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Abstract—Image interpolation is ubiquitous for image re-
construction in computed tomography (CT). For instance, the
backprojection step of reconstruction algorithms is traditionally
implemented with the simple linear interpolation model. This
model is approximate but offers a good trade-off between speed
and accuracy. Furthermore the implementation is natural and
available on hardware graphics processing units (GPU). Approx-
imation theory says that the image blurring induced by the
triangular interpolation kernel can be compensated by enhancing
the image with an all-pole recursive filter before resampling.
This paper shows that the experimentally optimal pole differs
from the one derived by theoretical approaches and that optimal
pre-filtering leads to significant image quality improvement in
term of signal to noise ratio (SNR). In fact, optimal pre-filtered
linear interpolation outperforms the higher order cubic B-spline
interpolation for image reconstruction in CT.

Index Terms—Image sampling, image reconstruction, interpo-
lation, approximation.

I. INTRODUCTION

INEAR image interpolations are widely used in the field
L of computed tomography (CT). Bilinear interpolation
is traditionally used during backprojections when fetching
the value of filtered line integrals for filtered-backprojection
(FBP) tomographic reconstruction algorithms [1]. Trilinear
interpolation is often used in conjunction with a numerical
integrator for computing forward projections through digital
volumetric images.

Linear interpolation from point samples relies on a com-
pact triangle signal reconstruction kernel that is only a very
crude approximation of the theoretically exact sinc kernel.
Nevertheless, the computational performances, the ease of
implementation, the implicit handling of image borders and the
fair accuracy of the interpolated values made the uncontested
popularity of linear interpolation schemes.

Furthermore, linear interpolations are implemented in hard-
ware in graphical processing units (GPU) that are used to ac-
celerate the backprojection and forward projection operations.
Those two algorithms are ubiquitous in CT and are also the
main bottleneck in both analytical and iterative tomographic
image reconstruction algorithms. The impact of several image
interpolation methods on the accuracy of forward projections
has been evaluated by Xu and Muller [2].
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(a) Spatial domain

(b) Frequency domain

Figure 1. Spatial (a) and frequency (b) responses of various interpolation
kernels. The frequency response is expressed as a fraction of the sampling
frequency. The goal of pre-filtered triangle interpolation is to compensate
smoothing in the pass-band while ensuring simultaneously an effective sup-
pression of aliasing. Note that the support of the sinc kernel is infinite.

Traditional image interpolation approaches [3] do not con-
sider the possibility to filter the image before resampling.
However it has been shown a long time ago that optimal
accuracy can be obtained for signal reconstruction by using
a pair of optimized pre-filter and reconstruction post-filter [4].
A generalized sampling theory that does not assume band-
limited signals justifies this approach [5]. Very accurate image
interpolation have been reported for medical images [6].

Recently, approximation instead of interpolation has been
considered in the image processing community. In particu-
lar, quasi-interpolation with infinite impulse response (IIR)
filter [7] and least-square approximation with finite impulse
response (FIR) filter [8] have been proposed independently.
The aim of the present work is to demonstrate the potential
of modern interpolation and approximation schemes for more
accurate tomographic image reconstruction in CT.

This paper is structured as follows. Traditional image in-
terpolation and modern image approximation methods are
presented in section II. Section III shows the benefit of
a simple image approximation scheme implemented by a
pre-filter before linear interpolation for tomographic image
reconstruction. Finally, conclusions are drawn in section IV.



II. INTERPOLATION AND APPROXIMATION

This section introduces the classical interpolation and ap-
proximation problems as the reconstruction of a continuous
time-varying signal from uniformly distributed point samples.
For interpolation, the reconstructed continuous signal is re-
quired to match exactly the sampled values at the sampling
point locations. For approximation, this constraint is not
required and this unveils possible improvements over inter-
polation. In this section, the term “reconstruction” refers to
the reconstruction of a continuous signal from point samples.

The spatial impulse and the frequency response of classical
interpolation kernels are compared in Fig. 1 along with the pre-
filtered linear interpolation model investigated in this work.
One can remark that the frequency response of the box kernel
is superior to the triangle kernel in the pass band w € [—m, 7).
This translates into sharper interpolated image. However, the
large ripples outside the pass band translate in very strong
aliasing artifacts.

The recovery of high frequency components in the pass
band is always underestimated with the triangle kernel and
this causes blurring artifacts. Unfortunately, interpolation with
the theoretically optimal sinc kernel (last row in Fig. 1) is
impractical since the support of the spatial impulse function
is infinite. Pre-filtering the signal before linear interpolation
(third row in Fig. 1) allows a trade-off between blurring and
aliasing artifacts but does not ensure the interpolation property.

A. Interpolation

Let a sequence of N > 2 point samples s (k), k € [1, N],
being sampled from a continuous function f(t),t € R. If
f is band-limited to frequencies w € [—m, 7] and sampled
at the Nyquist rate 27, then it is well known that an exact
reconstruction of the original signal is possible between the
first and last samples by using sinc interpolation [9] such that

N
ft)=>"s(k)sinc(t — k), (1)
k=1
Since the sinc kernel has infinite support, exact interpolation
requires to convolve each sample with the kernel. While
feasible if the support of the image is finite, the very large
computational cost of convolutions is often impractical. Fur-
thermore, to prevent loss of information, interpolated values
have to be computed and stored also for the infinity of samples
lying outside the image boundaries. ~
Instead, the reconstruction of a continuous function f close
to the original signal f can be computed effectively by
piecewise linear interpolation from s such that

N
Fy=> sk)B" (t—Fk)), 2)

k=1

where the reconstruction function 3! (t) = max (0,1 — |¢|)
is the second order B-spline function also known as triangle
kernel. Interpolation with the triangle kernel ensures that the
reconstructed signal is continuous. This property is often
preferred over the simplest interpolation with a box kernel,
also called nearest neighbor interpolation.
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Figure 2. Tomographic image reconstructions from 1024 projections, sampled
from a voxelized phantom. Linear interpolation during backprojections intro-
duces some blurring in the reconstruction of the phantom image. The square
frames delineate the borders of the two close-up views shown in Fig. 5.

The impact of linear interpolation in tomographic image
reconstruction can be seen in Fig. 2. Unfortunately, the re-
constructed image suffers from overall blurring artifacts when
using linear interpolations during backprojections.

Modern developments have shown that very accurate in-
terpolation can be implemented effectively by pre-filtering
the image before resampling. Unser et al. [6] recommend
to implement image interpolation by the application of a
theoretically derived pre-filter followed by convolution with
a third order B-spline basis function. The cubic B-spline
interpolation model is very popular nowadays and has been
evaluated in our experiments for comparison purpose.

B. Approximation

Traditional interpolation ensures that the reconstructed sig-
nal f (¢) equals the original signal f at the sampling points,
hence when ¢ = [¢]. When this constraint is not a require-
ment, approximation schemes instead of interpolation have
the potential for better reconstructions. Approximation for
image resampling has been initially proposed by Mitchell and
Netravalli [10] and Blinn [11] to find a qualitatively good
visual compromise between blurring, aliasing, and ringing
artifacts.

Although the derivations are different, the independent
works of Condat et al. [7] and Dalai et al. [8] have shown that
a least-square approximation of the continuous function can be
implemented by pre-filtering the signal prior to interpolation
with the simple triangle kernel. Their derivations assume that
the continuous function is the cubic B-spline interpolation
from the know samples. However, it is likely that the true
underlying function is not a linear combination of B-spline
basis function. In this case, better approximation can be
obtained as demonstrated in our experiments.
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Figure 3. Point spread function (PSF) of the FIR pre-filter of Marco Dalai
(a), the TIR pre-filter of Laurent Condat (b) and the experimentally optimal
pre-filter (c). Gray correspond to zero, darker values are negative and brighter
values are positive. The PSFs of (a) and (b) looks very similar, however, the
support of the FIR implementation (a) is compact.

When considering the triangle kernel as reconstruction post-
filter, a general formulation of approximate reconstruction can
be written as

N
Fy=> sk B (t—k), 3)
k=1
where the coefficients § (k) have to be computed from the
original point samples s (k) by filtering them with a symmetric
pre-filter kernel ¢ such that

5 (k) = [sx ] (k). )

Condat proposes an infinite impulse response (IIR) imple-
mentation with a simple all-pole recursive filter while Dalai
proposes a finite impulse response (FIR) implementation of
the pre-filter by discrete convolution. From the derivation of
Condat, the negative pole for implementing the convolution
with a simple IIR recursive filter is 2v/6 — 5. The Fourier
transform of the pre-filter can be extracted from the pole:

_ 6
~ 5+ cos (2mw)”

The equivalent discrete convolution implemented by FIR
filtering is computed by Dalai as follows:
49 11 7

S (k) = —50 — %51 + %527 (6)

with s = s(k), s1 = s(k—1) 4+ s(k+1) and s =
s(k —2)+s(k+ 2). The support is arbitrarily limited to five
samples. However, a larger support of seven samples have not
shown any significant improvement in terms of image quality.
From the coefficients of the FIR kernel, the Fourier transform
of the pre-filter can be extracted:

Wiir (w) @)

11
Wrir (w) = — — —cos (2rw) + %cos (4rw).  (7)

Despite very different expressions, Wyr and Wgig are
surprisingly similar functions. Since convolutions in spatial
domain are equivalent to multiplications in frequency domain,
the resulting Fourier transform of the pre-filtered linear recon-
struction is just

H (w) = sinc? (w) Wir (w) = sinc? (w) Wrir (w) . (8)

This frequency response can be observed in comparison to
linear interpolation in Fig. 1. The recovery of frequencies in
the pass band is clearly improved at the cost of slight aliasing.
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Figure 4. Quantitative analyses of image reconstruction in term of signal to
noise ratio (SNR) from the original phantom image. Various values of the pole
for the pre-filtering have been experimented. The experimentally optimum
value of the pole (-0.15) differs from the one derived from approximation
theory. The FIR filter derived by Dalai gives a very similar result than the IIR
filter derived by Condat that uses a pole equals to 2v/6 —5 = —0.1010205...

Recursive filtering takes constant time per image element
and requires two passes for the causal and anti-causal filtering.
While discrete convolutions require more operations per pixel,
in practice, in-place convolution with small kernels can be
implemented to run as fast as IIR filtering. The choice between
IIR and FIR is left to subjective appreciation. For two-
dimensional images, the filter is applied successively in the
vertical and horizontal directions.

The point spread functions of the FIR and IIR implementa-
tion of the theoretically optimal pre-filter in least-square sense
are compared to the experimentally optimized pre-filter in
Fig. 3. Since the support of the IIR filter is infinite, the point
spread function (PSF) extends to the whole image. Despite
their different intrinsic properties, experiments demonstrate
that FIR and IIR implementations yield nearly identical results.

III. EXPERIMENTS

For experiments, a set of 1024 parallel-beam tomographic
projections of 256 x 198 pixels has been computed from a
phantom image of 256 x 256 x 198 isotropic voxels of size
equal to 1.36 mm. The goal is to reconstruct the original
phantom image from the projection data with the best possible
accuracy. The tomographic reconstruction algorithm is FBP
and the ideal Ram-Lak ramp filter is used to preserves all
frequency content. A large number of projection is used to
alleviate possible issues with angular aliasing that typically
translates into streak artifacts.

Several image reconstruction results have been compared
using various interpolation methods for sampling filtered line
integrals in projection space during backprojection. The tra-
ditional linear interpolation is compared to cubic B-spline in-
terpolation and several pre-filtered linear interpolation models.
The FIR and IIR implementations of the pre-filter for least-
square optimal linear approximations give similar results.

Quantitative analyses conducted in terms of signal to noise
ratio (SNR) are presented in Fig. 4. The SNR is conventionally
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Figure 5. Close-up views of tomographic image reconstructions using various image interpolation methods. The resolution recovery is much better when using
the cubic B-spline interpolation model in comparison to first order linear interpolations. However, when a suitable pre-filtering is applied before interpolations,
linear interpolation have the potential to outperform the more costly cubic B-spline interpolation.

used for assessing the quality of image interpolation proce-
dures [6]. Given a reference image P and a reconstructed
image () defined by N image elements, the SNR is a classical
metric of the relative image similarity defined by

SN (P- Qi)
YL, P

A transversal and a coronal slice of reconstructed volumetric
images are shown in Fig. 2. Two selected close-up views are
shown in Fig. 5. Gray is set to the attenuation of water and the
window width equals 1000 HU such that black corresponds
to the attenuation of air. The experimentally optimal pre-filter
demonstrates dramatic improvement in image fidelity.

SNR (P, Q) = —10log )

IV. CONCLUSIONS

This paper shows results of a heuristic approach to com-
pensate for the typical blurring that can be observed when re-
constructing an image with FBP. In the backprojection step of
FBP, linear interpolation is used to fetch filtered line integrals
in projection space. This simple interpolation model is exact
only if the interpolation points exactly match pixel centers.
A simple pre-filtering is used to transforms interpolations
into approximations and it has been observed that a sharper
tomographic reconstruction can be obtained this way.

Linear interpolations are ubiquitous when using GPU imple-
mentations for backprojection. Therefore, optimal pre-filtering
can improve significantly the accuracy of current image recon-
struction codes. For analytic FBP algorithms, the pre-filter is
applied in projection space before the backprojection step. For
more accurate high-performance computation of line integrals

through volumetric images, the pre-filter could be applied in
image space before sampling points along integration lines.
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