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Abstract We study an information-theoretic variant of the graph coloring prob
lem in which the objective function to minimize is the entropyte coloring. The
minimum entropy of a coloring is called the chromatic entropyawad shown by
Alon and Orlitsky (1996) to play a fundamental role in the probleitading
with side information. In this paper, we consider the minimurtrapy coloring
problem from a computational point of view. We first prove that tiigblem is
NP-hard on interval graphs. We then show that it is NP-hard to findaing
whose entropy is Withir(% — ¢€)logn of the chromatic entropy for ang > 0,
wheren is the number of vertices of the graph. A simple polynomial éasdso
identified. It is known that the graph entropy is a lower bound ffier ¢thromatic
entropy. We prove that this bound can be arbitrarily bad, even fardeth graphs.
Finally, we consider the minimum number of colors required ti&e minimum
entropy and prove a Brooks-type theorem.

1 Introduction

The minimum graph coloring problem asks to color the verticesgiten graph
with a minimum number of colors so that no two adjacent vertieeg the same
color. The minimum number of colors in a coloring®fis thechromatic number

of G, denoted by (G). Numerous variants of this problem have been studied, with
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different objective functions and constraints (Jensen and Te#5)L An example
of such alternative graph coloring problem is tmimum cost chromatic partition
problem(Jansen, 2000), in which the cost of a coloring is the sum oveoddrs
of the size of the corresponding color class multiplied by seoedficient. In the
problem we consider, the cost of each color class is a concaetida of its size.

The problem is actually defined on specific vertex-weighted gragailed
probabilistic graphs. Avrobabilistic graphis a graph equipped with a probability
distribution on its vertices. L{G, P) be a probabilistic graph, and &t be any
random variable over the vertex 8&tG) of G with distributionP. We define the
entropy H ¢) of a coloringg as the entropy of the random varialgéX). In other
words, the entropy of is:

H(g) = - cilogg;,

whereci = 3 x.gx—i P(X) is the probability thaX has colori. Throughout this
paper, we always use base-2 logarithms. Th@matic entropy K(G,P) of the
probabilistic graph(G,P) is the minimum entropy of any of its colorings. We
consider the problem of finding a minimum entropy coloring of abgialistic
graph.

The notion of chromatic entropy was first proposed in an informatti@oretic
context by Alon and Orlitsky (1996). They considered the problézero-error)
coding with side informatiorin which a random variabl& must be transmitted to
a receiver having already some patrtial information abauitsenhausen (1976)
showed how this transmission scenario could be encodedhnracteristic graph
G, the set of vertices of which is the set of possible values.dflon and Orlitsky
(1996) proved that the minimum achievable rate for coding widle giformation
is betweerH, (G, P) andHy (G, P) + 1 whereP the probability distribution oK.

Given a minimum entropy coloring ¢f5, P), a Huffman code computed from
the color probabilities will provide a suitable code with awgdength at most
Hy (G,P) + 1. So minimum entropy colorings directly yield good codes for the
problem of coding with side information. Heuristic algorithmsoactical coding
with side information based on minimum entropy colorings havenb@oposed
by Zhao and Effros (2003).

Minimum entropy coloring also applies to the compression oftaligm-
age partitions created by segmentation algorithms (AccamejéNaind Granelli,
2000; Agarwal and Belongie, 2002).

While the problem has received attention in the information themd data
compression community, it has not yet been studied thoroufgbiy a compu-
tational and combinatorial point of view. Our contributiommai at filling this
gap. Preliminary results have already been presented in Caréiioalni, and
Van Assche (2004). Note that another combinatorial optimozagiroblem with
an entropy-like objective function has been recently studieddperin and Karp
(2004).

We first prove in Section 2 some useful lemmas concerning the steuct
of minimum entropy colorings, and introduce the definition ofximaal color-
feasible sequences.

In Section 3, we consider the computational complexity ofrtiieimum en-
tropy coloring problem. We show that the problem is NP-hard eveheifihput



graphG is an interval graph, a class of graphs on which many classic M#P-ha
problems become polynomial. We also study the approximglaifithe problem.
Since the chromatic entropy takes value in the intef@dbgn|, wheren is the
number of vertices of the graph, it is natural to consider agglpproximations,
i.e. approximations within an additive term. This translates multiplicative fac-
tor if we consider 2(?) instead ofH (¢) as the objective function. Coloring each
vertex with a different color trivially yields a coloring whosetepy is at most
logn. On the other hand, we show that, unlessN®, there is no polynomial al-
gorithm finding a coloring of entropy at moist, (G,P) + (1/7 — €) logn For any

€ > 0. With the stronger assumption that ZPRP, we show that the problem can-
not be approximated to within@ — £) logn term. These results hold everAfis
the uniform distribution. We end the section by giving a simpypomial case,
namely when the input graph satisfieso (G) < 2.

Alon and Orlitsky showed that the chromatic entropy was bouriced be-
low by a well-known quantity called graph entropy (Simonyi, 20)@lso known
asKorner entropy They left open the question of how tight a lower bound the
Korner entropy is. In Section 4, we first note that the ratio betwheset two
guantities is unbounded and then prove that the differencedestthem can be
made arbitrarily large, even if the graph is chordal and the prdibatbistribution
is uniform.

Finally, we provide results on the minimum numbgy(G,P) of colors re-
quired to achieve minimum entropy in Section 5. We first relateimum en-
tropy colorings toGrundy colorings the family of graph colorings obtained by
iteratively removing maximal stable sets. It is simple to shbat @ll minimum
entropy colorings are Grundy colorings, hence thatG, P) is bounded by the
Grundy number o6, defined as the maximum number of colors in a Grundy col-
oring. We also show a converse: any Grundy coloring of a gtaha minimum
entropy coloring of a probabilistic grafle, P) for some probability distribution
P. Then we prove that iP is uniform a Brooks-type theorem holdg; (G, P) is
at most the maximum degree Gf providedG is connected and different from an
odd cycle or a complete graph.

2 Preliminaries

Consider a probabilistic grafs, P), whereG is a graph and® a probability dis-
tribution defined oV (G). For simplicity, we denote b(S) the sumy ,.sP(x),
whereSC V(G). Formally, acoloring of G is a mapg from the vertex se¥/ (G)
of G to the set of positive integef$™. We also usep~1(i) for the set of vertices
colored with coloii. As above, let; be the probability mass of theth color class.
Hence we have;, = P(¢~1(i)) = Pr[p(X) = i], whereX ~ P(x) is a random ver-
tex with distributionP. The color sequencef ¢ with respect tdP is the infinite
vectorc = (G).

A sequence is said to becolor-feasiblefor a given probabilistic graptG, P)
if there exists a coloring of G havingc as color sequence. Most of the time, we
will restrict to nonincreasing color sequences, that is, ceémuences such that
G > ¢i41 for alli. This can be easily achieved for a given color sequence by renam
ing the colors. Note that color sequences define discrete piibpalistributions



on N*. The entropy of a coloring is the entropy of the discrete randonabbai
having its color sequence as distribution. In other words, we ke @) = H(c)
whenever is the color sequence @f, where (with a slight abuse of terminology)
H(c) is theentropy of color sequence that is,H(c) = — S+ GilogGi.

The following lemma is of fundamental importance for the remajrprnoofs
and was noted by Alon and Orlitsky (1996). The proof is straightfodveand only
relies on the concavity of the functign— —plogp.

Lemma 1 (Alon and Orlitsky, 1996) Let ¢ be a nonincreasing color sequence,
leti, j be two indices such thaki j and leta a real number such th@t < a <c;.
Then we have k&) > H(cy,...,G-1,C+Q,Cit1,...,Cj—1,Cj — @,Cj41,...).

We now examine the consequences of this lemma. We say thdbasee

guencec dominatesanother color sequenckif 5! ;¢ > 3/, di holds for all j.
We denote this bg > d. The partial ordek is known as thejominance ordering
It is often restricted to nonincreasing color sequences in ordavdim unwanted
incomparabilities. We also let denote the strict part ¢f. A nonincreasing color
sequence is said to bmaximal color-feasiblevhen it is not dominated by any
other (nonincreasing) color sequence of the considered pia@bgraph. The
next lemma indicates that color sequences of minimum entrofryings are al-
ways maximal color-feasible.

Lemma 2 Let c and d be two nonincreasing rational color sequences $hiat
c > d. Then we have ft) < H(d).

Proof Leti be the smallest index such ttat> d; and letj be the smallest index
such that; < dj. Because andd are distinct, such indicésand j exist. We have
i < j because >~ d. Moreover, we haveyx = dy for 1 < k < i andcy > dy for
i <k < j.LetK denote the smallest common denominator of the components of
andd, and leta = 1/K. We definee as the nonincreasing sequence obtained from
d by incrementingd; by a, decrementingl; by a and then sorting the resulting
sequence. Note thais not necessarily color-feasible. By Lemma 1, we have
H(e) < H(d). We claim that we have = e - d.

Let m be an index such that = (di,...,di_1,di + a,di;1,...,dj_1,dj1,
dj42,...,dm,dj — 0, 0my1,dmy2,...). Proving that we have >~ d is easy and left
to the reader. Now consider the sufp_;(ck — &) for some index. If we have
| <j—1orl>m, then the sum is clearly nonnegative. Otherwise, we have
j<lI<m-1and

| -1
z(ck—eK) = —a+ Z(Ckfdk)+0jfdj+1+...+C|fd|+1
k=1 k=1
j—1
—dj+ Z(Ck—dk)+Cj—dj+1+...+C| —da

1+1

|
Z (ck—dk) +Cj —diyg > Z (o —dy) >

The claim follows. Because there is a finite number of noniningasequences
whose components are integral multiples ¢Kland sandwiched betweemndd



in the dominance ordering, we reach the desired conclusion tafiitg the above
arguments a finite number of times. ad

A property similar to that of Lemma 2 was observed for other cotpprob-
lems, in particular by de Werra, Glover, and Silver (1995); de Wetertz,
Kobler, and Mahadev (2000) for minimum cost edge colorings. Ahrricon-
sequence of Lemma 1 is that any minimum entropy coloring carohstaicted
by iteratively removing maximal stable sets, i.e., subsefgaafvise nonadjacent
vertices that are inclusionwise maximal.

Lemma 3 Assume that i) > 0 holds for all vertices of a probabilistic graph
(G,P). Let @ be a minimum entropy coloring of G with respect to P. If the colo
sequence o is nonincreasing, then the i-th color classg@fs a maximal stable
set in the subgraph of G induced by the vertices with colord. j

Proof If the i-th color class is not maximal, we can recolor a vertex of jtie
color class with colof, for somej > i. BecauseP is positive, Lemma 1 implies
that this operation decreases the entropy, a contradiction. O

3 Complexity and approximability

We study in this section the complexity of the minimum entroploring problem
and its approximability. We first note that the minimum entropjodng prob-
lem has already been shown to be NP-hard on planar graphs witmifoenu
distribution (Cardinal et al, 2004).

An interval graphis the intersection graph of a set of open intervals on the
real line: vertices correspond to intervals and two distinct vestiare adjacent if
the corresponding intervals overlap. Our first result shows thditiina minimum
entropy coloring of a probabilistic interval graph is NP-hard. 8itiee numerators
and denominators of the probabilities that are used in our rexfuate polynomial
in the size of the input, the proof also shows that NP-hardndsis lrothe strong
sense.

Theorem 1 Finding a minimum entropy coloring of a probabilistic inted graph
is strongly NP-hard.

Proof Our reduction is from the problem of deciding if a circular arc gr&pis
k-colorable, which is NP-complete (Garey, Johnson, Miller, angaBEamitriou,
1980). Circular arc graphsare defined similarly as interval graphs, except that
vertices corresponds to open arcs on a circle. Given a circular gob Gaone
can construct a circular representation @®in polynomial time (Tucker, 1980).
The basic idea of the proof is to start with a circular-arc graph andtopen
somewhere to obtain an interval graph. The same idea is usedrix (2@05),
where it is proved that finding a minimum sum coloring of an integraph is
NP-hard.

Let y be an arbitrary point on the circle that is not the endpoint of acy a
in the considered representation@fLet k' be the number of arcs in whighis
included. Ifk’ > k, thenG is notk-colorable. Ifk’ < k, we add to the representation
k — K sufficiently small arcs that intersect only arcs includynd his clearly does



Fig. 1 Splitting of the circular arc graph.

not increase the chromatic number@tbovek. Thus, it can be assumed thebs
contained in exactlk arcs.

Denoteay, ..., ax the arcs that contaipn By splitting each arg; into two parts
li andr; at pointy we obtain an interval representation of some interval g&ph
(see Figure 1 for an illustration). As is easily check&ds k-colorable if and only
if there is ak-coloring of G’ in whichl; andr; receive the same color ford j <k.

Since interval graphs are chordal, we can use an algorithm designe
chordal graphs (Golumbic, 2004) to list in linear time all maairdliques ofG'.
For each such cliqu&, we do the following. If[K| > k then we reject the input
because in this casgis notk-colorable. Assume noyK| < k. By the Helly prop-
erty for intervals, there exists a poinbf the real line contained in the intervals
of K and in no other. We extend the cligeby addingk — |K| sufficiently small
intervals centered ain the interval representation. This is done in such a way
that the new intervals intersect only intervals correspondingettices ofK. As
before, this operation does not increase the chromatic numi@raifovek. Let
H denote the resulting interval graph. By construction, all makicliques ofH
are also maximum.

Let.#” denote the collection of maximum cliquestéfand letC = |.#|. Con-
sider the auxiliary bipartite graghhavingV (H) and._#" as color classes in which
xeV(H) is adjacent tK € .# whenevex € K. We define a probability distribu-
tion P on the vertices oH as follows:

Aj if x=Ijorrj,
P(X) = A degy(x) + { 0 othervx;ise, :

whereA > 0 is chosen such that the sumRii) over all vertices< of H equals 1,
and deg(x) denotes the degree ®in the auxiliary graptB.

Letting c* denote the sequendg2k+C,2(k—1)+C,...,2+C,0,...), we
claim that the following two assertions hold for the probabdigraph(H, P):

() if Gisk-colorable thert* is color-feasible;



(i) c* dominates all color-feasible sequences and every coloring evboler
sequence equats assigns the same color to vertidgsandr; for all j.

First assume thab is k-colorable. Then there existskecoloring ¢ of (H,P)
assigning the same color tpandr; for all j. Letc denote the color sequence of
@. Without loss of generality, we assume that vertiges, ; andry_;, 1 belong to
thei-th color class. For every colore {1,...,k}, we have

G = Z P(x)
xep~(i)
=2(k=i+1)+A > deg(x)

xep~1(i)
=A(2(k—i+1)+C).

The third equality holds for the following reasons. Becagss proper, no two
vertices ofH with colori are contained in the same maximum clique. Moreover,
if some maximum clique is disjoint from theh color class thep cannot possibly
be ak-coloring. It follows that every maximum clique éf contains exactly one
vertex ofH with colori. Hence the third equality holds and we have c*. Claim
(i) follows.

Now consider any stable s&in H. Clearly, no two vertices o§ are con-
tained in the same clique. For the auxiliary graphthis means that n& € 2
is adjacent to two distinct elements &flt follows that the sung ,.sdegs(X) is
at mostC. Moreover,S contains at most one vertex {fy, ...,lx} and at most one
vertex in{ry,...,rg}. Let j andj’ be indices such th&@n{l4,....I} € {l;} and
SN{ry,...,rx} € {ry}. Then the total probability mass &in (H,P) is at most
A(j+ j'+C) with equality only if S contains both; andrj. Let now (s be any
coloring ofH and letc denote the color sequence @f Again, we assume that
is nonincreasing. By what precedes, we have

¢ <c,
C1+C2 < C1+6C,

G+C+...+ < CG+C+...+C.

Hencec* dominatesc. Moreover, ifc = ¢* then thei-th color class ofy contains
bothly_j.1 andry_j,1 for 1 <i < k. Claim (ii) follows.

From Lemma 2, we then infer th& is k-colorable if and only if every mini-
mum entropy coloring ofH, P) hasc* as color sequence. We conclude that find-
ing a minimum entropy coloring of a probabilistic interval gragh(strongly)
NP-hard. ad

We now consider the approximability of the minimum entropyocinlg prob-
lem. Since the objective function takes values in the intef@dbgn], it makes
sense to look for polynomial time algorithms that find a colonvigpse entropy
is within an additive term of the chromatic entropy, i.e. is atsiig, (G,P) + 6
for some positive real numbéer. We call such an algorithm &-approximation
algorithm Note that coloring each vertex with a different color gives aidtiv
logn-approximation algorithm for the minimum entropy coloring problem



Theorem 2 Let ¢ be a real such thdl < ¢ < 1 and assume that for some positive
real € there exists ac — €)logn-approximation algorithm A for the minimum
entropy coloring problem. Then there exists a polynomiaktalgorithm coloring

G with at most f¢/2x(G) colors.

Proof Without loss of generality, we may suppase c. LetU denote the uniform
distribution onV(G), n = |G| denote the order o6 and x = x(G) denote the
chromatic number os. We claim that some color class in the coloripgutput
by algorithmA on the input(G,U) contains at least'~¢*¢/ x vertices. In order to
show this, list the color classes @fin nonincreasing cardinalities &, S, .. .,
S LettingH (@) denote the entropy a with respect tdJ, we have

—Iog% <H(@p) <Hy(GU)+(c—¢)logn<logx + (c—¢&)logn.

The first inequality follows from the fact that, —P(i) logP(i) > —logPnax holds
for all probability distributiond® whose maximum i®nax. The middle one holds
by hypothesis and the last one comes from the fact that the graf@minimum
cardinality coloring is at most log. Hence the size d#; is at leasn'~¢*¢/x, so
our claim holds.

Let A' denote the polynomial time algorithm that ugeas a subroutine to find
in any graphG with n vertices and chromatic numbgra stable set of size at least
nl—¢+¢/x. Now we iteratively us& to color any graph by coloring with the same
color all the vertices in the stable set outputand removing these vertices from
the graph. LetGo =G, G1 = Gy —A’(Go), G, =Gy —A/(Gl), G =Gy —
A'(G,_1) be the sequence of graphs considered, artdgty n®€)/(x n® € —1).
For each between 1 and, we have

. l1-c+e ’ .
Gl <161 - P <y - Lot - Bl
X(Gi-1) xneé t
It follows that|G;| < n/t' for all i. Becausés, is nonempty, we have/t’ > 1 and
hencel < log,n = Inn/Int. The number of colors in the resulting coloring ®f
equals/ + 1. By what precedes, we have
'I”—?+1§ '””(tfl)z B | I L
n (t-1)-% l-amwe

+1< +1.

In the second inequality we used that{r- 1) > x — X—ZZ for x > 0. Because the
casex = 1 is trivial, we can assume thgt> 2. It follows that

(+1<2(n“ ¢ x—1)Inn+1=2n""¥Inn-x —2Inn+1.

If nis large enough, that is, greater or equal to some constaahdem ons, we
find /41 < n°¢/2x. Consequently, we can in polynomial time find a coloring
of a graphG with at mostn®¢/2x colors. (Indeed, if is small we use a brute
force algorithm to color the graph exactly and we can easily tldtec= 1 in
polynomial time.) a



It is known that the existence of a polynomial time algorithimodng
any graphG with at mostn'~¢x(G) colors for some positive rea implies
ZPP=NP (Feige and Kilian, 1998). Moreover, if the number of colorsdubeg
such an algorithm is bounded by 7~ x(G) then it implies P-NP (Bellare, Gol-
dreich, and Sudan, 1995). Combining these results with Theonemdbtain the
following corollaries.

Corollary 1 Let € be any positive real. There is nd — €) logn-approximation
for the minimum entropy coloring problem, unless ZMNP.

Corollary 2 Lete be any positive real. There is /7 — €) logn-approximation
for the minimum entropy coloring problem, unlesseP.

In view of the proof of Theorem 2, the theorem and its corollaries netnae
when the problem is restricted to probabilistic graphs equippédtive uniform
distribution. We end this section by identifying an easy polyial case for the
minimum entropy coloring problem.

Theorem 3 There exists a polynomial time algorithm for the minimunrapyt
coloring problem restricted to graphs G satisfyiogG) < 2.

Proof Let (G, P) be a probabilistic graph such thafG) < 2. A color class in any
coloring of G is composed of one or two vertices. Each color class of size two
corresponds to an edge in the complem@rdf G. In fact, the set of edges &
corresponding to the color classes of size two forms a matching.

Let f(p) = —plogp. If a color class is composed of a single veriexhen
the contribution of this color to the overall entropy i$P(x)). Otherwise, the
contribution of a color isf (P(x) + P(y)), wherex andy are the only two vertices
in the color class. So if we denote by the matching irG induced by a coloring
of G, the entropy of this coloring with respectRois

> 1P+ 5 fR0+P)

XV (M) xyeE(M

f(P(X)) + (
xeV(G) XyeE(M)

HX)+ 3 ple).

ecE(M)

F(PX) +P(y)) — f(P(x)) - f(P(y>)>

whereX ~ P(x) andp(xy) = f(P(x) +P(y)) — f(P(x)) — f(P(y)). Hence finding
a minimum entropy coloring amounts to finding a maximum weighatahing
in G, each edge of which has nonnegative weightp(e). This can be done in
O(|V(G)||E(G)| + |V (G)|?log |V (G)|) time (Gabow, 1990). O

4 Chromatic vs. Korner entropy
We first give a definition of a previously known quantity that feea referred to

as graph entropy. Following Alon and Orlitsky (1996) and to aanabiguities,
we call it Korner entropy.
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The Kdrner entropy H (G, P) of a probabilistic grapi{G, P) can be defined

by
H«(G,P)= min - P(x)loga 1
«GPI= i, - 3 Piloga (1)

where STARG) is the stable set polytope &, defined inRY(®) as the convex
hull of the characteristic vectors of the stable set&ofrhe Korner entropy has
a number of applications, the most prominent being the proloesorting with
partial information studied by Kahn and Kim (1995) in their cetgbd paper.

We also define (G, P) which is simply the maximum weigh®(S) of a stable
setSof (G, P).

Lemma 4 For any probabilistic graph(G, P), we have
- |Og a(67 P) < Hg (Gv P) < HX(G7 P) < IOgX(G)

Proof The last inequality comes from the fact that in the worst casedistribu-
tion of the colors in a minimum cardinality coloring is uniform roe its entropy

is at most log((G). The second inequality is proved in Alon and Orlitsky (1996).
We here give a shorter proof based on (1). Consider a minimum entapsing

@ of (G,P), and letay = P(¢~(¢@(x)) for each vertex € V(G). Since each color
class ofg is a stable set and the probability masses of the color classesip to
one, the vectoa is a convex combination of characteristic vectors of stablg set
hence we hava € STAB(G). Furthermore we can check that for this valueaof
we have

- Z(G) P(x)logax = — z(G) P(x)logP(¢*(¢(x))) @)
xeV xeV

= —Y P(¢ (i) logP(¢ (i) ®)

= H,y(G,P), (4)

thus the minimum defininglx (G, P) is at mostHy (G, P).

The first inequality is derived as follows. Late STAB(G). A stable set has
weight at mostor (G, P), so we havey v ) P(X)ax < a(G,P). Combining this
with the concavity ok — log(x) yields

- Z P(x)logax > —log z P(X)ax > —loga (G,P).
xeV(G) XeV(G)

O

The bounds on the chromatic entropy given in Lemma 4 can be dmmhpu
in polynomial time only for certain classes of probabilisticgha. In particular,
whenG is a perfect graph, the two lower bounds can be computed (to any fixe
accuracy) in polynomial time, as follows from @schel, Lowasz, and Schrijver
(1993). The chromatic number can also be computed in polyndimmialon these
graphs.

The question of the quality of the lower bound given by thériér entropy
on the chromatic entropy was raised by Alon and Orlitsky (1996). fldye two
results provide an answer to this question.
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Proposition 1 The ratio H, (G, P)/Hk (G, P) can be arbitrarily large.

Proof Let Gy be the graph consisting of a matching of size1 and lete = 1/n?.
Choose an edgey € E(G;,) and letPR, be the probability distribution such that
Pi(X)=(1—ne)(1—¢),Pa(y) = (1—ne)e andPy(z) = €/2 forze V(Gp), Z# X, Y.

Defineh(p) : (0,1) — R as the functiornp — —plogp — (1 — p)log(1— p).
The chromatic and Brner entropy of5,, are easily obtained:

Hy (Gn,Ph) =h(ne(1/2—¢) +¢),
Hk (Gn, By) =ne+ (1—ng)h(e).

Now, it can be checked that

lim H = 00
N—eo HK(Gn,Pn) -

O

The above proof does not show that the differeHgeG, P) — H, (G, P) is not
bounded. We now prove this in the next lemma.

Proposition 2 The difference (G, P) — H« (G, P) can be arbitrarily large, even
if G is chordal and P is the uniform distribution.

In order to prove this result, we define a grapi{n) (n > 2,k > 1) inductively
onk. The graphG;(n) is the single vertex grapky, and fork > 2 the graphsg(n)
is obtained as follows:

— start with the complete gragfjx 1 on nk-1 vertices,

— partition its vertex se¥ (K.x-1) in nsetsVy, Vs, ..., V, of equal sizes,

— for each se¥; (1 <i < k) add a disjoint copy o6,_1(n) and all edges with
one endpoint ifv; and the other in the vertex set of thth copy ofG¢_1(n).

A drawing of the graplt3(3) is given in Figure 2. It can easily be checked that
Gk (n) is chordal. We study in the next two lemmas the behavidd,gfGy(n),U)

andHy (Gk(n),U) whenk is fixed andn goes to infinity, wher&) is the uniform

distribution. Note thaGy(n) haskn~* vertices in total, so we havg(x) =

for all verticesx.

Lemma 5 Hg(Gk(n),U) < @ logn+o(1).

Proof We first associate to each vertex@f(n) alevelbetween 1 andé: the only
vertex of G1(n) has level 1, and fok > 2 the level of a vertex is eitherk if it
belongs to theentral clique K1 arising in the definition oGy (n) above, or its
level in thei-th copy of the grapi®y_1(n).

Now consider the poira 6f RY(C«(") defined by
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Fig. 2 The graphGs(3).

wherei denotes the level of vertex As chordal graphs are perfect, it follows from
a classic theorem of Claval (1975) that STABGk(n)) is described by the trivial
inequalitiesa, > 0 for all x € V(Gk(n)), and the clique inequalities, x ax < 1
for all cliquesK of G¢(n). Using this, it can be checked that"STAB(Gk(n))
(for instance, by induction oR). This point yields the desired upper bound on
HK(Gk(n)>U):

1 ~
HK<Gk(n),U) S 7W|Ogax

|
—

k—1)logn— %Iog(n— 1)

~(k—1)
=" logn+o0(1).

The second equation above holds because each le&|(af contains exactly
nk~1 vertices. 0

Lemma 6 Hy(Gk(n),U) > logk+ (";21) logn—o0(1).

Proof We first note that the unique maximum clique@f(n) is its central clique
K1, implying thaty (Gy(n)) = n“~* as chordal graphs are perfect.

Let ¢ be a maximal color-feasible sequence(@k(n),U). We prove the fol-
lowing by induction ork:

(n—1)k-t
C ko1

n— 1)k
o= e

C >

forl<i<kandn?+1<j<n % (5)
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This is clearly true fok = 1. From now on, we assunke> 2. Becausg (Gy(n)) =
n“1, we havec; > — for j € {n*"2+1,...,n*"1}. Thus the casé=kiin (5)

is settled. Now decomposeasc = c® +c* + - - +c" wherec? counts the prob-
ability masses coming from the central clique afd . .,c" count those coming
from then copies ofGy_1(n) for each color class. Let' (1 <1 < n) denote the
sequence’ with all zero entries removed, except the trailing zeroes. Becaus
is maximal, the sequencké’lld' is a maximal color-feasible sequence@f 1(n)
for all |. Moreover, the maximality of and the structure dBy(n) imply that at
most one of then components?, .. .,Cj is zero for anyj between 1 anah—2,
Indeed, a stable set @(n) either contains no vertex of the central clique and
is thus composed af stable sets coming from each of theopies ofGy_1(n),
or includes exactly one vertex of the central clique, sagnd is thus composed
of x andn— 1 stable sets coming from— 1 copies ofGy_1(n) (that is, all the
copies except the one which is totally adjacenk}oln particular, if two of the
n components?, .. .,c'j1 equalled zero we would be able to switch the entdjes
andc), for somel and somej’ > j such thatc; = 0 andcj, > 0, while keeping
a color-feasible sequencecontradicting the maximality of. Let| € {1,...,n}.
Becausel' is maximal color-feasible, it is nonincreasing. S@:'jif;é 0, we have

¢ > d'. From the induction hypothesis applieddband the latter observations,
we infer the following inequalities:

(n—1)%2 _ (n—pk?

¢ > (n—1)

knk*1_ T k1 _
¢j > (n—1) (“’kﬁl:fl = (”Izrﬁk;' forl<i<k-—landn2+1<j<n-Ll

Let C be the sequence such tlwgt= 0 for j > nk-1, Cj is the minimum possible
value ofc; allowed by (5) for 2< j < n“lande; =1— Y i>2Cj. As is easily
verified,€ dominates. Using Lemma 2 we get

(k=1)

Hy (Gk(n),U) > H(C) = logk + 5

logn—o(1).
O

Proposition 2 follows from Lemmas 5 and 6. Before turning to the negtian,
we mention that we can show that Proposition 2 also holds w&isman interval
graph andP is arbitrary by adapting the construction used above.

5 Number of Colors

We consider in this section the number of colors used in a mimrantropy color-
ing. We denote by (G, P) the minimum number of colors in a minimum entropy
coloring of the probabilistic graptG, P). We mention that the upper bounds on
the number of colors used in a minimum entropy coloring giverhia section
hold for all minimum entropy colorings whenever we ha¥) > 0 for all ver-
ticesx.
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We first relate minimum entropy colorings to another kind of colgsi stud-
ied in the literature. AGrundy coloringof a graph is a coloring such that for any
colori, if a vertex has colorthen it is adjacent to at least one vertex of cgléor
all j <i. TheGrundy number (G), also called thédirst-fit online coloring num-
ber (Pemmaraju, Raman, and Varadarajan, 2004), of a g@&jhthe maximum
number of colors in a Grundy coloring &. See Erds, Hedetniemi, Laskar, and
Prins (2003) for a recent survey of this topic. Equivalently, Gyucolorings are
colorings that can be obtained by iteratively removing maxistable sets.

Proposition 3 Any minimum entropy coloring of a graph G equipped with a prob
ability distribution on its vertices is a Grundy coloring.dveover, for any Grundy
coloring ¢ of G, there exists a probability mass function P ové6Y such thatp

is the unique minimum entropy coloring (@, P).

Proof The first part of the claim is given by Lemma 3. We prove the secamd p
by induction on the numbéeof colors used inp. Itis trivially true fork = 1, since

in that casés has no edge and the unique minimum entropy coloring with respect
to any positive distributio? assigns the same color to every vertex. Now assume
that the proposition holds for colorings with less thatolors. We calV’ the set

of vertices ofG having a color different from 1, an@ the corresponding induced
subgraph. By the induction hypothesis, there exists a disimifb® such thatp
restricted toG' is the unique minimum entropy coloring (&', P’).

We define a probability distributioR for G as follows. For eaclk € V(G)
we setP(x) = P'(x)/t if xc V' andP(x) = (1—-1 t /|(p—1 (1] otherwise The
entropy ofe with respect td® equals— z,>1((P’( i)/ log(P’ (¢~ 1(i))/t)) —
(1—1/t)log(1—1/t).

We first show that in a minimum entropy coloriggof (G, P), all vertices in
S= ¢~1(1) must have the same color. Let us assume otherwise, that icegert
in Sdo not all have the same color under coloriigThe maximum probability
of a color class inp then satisfie®nax < 1— (1—1/t)/|9 = (]9 -1+ 1/t)/|Y
for t large enough. Furthermore, the entropyyofwith respect toP is at least
—logPmax>109(|9/(]S — 1+ 1/t)). Ast tends to infinity, the difference between
this lower bound on the entropy gf and the entropy op tends to log|S/(|S —
1)). Thusy cannot have minimum entropytifis large enough.

BecauseSis a maximal stable set i@, if Sis contained in a color class of a
coloring ¢ of G thenS isa color class ofy. The entropy of any such coloring
can be written a$i’/t +- h(1/t), whereH’ denotes the entropy with respectRo
of the restriction ofiyy to G, andh(1/t) is the entropy of a Bernoulli random vari-
able with parameter/t. This shows that minimizing the entropy of any coloring
Y assigning the same color to all verticesSEmounts to minimizing the entropy
of the same coloring restricted {&',P’). Now it follows from the induction hy-
pothesis thaty and@ have the same color classes, which concludes the praof.

Itis easy to see that the Grundy number of a freman be arbitrarily large, thus
giving the same property fgyy (T, P) by the previous proposition. We note that
this observation can be strengthened to the caBaiafform, as shown in Cardinal
et al (2004).

Proposition 4 (Cardinal et al, 2004)xH (G, P) is not bounded by any function of
X(G), even if P is uniform and G is a tree.
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We now consider upper bounds gn (G, P) in terms of the maximum degree
A(G) of a vertex inG. We first note the following easy lemma, which was already
noted in Cardinal et al (2004).

Lemma 7 (Cardinal et al, 2004)For any probabilistic graph(G, P), we have
XH(G,P) <A(G)+1.

Brooks (1941) showed a classic result stating th&t i6 a connected graph
different from a complete graph or an odd cycle, theg) < A(G), whereA(G)
is the maximum degree of a vertex@ There are graphs other than those cited
above that have a Grundy coloring usifa¢G) + 1 colors, thus by Proposition 3 we
cannot extend Brooks’ theorem by substitutjpg(G, P) to x(G) without making
any assumption oR. In the next theorem we prove that such an extension holds
whenP is the uniform distribution.

Theorem 4 If G is a connected graph different from a complete graph or dd o
cycle, thernxn (G,U) < A(G), where U is the uniform distribution over(@).

Proof The proof closely follows the one given in Diestel (2000) for Brs'ake-
orem. We borrow the path notation in whigRyis a path between verticasand

y, andx means that vertexis not included. The considered path should be clear
from the context. For simplicity, we use the shorthand notaign = P(¢(i))

for a colori.

LetA =A(G) andn=|G|. If A <2, eitherG is an odd cycle and we have
nothing to show, oG is a path or an even cycle and the proposition is trivial.
Hence we assum > 3. Let us consider a minimum entropy coloripef (G,U)
with colors in the sef1,2,...,A +1}. We show that if thed + 1 colors are used,
theng cannot have minimum entropy with respectipunlessG is the complete
graph.

Without loss of generality, we consider that catb# 1 has minimum weight:
forall 1 <i < A, we haveP(i) > P(A +1). Let us choose a vertexe V(G)
such thatp(x) = A 4+ 1. The vertexx must be adjacent td vertices colored with
colors 1 toA, otherwise it could be recolored and, from Lemmaplwould not
have minimum entropy. We denote lythe vertex adjacent tg and such that
¢(x;) = 1. Let F be defined as the graph induced by the vertices colored with
colors{1,2,...,A}, K ; as the graph induced dn by the vertices colored with
colorsi or j, andGj; (respectivelyCji) as the component df j containingx
(respectivelyx;).

We first show the following:
Cij is a path. (6)

First,x; must have a single neighbor @;. Otherwise, it could be recolored,
with a colork different ofi and j andx could in turn be recolored with colar
The probability mas®(A + 1) would decrease by/h, andP(k) would increase
by 1/n. From Lemma 1 and the fact thB{A + 1) < P(k), the entropy would
decrease, an@ would not be optimal.

Let us assume th&}; is not a path. Then there must be an inner verteg; pf
having three identically colored neighbors. Let us defims the first such vertex
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on the path fronx; in Cjj. The vertexy can be recolored with a coldrdifferent
fromi or j, since its neighbors cannot have more tian 2 distinct colors. We
can then perform the following steps:

1. recolory with colork,
2. interchange colorisand j on the pathPy,
3. recolorx with colori.

We show that they can only decrease the entropy, and therefore ttzatnot be
optimal unles<C;j is a path. We have to consider two cases: eitpgf) =i or
oy) = J-

If (y) =1i, then the patlx;Py is even. Interchanging the coldrand j on this
path does not change the probability mag3gsandP(j). The probabilityP(i) is
decreased by/h wheny is recolored, but increased byriwhenx is recolored.
Hence the overall sequence of changes leaves the proba®lityunchanged,
while P(A + 1) is decreased by/h, andP(k) is increased by in. SinceP(A +
1) < P(k), we have the conditions of Lemma 1 and the entropy can only dsere

If @(y) = j, then the patlx; Py is odd. Interchanging colofsand j on this path
decreaseB(i) by 1/nand increaseB(j) by 1/n. Recoloringy decreaseB(j) by
1/n and recoloringx increase$(i) by 1/n. So the probability massd(i) and
P(j) are left unchanged by the operations. Overall, we only havePtzat- 1) is
decreased by/h, andP(k) is increased by An. Again, Lemma 1 holds and the
entropy decreases.

Cij =C;j is ax —x; path. (7

To show this, we assume thg} andCj; are disjoint components & j. Then
we can interchange colorgind j in C; and recolox with colori. We again have
two cases: eithet;j is an even path, anBl(A + 1) is decreased by/h andP(i)
is increased by /n, or Gjj is an odd path, anB(A + 1) is decreased by/h and
P(j) isincreased by An. In both cases, Lemma 1 holds and the entropy decreases.

For distincti, j, k we haveCij N"Cjx = {Xj}. (8)

Otherwise there would be a vertex# y € Gj NCjx with ¢(y) = j and two
pairs of neighbors colored wiitandk respectively. We could then apply the same
three steps as in the proof of point (6).

Now if the neighborsg of x are pairwise adjacent, thed can only be the
graph induced by and {x1,X2,...,Xa}, because all vertices have maximum
degreeA. HenceG is the complete graph, and we do not have to show anything.

We may thus assume without loss of generality ias ¢ E(G). Lety be the
neighbor ofx; in Cy2, with ¢(y) = 2. Interchanging colors 1 and 3@33 we obtain
a new coloringy’ of F. This coloring has the same entropy@ssinceC; 3 is an
even path. We defing andC;; with respect to the new coloring. As a neighbor
of x; = X5, the vertexy now lies inCl, for g(y) = ¢/ (y) = 2. By (8), however, the
pathx;Ci» retained its original coloring, spe X1Ci1> C C},. Hencey € C,3NC},,
contradicting (8). a
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