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Abstract

Recent observations in western Dronning Maud Land, Antarctica, point to a relatively high bedrock

roughness in the area of the future EPICA drilling site. It is commonly accepted that such a roughness does

not favor the interpretation of deep ice cores as basal ice-sheet interactions might disturb the bottom ice

layers. The present study aims at examining the ice-flow characteristics over a strongly undulating bed and

investigates its influence on age-depth profiles in the ice sheet.

For this purpose a high-resolution time-dependent two-dimensional flowline model was developed (hor-

izontal gridsize
�

1 km), taking into account all relevant stresses at such a small scale. The model is solved

on a fixed finite-difference grid, and compared with a similar model, solving the velocity field accord-

ing to the shallow-ice approximation. The analysis is presented for sinusoidal bedrock undulations with

amplitude-to-wavelength ratio comparable to those observed by radio-echo sounding (STEINHAGE et al.,

1999). Calculations are performed over a period of 300 ka. Results demonstrate that the influence of a high

bed roughness on the age-depth profiles is not only confined close to the bed, but near the surface as well,

which might affect the interpretation of shallow ice cores.
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Introduction

Recent observations – based on aerial radio-echo sounding – in the vicinity of the future EPICA1 ice-core

drilling site in Dronning Maud Land, Antarctica, show that the subglacial topography is highly accidented

(STEINHAGE et al., 1999). Moreover, the selected drilling site is – contrary to the Dome Fuji drilling site

– not situated on a divide. Both factors contribute to the complexity of the ice flow in the vicinity of the

future drilling site, which might hamper the interpretation of the ice core in terms of particle origin and ice

age. There is no doubt that complex numerical models will become necessary for the dating as well as the

interpretation of the ice core. Some preliminary studies along these lines have already been carried out (e.g.

SAVVIN et al., 2000), using grid sizes of 10 km and beyond, and thus overseeing smaller-scale roughness.

This study focuses on the characteristics of the ice flow over a strongly undulating bedrock in slow-

moving areas of the ice sheet (near divide conditions). We therefore considered bedrock perturbations of

the order of magnitude as those observed in Dronning Maud Land (STEINHAGE et al., 1999). The analysis

is based on a high-resolution time-dependent two-dimensional flowline model with a horizontal gridsize of
�

1 km, taking into account all relevant stresses at such a small scale (PATTYN, 2000). The model is solved

on a fixed finite-difference grid and compared with a similar model, solving the velocity field according to

the shallow-ice approximation.

The ice-sheet model

Field equations

The developed numerical ice sheet model is a dynamic flowline model that predicts the ice thickness dis-

tribution along a fixed flowline in space in response to environmental conditions (PATTYN, 2000). This

response is obtained by calculating at a given moment the two-dimensional flow regime, determined by the

ice sheet geometry and its boundary conditions. A detailed description of the ice-sheet model is given in

PATTYN (2002). Only a brief overview of the major components of the model will be presented here.

A Cartesian coordinate system (x, z) with the x-axis along the flowline, parallel to the geoid and the

z-axis vertically pointing upward (z = 0 at sea level) is defined. This implies that the only non-zero velocity

components are u, w (horizontal and vertical velocity, respectively), while the horizontal transverse velocity

v = 0. Convergence and divergence of the ice flow leads to ∂v
∂y � u

ω
∂ω
∂x , where ω is the width along the

flowline. Mass conservation and the stress equilibrium thus become

∂u
∂x

� u
ω

∂ω
∂x

� ∂w
∂z � 0 � (1)

∂σxx

∂x
� ∂σxz

∂z � 0 �
∂σxz

∂x
� ∂σzz

∂z � ρg � (2)

where ρ is the ice density (910 kg m � 3), g the gravitational acceleration (9.81 m s � 2), and � σ � the stress

tensor. For an isotropic ice mass that deforms under steady state creep, the constitutive equation, relating

the deviatoric stresses to the strain-rates is expressed as (PATERSON, 1994)

1EPICA: European Project on Ice Coring in Antarctica
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σ �i j � 2ηε̇i j � η �
1
2

A � 1
n
�
ε̇ � ε̇0 � 1 � n

n � (3)

for i, j = x, y, z, where ε̇ is the second strain-rate tensor invariant defined by ε̇2 � ∑i j
1
2 ε̇i j ε̇i j and η is the

effective viscosity. ε̇0 is a small number (10 � 30) to validate Glen’s flow law in cases where ε̇ equals zero,

and singularity might occur. The use of such a small number does not influence the numerical outcome of

the model. A is the flow-law parameter and n = 3 is the power law exponent of Glen’s flow law. Deviatoric

stresses are related to the stress components by σ �ii � σii � 1
3

�
σxx

� σyy
� σzz � and σ �i j = σi j, for i �� j, so that

the stress equilibrium (Equation 2) can be written as

2
∂σ �xx

∂x
� ∂σ �yy

∂x
� ∂2

∂x2

� s

z
σ �xz dz

� ∂σ �xz

∂z � ρg
∂
�
s � z �
∂x

� (4)

where s is the surface of the ice mass. The third term of the left-hand side of Equation 4 can be written

as ∂Rzz
∂x , where Rzz represents the vertical resistive stress (VAN DER VEEN and WHILLANS, 1989). Starting

from the known bedrock topography and surface mass balance distribution, and assuming a constant ice

density, the change of ice thickness along the flow line is predicted as

∂H
∂t � � 1

ω
∂
�
uHω �
∂x

�
Ms � (5)

where u is the depth averaged horizontal velocity (m a � 1), H the ice thickness (m), and Ms the surface

mass balance (m a � 1 ice equivalent). Boundary conditions to the ice sheet are a symmetric ice divide ( ∂s
∂x =

∂H
∂x = 0); zero ice thickness at the seaward side; a stress-free surface, a kinematic boundary condition to the

vertical velocity based on mass conservation, and no-sliding conditions at the bottom of the ice sheet.

Age calculation

The age calculation within the ice sheet is written as an advection equation with a small diffusion term

added in order to stabilize the numerical solution (HUYBRECHTS, 1994; GREVE, 1997)

∂A
∂t � 1 � u

∂A
∂x � w

∂A
∂z

�
Dart

∂2A
∂z2 (6)

where A is the ice age (a), and Dart a constant diffusion term (5.0 10 � 8 m2 a � 1; MÜGGE et al., 1999).

Boundary conditions to this equation are A
�
s � � 0 at the surface and a constant thinning factor at the bottom

of the ice mass of mage = 200. For a mean surface accumulation of Mmean = 0.3 m a � 1, the basal boundary

condition is written as ∂A
∂z

�
b � � � mage � Mmean (GREVE, 1997). Experiments with different values for this

thinning factor showed that only the lower 10% of the ice sheet is slightly influenced by the choice in mage.

Numerical solution

For numerical convenience a dimensionless vertical coordinate is introduced to account for ice-thickness

variations along the flowline, which is defined as ζ =
�
s � z ��� H, so that ζ = 0 at the upper surface and ζ = 1

at the base of the ice sheet. After this transformation, all equations are solved on an irregular spaced grid in

both x and ζ. The vertical domain is subdivided in 30 layers with varying thickness, i.e. a lowermost grid

spacing of 0.015, gradually increasing towards the top of the ice column (Figure 1). Central differences are
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used to compute first- and second-order gradients. At the boundaries, upstream and downstream differences

are employed (e.g. PAYNE and DONGELMANS, 1997).

An expression for the velocity field is found by relating the strain-rates to velocity gradients (ε̇i j �
1
2 � ∂ui

∂x j

� ∂u j
∂xi � ) and inserting Equation 3 into Equation 4. After introducing the dimensionless vertical co-

ordinate, the finite difference form of this equation is written as a set of linear equations with u
�
x � ζ � as

unknowns. This set is solved by the conjugate gradient method on sparse matrices (PRESS et al., 1992).

However, due to the non-linear nature of the flow-law (Equation 3) and the dependence of η on ε̇ and

hence on u, a proper solution to the velocity field is found in an iterative fashion using a Picard iteration.

In order to optimize the convergence a relaxation formula was added using the subspace iteration scheme

described by HINDMARSH and PAYNE (1996). The age equation (Equation 6) is solved using a three-point

dissymmetric upwind differencing scheme.

Shallow-ice approximation

For the purpose of this paper, experiments carried out with the higher-order model (HO) were compared

to a similar model that solves the velocity field according to the ‘shallow-ice approximation’ (SI). The

horizontal velocity in the grounded ice sheet according to SI is determined as (e.g. HUYBRECHTS and

OERLEMANS, 1988)

u
�
z � � ub � � 2A

�
ρg � n ���� ∂s

∂x
����
n � 1 ∂s

∂x

� z

h

�
s � z � n dz � (7)

Numerical experiments

Model setup

For all experiments we considered an ice sheet resting on a flat bedrock. A sine-wave bedrock perturbation

was then introduced, situated at a distance of 30 km from the ice divide. The sine-wave perturbation is

defined as a two-term harmonic wave in order to guarantee a smooth transition between the perturbed and

unperturbed area

hb � Am sin � 2πx
λ � � 1

2
Am sin � 4πx

λ � (8)

where the amplitude of the bed perturbation is taken as Am = 500 m, and the wavelength defined as λ
= 20 km. Surface mass balance was taken constant over the whole length of the flowline, i.e. Ms = 0.3 m

a � 1. An irregular gridsize was employed, allowing for grid spacings of 1 km in the vicinity of the bedrock

perturbation. The model calculations were performed over a time span of 300 ka. Two types of experiments

were carried out, i.e. fixed-geometry and steady-state experiments. For the fixed-geometry experiments a

uniform slab of ice of H = 1 500 m was considered with a gentle slope of α = 0.002. For the steady-state

experiments, the model ice sheet was allowed to react to the environmental conditions and was run forward

in time until a steady state condition was achieved. The flow-law parameter was set to A = 10 � 17 Pa � n a � 1.

The steady-state profile and the numerical grid are shown in Figure 1.
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Fixed-geometry experiments (FGE)

Figure 2 displays the horizontal velocity field for the fixed-geometry experiments according to both numer-

ical models. This figure clearly demonstrates the effect of higher-order stresses, primarily the longitudinal

stress gradients. According to SI (Equation 7), the horizontal velocity is locally determined and hence only

a function of the local ice geometry. Since in this experiment the surface slope is kept constant, but the ice

thickness varies over the bedrock perturbations, the velocity field is a function of these local ice thickness

variations. The highest velocity is thus encountered in areas where the ice is thick, i.e. in the troughs, while

the smallest velocity is observed over the bumps.

According to HO, the velocity field is smoothed out over the whole model domain (Figure 2). The

maximum velocity is still encountered in the troughs, but longitudinal pushes and pulls – due to the bedrock

perturbation – influence the velocity field in a global way and not locally as is the case with SI. Such

smoothing of velocity and stress fields is typical for higher-order models (e.g. BLATTER et al., 1998).

Thicker ice (H = 2 000–2 500 m) changes the absolute values of the velocity field in both experiments

(increase in ice velocity), but does not influence the pattern in the velocity and stress field for both SI and

HO.

Steady-state experiments (SSE)

As seen from Figure 3, the differences in velocity field between both models – as encountered in FGE –

disappear for SSE. Both velocity fields (HO and SI) are virtually the same. However, the physics that de-

scribe both models are different, and, as shown by FGE, must give rise to a more pronounced differentiation

between both models. This differentiation is not displayed in the velocity or stress fields calculated ac-

cording to both models, but in the ice-sheet geometry (Figure 4). The ice-sheet geometry was allowed to

adjust to the stress-field conditions, which results in (i) a lower surface profile according to HO of 5 to 10 m

compared to SI – this difference increases as the velocity increases – and (ii) more pronounced surface gra-

dients according to HO. These geometrical differences between both model results are only pronounced in

the vicinity of the bedrock perturbations. Outside this zone these differences disappear, which confirms the

viability of the shallow-ice approximation for large ice masses characterized by small surface and bedrock

slopes.

Another marked difference between SSE and FGE is that the maximum of the horizontal velocity is not

reached in the troughs, i.e. where the ice is thick, but on top of the bumps, where the ice is shallow. The

highest velocities are now associated with the maximum surface gradients. Hence, the dominant factor

controlling the velocity field now becomes the surface slope instead of the ice thickness.

The age distribution within the ice sheet and the associated annual layer thickness are displayed in

Figure 5. The age profile A
�
z � along a vertical line through the ice sheet and the vertically measured annual

layer-thickness profile λ
�
z � are related by (REEH, 1989)

A
�
z � �

s�

z

dz
λ
�
z � (9)

Isochronous layers are parallel to the bedrock perturbations and become smoothed out towards the

surface of the ice sheet. There is no discontinuity within the isochronous layering, since there is no flow

deviation from the plane parallel to flow ‘around’ the bump.2 All ice is supposed to flow uniformly over the

2A bump of infinite length in the y-direction is considered.
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bump. The annual layer thickness displays a similar pattern of isochronous layers parallel to the bedrock

undulations. However, the distortion is not smoothed out in the vertical, and close to the surface of the ice

mass the annual layer thickness remains highly disturbed (Figure 5). This distortion implies a thickening of

the annual layers close to the surface above the bedrock trough. The annual layer thickness in this distorted

zone is larger than the surface accumulation rate and hence must be due to differences in ice dynamics close

to the surface. For instance, at a depth of 300 m below the surface, the annual layer thickness is twice as

large over a trough than over bump (Figure 6), even though surface accumulation is the same at both sites.

This difference is due to an increase in annual layer thickness with depth in the top 200 m of the ice sheet

over a trough, while outside these zones, annual layer thickness gradually decreases with depth.

Discussion

Flank-flow index

To investigate the ice-dynamical properties of the flow over the bedrock bumps we defined the depth-

dependent flank-flow index (MARSHALL and CUFFEY, 2000)

f
�
z � �

S
�
z �

S
�
z � �

P
�
z � (10)

S
�
z � � � ε̇xz ��� 1

2
���� ∂u
∂z

� ∂w
∂x

���� (11)

P
�
z � � � ε̇xx

� ε̇yy ��� ���� ∂u
∂x

� u
ω

∂ω
∂x

���� (12)

where S
�
z � and P

�
z � indicate the strain rates associated with simple shear and pure shear at elevation z

in the ice mass, respectively. A divide-flow regime is characterized by negligible simple shear stress (S =

0), while simple shear dominates pure strain in the flank-flow regime (RAYMOND, 1983; MARSHALL and

CUFFEY, 2000). The flank-flow index for the numerical experiment is displayed in Figure 7: (i) high values

for f correspond to areas dominated by shear strain and are found close to the bed. The highest values are

situated over the flat bedrock areas and right on the bumps and in the troughs of the bedrock perturbations.

Near the high bedrock slopes a mixed regime is observed where both simple shear and pure strain exist. (ii)

Near the surface, pure strain is dominant (low values of f ), although higher values of f occur in the zone

corresponding to the bedrock bumps. The distortion in annual layer thickness apparently coincides with

zones where the ice flow changes from this simple shear regime close to the surface to pure shear, or where

the longitudinal stress gradient increases due to increased stretching of the ice layers in the horizontal. This

stretches out the ice layers instead of compressing them so that a local thickening in the annual layers can

be observed (Figure 5 and 6).

Are distortions numerical artifacts?

Numerical finite difference schemes are known to be conditionally unstable for pure advection equations,

such as the age equation (Equation 6). A common method to stabilize the solution of these equations

is by using an upstream differencing scheme and adding a small amount of artificial diffusion along the

vertical. Horizontal gradients are commonly determined using a dissymmetric upwind differencing scheme

involving three gridpoints (e.g. HUYBRECHTS, 1994). However, in a Lagrangian coordinate system, the

age equation is by definition reduced to
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dA
dt � 1 (13)

with the boundary condition A
�
z � s � � 0. The solution to Equation 13 is very simple: each year an

ice particle becomes one year older. We thus need to determine the position of the particle in time using a

particle-tracing algorithm, i.e.

d �x
dt � �u

�
x � z � t � (14)

Equation 14 is numerically integrated using a 4th-order Runge-Kutta scheme. Such forward integration

enables us to determine the particle paths in the ice sheet and – after interpolation – the age and annual layer

thickness. The advantage of this method is that numerical artifacts due to artificial diffusion processes are

eliminated. A drawback, however, is that the numerical integration is time-consuming and that the result

must be interpolated onto the numerical grid. Results of the particle-tracing algorithm applied to the ice

flow over the bedrock perturbations confirmed the existence of the distortion in annual layer thickness near

the surface, which indicates that this cannot be considered as an numerical artifact.

Implications for ice-core interpretation

OERTER et al. (2000) compiled an accumulation map of western Dronning Maud Land based on recently

obtained shallow firn cores. This map shows a rather large spatial variability of accumulation rate, ranging

from 40 to 90 kg m � 2 a � 1. Such high variability in surface accumulation rates in western Dronning Maud

Land was already observed by MELVOLD et al. (1998) along a traverse extending from the coast to polar

plateau. The authors addressed this large variability on both mesoscale and microscale due to complex

patterns of precipitation controlled by orography and redistribution by katabatic winds. It is not excluded

that annual layer thickness – as interpreted from shallow firn and ice cores – is influenced by the strong

bedrock irregularities as demonstrated by the numerical experiments. However, it will be very difficult to

distinguish this effect from other influences – such as redistribution of snow due to katabatic wind activity

– on the local and regional accumulation patterns of the Antarctic ice sheet.

Conclusions

Using a high-resolution higher-order numerical ice-sheet model, we investigated the ice flow in the interior

of the ice sheet over a strongly undulating bedrock. Similar bedrock perturbations are observed in the area

of the future EPICA Dronning Maud Land ice-core drilling site (STEINHAGE et al., 1999). The model

experiments indicate that a higher-order numerical model is necessary to simulate the ice flow over such

perturbations as longitudinal stress gradients cannot be neglected and the shallow-ice approximation fails.

These higher-order stresses influence locally and regionally the stress field within the ice mass as well as

the ice-sheet geometry.

The model also demonstrated that bedrock perturbations not only influence the ice flow close to the

bedrock, but also near the surface, due to the change of the ice flow from a simple shear to a pure shear flow

regime. Such disturbances might affect the interpretation of shallow ice cores as well.
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Figure 1: Ice-sheet geometry for the steady-state experiment. The left panel shows the whole numerical

model domain characterized by an irregular grid spacing in both horizontal and vertical direction. The

right panel shows a detail of the domain in the vicinity of the bedrock irregularities. Ice flow is from left to
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Figure 2: Along-flow (horizontal) velocity distribution in the ice sheet for the fixed-geometry experiment.
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Figure 3: Along-flow (horizontal) velocity distribution in the ice sheet for the steady-state experiment. Left

panel shows the result (m a � 1) for HO, while the right panel shows the velocity field according to SI. Ice

flow is from left to right.
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Figure 4: Surface elevation (left panel) and surface gradients (right panel) for the steady-state experiment

according to HO (solid line) and SI (dotted line).
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Figure 5: Age determination in ka BP (left panel) and annual layer thickness in mm (right panel) for the

steady-state experiment according to HO. Ice flow is from left to right.
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Figure 6: Vertical profiles of annual layer thickness over a bump (dotted line) at x = 48 km, and over a

trough (solid line) at x = 56 km. The surface mass balance is constant at both sites.
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Figure 7: Flank-flow index for the steady-state experiment according to HO. Low values (black) indicate

pure shear, high values (white) indicate simple shear. Ice flow is from left to right.


