Online PET Reconstruction From List-Mode Data
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Abstract—This work proposes an alternative to ordered subsets
to improve the convergence speed of list-mode expectation-
maximization image reconstruction algorithms. Instead of subdi-
viding the input data into non-overlapping subsets, the stream of
measured coincidence events is immediately processed online. The
reconstruction algorithm maintains a sliding window covering
the events that contribute to the current image estimate. The
image is seamlessly updated by adding a new contribution for the
next event read from the list-mode and possibly subtracting old
contributions from a batch of events that leave the window. This
incremental event-by-event estimation method can reconstruct a
dynamic image sequence in real-time during data acquisition. If
the reconstructed object is static, the width of the sliding window
can be expanded during the reconstruction process to balance
between early estimation and global convergence behaviors.
Encouraging results are shown on image reconstructions from a
simulated static phantom and from a clinical dataset of a dynamic
cardiac perfusion study.

Index Terms—Positron emission tomography, list-mode, max-
imum likelihood, expectation-maximization.

I. INTRODUCTION

RDERED SUBSETS (OS) have been used for long in

emission tomography to improve the convergence speed
of statistical image reconstruction algorithms based on the
expectation-maximization (EM) framework [1]. In the popular
OSEM method [2], an early image is estimated by considering
only a small subset of the complete input data. Each successive
sub-iteration produces a new result by using the latest image
estimate and the next subset of data. In positron emission
tomography (PET), the raw input data is a list of coincidence
events measured by a ring of high energy photon detectors.

A drawback of reconstruction methods based on OS is
that they are not in general convergent since the current
image is built from a limited view of the complete data only.
Fortunately, globally convergent variants that consider the full
dataset have been developed. In the complete data ordered
subset expectation-maximization (COSEM) algorithm [3], the
best image estimate so far is equivalent to the sum of previous
images computed by the classical OSEM algorithm.

An extension of COSEM, called ECOSEM [4], combines
OSEM and COSEM. OSEM is used at early stage of the
reconstruction process then COSEM is used to polish the
image at the end of the run. The adaptation of OSEM from
sinogram to list-mode by Reader et al. [S] produced impressive
results. COSEM and ECOSEM have been adapted to list-mode
by Khurd et al. [6] and Rahmim et al. [7], respectively. Faster
event-by-event (EBE) variants of the list-mode OSEM and
COSEM methods were introduced in a previous work [8].
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This paper introduces an alternative online reconstruction
algorithm that does not rely on ordered subsets. Instead, the
current image estimate is incrementally updated event-by-
event. This approach improves convergence speed by directly
using the new statistical information of each processed event.
For static image reconstruction, the list of events can be read
in a cyclic way such that the file is implicitly reset to return the
very first event whenever the end of the list-mode is reached.
This never-ending data stream model deprecates the concept
of iteration over a dataset.

The next section introduces the sliding window expectation-
maximization (SWEM) method for online image reconstruc-
tion from list-mode PET data. This new method is based on
the incremental EM algorithm first proposed by Titterington
in 1984 [9] and popularized by the seminal paper of Neal and
Hinton [10]. The new reconstruction algorithm is driven by
three intuitive parameters: the allowed budget of memory, the
initial window width, and a window expansion factor.

II. SWEM

The rationale of the SWEM image reconstruction algorithm
is the maintenance of an estimate of the maximum-likelihood
solution that depends only on the most recent events read from
a list-mode data instance. To achieve this goal, two algorithmic
building blocks are needed. First, an operator that updates the
current image for any measured coincidence event must be
defined. This update have to increase the likelihood of the
current image estimate. Second, incremental image updates
from previous events must be archived for future subtraction.
The most precise bookkeeping mechanism should be able
to remember previous image modifications for each event.
However, experiments demonstrate that such a fine storage
granularity is not mandatory.

The SWEM algorithm is shown graphically in Fig. 1 and is
parametrized by the number s of memory pages that select the
granularity of the bookkeeping storage, the initial width w of
the sliding window, and the window expansion factor § > 1
that drives a trade-off between early estimation and global
convergence. The initial window width w can be set to the
typical size of a OSEM subset. The number s of pages should
be maximized in order to fit available memory resources. The
window expansion factor § drives the geometrical progression
of page capacities.

The input dataset is denoted by N and the subscripts @
select a particular event ¢ € N. The set of image elements
to be estimated is denoted by M and the subscripts j select a
particular image element ;7 € M. A set of indexed images
OGP, p > 1 is considered available as memory pages. For
the experiments, the image is initialized with an initialization
constant € = 1 such that A\; < ¢, Vj € M. The initial image
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Figure 1.  Graphical representation of the pagination-based bookkeeping
mechanism of the SWEM algorithm. Different shades of gray delimit the
splitting of the window in s = 5 non-overlapping pages. The width and posi-
tion of each page are shown for some successive steps of the reconstruction
process. The number of already processed pages is noted in front of each
line while IV equals the size of the whole data stream. An expansion factor
0 = 1.25 is chosen to increase progressively the sliding window width w.
SWEM reach global convergence when w = N. In this example, the pages
stop to expand once the maximum limit of N/s is reached.

must also be spread among the first bookkeeping pages, hence
B} —e/s,Vj € M,1<p<s.

The number of events that belongs to the page of index
p > 1 is denoted by g¢P. The initial size of the first pages
are initialized accordingly to ¢? = w/s, 1 < p < s and
a variable p of the current page starts at p = s + 1. The
next sections explain the three core principles that define
the SWEM algorithm: incremental image update, paginated
bookkeeping, and geometrical window expansion.

A. Event-by-Event Image Update

Event-by-event reconstruction algorithms adopt the incre-
mental image update principle of COSEM. The COSEM
method is proven to be convergent for any number of subsets
and the convergence rate increases with the number of subsets
[3]. The case of singleton subsets is therefore of special
interest. With one event per subset, COSEM can be simplified
to a direct incremental update followed by the subtraction of
the previous image contributions for this event.

While the classical ordered subsets techniques have process
all events of the current subset before exploiting their statis-
tics, event-by-event image updates directly exploit statistical
information from new events as soon as they are processed
because the current image is used to weight backprojections
along the line of response (LOR) of each event. For an event
i € N, the current image estimate \ is updated with
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The element of the system matrix A;; is equal to the
probability than an annihilation occurring in image element
j € M is detected along the LOR associated to event ¢ € N.
The values of A are computed on-the-fly by a fast tube of
response ray-tracer developed in a previous work [11].

The sensitivity correction factors s; are equal to the ratio of
annihilations occurring in image element j € M and detected

by the PET scanner on the total number annihilations. These
factors are proportional to the solid-angle that the detector
edge subtends at the center of the voxels and can be pre-
computed for each image element using i.e. a semi-analytical
method presented earlier [8].

The attenuation factors a; are equal to the probability that
the two collinear photons are not absorbed during their flight
along the LOR of the event : € N whose length in centimeter
equals /;. According to Beer’s law, this probability can be
approximated by

a;i =exp | —l; Y Awpr |, )
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where  is a linear attenuation image segmented into air, water,
and lung materials. Attenuation factors per cm at 511 keV are
stored for each voxel of the attenuation image.

Randoms are corrected according to the advices of Rahmim
et al. [7] by subtraction of delayed events, while ensuring
a definite positive image. For each event read from the
input dataset, the current image is modified online by the
incremental image update in (1). Only voxels straddling the
LOR of the event will be modified. This key property makes it
feasible to implement fast event-wise reconstruction methods
because the ray-tracing algorithm can access only the relevant
elements in both the emission and the attenuation images.

B. Bookkeeping Image Updates

The most straightforward way to remember previous mod-
ifications of the current emission image is simply storing
the whole history of modifications for each image element.
Remark that for each event, only the voxels along its associated
LOR are modified and therefore only a short list of pairs
containing an image bin identifier and the associated increment
can be stored. Unfortunately, for a realistic input dataset
counting several tens of millions of events and a detailed image
definition, the amount of information to store is impractical.

To reduce the required memory resources, the processing
of each event is nested in an outer loop that store in memory
the accumulation of a batch of consecutive image updates.
Before processing the events that will belong to the page (P,
the current image is first saved:
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After processing the |gP] next events with (1), the total
of incremental updates can be retrieved by simple image
difference:

B2 — N — 7, Vj € M. @)

Once the page has been stored, the next page is considered by
incrementing p and contributions of the oldest page BP~* are
removed from the current image:

)\jH)\jfﬂfis,VjeM. (5)

The pagination technique trades storage granularity with
storage capacity. Given a budget memory resources, the
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Figure 2. Reconstruction results of the numerical phantom. Each row contains
the image estimates after processing 106 and 8 x 10° events, respectively.
EBE-OSEM uses 16 subsets and is equivalent to SWEM with s =1, =1
and w = 5 x 10°. EBE-COSEM corresponds to SWEM with s = 16, 6 = 1
and w = 8 x 10°. The third column shows results of SWEM with s = 4,
6 = 1.1 and an initial window width w =5 x 10°.
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memory is segmented into several pages of the size of the
output image. Then incremental updates corresponding to
several events are accumulated into the pages. In practical
implementations, the pages will be stored in a cyclic buffer
of size s in order to limit memory requirements.

C. Window Expansion

Page capacities gP are counted in number of events and de-
pend geometrically on the previous page such that g? = §¢gP~!.
Therefore, the window width is continuously expanded if
0 > 1. Stopping the reconstruction when the window covers all
the available data ensure that the SWEM algorithm reached a
convergent behavior. It is easy to evaluate the value of 4 given
the initial window width w, a number events to process N,
and the amount of available pages p. Indeed, the geometrical
progression of the page size can stops when ¢g? = N/s and
since g = (w/s) 6P~°, then § = */N/w.

For some choices of the parameters w, s, and J, it is easy
to see that EBE-OSEM and EBE-COSEM algorithms [8] are
special cases of SWEM. If § = 1, then the width of the
window will never increase and thus the capacity of each page
stays constant. Moreover, if one chooses w = N/k and s = 1,
then the technique yields EBE-OSEM with k subsets because
only a fraction of the events contributes to the estimation. On
the other hand, if one chooses w = IV, then the whole dataset
is covered by the window and the algorithm reduces to the
globally convergent EBE-COSEM method.

III. RESULTS

Assessment of the SWEM method has been conducted
from the reconstruction of a nested balls phantom defined by
four uniform regions described in normalized coordinates as
follows. Two balls of radius 0.25 and 0.125 are superposed
over a ball of radius 0.5 centered at the origin. The densities
of these three spheres are respectively 1, 4, and 8. A uniform
background noise signal of density 0.1 has been modeled too
with a sphere covering the whole field of view.
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Figure 3. The contrast recovery coefficient and the normalized mean squared
error (MSE) from the objective image are plotted for various values of the
expansion factor § € {1.0,1.1, 1.2} with a number of memory pages fixed to
s = 4 for SWEM. The results of the EBE-OSEM and EBE-COSEM methods
with 16 subsets are also shown for comparison. The sub-iteration numbers
correspond to multiples of 5 x 10° events.

A list-mode dataset of 8 millions events has been generated
by simulating the emission process. For each event, one ball
is picked and an annihilation position inside the sphere and an
emission direction is randomly sampled. From the radius and
density of each ball, a discrete probability density function can
be defined such that the probability of selecting a ball depends
on its density and its volume.

Reconstruction results are shown in Fig. 2. Each recon-
structed image is a matrix of 643 voxels but only the median
transversal slice is shown. After processing one million events,
we already observe that the EBE-OSEM and SWEM methods
of the left and right columns produce sharper images compared
to the EBE-COSEM method of the central column. The images
of the second row correspond to the result after only one pass
over the data.

Quantitative analysis of the reconstructed images is shown
in terms of contrast recovery and mean squared error (MSE)
from the objective emission image in Fig. 3. The visual
contrast is defined as the ratio between the reconstructed
mean activity in the small high activity ball (VOI) and the
mean activity in a reference region inside the background.
With an appropriate window expansion factor, SWEM prevents
overfitting the data and provides a better result than OSEM.

Fig. 4 shows selected transversal slices of a dynamic image
reconstruction from a clinical cardiac perfusion study. The data
has been acquired during two minutes on a Philips Gemini
PET/CT scanner. A bolus of N-13 ammonia tracer is injected



Figure 4.

SWEM

Slices from the dynamic images of a cardiac perfusion reconstructed by MLEM with 32 iterations and SWEM. A snapshot is shown every 10

seconds for the two first minutes of acquisition. However, since the SWEM method reconstructs a new image for each event, all the intermediate frames are
available as well. For SWEM, the window width is adapted dynamically to cover events measured in the past 10 seconds.
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Figure 5. Time activity curves (TAC) measured at two voxels located in the
right atrium and in the blood pool. The dotted path is a linear interpolation
from frames that are independently reconstructed with MLEM. One frame is
reconstructed every 10 seconds and therefore the resulting TACs lack temporal
coherence. TACs estimated with SWEM tend to recover unambiguously the
position and amplitude of peaks.

intravenously when the patient lies under the PET scanner.
The tracer quickly enters the blood pool during the first few
seconds of acquisition and then, passively diffuses into tissues.
The left ventricular wall become visible at the end of the exam.

Fig. 5 plots two time activity curves (TAC) that have been
sampled inside the right atrium and the left ventricle. In
comparison to the reconstruction of independent frames with
MLEM (32 iterations), the TACs estimated by the online
SWEM method are smoother and exhibit a much more plau-
sible physiological behavior. Moreover, the contrast between
the two different activity curves is improved.

IV. CONCLUSION

This work presents SWEM: a general online image recon-
struction method for PET list-mode data. The online approach
based on event-by-event incremental updates allows direct
improvement of the image by exploiting the new statistical
information of events as soon as they are measured. The tech-
nique is explained by the concept of a sliding window covering
the data elements contributing to the current image estimate.
By expanding progressively the window width, the SWEM
algorithm can smoothly balance between early estimation and
global convergence behaviors.

Results from simulated phantom data have shown that a
further increase in performance over event-by-event variants of
the OSEM and COSEM algorithms is possible. Furthermore,
a preliminary dynamic image reconstruction from clinical data
demonstrates the potential of SWEM for improving image
quality in comparison to the reconstruction of independent
frames with MLEM. Further work on ground truth experiments
is needed to evaluate quantitatively the potential accuracy of
dynamic reconstruction with SWEM.
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