Total Variation Reconstruction From Quasi-Random Samples
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Abstract— Pseudo-random numbers are often used for gen-
erating incoherent uniformly distributed sample distributions.
However randomness is a sufficient — not necessary — condition to
ensure incoherence. If one wants to reconstruct an image from few
samples, choosing a globally optimized set of evenly distributed
points could capture the visual content more efficiently. This work
compares classical random sampling with a simple construction
based on properties of the fractional Golden ratio sequence and
the Hilbert space filling curve. Images are then reconstructed us-
ing a total variation prior. Results show improvements in terms of
peak signal to noise ratio over pseudo-random sampling.

1 Introduction

In compressed sensing (CS) [1], random linear measurements
are used to efficiently recover an unknown but assumed sparse
signal. We propose the use of quasi-random samples as a bet-
ter way of sampling. As an initial illustration of the benefits of
non-random sampling methods, we reconstruct the Lena image
from quasi-random point samples and compare it with the usual
pseudo-random point sample reconstruction. As a regulariza-
tion of the inversion, we use the total variation (TV) prior, i.e.,
we impose sparsity of the local image gradient.

2  Quasi-random sampling

The law of large number says that any sequence of randomly
distributed numbers converge to a uniform distribution. This
assumption is however valid only for very large numbers.
When a strictly limited budget of samples should be selected
for image reconstruction, it might be advantageous to rely on
deterministic constructions ensuring more local uniformity in
the point distribution, in contrast to clusters of points generated
by true (or computer-generated pseudo-) randomness [2].
Elements of the fractional golden ratio sequence G(4) with
given seed constant s € [0, 1) are given by the fractional part of
the sum between s and an integer multiple of the golden ratio:

1+5

Go(i)={s+i-¢},Vi>1, 5

with ¢ =

ey

where {t} is the fractional part of the real number ¢. Note that
the conjugate golden section 7 = é = ¢ — 1 can be subtitued
to ¢ since only fractional parts are retained. Hence, computing
Gs(i+1) given G,4(7) only requires an addition and a bit mask.

Such sequences are especially interesting for distributing co-
ordinates on the 1D unit range. A key corollary of the strong
irrationality of ¢ (and 7) is that the fractional parts of inte-

ger multiples will not align on any regular grid. In previous
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Figure 1: Voronoi diagram for the first 512 points of a pseudo-random and
quasi-random sequence. Spurious clusters emerges in the random distribution,
while the quasi-random distribution ensures a more evenly uniform coverage.

work [3], the coordinates of this one-dimensional sequence are
mapped to higher dimensions, using the invertible Hilbert space
filling curve mapping H : R — R2.

The Hilbert space filling curve H (t) = (z,y), t € [0,1)
defines a nested recursive grid and a locally-preserving traver-
sal order of grid elements. Plugin-in G;(-) in H(-), we obtain
the following sets of N uniformly distributed points:

H(G,(i)) = H({s+i-7}), i € [L...N]. 2)

Figure 1 shows the Voronoi tessellation for two sets of N =
512 point samples, using pseudo-random and the proposed
quasi-random strategy with s = 0. Variability of Voronoi cell’s
areas indicates increases in local discrepancy.

3 Total variation reconstruction

Let S be the sampling operator S : RN >*N2 5 RN+ gy — o =
Swu that corresponds to choosing a certain [N pixels from the
N7 x Ny image u. Based on samples y of some given image
(y = Su°"e), the reconstructed image »"¢ minimizes the total
variation and coincides with ©°"¢ in the chosen samples, i.e.:

' = argmin TV (u). 3)

Su=y

Here the total variation T'V (u) is defined in terms of the local
differences (image gradients) D(u) = (Dyu, Dyu) € R%:

{Dhui,j = Ujp1,5 — Ui j 1<i< Ny —1, @
Dyuij = i1 — i 1<j<Np—1,
with Dyupn, ; = Dyu;n, = 0. Thus, the total variation
TV (u) in expression (3) is given explicitly by
Ni N
TV(W) = 33/ (Duui 2 + (Dywi )2 )
i=1 j=1



Pseudo-random recon. Quasi-random recon.

Original

Figure 2: Original Lena image and reconstructions from 50.000 samples using
pseudo-random and the proposed quasi-random algorithm. Visual quality and
signal to noise ratio are improved when using the quasi-random method.

Total variation was introduced in imaging in 1992[4]. This
penalty promotes sparse gradients in the image. In other words,
it promotes a piecewise constant reconstruction. In order to
compute the solution to the convex minimization problem (3),
we use the following iterative scheme:

a" = um =1 ST (20" — o) — DT
w'tl = P (w”—i— T—2Da"+1)
’ n ©)
untt = um =1 ST (20" — o) — i DT
vn+1 = 7 + Sun+1 —y
where the horizontal (h) and vertical (v) projection P is
PN NS B s S
h v =
Py(wp,wy) =4 Vi +w? (7)
(wp, wy) otherwise

and it is understood that it is applied in each pixel separately.

The algorithm (6) converges for positive step sizes 7, <
|S||lz2 and 75 < ||D||5 2. In this case, the spectral norm of
S'is ||S]|2 = 1 and the spectral norm of D is || D]z = 2v/2.
The convergence speed of this algorithm depends on the pos-
itive parameter A, but its choice is not critical. The algorithm
depend on three auxiliary variables (u, v and w). All variables
are initialized (n = 0) by zero. A proof of convergence can be
found in [6]. Other methods can be found e.g. in [5].

4 Results

In order to compare the two sampling methods, we constructed
a numerical experiment in which an image is sampled at a lim-
ited number of pixels. The whole image is then reconstructed
using the TV penalty.

Figure 2, first row, shows the results of an initial comparison
of the proposed quasi-random sampling method and standard
pseudo-random sampling. Both reconstructions are based on
50.000 distinct point samples of the Lena image. In both cases
we used the TV prior to regularize the inversion from 50.000
samples to a dense image of 512 x 512 pixels. Figure 2, second
row, represents a close-up of the the first row images. More
visual detail is discernable in the reconstruction from quasi-
random samples, than from pseudo-random samples.
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Figure 3: Peak signal to noise ratio (PSNR) is monotonously increasing with
the number of images samples available for image reconstruction. The quasi-
random sampling strategy yields better recovery of the original image content.

The algorithm was run with up to 1000 iterations. The
final peak signal to noise ratio (PSNR) of the reconstruc-
tion from quasi-random samples is 29.5dB whereas the final
PSNR for the reconstruction from pseudo-random samples is
28.5dB. Furthermore, seven experiments were performed with
5000, 10.000, 20.000, 25.000, 30.000, 40.000 and 50.000 sam-
ples. Figure 3 plots the PSNR for the seven pairs of recon-
structions of the Lena image. In both case the PSNR increases
monotonically with the number of samples taken, but the quasi-
random samples give better reconstruction results in all cases.

5 Conclusion

The law of large numbers says that randomly distributed points
are expected to tend towards a uniform distribution. Exper-
iments demonstrate that if the number of point samples is
limited, spurious random clustering impairs sensing efficiency
since some regions of the sampling domain are more sparsely
populated. Fortunately, deterministic quasi-random methods
exist for providing evenly distributed but still incoherent points.

Our first results on a natural image were encouraging and fu-
ture work will quantify the potential of the method on a practi-
cal medical imaging setup. Another possibility consists of sam-
pling the wavelet or Fourier domains in quasi-random points, as
opposed to the usual pseudo-randomly placed samples, as is of-
ten done in applications of the compressed sensing framework.
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