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Chimie-Physique E.P., Université Libre de Bruxelles C.P. 165/62
Avenue F.D. Roosevelt, 50 - 1050 Bruxelles - BELGIUM

E-mail: bscheid@ulb.ac.be

Abstract

Three-dimensional waves in film flows down a uniformly heated plane are
investigated by simulation. For small Reynolds number, regularly spaced
rivulets are observed, aligned with the flow and sustaining two-dimensional
waves of larger amplitude and phase speed than in isothermal conditions. For
larger Reynolds number, the picture is similar to the isothermal case and no
rivulets appear. The transition between these two regimes shows complex co-
operative behavior between both hydrodynamic and thermocapillary modes.
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1 Introduction

Three-dimensional (3D) hydrodynamic waves in falling films have been investigated
experimentally by various authors (see for instance [1]). Experiments by Liu &
Gollub [4] and more recently by Park & Nosoko [5] give the clearest picture of
the wide phenomenology of the interacting 3D waves on isothermal film flows such
as synchronously deformed fronts, subharmonic patterns and horseshoe-like waves.
Theoretically, we have applied a regularization procedure to the weighted integral
boundary layer method providing a two-dimensional modeling that describe the
complex wave patterns observed in experiments up to moderate Reynolds numbers
[8]. For heated walls, Joo et al. [3] have modeled rivulet patterns induced by thermo-
capillary effects for small Reynolds number, i.e. using a single evolution equation for
the film thickness. However their simulations experienced finite-time blow-up that
was shown to be intrinsic to the Benney-type equation. Indeed, Ramaswamy et al.
[6] have simulated the full three-dimensional boundary layer equations and could re-
solve the whole dynamics of a rivulet formation, from onset to rupture. Nevertheless,
they were restricted to a domain size of about one wavelength in both streamwise
and spanwise directions. We aim in this paper to propose a two-dimensional model
describing the three-dimensional dynamics of a heated falling film in large-scale do-
mains and to investigate the influence of the Marangoni effect on wave patterns
observed in isothermal conditions up to moderate Reynolds number. We will in fact
extend to 3D case the model developed by Ruyer-Quil et al. [7] for two-dimensional
waves.
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2 Mathematical formulation of the problem

The flow of a Newtonian liquid down a heated vertical plane is considered. We look
for 2D equations in the streamwise (x) and spanwise (z) coordinates that mimic the
full 3D motion of the fluid. Including the heating of the plane into the regularized
three-field model –as detailed in [8]– leads to a four-field model independent on the
cross-stream coordinate (y), for the film thickness h, the streamwise and spanwise
flow rates q and p and the temperature field at the interface θ:

∂th = −∂xq − ∂zp , (1a)
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where the reduced dimensionless numbers are

δ =
(3Re)11/9

Γ1/3
, B = Bi (3Re)1/3 , M =
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and η =
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,
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based in turn on the usual Reynolds, Biot, Marangoni and Kapitza numbers:

Re =
gh3

N

3ν2
, Bi =

αν2/3

λg1/3
, Ma =

γ∆T

ρν4/3g1/3
and Γ =

σ

ρν4/3g1/3
,

with g the gravity acceleration, hN the thickness of the uniform film, ν the kinematic
viscosity, ρ the density, σ the surface tension, γ = −dσ/dT , α the heat transfer co-
efficient and λ the thermal conductivity; Pr = ν/χ is the Prandtl number where χ
is the thermal diffusivity. The lengthscales are hN and hN/

√
η in the wall-normal y

and in the in-plane x and z directions, respectively, while the timescale is ν/ghN
√

η.
Equation (1a) is the mass conservation equation, equations (1b,1c) express the av-
eraged momentum balances in both directions x and z, and equation (1d) is the
energy balance.

3 Computations

3.1 Small-size domain

We first validate our model with a small-scale simulation investigated by Ramaswamy
et al. [6] for small Reynolds numbers, i.e. when a one-field model can still be valid.
They demonstrated a mechanism of rivulet formation based solely on instability
phenomena. Figure 1 shows simulation results, done with periodic boundary condi-
tions and a simple harmonic disturbance of the form h(x, z, 0) = 1 + 0.1 cos(kx x) +
0.1 cos(kz z), as initial condition. The wavenumbers kx and kz have been chosen
to be below those for the maximal linear growth rate in each direction, which are
kxmax = 0.56 and kzmax = 0.53. Actually, these appropriate values allow for inter-
esting secondary flow development. The initial perturbation creates a trough in the
center of the domain (a). Then, thermocapillarity sets in, displacing the fluid from
the hotter troughs towards the surrounding colder crests. However, the growth rate
of the hydrodynamic mode is dominant at initial stage and surface waves develop
(b). The local phase speed being proportional to the square of the local film thick-
ness, the crest travel faster than the trough (c). In the absence of the mean flow
in the spanwise direction, the liquid is displaced laterally due to thermocapillarity.
Therefore, as time progresses, the thinning of the liquid layer persists and forms a
valley surrounded by rivulets aligned with the flow (d). This process is similar to
the evolution of a heated thin film on a horizontal substrate. Likewise, it exhibits
the formation of a secondary rivulet between the main one (e). As found by Boos &
Thess [2] for horizontal layers, a true ‘cascade of structures’ takes place in thinner
zones (f), precursor to the film rupture. The last stage before rupture obtained by
Ramaswamy et al. with DNS is at t = 153, which is in excellent agreement with
Fig.1e. However, our simulation runs beyond this time and exhibits finer structures
in the film before its rupture (see Fig.1g). The reason why the full-scale computa-
tions with Navier-Stokes/Fourier equations did not provide such further evolution
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(f) t = 175

Figure 1: Inception and development of rivulet aligned with the flow computed with
(1) arising for Re = 1/3, Γ = 300, Ma = 10, Bi = 1 and Pr = 7. The domain is
square of side 2π/kx with kx = kz = 0.335. The flow direction is from the right top
towards the left bottom.

of the film is likely related to the choice of the number of mesh points used in [6].
The authors would have most probably been able to compute larger time with re-
fined grid resolution. However, this would have been at the expense of computing
time, which demonstrate the great advantage of working with a model of reduced
dimensionality. Indeed, our reduced model involves variables that are defined only
at the film surface and not in the bulk. Actually, the mesh points are 32×32 and the
time necessary for computing the case of Fig.1, with an accuracy of 10−4, is about
one hour on a standard desktop computer.
Now, let increase the Reynolds number up to Re = 2, i.e. out of the range of valid-
ity of a single evolution equation for the film thickness. The wavenumbers for the
maximal linear growth rate are kxmax ≈ 0.62 and kzmax ≈ 0.34 (approximated values
calculated in the long-wave limit), which yields kx ∼ kxmax/2 while kz ∼ kzmax. Fig-
ure 2 shows that the hydrodynamic mode quickly generates high amplitude waves
(a,b) that evolves to a solitary-like wave with preceding capillary ripples (c). How-
ever, the thermocapillary mode leads the film to rupture before the surface wave
saturates. An interesting interaction between the two modes can be pointed out
here: as the thermocapillary flow feeds the core of the rivulet, the mean film thick-
ness at the crest increases, and so the local flow rate. Hence, the wave solution
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(c) t = 690

Figure 2: Same as for Fig.1 with Re = 2.

does not saturate and rather follows the change of the ‘local Reynolds number’,
by increasing its amplitude and its phase speed. This process vanishes at t > 620
when the film approaches the wall enough for the viscous stress to slow down the
lateral thermocapillary flow. The hydrodynamic wave and the longitudinal rivulet
were found to coexist along a distance that is about 50 wavelengths here and that
increases with Re.

3.2 Large-size domain

Let us turn now to large-scale simulations of a water film at 20◦C (Γ = 3375, Pr = 7)
with a temperature difference between the vertical wall and the ambient air of 5◦C
(Ma = 50) and a high heat transfer coefficient of 1000W/cm2K (Bi = 0.1). The
simulations that follow were started with a white noise of amplitude 1/1000 of the
flat film thickness. Figure 3 shows again the formation of rivulets due to Marangoni
effect: after the development of a parallel wave train (a), drop-like accumulation
breaks the 2D waves into 3D patterns (b,c), precursor of rivulet patterns aligned
with the flow (d,e). As depicted previously for Fig.2, the liquid then accumulates
into rivulets, which increases the ‘local Reynolds number’ and fosters 2D solitary-
like waves of larger amplitude and phase speed than in isothermal conditions (f).
This process continues until the rupture of the film, the snapshot of which is shown
in Fig.4a. Similar rivulet pattern, but with larger wavelength, is also shown for
Re = 5 (b) while no rivulet develops for still larger Re = 10 (c) where the wave
pattern behaves like in isothermal conditions [5].
Figure 5 shows finally the phase speed of solitary waves versus Re. For small
Reynolds number and small phase speed, i.e. in the drag-gravity regime, inertia
effects are small as compared to thermocapillary effects while it is the contrary
for large Reynolds number and large phase speed, i.e. in the drag-inertia regime,
where inertia is dominant. The resulting patterns are drastically different (a,c). The
transition between these two regimes for 4 < Re < 6 shows complex cooperative be-
havior between both hydrodynamic and thermocapillary modes, mostly when their
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(d) 900 (e) 1100 (f) 1500

Figure 3: Water film free surface at different time for Re = 2 for Ma = 50, Bi = 0.1,
Pr = 7 and Γ = 3375. The domain is a square of side 2π/kx where kx = kz = 0.05.
Bright (resp. dark) zones correspond to elevations (resp. depressions).

amplitudes are comparable, as illustrated for Re = 5 in Fig.4b.

4 Discussion

The dynamical coupled equations for the film thickness h, the surface temperature
θ and the streamwise and spanwise flow rates q and p given in (1) has been shown to
be robust and accurate in describing the competition between hydrodynamic waves
and thermocapillary effect responsible for the rivulet formation in heated falling
liquid films.
For constant temperature difference across the film, it has been found that in the
drag-gravity regime, quasi-regularly spaced rivulets arise and grow up until rupture
(a). Meanwhile, the rivulet confines the flow in such a way that waves behaves
like two-dimensional solitary waves, but of higher flow rate because of the local
increase of the Reynolds number. On the contrary, no qualitative influence of the
Marangoni effect has been observed in the drag-inertia regime, at least during the
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(a) Re = 2 (b) Re = 5 (c) Re = 10

Figure 4: Wave patterns for Ma = 50, Bi = 0.1, Pr = 7 and Γ = 3375.
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Figure 5: Phase speed c of solitary waves versus Re for Ma = 50 (solid line) and
Ma = 0 (dashed line). The letters refer to Fig.4.

time of the simulations, showing that inertia fully dominates the dynamics of the
film (c). Finally the transition between these two regimes is also instructive in terms
of rupture which occurs at only one place and not between all rivulets at the same
time. This is due to the dispersion of the rivulet size and amplitude, allowing also
to observe different kind of waves: 2D wave trains, 2D solitary waves and 3D wave
structure (b).
Having at one’s disposal reliable low-dimension model, one is now able to undergo
systematic numerical analyzes at low cost (in terms of CPU time) and for large
domains. This will allow to explore in the whole parameter space the complex 3D
interactions between hydrodynamic and thermocapillary effects. Notice however
that, to our knowledge, no experimental data of film flowing down uniformly heated
substrates are yet available for comparison purpose.
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