are two-dimensional (2D).
The amplitude of the wave next saturates and its shape remains unchanged
over distances corresponding to a few wavelengths (Region II). These waves
are slow and present wide bumpy crests and deep thin troughs. They belong
to the γ1 family in the terminology introduced by Chang et al. (1993). The
rest of the story depends on the forcing frequency.
At low frequency (figure 1, top) saturated waves experience a secondary
instability which, close to the threshold, remains 2D ending in large ampli-
tude solitary waves in the form of fast humps preceded by small capillary

∗Two vs. three dimensional refer to the fluid velocity dependence. Two dimensional
flow means spanwise independent (coordinates x and y) while the surface elevation is
one-dimensionally modulated (along x). On the other hand, full three dimensional flow
(x, y, z) involves two-dimensional thickness modulations (x, z).
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Figure 1: Phenomenological sketch of the spatial evolution of film flows,
after Chang et al. (1994); Liu et al. (1995).

ripples (Region III). Such waves belong to the γ2 family. They are generally
unstable against transverse perturbations which leads to the last stage of
secondary three-dimensional instabilities (Region IV).
At larger frequencies (figure 1, bottom) Liu et al. reported two differ-
ent scenarios that are strongly reminiscent of what happens in boundary
layers (Schmid & Henningson, 2001). The first one, referred to as a syn-
chronous mode, is characterized by wave crests deformed in phase in the
spanwise direction. The second one, less commonly observed, appears when
two successive crests are deformed with a phase shift of π. This leads to
checkerboard (or herringbone) patterns characteristic of a streamwise sub-
harmonic instability combined to a spanwise modulation. These two modes
are reminiscent of aligned and staggered Λ-vortices developing in transi-
tional boundary layers, thus analogous to the type-K and type-H transi-
tions, respectively (Herbert, 1988). At high enough forcing frequency, the
flow becomes disordered before the 2D solitary waves have a chance to ap-
pear because 3D instabilities are stronger than the 2D mode, which explains
the absence of Region III in the corresponding picture.
Finally, at very low forcing frequencies, saturated γ1 waves (Region II) do
not show up while solitary wave of the γ2 family directly obtains, which
testifies for a continuity of the film’s behavior as the frequency is varied.
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1.2 Theoretical issues

The separation of scales enabled by the long wavelength instability allows
one to reduce the dimensionality of the basic equations. Prandtl’s sim-
plification of the cross-stream momentum equation —usual in boundary
layer theory— can be applied here and helps one to get rid of the in-depth
pressure distribution dominated here by surface tension and gravity. This
leads to so-called boundary-layer equations, see Chang et al. (1993) for a
detailed presentation. These equations can be viewed as the first step of
the long-wave expansion performed by Benney (1966). Modulations of the
film thickness around the flat film solution being slow in space and time,
the product εR is small as in classical lubrication theory. Inertia is thus
small and consequently the velocity field stays enslaved to the evolution of
the film thickness. This leads to a single evolution equation for the film
thickness governing the dynamics of the flow at the onset of the instabil-
ity. An alternative to the gradient expansion approach is to make use of
the Kármán–Polhausen averaging technique as in the boundary-layer theory
(Schlichting, 1979). This technique, which was first proposed by Kapitza
(1948) and later reinvestigated by Shkadov (1967), leads to a two-field model
involving the film thickness h and the local flow rate q, for which the velocity
field is not supposed to be entirely slaved to the film thickness evolution.
The transition of film flows towards 3D dynamics was first theoretically in-
vestigated in this context by Trifonov (1989). Starting from 2D solutions
to the Kapitza–Shkadov model computed at rest in a moving frame, he an-
alyzed their stability against transverse modulations and showed that the
subharmonic instability was always the most dangerous one. The stationary
3D waves bifurcating from the 2D waves of the γ1 family were shown to have
their troughs growing faster than the peaks transverse modulations, which
eventually produced trains of isolated depressions, as experimentally ob-
served by Liu et al. (1995). Chang (1994) attempted to complete Trifonov’s
study by using the boundary layer equations. Their stability analysis of
the γ1 family predicted only the subharmonic instability, hence a scenario
different from the one reported by Liu and Gollub. Trifonov and Chang et
al. both only considered vertical walls whereas the experiments at Haver-
ford were performed for an inclined wall where hydrostatic pressure plays
a significant role. To our knowledge, there is as yet no thorough theoreti-
cal understanding of the full experimental results and especially of the 3D
synchronous instability of the slow saturated γ1 waves.
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Part I

Modelling and Regularization
Technique

2 Governing equations

2.1 Primitive equations

The flow of a Newtonian liquid down a plane making an angle β with the
horizontal is considered. Coordinate x defines the streamwise direction, y
denotes the direction normal to the plane, and z is along the spanwise direc-
tion. u = (u, v, w) is the velocity field and p is the pressure. Surface tension
σ, viscosity µ, density ρ, are supposed to remain constant. The dimen-
sionless form of the governing equations is obtained with length and time
scales based on the kinematic viscosity ν = µ/ρ and the streamwise gravity
acceleration g sin β so that they depend only on the physical properties of
the fluid and the inclination angle. They read:

lν = ν2/3(g sin β)−1/3 and tν = ν1/3(g sin β)−2/3.

This scaling is appropriate provided that sinβ ∼ O(1), i.e. excluding near-
horizontal configurations, for which instabilities typical of wall flows set
in, involving Tollmien–Schlichting waves of shear-viscous origin, see e.g.
Floryan et al. (1987). The flow conditions can further be characterized by
the dimensionless thickness of the flat film solution (Nusselt flow), hN, the
inclination B = cot β and the Kapitza number Γ = σ

/ [
ρν4/3(g sin β)1/3

]

which compares the surface stress σ/lν to the viscous stress µ/tν. Using
these scales, the Navier-Stokes equation reads:

∂tu + u · ∇u = −∇p+ ∇2u + F . (1)

Above and in the following, ∂α denotes partial differentiation with respect
to variable α. F = (1,−B, 0) represents the dimensionless body force. The
continuity equation for an incompressible flow reads:

∇ · u = 0 . (2)

The evolution equations have to be supplemented with boundary conditions
at y = ỹ, in practice at the bottom plane, ỹ = 0, and at the free surface,
ỹ = h. A quantity β evaluated at y = ỹ will be denoted by β|ỹ. The flow is
thus subjected to the usual no-slip condition:

u|0 = 0 . (3)

The interface is governed by the kinematic condition expressing that the
free surface is a material surface, that is

(∂t + u · ∇)(h(x, z, t) − y) = 0 ,
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or else
v|h = (∂t + u|h∂x + w|h∂z)h . (4)

Finally, the stress balance at the interface reads:

−pn + (∇u + ∇uT ) · n = −Γ(∇ · n)n (5)

where n is the unit vector normal to the free surface oriented outwards.
Alternatively, Reynolds and Weber numbers based on the entrance flow rate
are often preferred though they do not clearly separate flow conditions from
the fluid’s physical constants. The relations between these dimensionless
parameters are easily obtained by noticing that, at the entrance, the inter-
face is flat so that the Reynolds number is related to the Nusselt thickness
through an integration of the parabolic velocity profile u ≡ y

(
hN − 1

2y
2
)

over the depth. This gives:

R ≡ qN = 1
3hN

3 , (6)

where qN is the dimensionless Nusselt flow rate. Similarly, the Weber num-
ber is related to the Kapitza number through

W = ΓhN
−2 . (7)

2.2 Boundary layer equations

Comparisons between existing models and the subsequent discussion about
needed improvements can be made simpler if the spanwise dependence of
the fields (∂z ≡ 0) is disregarded. Accordingly, in this section and in the
rest of Part I, we focus on 2D flows. 3D flows will be considered in Part II.
Considering slow space and time variation, the formal parameter ε is intro-
duced along with each derivation in space or time ∂x,t ∝ ε. The assumed
slow space variation implies that the velocity component normal to the plane
v is much smaller than the streamwise component u, as derived from the
continuity equation here rewritten for a 2D flow:

∂xu+ ∂yv = 0 . (8)

Consequently, the inertia terms in the y-component of the momentum equa-
tion are of higher order and can be dropped out. The remaining equation
is then linear and can be integrated to give the pressure distribution up to
order ε. After substitution of the latter and some algebra detailed in Ruyer-
Quil & Manneville (1998), the streamwise momentum equation reads

∂tu+ u∂xu+ v∂yu = 1 + ∂yyu−B∂xh+ Γ∂xxxh+ 2∂xxu+ ∂x [∂xu|h] , (9)

The no-slip condition (3), is repeated here as:

u|0 = v|0 = 0 , (10)

whereas the 2D kinematic condition and the continuity of the tangential
stress at the free surface at second order read:

∂th+ u|h∂xh = v|h , (11)
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∂yu|h = 4∂xh∂xu|h − ∂xv|h . (12)

System (8–12) is valid at order ε2 since in the streamwise momentum bal-
ance, neglected inertia terms coming from the differentiation of the pres-
sure are effectively of order ε3. Equation (9) is usually referred to as the
second-order boundary-layer equation since the assumptions leading to it
are essentially the same as those in the derivation of the Prandtl equation
of boundary layer theory, see Schlichting (1979).
It should be noted that the main contribution of the surface tension Γ∂xxxh
has been retained in (9) though it is formally of order ε3. This is in line
with the application of a least degeneracy principle that leads one to make
all relevant processes appear at lowest order in the formulation by scaling
coefficients appropriately, which means here Γε ∼ O(1). This contribu-
tion is indeed essential in preventing the steepening and breaking of waves
produced by inertia, as discussed e.g. by Smith (1990).
Stabilizing agents are capillarity and gravity normal to the plane (as soon
as β < π/2). Let us consider the worst case, when the plane is verti-
cal (β = π/2) so that gravity stabilization drops out and surface tension
only remains. An estimate of the film parameter ε measuring the slope is
obtained by balancing the streamwise pressure gradient caused by surface
tension Γ∂xxxh with the streamwise gravity acceleration (equal to one in
(9)). Defining

κ = (Γ/h2
N)1/3 ≡ W 1/3 , (13)

this yields ε ∼ 1/κ. Accordingly, we assume in the following that κ, or
equivalently the Weber number, is sufficiently large (ε sufficiently small) so
that the scale decoupling is valid. We also assume that Γ itself is sufficiently
large, in practice Γε ∼ O(1) or smaller, which makes Γ∂xxxh the only rele-
vant term formally of order ε3 in the full set of equations (8–12). Combining
these conditions one finds ΓhN ∼ O(1) or smaller, which is a condition on
the flow rate, given the fluid properties and the angle β.

2.3 Shkadov’s scaling

In practice, we proceed to the rescaling of space variables introduced by
Shkadov (1977). At a given inlet flow rate, the natural scale for y is the
Nusselt flat film thickness hN, which yields the changes (y, h) = (hNỹ, hNh̃).
Then balancing gravity forces and surface tension introduces the scale ratio
κ through (13) as discussed above. Shkadov proceeded therefore to a com-
pression of the streamwise coordinate and took the scale for x as κ times
the scale for y, hence the change x = κhNx̃. Scaling time as t = (κ/hN)t̃
and velocity components as u = h2

Nũ and v = (h2
N/κ)ṽ, dropping tildes,

from (9) and (12) we get the rescaled equations as:

δ (∂tu+ u∂xu+ v∂yu) = 1 + ∂yyu− ζ∂xh+ ∂xxxh+ η (2∂xxu+ ∂x [∂xu|h]) ,
(14)

and
∂yu|h = η (4∂xh∂xu|h − ∂xv|h) , (15)

where
δ = h3

N/κ = 3RW−1/3 (16)
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is a reduced Reynolds number. The two other reduced parameters

ζ = B/κ = cot β W−1/3 and η = κ−2 = W−2/3 (17)

correspond to the effect of the gravity component normal to the plane and
to the viscous second-order effects, respectively. The reduced Reynolds
number introduced by Shkadov was δ/45; the present choice is preferred
since it leaves all numerical coefficients in the equations unchanged.
The set of reduced parameters δ, ζ and η is formally equivalent to the set
R, B and W (or hN, B, Γ). However, an advantage of Shkadov’s scaling
is the gathering of all viscous dispersive terms under parameter η. Since
these terms are the only physical ones of order ε2 in equations (14,15), the
truncation of these equations at first order leaves δ as the only parameter
provided that the wall is vertical (ζ = 0), as was the case in many studies.
Direct numerical simulations (DNS) by Salamon et al. (1994) have however
shown that second-order viscous dissipation effects do modify significantly
the phase portrait of the traveling-wave families. As a matter of fact, though
attributing the observed changes in the solutions to surface tension effects,
they worked at constant reduced Reynolds number δ while changing the
value of η. The observed modifications were therefore due to a larger mo-
mentum diffusion. Accordingly, improvement over the simple assumption
η = 0 can further be expected by making use of equations (14,15). Consid-
ering terms in η as perturbations is a reasonable approach valid every time
the surface tension is sufficiently large to ensure the separation of scales
sustaining the whole approach (κ large). In fact, solitary waves turn out
to be little sensitive to the value of η: the speed and amplitude of the soli-
tary hump seem to be mostly controlled by the reduced Reynolds number
δ (compare fig. 16 and 18 in Salamon et al. (1994)).

3 One-equation modeling

3.1 Gradient expansion and Benney’s equation

Within our basic assumptions, the boundary-layer equations (8–12) are con-
sistent at order ε2. They can thus be viewed as the first step towards the
modeling of film flows, i.e. the transformation of the basic equations into a
set of equations of reduced complexity and/or dimensionality which capture
the phenomena at stake as closely as possible.
Performing a gradient expansion of the basic equations or the boundary-
layer equations (3, 8–11) leads to identical results up to order ε2. Such
an expansion of the basic equations was first done by Benney (1966) and
next completed by Lin (1974) and Nakaya (1975). Benney showed that the
velocity field u can be written as a series of polynomials in y, i.e. u =∑

n An(h)Pn(y), where the coefficients An are functions of the thickness h
and its space-time derivatives, meaning that, in this limit, the velocity field
is completely enslaved to the dynamics of h. Integration of the continuity
equation (8) across the layer leads to the exact mass balance equation:

∂th+ ∂xq = 0 , (18)
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where q =
∫ h

0
u dy is the local flow rate. The gradient expansion of the

momentum balance equation next gives an approximate expression for the
flow rate as function of h and its derivatives:

q = q(0)+q(1) = 1
3h

3−δ
(

5
24h

4∂th+ 3
40h

6∂xh
)
−1

3ζh
3∂xh+1

3h
3∂xxxh+O(ε2) ,

(19)
where the contribution of the surface tension has been kept though it is
formally of third order for the reasons discussed at length above.
Substituting (19) into (18) yields an evolution equation for the thickness:

∂th+ 1
3∂x

{
h3 − 1

8δ ∂t(h5) − 9
280δ∂x(h7) − 1

4ζ∂x(h4) + h3∂xxxh
}

= 0 . (20)

This equation can be further simplified by using the zeroth-order relation
q(0) = 1

3h
3 to exchange the time derivative of h against its space derivative

through:
∂th = −h2∂xh , (21)

which is the equation governing kinematic waves at the interface (Whitham,
1974). Following Benney, Gjevik thus studied the following equation (Gje-
vik, 1970, 1971):

∂th+ 1
3
∂x

{
h3 + 2

35
δ∂x(h7) − 1

4
ζ∂x(h4) + h3∂xxxh

}
= 0 . (22)

now known as the Benney equation. The relevance of this equation beyond
a narrow neighborhood of the threshold is first limited by the fact that
linear stability properties of the flat film solution rapidly depart from those
derived from the exact Orr-Sommerfeld (OS) equation, i.e. the range of
unstable wavenumbers predicted by (22) is much wider than that emerging
from the solution of the OS equation.
This first limitation seems related to the neglect of the second-order stream-
wise dissipative terms as shown by Panga & Balakotaiah (2003). In fact Lin
(1974) extended (22) to second order by including

q(2) = δ2
[
127
315

h9(∂xh)2 + 4
63
h10∂xxh

]
− δζ

[
8
15
h6(∂xh)2 + 10

63
h7∂xxh

]

+η
[
7
3
h3(∂xh)2+h4∂xxh

]
, (23)

which completes (19) and makes these terms apparent under parameter
η. Keeping only them into account, Panga and Balakotaiah obtained an
equation which, within current scalings, reads:

∂th+ 1
3∂x

{
h3 − 1

8δ ∂t(h5) − 9
280δ∂x(h7) − 1

4ζ∂x(h4) + h3∂xxxh

+η
[
3h4∂xxh+ 7h3(∂xh)2

]}
= 0 .(24)

They were next able to prove that the exact OS results are recovered with
better accuracy than by exchanging time and space derivatives of h through
(21). Unfortunately, this correction does not cure the second well known
limitation of the Benney equation (22), that is, the existence of finite-
time blow up of solitary wave solutions beyond some limiting value of the
Reynolds number not far beyond threshold (Pumir et al., 1983; Scheid et al.,
2005b) since (24) also suffers from finite-time blow up of solutions somewhat
beyond threshold (Ruyer-Quil & Manneville, 2004).

10



3.2 Regularization à la Padé

The Benney equation is indeed well known for the singular behavior of
its solutions when the reduced Reynolds number δ becomes large enough.
Pumir et al. (1983) showed in particular that the finite-time blow-up of time-
dependent solutions closely corresponds to the loss of one-hump solitary
waves, i.e. homoclinic orbits in the terminology of the dynamical systems
theory. This suggests us that such a loss of what is called the ‘principal
homoclinic orbit’ by Glendinning & Sparrow (1984) is accompanied with
a blow-up of time-dependent solutions (Scheid et al., 2005b), the trace of
which —spontaneous formation of dry patches— can apparently not be
found in experiments in the range of parameters currently explored. This
unphysical feature has thus to be attributed to the assumptions underlying
the derivation of the equations under study, either (22) or (24), and is likely
related to the high degree of the inertia terms, especially the one of highest
degree in h, 2

105
δ∂xx(h7).

In order to remedy to this deficiency, Ooshida (1999) developed a resumma-
tion technique inspired from the Padé approximant technique. This tech-
nique relies on the idea that the divergence of a power series Q =

∑
kQkx

k

is due to the hidden presence of poles. This leads one to express Q in an
approximate way as a ratio F/G of polynomials F and G where the zeros of
G are supposed to capture the causes of the divergence. Adjusting the coef-
ficients introduced in F = F0+F1x+F2x

2 . . . and G = 1+G1x+G2x
2+ . . .

so that the terms in the series Q are reproduced exactly up to some given
degree is the essence of the approximation, the ratio F/G being used in
place of Q. In this conventional algebraic implementation, the degrees of
the polynomials F and G are open to free choice, the number of coeffi-
cients to be determined staying compatible with the number of coefficients
available in the series Q.
Ooshida translated this idea to the present case by introducing a regulariza-
tion operator G = I +G(1) +G(2), where I is the identity, G(1) = G(1)(h)∂x,
and G(2) = G(2)(h)∂xx, so that the expansion of q as a function of h and its
derivatives from the long wave expansion, formally written as q ≡ Q(h), is
rewritten as G−1F . Before presenting Ooshida’s result at second order, let
us implement this idea at first order since the singular behavior to be cor-
rected is already present in (22). Here this simply comes to choose G in the
form I+G(1)(h)∂x with G(1)(h) to be determined so as to kill the dangerous
terms in F when evaluating GQ. The explicit computation yields:

(I + G(1)∂x)
[
1
3

(
h3 + δ 2

35∂x(h7) − ζ 1
4∂x(h4) + h3∂xxxh

)]
=

1
3

[
h3 + 3h2G(1)∂xh+ δ 2

35∂x(h7) − ζ 1
4∂x(h4) + h3∂xxxh

]
+ O(ε2) . (25)

where G(1) is adjusted to − 2
15
δ h4 so that the term in factor of δ disappears

on the r.h.s. of (25). Computing the regularized identity ∂x(GQ) = ∂xF
then gives:

∂xQ− ∂x

[
2
15δ h

4∂xQ
]

= 1
3∂x

[
h3 − ζ 1

4∂x(h4) + h3∂xxxh
]
.

Replacing ∂xQ by −∂th [from (18)] wherever it appears, we get:

∂th+ 1
3∂x

{
h3 − 2

25δ ∂t(h5) − 1
4ζ∂x(h4) + h3∂xxxh

}
= 0 . (26)
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Working at second order, Ooshida chose rather to adjust “coefficients” G(1)

and G(2) in G so that GQ = F could be reduced to q(0) +F (1), i.e. F (2) ≡ 0,
which yielded:

G = 1 − 10
21δh

4∂x − ηh2∂xx .

Computation of the regularized identity ∂x(GQ) ≡ ∂xF with the replace-
ment of ∂xQ by −∂th led Ooshida to the equation:

∂th+ 1
3∂x

{
h3 − 2

7δ ∂t(h5) − 36
245δ∂x(h7) − 1

4ζ∂x(h4) + h3∂xxxh

−3η h2∂xth
}

= 0 . (27)

3.3 Comparison of the different one-equation models

The main difference between Equations (20, 22, 26, 27) is that the inertia
terms issued from q(1) appear as combinations of ∂t(h5) and ∂x(h7) with
different weights. Indeed using with the equivalence ∂th = −h2∂xh+O(ε2)
one can write

h6∂xh = ∂x

(
1
7h

7
)

= −∂t

(
1
5h

5
)

+ O(ε2) . (28)

Thus let us investigate every equivalent combination of ∂t(h5) and ∂x(h7)
when viscous effects can be neglected (η = 0), and thus consider

∂th+1
3∂x

{
h3 − 2

25δ∆∂t(h5) − 2
35δ(∆ − 1)∂x(h7) − 1

4ζ∂x(h4) + h3∂xxxh
}

= 0 ,
(29)

where ∆ is a free parameter, as a starting point. The Benney equation (22) is
clearly recovered when ∆ = 0 whereas (20) is obtained for ∆ = 25/16 ' 1.7.
The combination of the first-order terms ∂t(h5) and ∂x(h7) appearing in
Ooshida’s equation (27) corresponds to ∆ = 25/7 ' 3.6 and Equation (26)
is recovered when ∆ = 1. Figure 2 (left) displays the speeds of one-hump
solitary waves as functions of the reduced Reynolds number δ for the cor-
responding values of parameter ∆. These solutions have been computed
by continuation, again using Auto97. It can be seen that the solution
branches for the principal homoclinic orbits of the Benney equation (22)
—dotted line— and equation (20) —dashed line— both present a turning
point at δ ≈ 1, so that one-hump solitary solutions are not expected be-
yond the corresponding values of δ. The curve corresponding to ∆ = 1, i.e.
Equation (26), is not shown in figure 2 since it remains close to the ones
obtained with ∆ = 0 and ∆ = 25/16 and similarly presents a turning point.
By contrast when ∆ = 25/7 —thick solid line— the curve does not turn
back as δ is increased. Equation (29) with ∆ = 25/7 differs from Ooshida’s
equation (27) only through the absence of the viscous term −η∂x(h2∂xth).
However this viscous contribution does not play a significant role in the reg-
ularization process. Comparisons bearing on the existence and speed of the
solitary waves (thick and thin solid lines in figure 2, left) indeed show little
difference. Viscous dispersion does not affect much the maximum ampli-
tude of the waves, whereas for η = 0.1 it has a marked effect on the overall
shape of the wave’s envelope and the number of visible oscillations preced-
ing the main hump as seen in the right-hand-side part of figure 2. As long
as the regularization of the surface equation is concerned, which manifests
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Figure 2: Left: Speeds of one-hump homoclinic solutions of (29) as functions
of the reduced Reynolds number δ for a vertical wall (ζ = 0). The dotted
line stands for ∆ = 0. The dashed line corresponds to ∆ = 25/16 and
the solid line to ∆ = 25/7. For comparison, the solutions to Ooshida’s
equation (27) with η = 0.1 are given as the thin solid line. Right: One-
hump homoclinic solutions to Ooshida’s equation (29) at δ = 5 and ζ = 0
(vertical wall); the solid line corresponds to η = 0.1 and the dotted line to
η = 0.

itself through the persistence of homoclinic solutions for all Reynolds num-
bers, the computation of homoclinic solutions to (29) shows that it can be
achieved without much algebra simply by modifying the inertia terms en-
tering that equation with the help of the equivalence ∂th = −h2∂xh+O(ε2).
Unfortunately, this is not sufficient to obtain quantitative agreement with
experiments and DNS results. As already recognized by Ooshida (1999),
the amplitudes of solitary waves are indeed grossly underestimated by (27).
The same problem arises with (29) for all the values of ∆ that we have
explored besides the special values previously quoted. This calls for a dif-
ferent approach if we want an accurate modeling in the largest possible range
of Reynolds numbers and not only in the neighborhood of the instability
threshold, i.e. also in what Ooshida called the ‘drag-inertia’ regime that
takes place when inertia plays a more significant role at large δ, as opposed
to the ‘drag-gravity’ regime taking place at small δ and corresponding to
a balance between viscous drag on the wall and gravity acceleration, for
which the classical long-wavelength expansion is expected to be valid.

4 Shkadov’s modeling and beyond

4.1 Original Shkadov’s approach

The difficulty with a modeling in terms of a single equation, is that keeping
a single dependent variable, namely h, is not enough to account for the
dynamics of the film, though the perturbations may well stay long-lengthed.
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At every step of the asymptotic expansion, the velocity profile is assumed to
have no dynamics for its own but to be strictly enslaved to h by equations
where the time dependence only comes through that of h. This is justified
only as long as the evolution rate of velocity modes, of order unity due to
the viscous damping over the thickness, can be considered as large when
compared to the evolution rate of h, of order ε. Beyond threshold (ε finite)
this assumption fails, which can be interpreted as the sign of a revolt of
enslaved degrees of freedom. The dynamics of the flow can then no longer
be described through the evolution of a single field for the film thickness
and other variables must be considered, e.g. the local flow rate q, the stress
at the wall, etc.
Kapitza (1948) first proposed a modeling involving the film thickness h and
the flow rate q, based on the Kármán–Polhausen averaging technique used
in laminar boundary-layer theory (Schlichting, 1979). Extending Kapitza’s
theory to time-dependent flows, within a similarity assumption based on a
parabolic velocity profile:

u =
3q
h

[
ȳ − 1

2
ȳ2

]
where ȳ = y/h(x, t) , (30)

Shkadov (1967) obtained an equation governing the flow rate q which, using
the previously defined scales, reads:

δ ∂tq = h− 3
q

h2
+ δ

[
6
5
q2

h2
∂xh− 12

5
q

h
∂xq

]
− ζh∂xh+ h∂xxxh . (31)

This equation forms a closed system when completed by the mass con-
servation equation (18). The blow-up behavior observed with the time-
dependent solutions of the Benney equation is no longer observed with
the two-equation model (18, 31), but the linear stability analysis of that
system leads to an overestimation of the threshold of instability (cot β in-
stead of the exact answer 5

6
cot β). This discrepancy motivated Ruyer-Quil

& Manneville (2000) to re-investigate Shkadov’s approach and pursue his
original suggestion of expanding the velocity field on a polynomial basis as
u =

∑
n an(x, t)fn(y/h(x, t)). They were lead to a system consistent at or-

der ε2, with four equations in four unknowns, h, q and two supplementary
fields s1 and s2 accounting for the departure of the velocity profile from the
parabolic shape.

4.2 Full second-order model

The main idea underlying the derivation of this second-order model was
to take advantage of the structure of (9) which can be understood as a
perturbation, by inertia terms and streamwise viscous dissipation, of the
equilibrium between the streamwise gravity and wall friction represented by
its O(1) restriction, namely: 1+∂yyu = 0. Consequently, the velocity profile
is expected to remain close to the corresponding unperturbed solution: the
flat film Nusselt flow. Expanding the velocity field on a polynomial basis,
the first term of this expansion was taken to be g0(y) = y− 1

2y
2, the flat film

parabolic velocity profile as in (30). It was proved that first-order corrections
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to the velocity fields could be described entirely with the help of only two
more polynomials of degree four and six, g1 and g2. We next proceeded to
a Galerkin projection of the boundary-layer equations (14) retaining terms
up to order ε2 included. Writing formally (14) as BL(u) = 0, the residuals
read Ri(u) = 〈BL(u), gi(y)〉, where 〈f, g〉 =

∫ h

0
f g dy refers to the scalar

product deriving from the plain L2 norm. In practice, the actual set of
polynomial test functions gi was made orthogonal. The expansion of the
velocity field was also written so as to retain the physical meaning of q as
the flow rate, i.e. q =

∫ h

0 u dy. Setting the three residuals Ri(u) to zero
formed a system of three equations, completed with the mass balance (18),
for the four unknown h, q, s1 and s2. The full second-order model was
obtained after tedious algebra as:

δ ∂tU = MV + δMδ Vδ + ηMη Vη , (32)

again completed by (18) and where U is the column vector U = (q, s1, s2)t.
The full expression of system (32) is given in appendix A, from which the
arrays M, Mδ , and Mη as well as V, Vδ, and Vη, can be read. Once
closed with the mass conservation equation (18), this model was shown to
reproduce the dynamics of the film with great accuracy up to large Reynolds
numbers. In particular, linear stability predictions were found in close agree-
ment with results from the OS equation obtained by Brevdo et al. (1999)
at least up to R = 200 (Ruyer-Quil & Manneville, 2002).

4.3 Simplified second-order model

Application of the Galerkin procedure with a single test function g0, that
is assuming the parabolic velocity profile given by (30), yielded a simplified
model involving h and q:

δ ∂tq =
5
6
h− 5

2
q

h2
+ δ

[
9
7
q2

h2
∂xh− 17

7
q

h
∂xq

]
− 5

6
ζh∂xh+

5
6
h∂xxxh

+η
[
4
q

h2
(∂xh)2 −

9
2h
∂xq∂xh − 6

q

h
∂xxh +

9
2
∂xxq

]
, (33)

i.e. similar to Shkadov’s model once closed by (18). But, by contrast with
the latter which was derived through simple averaging (y-constant weight
function), our simplified model was shown to predict the correct linear sta-
bility threshold. It also contained all possible second order terms in h and
q, which should make it more relevant also beyond threshold. The gradient
expansion of (33) however failed to reproduce the exact expression (23) at
order ε2. As a matter of fact, results differ only through the coefficient of
the first inertia term that reads 212

525
instead of the exact value 127

315
.

There is a strong motivation in obtaining accurate second-order low-dimensional
models only involving two equations for two independent variables such as
h and q. The theoretical analysis and the numerical integration of mod-
els such as (18,32) are indeed simpler than the corresponding study of the
full Navier–Stokes problem, or even of the boundary-layer formulation (9).
Handling the four fields of (18,32) still remains a difficult task, and a reli-
able two-field formulation consistent at order ε2 would be welcome, and all
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the more when the spanwise uniform assumption will be relaxed in Part II.
Elimination of s1 and s2 can be achieved starting from (32) and assuming
them to be in practice of higher order than ε and therefore enslaved to
the other degrees of freedom h and q. This procedure leads back to the
simplified equation (33). We develop below a consistent elimination strat-
egy aiming at a two-equation model with an exact account of the gradient
expansion at order ε2.

5 Reduction of the full second order model

A simple argument can be given here to justify the success of the elimination
of s1 and s2. Since viscosity acts so as to ensure the in-depth coherence
of the flow, fluctuations of the flow field varying rapidly in the wall-normal
direction are efficiently damped by viscosity, so that s1 and s2 corresponding
to high degree polynomials, should be efficiently damped by it. This can
be observed simply by linearizing system (32) around the Nusselt flow in
the zero wavenumber limit, that is, assuming no spatial variations. The
mass balance (18) thus implies a constant thickness. Writing q = 1/3 + εq̃,
si = εs̃i where ε � 1, we get

δ
dṼ
dt

= MṼ , (34)

where Ṽ = (q̃, s̃1, s̃2)t and M is the matrix defined in (32) whose eigen-
values λi are respectively −2.47, −22.3, and −87.7. Because of the large
gap between λ1 and (λ2, λ3), it is obvious that, at low Reynolds number
and provided that the long-wave assumption is valid, the dynamics of the
flow is governed by the neutral mode associated to the free surface eleva-
tion and the eigenmode corresponding to λ1, the eigenvector of which is
(q̃, s̃1, s̃2)t = (1.00,−1.33 10−2, 1.38 10−4)t. Consequently and given that
the associated eigenvector is nearly aligned with the first vector of the nat-
ural basis, s1 and s2 are truly slaved to the dynamics of the thickness of
flow rate, at least close to the threshold.

5.1 Technicalities

Having justified the elimination of s1 and s2, let us go back to its practical
implementation. Fields s1 and s2 are corrections to the flat film parabolic
profile corresponding to g0. So, they are at least first-order terms produced
by the deformation of the free surface. In the first residual R0 associated
to the weight g0, s1 and s2 appear through inertia terms involving their
space and time derivatives or through products with derivatives of h and
q, which are terms of order ε2. Indeed, the corrections to the velocity field
cannot appear in R0 at lowest order since the evaluation of the viscous
term

∫ h

0
g0(y/h)∂yyu dy yields 1

2
∂yu|y=h − q/h2, owing to the definition of

q =
∫ h

0
u dy, and that 1

2
∂yu|y=h is already of order ε2, as seen from (12)

that expresses the stress balance at the free surface.
At this stage, it remains to determine the expression of s1 and s2 as functions
of h, q and their derivatives truncated at order ε. Such relations can easily
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be obtained by dropping all second-order terms from the two last residuals
R1 and R2 and then solving for s1 and s2. One gets :

s1 = δ

[
1

210
h2∂tq −

19
1925

q2∂xh+
74

5775
hq∂xq

]
+ O(ε2) , (35a)

s2 = δ

[
2

5775
q2∂xh − 2

17325
hq∂xq

]
+O(ε2) . (35b)

Substitution of (35) into R0 finally gives

δ ∂tq =
5
6
h− 5

2
q

h2
+ δ

[
9
7
q2

h2
∂xh− 17

7
q

h
∂xq

]
+ δ2K(h, q) − 5

6
ζh∂xh

+ η

[
4
q

h2
(∂xh)2 −

9
2h
∂xq∂xh− 6

q

h
∂xxh+

9
2
∂xxq

]
+

5
6
h∂xxxh , (36)

where the additional terms arising from the elimination of s1 and s2 are
second order inertia terms all gathered in K that reads:

K =
1

210
h2∂ttq −

1
105

q∂xh∂tq +
1
42
h∂xq∂tq +

17
630

hq∂xtq +
653
8085

q (∂xq)
2

− 26
231

q2

h
∂xh∂xq +

386
8085

q2∂xxq +
104
2695

q3

h2
(∂xh)2 −

78
2695

q3

h
∂xxh . (37)

Obviously, these corrections are highly nonlinear. They also present time
derivatives that are difficult to handle at least in numerical simulations.
Fortunately, the zeroth-order relation between q and h

q =
1
3
h3 , (38)

allows us to simplify the expression of K. Using also ∂th = −h2∂xh+O(ε2),
we get the more compact expression:

K = − 1
630

h7(∂xh)2 . (39)

The behavior of the solutions to equation (36) where the inertia corrections
K are given by (37) or (39) have been tested in the drag-inertia regime
by computing the one-hump solitary-wave solutions for a vertical wall and
neglecting second-order viscous effects (η = 0). Figure 3 displays the speed
and amplitude of the solitary waves as function of the reduced Reynolds
number δ. They are compared to the solutions to the full-second order
model (32), to the simplified model (18, 33), and to the results obtained by
Chang et al. (1996a) with the first-order boundary-layer equations [(8, 14),
with (11, 15, 10) and η = 0]. The simplified model and the full second-order
model both exhibit unique one-hump solitary-wave solutions at given δ and
have speed in reasonable agreement with the results of Chang et al. On
the contrary, the branch of principal homoclinic solutions is seen to turn
back in the transition region between the drag-gravity and the drag-inertia
regimes (δ ∼ 1) with both expressions (37) and (39) of K. This unphysical
behavior is similar to the one encountered with the Benney equation (22)
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Figure 3: Speed c (a) and amplitude hm (b) of the principal homoclinic
orbits as functions of the reduced Reynolds number δ. The wall is vertical
and streamwise viscous dissipation is omitted (ζ = η = 0). 1: full second-
order model (18,32); 2: simplified model (18,33); 3: (18, 36) with K given
by (37); 4: with K given by (39); 5: with K given by (40); 6: regularized
model (18, 47); filled squares: solutions to the first-order boundary-layer
equations after Chang et al. (1996a).

and is likely to be related to the high-degree nonlinearities present in (37)
and (39). We therefore end up with basically the same difficulty as in the
case of surface equations (see § 3): obtain inertia terms in a form that
accounts for the drag-inertia regime in a wider range of reduced Reynolds
number δ accurately.
Other forms of the second-order inertia corrections K can be obtained by
using the flat-film relation (38). For example, Roberts (1996) has ap-
plied a center manifold analysis to the problem of falling film and de-
rived a second-order model in terms of the film thickness h and the depth-
averaged velocity equivalent to the flow rate q. His approach relied on
the linear viscous dissipating modes of the streamwise uniform film in the
zero-wavenumber limit, which is basically a reduction of the slow time and
space evolution of the film to the two first eigenmodes (h, u) ∝ (1, 0) and
(h, u) ∝ (0, sin(πy/(2h))). His model is similar to those obtained using
the classical depth-averaged method with coefficients close to those appear-
ing in (36). As noticed Ooshida (1999), this agreement can be understood
from the fact that the velocity profile urob ∝ sin(πy/(2h)) is very close to
the parabolic profile since 〈urob, g0〉/

√
〈urob, urob〉〈g0, g0〉 ≈ 0.999. Inertia

corrections obtained by Roberts read:

K =
1

100

(
−0.1961

q3

h2
(∂xh)2 − 1.78

q2

h
∂xh∂xq + 0.1226 q(∂xq)2

−1.792
q3

h
∂xxh + 0.7778 q2∂xxq

)
. (40)

The results obtained with this expression of K are also displayed in figure 3.
A loss of solutions is once more observed at δ ≈ 2, a failure due to the
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fact that K is obtained from a perturbation method which is strictly valid
only in the drag-gravity regime where inertia has a perturbative role only.
Both our derivation of (36) with K given by (37) or (39) are also based on
perturbative techniques applied to the Nusselt flat film solution. However,
the presence of the principal homoclinic solutions to the simplified model
(18, 33) for all δ shows that it should be possible to describe the drag-inertia
regime at low cost in terms of a model involving h and q only.

5.2 Padé-like regularization

Here, by looking for a kind of algebraic preconditioner apt to kill the dan-
gerous second order terms of inertia origin (in δ2), we follow a procedure
more closely inspired from the Padé approximant technique than Ooshida’s
regularization that involved a differential operator. Instead of thinking in
terms of an expansion of the flow rate q, let us consider the residual R0 ob-
tained by averaging the momentum equation (14) with weight g0, which can
be written as a series in ε, R(0)

0 +R(1)
0 +R(2),η

0 +R(2),δ
0 . In the second-order

terms of this expansion, we have splitted those having a viscous origin (su-
perscript η) from those accounting for the convective acceleration induced
by the deviations of the velocity profile away from the parabolic shape (su-
perscript δ). The simplified equation (33) is recovered just by neglecting
R(2),δ

0 . So R0 is looked after in the form G−1F where G is now simply a func-
tion of h, q and their derivatives, and F is reduced to R(0)

0 +R(1)
0 + R(2),η

0 ,
i.e. the residual that was obtained assuming a parabolic velocity profile.
Setting F = GR0 to zero gives

δ G(h, q)

h∫

0

g0(y/h) [∂tu+ u∂xu+ v∂yu] dy =

G(h, q)

h∫

0

g0(y/h)
{
1 + ∂yyu− ζ∂xh+ ∂xxxh + η

(
2∂xxu+ ∂x

[
∂xu

∣∣
h

])}
dy ,(41)

where inertia terms have been isolated on the l.h.s. and read:

δG
h∫

0

g0(y/h) [∂tu+ u∂xu+ v∂yu] dy =

δG
{[

2
5
∂tq −

18
35
q2

h2
∂xh+

34
35

q

h
∂xq

]
− 2

5
δK

}
≡ G

{
R(1),δ

0 + R(2),δ
0

}
,(42)

which we want to identify to:

δ

[
2
5
∂tq −

18
35
q2

h2
∂xh +

34
35

q

h
∂xq

]
≡ R(1),δ

0 . (43)

This leads to take the regularization factor as:

G =

[
1 +

R(2),δ
0

R(1),δ
0

]−1

. (44)
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An asymptotically equivalent expression of G can be found using q = h3/3+
O(ε), and ∂th = −h2∂xh+ O(ε2). We then obtain:

R(1),δ
0 = − 2

15
δh4∂xh+O(ε2) and R(2),δ

0 =
δ2

1575
h7(∂xh)2 +O(ε3) ,

which, when substituted in (44), yields:

G =
[
1 − δ

210
h3∂xh

]−1

+ O(ε2) , (45)

In order to lower at its maximum the degree of nonlinearities, G is finally
rewritten in terms of the local slope ∂xh and the local Reynolds number δ q:

G =
[
1 − δ

70
q∂xh

]−1

. (46)

The resulting set of equations reads:

δ ∂tq = δ

[
9
7
q2

h2
∂xh−

17
7
q

h
∂xq

]

+
{

5
6
h− 5

2
q

h2
+ η

[
4
q

h2
(∂xh)2 −

9
2h
∂xq∂xh − 6

q

h
∂xxh +

9
2
∂xxq

]

−5
6
ζh∂xh+

5
6
h∂xxxh

}
×

[
1 − δ

70
q∂xh

]−1

, (47)

along with the mass balance equation (18).
Hereafter, the system (18, 47) will be referred to as the regularized model.
Homoclinic orbits corresponding to one-hump solitary-wave solutions to (18,
47) have been computed and are displayed as curves labelled 6 in figure 3.
Non-physical turn-backs of the curves have never been observed for all the
values of δ studied. Moreover, system (18, 47) is fully consistent at second-
order with the Benney expansion and takes into account modifications of
the momentum balance of the film induced by the deviations of the velocity
profile from the parabolic Nusselt solution.
Note that computations of 2D waves have shown few differences between
the simplified and the regularized models, at least in the range of parameters
corresponding to available experimental data. For this reason, we will pass
directly to the second Part of these lecture notes where the regularized
model is extended to account for spanwise modulations of the film surface,
the selection of which will be shown to be strongly influenced by the second-
order inertia effects. For results of 2D waves with the simplified model, the
reader is referred to the lecture notes of Christian Ruyer-Quil.
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Part II

Secondary Instability and 3D
Wave Patterns

6 2D modeling of 3D film flows

We now turn to the 3D formulation of the problem, and look for two-
dimensional equations in the streamwise (x) and spanwise (z) coordinates
for quantities averaged over cross-stream coordinate y that mimic the full
3D motion of the fluid. As in Part I, our approach is based on the long-wave
approximation which ensures slow time and space modulations of the basic
flat film solution, called the Nusselt flow, by writing that partial derivatives
∂t, ∂x, ∂z are all of order ε, with ε � 1. The first step to this approximation
consists in the elimination of the pressure in the Navier–Stokes equations
truncated at O(ε3), leading to the second-order boundary layer equations,
which read

δ
[
∂tu+ ∂x(u2) + ∂y(uv) + ∂z(uw)

]
= 1 + ∂yyu− ζ ∂xh+ ∂xxxh+ ∂xzzh

+η
[
2∂xxu+ ∂zzu+ ∂xzw − ∂x(∂yv

∣∣
h
)
]
, (48a)

δ
[
∂tw + ∂x(uw) + ∂y(vw) + ∂z(w2)

]
= ∂yyw − ζ ∂zh+ ∂xxzh+ ∂zzzh

+η
[
2∂zzw + ∂xxw + ∂xzu− ∂z(∂yv

∣∣
h
)
]
, (48b)

∂xu+ ∂yv + ∂zw = 0 , (48c)

where h = h(x, z, t) is the local film thickness, and (u, v, w) the streamwise,
cross-stream and spanwise components of the velocity field. Equations (48a)
and (48b) correspond to the streamwise and spanwise momentum balances,
respectively, and (48c) is the continuity equation. This set of equations is
completed by the no-slip condition at the wall (at y = 0):

u = v = w = 0 , (48d)

and the projections of the stress balance at the free surface (at y = h) along
the x and z directions:

∂yu = η [∂zh(∂zu+ ∂xw) + 2∂xh(2∂xu+ ∂zw) − ∂xv] , (48e)
∂yw = η [∂xh(∂zu+ ∂xw) + 2∂zh(2∂zw + ∂xu) − ∂zv] . (48f)

The set of equations (48) has been written using Shkadov’s scaling intro-
duced in Part I. In this scaling, the length scale in the wall-normal direction
y is hN, the length scale in the in-plane directions x and z and the time
scale are respectively

hNW
1/3 and νW 1/3/g sinβhN . (49)

Second-order terms gathered under η in system (48) account for streamwise
viscous dispersion. These equations are symmetric under the exchanges
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{u ↔ w, x ↔ z}, except for the gravity term equal to 1 in (48a). Gravity
oriented, the trivial flat film solution is a parallel flow with no spanwise
component, i.e. w = 0. A legitimate approach is therefore to consider
w of order ε, with the meaning that spanwise flows are triggered by the
modulations of the free surface. Ruyer-Quil & Manneville (2000) used this
assumption to simplify cumbersome system of equations which models the
3D flow dynamics. However, considering the continuity equation (48c), the
least degeneracy principle suggests that w be taken as an O(1) quantity and
this is the point of view we will consider below.
Following the same procedure as for the 2D case in Part I, one obtains that
six fields are needed to represent the velocity components at second order:
both the streamwise and spanwise flow rates q =

∫ h

0
u dy and p =

∫ h

0
w dy,

and four corrections s1, s2, r1 and r2 corresponding to the polynomial
test functions g1 and g2 and accounting for the deviations of the veloc-
ity profiles from their zeroth-order parabolic shapes (polynomial g0): see
details in appendix B. The boundary layer equations are next averaged
using the Galerkin method by writing residuals 〈E‖, gi〉 and 〈E⊥, gi〉 where
〈f, g〉 =

∫ h

0
f g dy, and E‖ and E⊥ refer to the streamwise (48a) and span-

wise (48b) momentum balances, respectively. These residuals yield a system
of six evolution equations for h, q, s1, s2, p, r1 and r2, completed by the
mass balance obtained through in-depth integration of (48c). This system
is called the complete model in the following, and is given in appendix B for
reference. Here, we follow the regularization procedure developed in Part I
that aims at reducing the system to only three equations for h, q and p.
First-order expressions of the corrective fields s1, s2, r1 and r2 are readily
obtained from the truncation at order ε of the residuals corresponding to
the weights g1 and g2. Substitution of these expressions in the first resid-
uals R0,‖ = 〈E‖, g0〉 and R0,⊥ = 〈E⊥, g0〉 produces second-order inertia
terms, formally written R(2),δ

0,‖ and R(2),δ
0,⊥ . These terms contain dangerous

nonlinearities that we next kill by adjusting algebraic preconditioners. So
residuals R0,‖ and R0,⊥ are searched in the form G−1

‖ F‖ and G−1
⊥ F⊥ where

F‖ and F⊥ correspond to the expressions of the residuals R0,‖ and R0,⊥
when a parabolic velocity profile is assumed, i.e. when corrections si and ri

are neglected. Isolating inertia terms, we thus set:

G‖

(
R(1),δ

0,‖ + R(2),δ
0,‖

)
= R(1),δ

0,‖ and G⊥

(
R(1),δ

0,⊥ + R(2),δ
0,⊥

)
= R(1),δ

0,⊥ , (50)

where superscripts refer to first-order and second-order inertia terms. Zeroth-
order expressions of the flow rates q = h3/3 + O(ε) and p = O(ε), i.e. the
gravity-oriented Nusselt flow, are next invoked to reduce the degree of non-
linearities of the regularization factors G‖ and G⊥. Consequently, the iner-
tia terms R(2),δ

0,⊥ induced by deviations of the spanwise velocity field from
the parabolic profile appearing asymptotically at order ε3, we merely get
G⊥ = 1 +O(ε2). Similarly, the asymptotic expression of R(2),δ

0,‖ corresponds
exactly to the one obtained for a spanwise independent flow. Hence we have

G⊥ ≡ 1 and G‖ ≡
[
1 − δ

70
q∂xh

]−1

, (51)
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where G‖ is identical to its expression given in Part I. The three-dimensional
extension of our regularized model finally reads:

∂th = −∂xq − ∂zp , (52a)

δ ∂tq = δ I2D
‖ + G‖

{
5
6
h− 5

2
q

h2
+ δ I3D

‖ + η
[
D2D

‖ + D3D
‖

]
+

5
6
h∂xP

}
,(52b)

δ ∂tp = δ I2D
⊥ − 5

2
p

h2
+ δ I3D

⊥ + η
[
D2D

⊥ + D3D
⊥

]
+

5
6
h∂zP , (52c)

where I and D stand for terms of inertia and viscous dispersion origin,
and P = −ζh+ (∂xx + ∂zz)h corresponds to contributions from gravity and
capillarity to the pressure distribution. In (52b), we have also isolated terms
already present in the 2D model (superscript 2D) from those arising from
the spanwise dependence (superscript 3D). Subscripts ‖ and ⊥ indicates
terms that are symmetric under the exchanges {q ↔ p, x ↔ z}. Developed
expressions of system (52) is given in appendix C.
Equations (52a) express the mass conservation, and (52b,52c) express the
averaged momentum balances in directions x and z, respectively. The vis-
cous drag corresponds to the terms 5

2q/h
2 in (52b) and 5

2p/h
2 in (52c).

As for system (48), gravity acceleration contributes only to the streamwise
momentum balance through the term 5

6
h in (52b).

Regularized model (52) is fully consistent with the Benney expansion at
second order, while the 3D simplified model, corresponding to the in-depth
averaging of the momentum balance equations assuming both parabolic
velocity profiles and weights, is not. The latter can be recovered from the
former by replacing the factor G‖ by one† —or equivalently by assuming the
actual order of si, ri to be higher than ε, so that their derivatives can be
neglected in the complete model (63) (Ruyer-Quil & Manneville, 2000).

7 Floquet Analysis

In this section, the stability of 2D waves against transverse perturbations
is investigated, with a particular attention paid to the experimental con-
ditions considered by Liu et al. (1995). Imposing a periodic forcing at the
inlet, Liu et al. observed waves with the same periodicity in time, at least
prior to the onset of secondary instabilities. Integrating the mass balance
∂th+ ∂xq = 0 over a period, shows that the mean flow rate 〈q〉 is conserved
at each location on the plane, at least prior to secondary instabilities, and
is therefore equal to its value 1/3 at inlet. Experimental profiles indicate
that the wave selected by the linear inception are of type γ1, slow waves
with deep troughs and bumped crests. Our efforts have accordingly been
concentrated on the stability analysis of the γ1 traveling waves. These
waves were computed using Auto97 (Doedel et al., 1997) by continua-
tion. The constant flux condition 〈q〉 = 1/3 was enforced by adjusting the
mean flow rate in the moving frame q0 =

∫ h

0
(u − c) dy where c is the wave

†Notice that the simplified model formulated by Ruyer-Quil & Manneville (2000)
contains two typing mistakes in their equation (54): terms − 97

56
q∂zp/h and 129

56
qp∂zh/h2

must be corrected to read − 8
7
q∂zp/h and 9

7
qp∂zh/h2 .
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speed. We started from infinitesimal sinusoidal waves at linear threshold,
and increased the period. A standard Floquet stability analysis of the wave
against both streamwise and spanwise modulations was next performed.
Each unknown field X in the frame moving with the wave ξ = x − c t, was
expressed as X(ξ, z, t) = X0(ξ) + εX1(ξ, z, t) where ε � 1 and X0 is the
basic two-dimensional traveling wave. The perturbation X1 was expanded
as

∑
ϕ,kz

X̃ϕ,kz (ξ) exp{iϕkxξ + ikzz + ς t} where X̃ϕ,kz is periodic in ξ with
period 2π/kx, kx being the wavenumber of the two-dimensional basic sta-
tionary wave, and kz is the wavenumber of the transverse perturbation.
Parameter ϕ is the detuning parameter, i.e. the ratio of the streamwise
wavenumber of the perturbation to that of the basic state, hence ϕ ∈ [0, 1[.
ϕ ∈ Q signals a subharmonic mode, especially ϕ = 1/2, and ϕ /∈ Q an
incommensurate modulated mode. Denoting X0(ξ) the vector formed by
the different components of the basic state, and X̃ the vector formed by
the amplitudes of the perturbations, the linearized set of equations can be
formally written as

ςX̃ = L(X0, ∂ξ; c, q0, δ, ζ, η, ϕ, kz) X̃ , (53)

where L is a linear operator, and ς is the complex growth rate, the maxi-
mum real part of which is noted ςMr and corresponds to the most amplified
perturbation, i.e. the one of interest from the experimental point of view.
The parameter space ϕ × kz can be reduced by invoking two symmetries:
(i) the reflection of the waves in the spanwise direction, which allows us to
consider only positive kz; (ii) the real nature of the basic equations, which
makes (53) invariant under the transformation (ϕ, kz, ς, X̃) → (−ϕ, −kz,
ς?, X̃?), the star denoting complex conjugation. Thus, the parameter space
ϕ × kz can be limited to [0, 1

2 ] × [0,∞[. For convenience, the eigenvalue
problem (53) was solved in Fourier space where we used 256 real modes to
represent the computed 2D waves and 128 complex modes to represent the
perturbation (limited to 32 for the complete model owing to its complex-
ity). Eigenvalues and eigenvectors were computed using a QR algorithm
implemented on a RS/6000 IBM workstation.
Liu et al. (1995) considered a falling film of a glycerol-water mixture (ρ =
1070 kg/m3, ν = 2.3 10−6 m2 s−1 and σ = 67 10−3 N m−1), with β = 6.4◦

and Re = 56. They measured the wavelength of the 2D basic state λx as
well as the wavelength of the transverse modulations λz, obtained by vary-
ing the frequency of the periodic forcing. Results of the Floquet analysis
using the complete, regularized and simplified models are presented in fig-
ure 4 using dimensional units. Conversion from our dimensionless variables
to dimensional scales have been made through (49). The agreement with
experiments turns out to be better when streamwise and spanwise velocities
are assumed to be of the same order, as done here, than by assuming that
the spanwise velocity field w is of order ε as done in Ruyer-Quil & Man-
neville (2000), which is in line with the application of the least degeneracy
principle. The computed wavelengths λx of γ1 waves are in good agreement
with experimental findings. In line with results reported by Liu et al. , our
computations also indicate relatively small variations of λz with the fre-
quency. The transverse wavelengths of the most amplified perturbations for
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Figure 4: Streamwise wavelengths λx of 2D waves (a) and spanwise wave-
lengths λz (b) of the most amplified 3D perturbations versus the forcing
frequency f , with β = 6.4◦, Re = 56 and Γ = 2002. Open down triangles
are experimental findings by Liu et al. (1995). Solid, dashed and dotted
lines correspond to the complete model (63), the regularized model (52)
and the simplified model, respectively. Notice that in panel (a), solid and
dashed lines are superposed.

the regularized and the complete models are in good agreement, whereas the
Floquet analysis of the simplified model indicates larger wavelengths. This
points out the important role played by the second-order inertia terms —
induced by the deviations of the velocity profile from its parabolic shape—
in the mechanism of the 3D secondary instability. Yet, at low frequency, λz

goes to infinity so that the most amplified perturbation is spanwise-uniform,
while the experimental λz remains finite. Another difference between the re-
sults of the Floquet analysis and the experimental findings is the fact that
the detuning parameter for the most amplified perturbation (not shown)
systematically corresponds to a subharmonic secondary instability (ϕ = 1

2 )
whereas Liu et al. reported a synchronous transition (ϕ ≈ 0).
Figure 5(a) summarizes the experimental findings by Liu et al. in the Re×f
plane for the same glycerol-water mixture and with β = 4◦. Liu et al. re-
ported two different scenarios that are strongly reminiscent of what happens
in boundary layers. The first one, referred to as a synchronous mode, is char-
acterized by wave crests deformed in phase in the spanwise direction. The
second one, less commonly observed, appears when two successive crests
are deformed with a phase shift of π. This leads to chequerboard (or her-
ringbone) patterns characteristic of a streamwise subharmonic instability
combined to a spanwise modulation. These two modes are reminiscent of
aligned and staggered Λ-vortices developing in transitional boundary layers,
thus analogous to the type-K and type-H transitions, respectively. Corre-
sponding results for the stability of γ1 waves are presented in figure 5(b-d),
as obtained from the regularised model. The results for the solutions to
the complete and simplified models are very similar to those obtained with
the regularised model and thus not shown. We have computed the detun-
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Figure 5: Stability of the γ1 waves against 3D modes as function of the
Reynolds number Re and the frequency f for β = 4◦ and Γ = 2340 (Liu
et al., 1995, figure 6). (a) Experimental stability chart. Stability zones are
bounded by thick lines : ‘2D’ where no 3D instability was observed, ‘Sub’ for
3D subharmonic instability and ‘Syn’ for 3D synchronous instability. The
neutral stability curve is represented by a thin solid line (Orr–Sommerfeld
analysis). Crosses refer to parameter sets reported in table 1; (b) detuning
parameter, where the synchronous (Syn) and subharmonic (Sub) instability
regions correspond to ϕ = 0 and 0.5, respectively. (c) Wavenumber kz of
the fastest growing transverse modulation (in cm−1); (d) enlargement of
panel (c): ‘SH’ subharmonic 2D instability (ϕ = 1

2 ), ‘IM’ incommensurate
modulated 2D mode (0 < ϕ < 1

2
). Dashed lines indicate the limit (4 Hz) of

the computations in panels (b, c). Results presented in panels (b-d) have
been obtained using the regularised model.
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Set Re β (deg) Γ f (Hz) k c 〈h〉
1 40.0 4.0 2340 13 1.565 0.824 0.987
2 60.0 4.0 2340 13 1.494 0.689 0.970
3 42.7 4.0 2340 7 0.953 0.703 0.975
4 48.0 6.4 2002 10 0.980 0.628 0.965

Table 1: Dimensionless wavenumber k, phase speed c and averaged thickness
〈h〉 of the computed γ1 waves corresponding to experimental conditions by
Liu et al. (1995). The constant mean flow rate condition 〈q〉 = 1/3 was
enforced. Parameters are the Reynolds number R, the inclination β, the
Kapitza number Γ and the forcing frequency f .

ing parameter (figure 5b) and the spanwise wavenumber (figure 5c,d) of the
fastest growing perturbation, with a Reynolds step of 1 and a frequency step
of 1 Hz (the lowest frequency considered is 4 Hz owing to the large number
of modes necessary to represent the solution in that case). Computations
show that kz decreases steadily as Re is lowered and goes to zero in a re-
gion close to the neutral stability curve (see figure 5d). This rapid decrease
of kz corresponds to the boundary separating two and three-dimensional
secondary instabilities, which agrees well with the results of Liu et al. who
reported two-dimensional flows mainly close to the threshold of the primary
instability (see figure 5a). In this small region, the γ1 waves undergo a sub-
harmonic 2D instability (ϕ = 1

2). At low frequency and large Reynolds
number, the instability is also found to be 2D (kz = 0) but corresponds
to an incommensurate mode (ϕ ∈]0, 1

2
[). This provides an indication that

the frontier between two and three-dimensional flows may exist and is not
an experimental artifact due to finite-size effects. At low frequency and
large Reynolds number, Floquet stability analysis of γ1 waves predicts a
2D region wider than reported in experiments, which can be understood if
one keeps in mind that γ2 waves are likely to develop in that region of the
parameter plane in place of γ1 waves, the stability of which is considered in
this section.
As already mentioned, computations predict an overwhelming presence of
the subharmonic scenario (ϕ = 1

2 ) whereas Liu et al. observed it only close
to the neutral stability curve at large frequencies and large Reynolds num-
bers. In fact, computations predict a region of synchronous 3D instability at
large Reynolds numbers only using the regularized model. Figure 6 shows
the isocontours of the growth rate ςr of the fastest growing perturbation in
the plane ϕ×kz for the three models, corresponding to the set #2 of table 1.
The complete and the regularized models agree well with each other for the
selection of the fastest growing spanwise wavenumber, whereas the simpli-
fied model predicts longer spanwise wavelengths. Moreover, figures 6(a,b)
show that ςr varies very little with the detuning parameter ϕ. Indeed, for
the complete and the regularized models, the growth rates for ϕ = 0 and
ϕ = 1

2 are close to each other so that the instability does not discrimi-
nate. On the contrary, the simplified model is more selective (see figure 6c)
and clearly predicts a subharmonic instability. This result points out again
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the subtle role of the second-order inertia terms in the pattern selection.
Figure 7 presents isocontours of ςr in the ϕ × kz plane for the parameter
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Figure 6: Maximum growth rate in s−1 as function of the detuning pa-
rameter ϕ and the transverse wavenumber kz in cm−1, computed with the
different models for set #2.

set #3 of table 1. Results obtained with the complete model are not shown
since they are close to those corresponding to the regularized model. It is
clear that the detuning parameter does not significantly affect the growth
rate and the instability does again not discriminate. However, comparing
figure 7(a) to figure 7(b), one can see that the growth rate of the fastest
growing perturbations of the γ1 waves is again more sensitive to the detun-
ing parameter ϕ with the simplified model than with the regularized one.
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Figure 7: Same caption as for figure 6 with parameter set #3.

The direct correspondence between results from the Floquet analysis and
the experiments is based on three assumptions. First, the γ1 waves emerge
from the primary instability. Second, a broadband white noise is assumed.
Third, the 2D waves are assumed to saturate before the onset of the 3D
instability. As indicated by Liu et al., the irregularities at the distributor
are time-independent and preferentially trigger in-phase modulations of the
evolving 3D patterns. Therefore experimental noise contains a larger part of
in-phase perturbations than out-of-phase disturbances, which may trigger
the synchronous instability easier than the subharmonic mode, given that
they have growth rates close to each other. Indeed Liu et al. were compelled
to apply controlled perturbations to enforce subharmonic instabilities. Pre-
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cisely because inlet noise may contain significant spanwise perturbations, 3D
instabilities may arise before the saturation of the 2D waves has a chance
to develop. Such a sensitivity to inlet conditions can only be checked by
direct numerical simulations of the models.

8 Two-dimensional simulations of
three-dimensional flows

Floquet analysis predicts that the subharmonic scenario is predominant,
which contradicts experimental observations. This discrepancy has been
understood by considering that the secondary instability does not discrimi-
nate well, since the maximum growth rate is nearly identical over the whole
range 0 ≤ ϕ ≤ 1/2 of the detuning parameter. This property makes the
3D instability strongly dependent on the initial conditions, and thus pre-
vents one to relate univocally the results of the Floquet analysis to the
experimental findings.
In this section we therefore perform time integrations of the complete model
(63), the regularized model (52) and the simplified model obtained when
taking G‖ = 1. Periodic boundary conditions in both x and z directions are
imposed. This allows us to make use of the good convergence properties
of spectral methods. A pseudo-spectral scheme has been developed, with
derivatives evaluated in Fourier space and nonlinearities in physical space.
The time dependence is accounted for by a fifth-order Runge-Kutta scheme,
which allows controlling the error by difference with an embedded fourth-
order scheme (see details in Press et al. (1992)). In practice, the time
step is adapted to limit the relative error on each variable to 10−4. The
explicit character of the algorithm makes it easy to implement the different
models. The computational domain of size Lx×Lz is discretised withM×N
regularly spaced grid points with coordinates xi = iLx/M and zj = jLz/N .
The three-dimensionality of the waves is evaluated through:

Ex(t) ≡
1

MN

N∑

j=1




M/2−1∑

m=1

|am(zj , t)|2



1/2

, (54a)

Ez(t) ≡ 1
MN

M∑

i=1




N/2−1∑

n=1

|bn(xi, t)|2



1/2

, (54b)

where the spatial Fourier coefficients am and bn are defined by

am(z, t) =
M/2−1∑

i=0

[h(x2i, z, t) + ih(x2i+1, z, t)] exp [2πimi/(M/2)] , (54c)

bn(x, t) =
N/2−1∑

j=0

[h(x, z2j, t) + ih(x, z2j+1, t)] exp [2πinj/(N/2)] , (54d)

and where i stands for the imaginary unit. Ex and Ez are the streamwise
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and the spanwise energy of deformations (Joo & Davis, 1992; Press et al.,
1992).
Owing to the spatial periodicity in the streamwise direction, the simulations
physically correspond to a closed flow where the averaged film thickness
is conserved in the domain. As mentioned there, the flow being gravity-
oriented, the closed-flow condition cannot be achieved experimentally and
the open flow condition should be used instead. Indeed, the conservation
condition in the moving reference frame (see details in Scheid et al. (2005b)):

〈h〉
ξ

=
〈q〉

ξ
−Q

c
(55)

shows that the averaged thickness 〈h〉 can be significantly lower than the
inlet thickness, depending on the wave characteristics c and q0. Therefore,
in order to improve comparisons of simulations to experimental data, we
can turn to our advantage the closed-flow condition inherent in the numer-
ical scheme by imposing a film thickness tuned to the value obtained from
(55) for 2D travelling waves at the corresponding forcing frequency using
Auto97. Doing so ensures that we “embark” the right amount of liquid in
the computational domain lying under the 2D travelling waves. Since the
local flow rate varies as the cube of the local film thickness, this trick can
be crucial in recovering experimental results. Thus, the development of 2D
waves undergoing 3D instabilities is simulated by enforcing initial conditions
in the form:

h(x, z, 0) = 〈h〉 + Ax cos(2πnxx/Lx) + Az cos(2πnzz/Lz) + Anoiser̃(x, z) ,
(56)

where Ax, Az, Anoise are small amplitudes, nx, nz ∈ N represent the numbers
of sinusoidal waves in each direction, and r̃ is a random function with values
in the interval [−1, 1]. The last term of (56) accounts for ambient white noise
whose amplitude is set to Anoise = 10−3. Moreover, in order to facilitate
comparison with experimental results, we will keep the aspect ratio of the
computational domain equal to unity by setting Lx = Lz ≡ L. The value of
L must be taken large enough to allow complex flow dynamics. The general
form of (56) enables us to explore a wide range of experimental results
on 3D waves emerging from 2D waves. In the following, we consider 3D
modulations of γ1 waves, γ2 waves and natural (i.e. noise-driven) waves. In
practice we are interested in domains with lengths fitting an integer number
of the travelling waves under consideration.
The presence of high nonlinearities ψ in the regularized model (ψ = 7 for
64b and ψ = 5 for 64c) can have a dramatic effect in terms of aliasing,
which should thus be carefully treated. It can be proven that applying a
lowpass filter such that only the first m′ = 2/(ψ + 1) modes are kept, fully
saves us from aliasing errors. This means in our case that 3/4 (m′ = 1/4) of
the modes should be shut down at each time step and thus not be used to
represent the corresponding solution. Consequently, to maintain the spatial
resolution as first expected, we would have to increase by 4 the number
of mesh points in each direction. This is most of the time prohibitive but
hopefully unnecessary. Indeed, since the higher nonlinearities only arise
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from the small inertia corrections in the streamwise equation (64b), the
value of m′ = 1/3 (i.e. ψ = 5) appears to be always fine. In fact, even
m′ = 2/3 has been safely used for all simulations presented in the following,
except m′ = 1/2 for two cases (sets #7 and #8) when the wave structure
becomes too sharp and needs higher frequencies to be properly resolved.

8.1 3D modulations of γ1 waves

We first consider the transition from 2D γ1 waves to 3D patterns, which
corresponds to the experimental results by Liu et al. (1995). Their well-
controlled experiments will also serve as a benchmark for a systematic eval-
uation of the accuracy and usefulness of the different models.
Liu et al. have imposed a spanwise-uniform periodic forcing. In an attempt
to mimic their experiments, we set Ax = 0.1 and Az = 0 in (56). L is
set equal to five times the wave length 2π/k of the precursor 2D travelling
wave, i.e. nx = 5. The numbers of grid points for the simulations in this
section are M × N = 128 × 64, hence 64 × 32 Fourier modes, or effectively
42× 21 modes due to the aliasing treatment.
The values of the parameters for the different numerical experiments are
indicated in table 1. We first start by considering flow conditions for an
inclination angle β = 4◦ and Kapitza number Γ = 2340 (sets #1-3 in
table 1 and in figure 5a). Each chosen couple (frequency,Reynolds number)
is indicated by a cross in figure 5a. Set #1 corresponds to the region of the
plane (f , Re) where herringbone patterns were observed experimentally,
i.e. subharmonic instability. Simulations of the complete, regularized and
simplified models agree with both the Floquet analysis and the experimental
data by showing the presence of staggered crests and troughs. Isothickness
contours of the wave patterns are shown at different times in figure 8 for the
regularized model: At its final stage (figure 8c), the film evolves towards
a staggered arrangement of smooth and large bumps, and thin and deep
depressions that agrees well with the experimental observations.
Using the parameter set #2, we move next to the region in figure 5a where
synchronous secondary instability has been reported by Liu et al. (1995)
whereas the Floquet analysis predicts a subharmonic instability (compare
figure 5a to figure 5d). Time integrations of the different models, given
in figure 9 for the same spanwise energy of deformation Ez, show disagree-
ment: The complete model (panel a) shows a sideband instability, ϕ � 1,
leading to a synchronous pattern while from the simplified model (panel
c) one gets staggered troughs and more deformed crests indicating a sub-
harmonic instability, ϕ = 1

2
. Solution to the regularized model (figure 9b)

corresponds to a combination of synchronous and staggered modulations,
while seeming closer to the solution to the complete model (and experimen-
tal observations) than to the solution to the simplified one: (i) crests are
hardly deformed whereas troughs tend to form deep isolated depressions; (ii)
spanwise and streamwise wavelengths have values close to each other (four
spanwise modulations for the complete and regularized model, in contrast
with three for the simplified one); (iii) nonlinear docking of two neighboring
depressions (the two downside right in figure 9a and the two upside left in
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(a) t=150 (b) t=175 (c) t=195

Figure 8: Snapshots of free surface deformations giving rise to an herring-
bone pattern, computed for the parameter set #1 (see table 1) with the
regularized model at different times. Isothickness contours are separated by
an elevation step of 0.06. The numbers of grid points are M ×N = 128×64
and L = 2nxπ/k. Amplitudes of the initial periodic forcing are Ax = 0.1
and Az = 0, with nx = 5. Dark and bright zones stand for depressions and
elevations respectively.

figure 9b). This is in line with the fact that as seen in figure 6(a,b), the sec-

(a) complete, t=125 (b) regularized, t=125 (c) simplified, t=155

Figure 9: Snapshots of free surface deformations computed for parameter
set #2 at Ez ≈ 0.05 for the three models. Isothickness contours are sepa-
rated by a level difference of 0.08. See also caption of figure 8. Note that
the shading have been removed for clearness.

ondary instability does not discriminate for the parameter set #2. On the
other hand, as expected from the linear prediction (figure 6c), the simpli-
fied model clearly selects the subharmonic instability, ending in a staggered
pattern (figure 9c). Similar behaviors of the three models (not shown here)
have been also found for parameter set #3.
Parameter set #4 of table 1 corresponds to a more pronounced inclination
angle (β = 6.4◦) and thus to a smaller Kapitza number (Γ = 2002). Sim-
ulations indicate that if the initial excitation is spanwise uniform (Az =
Anoise = 0), the 2D steady state corresponds to an oscillatory mode instead
of a travelling wave. This is illustrated in figure 10 by plotting in (a) the
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time evolution of the streamwise deformation energy Ex and in (b) the wave
profiles at two different times corresponding to a maximum (label ‘1’) and a
minimum (label ‘2’) of Ex during one oscillating period. Such an oscillatory
mode has been numerically and called quasi-periodic (Ramaswamy et al.,
1996). The direct numerical simulations of the equations indicate that the
quasi-periodic regime is widely present in the case of a vertical plane when
the Reynolds number becomes large. In the vocabulary of dynamical sys-
tems theory, the flow tends to a torus (quasi-periodic regime), instead of
evolving towards a limit cycle in phase space (travelling wave). This behav-
ior is generated by the destabilization of the existing limit cycle and can be
predicted by looking at the maximum growth rate of Floquet perturbations,
the imaginary part of which was also found to be positive for the parameter
set #4.
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Figure 10: (a) Energy of streamwise deformations Ex computed for param-
eter set #4 as function of time; (b) corresponding 2D wave profiles. The
complete model (63) has been used for computations and Ax = 0.1, Az = 0,
Anoise = 0, nx = 5, Lx = 10π/k for the initial condition.

The wave patterns for the different models are shown in figure 11. The am-
plitude of the initial streamwise modulations is Ax = 0.2 (Az = Anoise = 0).
We see that both the complete and the simplified models yield staggered
patterns whereas the regularized model yields a synchronous pattern, in
agreement with experimental data (Liu et al., 1995). In fact, it appears
that the onset of the 3D pattern is strongly influenced by the presence of
the 2D oscillatory mode and then by the exchange of energy between this
mode and the 3D instability mode. This exchange depends on the initial
conditions and in particular on the amplitude Ax of the initial streamwise
modulations. Figure 12 shows 3D wave patterns computed with the regular-
ized model for two different values of Ax. Significant qualitative differences
can be noted by comparing them to figure 11(b): At low initial amplitude
Ax, the final transverse modulations seem to have longer wavelengths than
at larger values of Ax. Furthermore, crests display out-of-phase modula-
tions whereas modulations are clearly in-phase when the initial amplitude
Ax is increased. Time evolutions of the energies Ex and Ez are displayed
in figure 13. When Ax = 0.1, the system clearly approaches the unstable
stationary wave solution and remains close to it for a long time. There-
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(a) complete, t=345 (b) regularized, t=305 (c) simplified, t=295

Figure 11: Free surface deformations computed for the parameter set #4 at
Ez ≈ 0.05 for the three models. Isothickness contours are separated by an
elevation step of 0.06. Amplitude of the initial forcing is here Ax = 0.2.

(a) regularized, Ax=0.1 (b) regularized, Ax=0.3

Figure 12: Free surface deformations computed for the parameter set #4 at
Ez ≈ 0.05: (a) t = 300, (b) t = 220.

fore, the Floquet analysis still applies and the obtained staggered pattern
corresponds to the predicted subharmonic instability. This is no longer the
case for larger values of Ax where the modulation of the 2D wave-train
occurs prior to the development of the 3D instability. The observed syn-
chronous pattern is thus the complex result of two ingredients: the growing
2D oscillations and the 3D instability.
We have already noticed how sensitive the pattern formation is to the initial
conditions, due to the poor discrimination of the secondary instability. Nev-
ertheless, experiments show a clear selection of the synchronous instability,
most probably triggered by the small defects of the inlet distributor. In or-
der to mimic such inlet inhomogeneities in simulations, an x−independent
noise r̃′(z) has been added to the initial condition (56), whose amplitude
A

(z)
noise represents the inlet roughness. A realistic estimate of about 1µm

roughness gives an amplitude of A(z)
noise = 0.01 for a typical film thickness

of 100µm. Figures 14 and 15 display results obtained with the regularised
model, as compared to those obtained experimentally (Liu et al., 1995, fig-
ures 7 and 11). They show the influence of such a perturbation, which
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Figure 13: Deformation energies computed for parameter set #4 using the
regularized model (52) and various values of Ax. Solid and dashed lines
correspond to Ex and Ez, respectively. Figures 12(a), 11(b) and 12(b)
correspond to pictures taken at times when Ez crosses the level 0.05.

effectively bias the evolution in favour of the synchronous instability. To
facilitate comparisons with the experimental results, numerical snapshots
are separated in the vertical direction by the distance covered by the waves
between the two times at which the snapshots have been taken (roughly
14.2 cm and 5.8 cm in the case of figures 14 and 15 respectively). The agree-
ment with experiments is now reasonable even though, mostly because of
the choice of periodic boundary conditions, some differences can still be no-
ticed. The spanwise wavelength selected in the simulation shown in figure 14
seems to be a little smaller than in the experiment (37 mm in comparison to
roughly 46 mm), whereas in the case of figure 15, the simulation and the ex-
periment give essentially the same answer (28 mm as compared to 26 mm).
However, experiments and simulations share common qualitative features.
Isothickness contours agree well with each other, and strong modulations
of the troughs are observed, whereas the crests remain nearly undeformed,
which leads to the formation of isolated depressions. In particular, as ex-
perimentally observed by Liu et al., the numerical simulations here indicate
the formation of local saddle points on the wave pattern corresponding to
minima in the spanwise direction and maxima in the streamwise direction
(see the right panel of figure 14 where one of such saddle points is indicated
by a cross). Liu et al. have measured the difference of height between the
minima of the thickness at a trough and the height of the nearby saddle
point. They called it “trough transverse modulation amplitude”, denoted
∆hmin(x). From the measurement of ∆hmin(x) at different locations for the
experimental data corresponding to the parameter set #3, i.e. their figure 7
and the present figure 14, they computed a spatial growth rate of approx-
imately 0.11 cm−1. Following a similar procedure, we define ∆hmin(t) as
the height difference between the minimum of the thickness in the entire
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14.2cm

t=290

t=290

t=245 +

Figure 14: Snapshots of the film free surface obtained using the regularised
model (52) at two different times, along with the experimental picture in
the centre (Liu et al., 1995, figure 7). Parameters correspond to set #3
in table 1. Ax = 0.2, nx = 5, Az = 0, L = 2nxπ/k, Anoise = 10−3, an
x-independent noise with amplitude A(z)

noise = 10−2 is added to mimic the
effect of inlet roughness. The size of the computational domain is 148 ×
148 mm. Isothickness contours are separated by an elevation step of 0.06.
The location of a saddle point in the right snapshot (see text) is indicated
by a cross and two arrows.

computational domain and the closest saddle point at a given time t. From
the measurement of ∆hmin(t) in the simulation, a temporal growth rate is
found to be approximately 2.6 s−1, which is converted into a spatial growth
rate, 0.125 cm−1, hence of the correct order of magnitude, with the help of
the speed of the corresponding 2D γ1 waves, 20.8 cms−1.
Let us emphasize that good agreements between computer simulations and
experiments exists provided that initial conditions are appropriately tuned.
The widespread observation of the synchronous instability in experiments
thus seems to result from the presence of spanwise non-uniformities at in-
let, which favors in-phase modulations of the wave fronts. In fact, the
synchronous instability of the slow γ1 branch was not found in previous
studies focused on vertically falling films where the streamwise dissipation
effects were also neglected (Chang, 1994; Trifonov, 1989). This shows that
the small inclination of the plane and the streamwise dissipation both play
a role in the onset of the synchronous scenario.
Comparisons of computer simulations of the complete, regularized and sim-
plified models to the experimental results by Liu et al. (1995) show that the
streamwise second-order inertia terms, which result from the departure of
the velocity profile from its parabolic flat-film shape, play a crucial role in
the onset of the synchronous instability. In the case of the simplified model,
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t=245

5.8cm

t=270

Figure 15: Same caption as for figure 14 with the parameter set #4 (Liu
et al., 1995, figure 11). The size of the computational domain is 118 ×
118 mm. Isothickness contours are separated by an elevation step of 0.08.

which does not take the second-order inertia correction into account, the
secondary instability is much more selective in favor of the subharmonic
scenario. The complete model (seven equations) and the regularized model
(three equations) give results in reasonably good agreement with experi-
mental data in all cases. This agreement is likely due to the recasting of the
second-order inertia corrections using the regularization technique described
in Part I and applied here to yield (52). This procedure ensured that the
second-order terms remain small compared to the first-order ones for the
widest possible range of parameter values. For this reason, we believe that
the regularized model is a useful and accurate alternative to the full-scale
numerical simulations for a large range of parameter values. It contains the
salient features that play a significant role in the dynamics of film flows.
Therefore, the regularized model (52) will be the only model used from now
to compare theory with experimental findings.

8.2 3D modulations of γ2 waves

In this section, we consider the experimental conditions investigated by
Park & Nosoko (2003) who observed 3D wave patterns emerging from 2D
waves of γ2-type on a vertical wall. Parameter values corresponding to
the different numerical experiments are given in table 2. Park & Nosoko
(2003) have imposed a periodic modulation in the spanwise direction, which
biased the selection towards synchronous patterns. These authors placed an
array of regularly spaced needles with period λz,ndl at the inlet. The initial
conditions (56) corresponding to the inlet conditions imposed by Park &
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Set Re β Γ f λz,ndl k c 〈h〉 kz

5 20.7 90 3375 15.0 10 0.3461 0.900 0.899 0.699
6 20.9 90 3375 19.0 30 0.4720 0.832 0.911 0.233
7 40.8 90 3375 19.1 20 0.3845 0.714 0.912 0.377
8 59.3 90 3375 17.0 20 0.3126 0.630 0.955 0.393

Table 2: Parameters of the simulations corresponding to the experiments
by Park & Nosoko (2003) for a vertical plane and pure water at 25◦C. λz,ndl

is the spanwise intervals of the needle array and kz is the corresponding
dimensionless wavenumber. The dimensionless wavenumber k, phase speed
c and average thickness 〈h〉 of the corresponding 2D γ2 waves are also given.

Nosoko and adapted to the present simulations are taken as: Ax = 0.2,
Az = 0.05 and Anoise = 0.
Figure 16 shows snapshots for parameter set #5. Initial spanwise modula-

(a) t = 27 (b) t = 172
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(c) Lx = 2π/k

Figure 16: (a,b) Snapshots of the film free surface at two different times
computed with the regularized model and for set #5 in table 2. Initial
conditions are: Ax = 0.2, Az = 0.05, Anoise = 10−3, nx = 3, nz = 6 and L =
2nxπ/k. The computational domain is 60×60 mm with 128×128 grid points.
Bright (resp. dark) zones correspond to elevations (resp. depressions). (c)
2D wave profile of (b).

tions of period λz,ndl = 10 mm (nz = 6) are quickly damped, i.e. Ez → 0,
and the pattern evolves to 2D travelling waves, i.e. Ex → cst, the pro-
file of which is given in figure 16(c). It corresponds to a γ2 wave with a
large hump preceded by capillary waves, since when the forcing frequency
is small, the γ1 slow waves are not observed and the linear inception region
is immediately followed by the formation of fast γ2 waves. Such genuine
2D waves have been observed by Park & Nosoko (2003) in the right part
of their test section (figure 7(a) in that reference) while in the left part,
they additionally observed large spanwise modulations with a wavelength
of about 3λz,ndl. We recovered those modulations (not shown here) by in-
creasing the period λz,ndl to 30 mm (nz = 2). However, they also decayed
(with Ez → 0) but at a much smaller rate indicating that the wavelength
λz = 3 cm is close (but still below) the cut-off wavelength for spanwise

38



instability.
Figure 17 shows the results for parameter set #6. In this case, the initial
spanwise modulation is unstable and figures 17(a,b) give patterns equivalent
to those observed experimentally (Park & Nosoko, 2003, figure 7b). To be

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 17: Simulations for the parameter set #6. See the caption of fig-
ure 16, except for nx = 4, nz = 2 and L = 2nxπ/k. Corresponding times
are given in figure 18.

able to compare the evolution in time of computer simulations to the evo-
lution in space of experimental waves, we need a mean to convert locations
in the laboratory frame to dimensionless time in the computations. This is
done by exploiting the fact that a wave travelling at speed c reaches loca-
tion x at time x/c. The speeds of the 2D travelling waves corresponding to
the experimental conditions have thus been computed using Auto97. The
test section in the experiments is 20 cm long which corresponds approxi-
mately to 200 dimensionless time units in the computer simulations. After
running the simulation for a much longer time (1500 time units), time os-
cillations of the spanwise modulations were observed. Figure 18 shows that
the energy of spanwise deformations Ez varies with a periodicity of about
300 time units. The region of the experimental domain corresponding to
t ≈ 300 is thus located beyond the test section, which explains why Park
& Nosoko (2003) could not observe that behavior. Oscillations of shorter
period (about 60 time units) can also be noticed, more pronounced for Ex
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Figure 18: Deformation energies for simulations of set #6: dashed line for
Ex and solid line for Ez. Letters refer to the snapshots of figure 17.

than for Ez in figure 18. Their amplitudes are small at the beginning so
that it is difficult to observe their effects on the 3D wave pattern. However,
they grow for t > 900 where they begin to influence the pattern evolution
in a complex way as illustrated by the last panels (i-l) of figures 17. As
time proceeds, spanwise modulations of the fronts depart more and more
from their initial sinusoidal shape. The fronts start to develop rounded tips
separated by flat regions. At least two symmetry breakings can be observed.
The first one corresponds to a streamwise period doubling of the modulated
fronts triggered by a 2D subharmonic instability, since two identical fronts
are observable in panel (i) instead of four in panel (h). The second one
corresponds to the development of a phase shift of π observable between
the tips of two successive fronts (compare panel l to panel k).
Simulation results for a larger Reynolds number Re = 40.8 are presented in
figure 19 (parameter set #7) and compared to experimental findings (Park
& Nosoko, 2003, figure 7c). Like for Re = 20.7, we first observe sinusoidal
spanwise modulations of the 2D waves. However, they rapidly evolve into
rugged modulations, made of nearly flat backs and rounded fronts. The
pattern then saturated for a while (at least during 30 time units), travelling
downstream in a quasi-steady state. Notice that these rugged-modulated
waves were also be observed at smaller Reynolds number (not shown) when
the streamwise and spanwise initial perturbations have comparable wave-
lengths. In this case, they remain steady for longer time. To facilitate
qualitative comparisons to the spatial evolution observed in experiments,
snapshots of only a third of the numerical domain, corresponding to one
streamwise wavelength, are displayed in figure 19 at increasing times. The
interval of time separating each two snapshots roughly corresponds to the
travelling of the fronts over a distance equal to one wavelength. Despite the
use of periodic boundary conditions, the resemblance with the experimental
findings (Park & Nosoko, 2003, figure 7c) is convincing. For instance the
chequerboard interference pattern of the capillary waves preceding the flat
zones are recovered.
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(a)

t = 40

t = 62

t = 84
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(b)

Figure 19: (a) Experimental picture (real size 60 × 80 mm) for set #7
(Re = 40.8) (Park & Nosoko, 2003, figure 7c); (b) Simulations with nx = 3,
nz = 3 and L = 2nxπ/k.The domain size is 60 × 60 mm with 256 × 256
grid points. Each of the four wave fronts has been obtained at a different
dimensionless time, by interval of 22.

AboveRe ≈ 40, Park & Nosoko (2003) observed a breaking of the modulated
fronts leading to horseshoe-like waves. Simulation results for Re = 59.3 are
presented in figure 20 (parameter set #8) and compared to the experi-
mental findings (Park & Nosoko, 2003, figure 7d). Due to computational
limitations, the computational domain was limited to only one and two
wavelengths in the streamwise and spanwise directions respectively (nx = 1
and nz = 2). As compared to Re = 40.8, the rugged modulations develop
faster and do not saturate. Instead, the bulges of the wave front continu-
ously expand into horseshoe-shapes, reducing the span of the flat parts at
the back. As time proceeds, the legs of the horseshoes extend and split off
into dimples, in qualitative agreement with experimental observations. The
growth of the spanwise perturbations in the simulation is however faster
than in the experiment.
In contrast with experiments by Liu et al. (1995) focusing on the secondary
instabilities of the slow γ1 waves, one can observe that secondary instabilities
of the γ2 waves lead neither to herringbone patterns —made of bumpy
crests and deep troughs— nor to an array of isolated depressions when the
instability is synchronous, but rather to modulated wave fronts.

8.3 3D natural (noise-driven) waves

In this section, we study the formation of noise-driven 3D waves in ab-
sence of periodic forcing. To match with the experiments by Alekseenko
et al. (1994), the initial conditions (56) need to e chosen with white noise of
amplitude Anoise = 10−3 and Ax = Az = 0. Parameter values for the differ-
ent numerical experiments are given in table 3. The experimental pictures
obtained by Alekseenko et al. (1994) are shown for reference in figure 21.
Snapshots of the free surface deformation computed with the regularized
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t = 47

t = 77

t = 107

t = 137

Figure 20: (a) Experimental picture (real size 60×100 mm) for set #8 (Re =
59.3) (Park & Nosoko, 2003, figure 7d); (b) Snapshots of the simulated free
surface. The domain size is 40×25 mm with 256×256 grid points. Each of
the four wave fronts has been obtained at increasing dimensionless times,
by interval of 30.

Set Re β (deg) Γ λx (mm) k c 〈h〉
9 8 75 1106 40 0.15 1.322 0.906
10 16 75 1106 30 0.21 1.062 0.876
11 45 75 1106 25 0.28 0.749 0.904

Table 3: Parameters of the simulations corresponding to experiments by
Alekseenko et al. (1994) for an inclined plane and a 16% water-ethanol
solution at 25◦C (ρ = 972 kg m−3, ν = 1.55 × 10−6 m2 s−1 and σ =
40.8 × 10−3 N m−1). The 2D wave characteristics k, c and 〈h〉 have been
computed from the wavelength λx, which has been estimated by the av-
erage streamwise separation of the 3D waves observed in the experimental
pictures. See also the caption of table 1.

model are reported in figure 22 where the three columns correspond to dif-
ferent Reynolds numbers (sets #9-11 of table 3). Each row in figure 22
corresponds to a particular transient regime: the first row to mostly 2D
waves, the second row to coalescence processes, and the two last rows to
the evolution of 3D solitary waves. Since these regimes are time-dependent
in simulations but space-dependent in experiments, both the dimensionless
time t and the approximate location of the numerical domain on the ex-
perimental plane are given in figure 22; the distance being again estimated
from the phase speed c of the 2D waves (see table 3).
Close to the inlet (first row in figure 22), the waves are mostly two-dimensional.
For Re = 8 (panel a), their profile is quasi-sinusoidal —bright and dark
zones occupy equivalent areas— and for Re = 16 (panel b), they become of
γ2-type with steep humps of large amplitude. For Re = 45 (c), the waves
have larger crests and thinner and deeper troughs. These waves are of slow
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(a) Re = 8 (b) Re = 16 (c) Re = 45

Figure 21: Wave patterns obtained experimentally by Alekseenko et al.
(1994) (see table 3).

γ1-type. Dislocations (i.e. connections between two wave fronts) in the
patterns are observed for the three sets.
Further downstream (second row of figure 22), three-dimensional secondary
instabilities show up. The large amplitude waves travel faster and catch up
the preceding slower ones, leaving an increasing flat zone behind them. As
time is proceeds (third row of figure 22), fast γ2 waves are clearly observable.
The coalescence process yields solitary waves with preceding capillary rip-
ples and large flat zones in between. Snapshots (g,j) and (h,k) of figure 22
share many similar features with experimental findings (For comparison,
one should keep in mind that the grey levels represent surface elevation in
simulations but surface slope in experiments). The unsteady experimen-
tal pattern is characterized by interacting quasi-steady 3D solitary waves
separated by portions of constant thickness of length 10 to 50 cm.
For Re = 8, the average distance between the solitary waves tends to satu-
rate for t > 890, which indicates that solitary waves have reached their fully
developed regime. Alekseenko et al. (1994) did not observed such a satura-
tion in their experiment, either because the length of their test section (not
given in their book) was not long enough to observe this saturation, or be-
cause this behaviour is a consequence of the streamwise periodic boundary
condition imposed in the simulations. The fact that coarsening of natu-
ral waves apparently terminates suggests that a fully developed 3D wavy
regime is observable. This seems to contradict the observation by Chang
et al. (1996b) that the coarsening process never ends, and that the average
pulse separation increases linearly with the distance to the inlet. However,
Chang et al. simulated a 2D vertical film using the Kapitza–Shkadov two-
equation model. Several explanations can be found. First, there can be a
finite-size effect in the earlier described computer simulations or the discrep-
ancy can be attributed to limitations of their model (2D, neglect of viscous
dispersion, of inclination, of nonlinear second-order inertia terms).
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set #9 (Re = 8) set #10 (Re = 16) set #11 (Re = 45)

(a) t=105 – l≈13 cm (b) t=120 – l≈13 cm (c) t=185 – l≈16 cm

(d) t=280 – l≈35 cm (e) t=200 – l≈21 cm (f) t=310 – l≈26 cm

(g) t=480 – l≈59 cm (h) t=370 – l≈40 cm (i) t=420 – l≈26 cm

(j) t=890 – l≈110cm (k) t=845 – l≈91 cm (l) t=575 – l≈32 cm

Figure 22: Computer simulations of natural (noise-driven) 3D wave patterns
corresponding to the experiments by Alekseenko et al. (1994) (see table 3).
The computational domain is 100 × 100 mm2 with 256 × 256 grid points
for set #9 and #10 and 512 × 256 for set #11 except for panel (i) where
it corresponds to 50 × 50 mm2 and 256 × 256 grid points: the obtained
snapshot is repeated four times. l is the estimated distance from the inlet.
The bright (dark) zones correspond to elevations (depressions).

44



For Re = 16, saturation is not observed at all, at least during the 1500 time
units of the computer simulation. In that case, the final stage corresponds to
interacting oblique fronts rather than 3D horseshoe-like waves. ForRe = 45,
the 3D waves tend to form localized structures rather than extended wave
fronts as it was the case for lower values of Re. This is in agreement with
results of Alekseenko et al. (1994) and Park & Nosoko (2003) who observed
V-shape or horseshoe-like solitary waves with a sharp curved front and long
backwards tails under similar conditions. Yet, the transition from modu-
lated waves to horseshoe-like solitary waves is far from understood. The
region of the parameter space were the oblique solitary waves are present
must be delimated.

9 Conclusions

In Part I, a short review has been presented of the modeling of film flows
available in literature, insisting on the assumptions involved in their deriva-
tion and on their limits. Finite-time singularities affecting one-hump solitary-
wave solutions to both one-equation (§ 3.3) and two-equation (§ 5.1) models
at large δ was shown to be related to the structure of their inertia terms.
Ooshida (1999)’s regularization led to equation (27) that remedies only par-
tially to this failure since it underestimates the amplitudes and speeds of
solitary waves in the drag-inertia regime.
Focusing on the treatment of inertia terms, our algebraic regularization pro-
cedure enabled us to obtain model (52a,47) which does not suffer from these
limitations, and is now fully consistent with the Benney expansion up to
second-order. Model (52a,47) has a complexity level that is intermediate
between our previous full second-order model (52a,32) and the simplified
one (52a,33). The approach developed here remedies the lack of system-
atism of the derivations presented in Ruyer-Quil et al. (2005) and Scheid
et al. (2005a) where a rather ad-hoc argument was invoked to treat the case
of a film uniformly heated from below.

In Part II, we have extended the weighted integral boundary layer mod-
els to include the spanwise dependence in order to study the transition
from 2D to 3D flows. A systematic Floquet analysis of the stability of the
2D slow γ1 waves has been performed, followed by numerical simulations
using periodic boundary conditions. The aim was the description of the 3D
wave patterns observed experimentally with three main objectives: (i) use
experimental results as benchmarks for discriminating the different models
that we have at one’s disposal, namely the complete, the simplified and
the regularized models; (ii) reproduce the synchronous and subharmonic
transitions from γ1 waves to 3D patterns found by Liu et al. (1995); (iii)
recover the wave dynamics observed by Park & Nosoko (2003) in the case of
well-controlled spanwise perturbations of fast γ2 waves, and by Alekseenko
et al. (1994) in the case of noise-driven instabilities.
Floquet analysis shows that the secondary 3D instability is not selective,
since the maximum growth rate remains nearly unchanged over the whole
range 0 ≤ ϕ ≤ 1/2 of the detuning parameter. This property makes the 3D
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instability strongly dependent on the initial conditions, and thus prevents
one to relate univocally the results of Floquet analysis to experimental find-
ings. By contrast, numerical simulations have shown good agreement with
experimental results by Liu et al. (1995), provided that initial conditions
are appropriately tuned. The widespread observation of the synchronous
instability in experiments could then be attributed to the presence of span-
wise non-uniformities at inlet, favouring in-phase modulations of the wave
fronts. In some cases, the three-dimensional patterns emerge from a two-
dimensional oscillatory mode rather than from saturated travelling waves, as
also observed in direct numerical simulations by Ramaswamy et al. (1996).
The competition between the growing 2D modulation and the secondary
3D instability makes the evolution of the film more sensitive to initial con-
ditions. Complex 3D dynamics deep in the nonlinear regime, in particular
isolated synchronous depressions (figure 15), rugged-modulated waves (fig-
ure 19) as well as horseshoe-like 3D solitary waves (figures 20 and 22i, l)
and oblique solitary waves (figure 22k) found in simulations were observed
in experiments.

The application of a systematic strategy to the problem of film flows is
shown here to lead to systems of equations of reduced dimensionality that
capture the physical mechanisms quite faithfully, helping us to enlighten
the observed dynamics by isolating the important physical effects. Hav-
ing reliable low-dimensional models at one’s disposal allows to attack many
questions still open for plain film flows over inclined planes, but also in more
difficult cases, for example when heat or mass transfer are involved.

These lecture notes are the result of a collaborative work with Christian
Ruyer-Quil and Paul Manneville. I would like to thank them very much for
that as well as Serafim Kalliadasis and Manuel Velarde for fruitful discus-
sions.

A Complete 2D second-order model

∂th = −∂xq (57)

δ∂tq =
27
28
h− 81

28
q

h2
− 33

s1
h2

− 3069
28

s2
h2

− 27
28
ζh ∂xh+

27
28
h∂xxxh

+δ
[
−12

5
qs1∂xh

h2
− 126

65
qs2∂xh
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+

12
5
s1∂xq

h
+
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5
q∂xs1
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+
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+
6
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5
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h

]
(58)

+η

[
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q (∂xh)
2
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∂xq∂xh

h
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h
+
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448

∂xxq

]

δ∂ts1 =
1
10
h− 3

10
q

h2
− 126

5
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h2
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5
s2
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− 1
10
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1
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+δ
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−

3
35
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1
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q∂xq

h
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55
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]
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h
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h
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]
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q
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− 39

5
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+η

[
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2
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+
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h
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q∂xxh

h
+

559
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]

B Complete 3D second-order model

The integral method used here consists in projecting the velocity fields as

u =
3
h

(q − s1 − s2) g0(ȳ) + 45
s1
h
g1(ȳ) + 210

s2
h
g2(ȳ) , (61a)

w =
3
h

(p− r1 − r2) g0(ȳ) + 45
r1
h
g1(ȳ) + 210

r2
h
g2(ȳ) , (61b)

where ȳ = y/h and the streamwise and spanwise flow rates q =
∫ h

0 u dy and
p =

∫ h

0
w dy, respectively, appear with two corrections each, namely s1, s2

and r1, r2, associated to the following orthogonal test functions:

g0 = ȳ − 1
2
ȳ2 , (62a)

g1 = ȳ − 17
6
ȳ2 +

7
3
ȳ3 − 7

12
ȳ4 , (62b)

g2 = ȳ − 13
2
ȳ2 +

57
4
ȳ3 − 111

8
ȳ4 +

99
16
ȳ5 − 33

32
ȳ6 . (62c)

Applying the Galerkin method which consists in integrating the boundary
layer equations (48), substituting the projections (61), taking the test func-
tions (62) as weight functions, and using the boundary conditions (48d,e,f),
yield the complete model:

∂th = −∂xq − ∂zp , (63a)
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C Regularized second-order model

∂th = −∂xq − ∂zp . (64a)
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