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Programme

Introduction to the concept of deformation quantization (existence, classification and

representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie

algebra action) compatible with the classical Poisson structure, and one wants to consider star

products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations).

We recall in particular the link between left invariant star products on Lie groups and Drinfeld

twists, and the notion of universal deformation formulas.

Quantum moment map : Classically, symmetries are particularly interesting when they are

implemented by a moment map. We give indications to build a corresponding quantum version.

Concerning links between representation theory and the quantization of an orbit of a group in

the dual of its Lie algebra, we recall how some star products yield an adapted Fourier transform.

Quantum reduction : reduction is a construction in classical mechanics with symmetries

which allows to reduce the dimension of the manifold; we describe one of the various quantum

analogues which have been considered in the framework of formal deformation quantization.

Considerations about convergence of star products.
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Why Quantization?

Quantum theory provides a description of nature which is more fundamental than
classical theory. We shall consider here only non relativistic descriptions.

Why are we interested in quantization, nature being quantum?

- Giving a quantum description a priori of a physical system is difficult, and the
classical description is often easier to obtain; hence one often uses the classical
description as a starting point to find a quantum description.

- Any given physical theory remains valid within a range of measurements, so that

any modified theory should give the same results in the initial range.
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Classical Mechanics

Classical mechanics, in its Hamiltonian formulation on the motion space, has for

framework a symplectic manifold (or more generally a Poisson manifold).
A Poisson bracket defined on the space of real valued smooth functions on a manifold M, is a
R- bilinear map on C∞(M), (u, v) 7→ {u, v} such that for any u, v ,w ∈ C∞(M):

•{u, v} = −{v , u} (skewsymmetry),
•{u, vw} = {u, v}w + {u,w}v (Leibniz rule)
•{{u, v},w}+ {{v ,w}, u}+ {{w , u}, v} = 0 (Jacobi’s identity).

A Poisson bracket is given in terms of a contravariant skew symmetric 2-tensor P on M, the
Poisson tensor, via {u, v} = P(du ∧ dv) = Prs∂ru∂sv (so that [P,P] = 0.)
(M, ω) is symplectic if ω is a non degenerate closed 2-form; one then defines
{u, v} = −ω(Xu ,Xv ) where Xu is the Hamiltonian vector field associated to u, i.e. ι(Xu)ω = du.

On (R2n, dpi ∧ dqi ), the bracket is {f , g} = ∂qi f ∂pi g − ∂pi f ∂qi g .

The motion space is in general the quotient of the evolution space by the motion.

Observables are families of smooth functions on that manifold M.
The dynamics is defined in terms of a Hamiltonian H ∈ C∞(M) and the time
evolution of an observable {ft}t∈I ; ft ∈ C∞(M) is governed by the equation :

d

dt
ft = −{H, ft} .
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Quantum Mechanics

Quantum mechanics, in its usual Heisenberg’s formulation, has for framework a
Hilbert space (states are rays in that space).
Observables are families of selfadjoint operators on the Hilbert space.
The dynamics is defined in terms of a Hamiltonian H, which is a selfadjoint
operator, and the time evolution of an observable {At}t is governed by the
equation :

dAt

dt
=

i

~
[H,At ].

We have seen that classical mechanics has for framework a symplectic or Poisson manifold.
Observables are families of smooth functions on that manifold M.
The dynamics is defined in terms of a Hamiltonian H ∈ C∞(M) and the time evolution of an
observable {ft}t , ft ∈ C∞(M) is governed by the equation :

d

dt
ft = −{H, ft} .

A natural suggestion for quantization is a correspondence Q : f 7→ Q(f )
mapping a function f to a self adjoint operator Q(f ) on a Hilbert space H in
such a way that Q(1) = Id and

[Q(f ),Q(g)] = i~Q({f , g}) + O(~2).
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Quantization

A natural suggestion for quantization is a correspondence Q : f 7→ Q(f ) mapping a function f
to a self adjoint operator Q(f ) on a Hilbert space H in such a way that Q(1) = Id and

[Q(f ),Q(g)] = i~Q({f , g}) + O(~2).

There is no correspondence defined on all smooth functions on M so that

[Q(f ),Q(g)] = i~Q({f , g}),

when one puts an irreducibility requirement which is necessary not to violate Heisenberg’s

principle. More precisely, Van Hove proved that there is no irreducible representation of the

Heisenberg algebra, viewed as the algebra of constants and linear functions on R2n endowed

with the Poisson braket, which extends to a representation of the algebra of polynomials on R2n.

Flato, Lichnerowicz and Sternheimer introduced Deformation Quantization where they

“ suggest that quantisation be understood as a deformation of the structure of the

algebra of classical observables rather than a radical change in the nature of the

observables.”
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Deformation

“ La richesse d’un concept scientifique se mesure à sa puissance de
déformation.”

La formation de l’esprit scientifique - Gaston Bachelard
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Formal Deformation quantization - Star Products

A star product on a Poisson manifold (M,P) is a bilinear map

C∞(M)× C∞(M)→ C∞(M)[[ν]] : (u, v) 7→ u ? v = u ?ν v :=
∑
r≥0

νrCr (u, v)

such that :
(a) when the map is extended ν-linearly (and continuously in the ν-adic topology) to
C∞(M)[[ν]]× C∞(M)[[ν]] it is formally associative:

(u ? v) ? w = u ? (v ? w);

(b) C0(u, v) = uv =: µ(u, v),
(c) C1(u, v)− C1(v , u) = {u, v} = P(du ∧ dv);
(d) 1 ? u = u ? 1 = u;

the Cr ’s are bidifferential operators on M (it is then a differential star product).

When each Cr is of order ≤ r in each argument, ? is called natural .

If f ? g = g ? f for any purely imaginary ν = iλ, ? is called Hermitian.
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Example 1: Moyal-Weyl ?-product and the Weyl algebra

Let P be a Poisson structure on V = Rm with constant coefficients:

P =
∑
i,j

P ij∂i ∧ ∂j , P ij = −P ji ∈ R

The Weyl-Moyal ? product is

(u ?M v)(z) = exp
(ν

2
Prs∂x r ∂y s

)
(u(x)v(y))

∣∣∣
x=y=z

.

Associativity follows from the fact that ∂
tk

(u ?M v)(t) = (∂
xk

+ ∂
yk

) exp
(
ν
2
Prs∂xr ∂ys

)
(u(x)v(y))

∣∣∣
x=y=t

:

((u ?M v) ?M w)(x′) = exp

(
ν

2
Prs
∂tr ∂zs

)
((u ?M v)(t)w(z))

∣∣∣∣
t=z=x′

= exp

(
ν

2
Prs (∂xr + ∂yr )∂zs

)
exp

(
ν

2
Pr′s′

∂
xr
′ ∂

ys
′

)
((u(x)v(y))w(z))

∣∣∣∣
x=y=z=x′

= exp

(
ν

2
Prs (∂xr ∂zs + ∂yr ∂zs + ∂xr ∂ys )

)
((u(x)v(y))w(z))

∣∣∣∣
x=y=z=x′

= (u ?M (v ?M w)(x′).

When P is non degenerate, (S(V ∗)[ν], ?M) is called the Weyl algebra .
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Relation to Weyl’s quantization

For the usual quantization of R2n with the canonical Poisson bracket [ in coordinates

{ qi , pi ; 1 ≤ i ≤ n } {u, v} =
∑n

j=1

(
∂u
∂qj

∂v
∂pj
− ∂u
∂pj

∂v
∂qj

)
]

the Weyl ordering yields a bijection QWeyl between polynomials on R2n, C[pi , q
j ] and the space

of differential operators with complex polynomial coefficients Dpolyn(Rn):

QWeyl (1) = Id, QWeyl (q
i ) := Q i := qi ·, QWeyl (pi ) := Pi = i~

∂

∂qi

and to a polynomial in p′s and q′s the corresp. totally symmetrized polynomial in Q i and Pj :

QWeyl (q
1(p1)2) =

1

3
(Q1(P1)2 + P1Q1P1 + (P1)2Q1).

Then

f ∗w g : = Q−1
Weyl

(
QWeyl (f ) ◦ QWeyl (g)

)
= f .g +

i~
2
{f , g}+ O(~2) = f ?M g |ν=i~. (1)

Hence the Moyal star product is related to the composition of operators via Weyl’s quantisation

of polynomials on R2n.
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Existence of a star product on any symplectic manifold

On any symplectic manifold (M, ω) there exists a differential star product (1983, De Wilde and
Lecomte). In 1985 and 1994, Fedosov gave a recursive construction when one has chosen a
symplectic connection and a sequence of closed 2-forms Ω̃ =

∑
k≥1 ν

kωk on M ( a symplectic
connection is a linear torsion free connection ∇ such that ∇ω = 0. Such a connection exists on
any symplectic manifold, but is not unique):

it is obtained by identifying C∞(M)[[ν]] with an algebra of flat sections of the Weyl bundle

W = F (M)×Sp(V ,Ω),ρ W endowed with a flat connection D built from ∇ et Ω̃.

F (M) is the bundle of symplectic frames (a symplectic frame at x ∈ M is a linear sympl. iso.
ξx : (V ,Ω)→ (TxM, ωx )). F (M) is a principal Sp(V ,Ω)-bundle over M.

V ∗ is endowed with the constant Poisson structure P = Ω−1, and one puts a grading on the
Weyl algebra S(V ∗)[ν], assigning the degree 1 to y ∈ V and the degree 2 to ν. Recall that the
product is given by (u ?M v)(z) = exp

(
ν
2
Prs∂x r ∂y s

)
(u(x)v(y))

∣∣
x=y=z

,

The formal Weyl algebra W is the completion in that grading.

ρ is the natural representation of the symplectic group Sp(V ,Ω) on W ( for any B ∈ sp(V ,Ω),

ρ∗(B)a = −1
ν

[B, a] where [a, b] := (a ?M b)− (b ?M a) for any a, b ∈ W and B = 1
2

∑
ijr ΩriB

r
j y

i y j); it acts by

automorphisms of ?M , so the Weyl bundle is a bundle of algebras, the fiber product being ?M .
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Fedosov’s construction on any symplectic manifold

The symplectic connection induces a connection ∂ in W: ∂a = da− 1
ν

[ 1
2
ωkiΓ

k
rjy

iy j , a].

Deform it into Da = ∂a− δ(a)− 1
ν

[r , a] where δ(a) = 1
ν

[
−ωijy

idx j , a
]

=
∑

k dx
k ∧ ∂a

∂yk
, with

r ∈ Γ(W ⊗ Λ1).

Then D◦Da = 1
ν

[
R − ∂r + δr + 1

2ν
[r , r ], a

]
.

A r so that δr = −R + ∂r − 1
ν
r2 + Ω̃ is given inductively by r = −δ̂R + δ̂∂r − 1

ν
δ̂r2 + δ̂Ω̃

where, writing a =
∑

p≥0,q≥0 apq =
∑

2k+p≥0,q≥0 ν
kak,i1,...,ip ,j1,...,jq y

i1 . . . y ip dx j1 ∧ · · · ∧ dx jq ,

for any a ∈ Γ(W ⊗ Λq),

δ̂(apq) =
1

p + q

∑
k

yk i(
∂

∂xk
)apq if p + q > 0 and 0 if p + q = 0

.

A flat section of W is given inductively by a = δ̂
(
∂a− 1

ν
[r , a]

)
+ a00.

It is determined by a00 ∈ C∞(M)[[ν]] and is denoted Q(a00).

The Fedosov’s star product ∗∇,Ω is then obtained by u ?∇,Ω v := (Q(u) ?M Q(v))00.
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Equivalence of star products

Given a star product ? and any series T =
∑

r≥1 ν
rTr of linear operators on A = C∞(M), one

can build another star product denoted ?′ := T • ? via

u ?′ v := eT
(
e−Tu ? e−T v

)
. (2)

Two star products ? and ?′ are said to be equivalent if there exists a series T such that
equation (2) is satisfied.
If the star products are differential and equivalent, the equivalence can be defined by a series of
differential operators.

The classification of star products up to equivalence on symplectic manifolds was obtained by
Nest-Tsygan, Deligne , and Bertelson-Cahen-Gutt :
Any star product on a symplectic manifold is equivalent to a Fedosov’s one and its equivalence
class is parametrised by the element in H2(M;R)[[ν]] given by the series [Ω̃] of de Rham classes
of the closed 2-forms used in the construction.
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Star products for linear Poisson structures

An explicit construction of star product was known for linear Poisson structure, i.e. on the dual
g∗ of a Lie algebra g with the Poisson structure defined by

Pξ(X ,Y ) :=< ξ, [X ,Y ] >, ξ ∈ g∗,X ,Y ∈ g ' T∗ξ g
∗,

using the fact that polynomials on g∗ identify with the symmetric algebra S(g) which in turns is
in bijection with the universal enveloping algebra U(g) via

σ : S(g)→ U X1 . . .Xk 7→
1

k!

∑
ρ∈Sk

Xρ(1) ◦ · · · ◦ Xρ(k).

Pulling back the associative structure of U(g) to the space of polynomials on g∗ yields a
differential star product

U(g) = ⊕n≥0Un where Un := σ(Sn(g)) and we decompose an element u ∈ U(g) accordingly
u =

∑
un. For P ∈ Sp(g) and Q ∈ Sq(g) :

P ∗ Q =
∑
n≥0

(ν)nσ−1((σ(P) ◦ σ(Q))p+q−n). (3)

This star product is characterised by

X ∗ X1 . . . Xk = XX1 . . . Xk +
k∑

j=1

(−1)j

j!
ν
jBj [[..[X , Xr1

], . . . ], Xrj
]X1 . . . X̂r1

. . . X̂rj
. . . Xk

where Bj are the Bernouilli numbers.
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Star products on a Poisson manifold

A proof by Masmoudi of existence of a star product on a regular Poisson manifold quickly
followed the proofs in the symplectic setting.

For general Poisson manifolds, existence and classification of star products were given by
Kontsevich in 1995 :
The set of equivalence classes of differential star products on a Poisson manifold (M,P)
coincides with the set of equivalence classes of Poisson deformations of P:

Pν = Pν + P2ν
2 + · · · ∈ νΓ(X ,Λ2TX )[[ν]], such that [Pν ,Pν ]S = 0,

where equivalence of Poisson deformations is defined via the action of a formal vector field on
M, X =

∑
r≥1 ν

rXr , via {u, v}′ := eX
{
e−Xu, e−X v

}
.

Remark that in the symplectic framework, this result coincides with the previous one. Indeed
any Poisson deformation Pν of the Poisson bracket P on a symplectic manifold (M, ω) is of the
form PΩ for a series Ω = ω +

∑
k≥1 ν

kωk where the ωk are closed 2-forms, through

PΩ(du, dv) = −Ω(XΩ
u ,X

Ω
v ), with XΩ

u ∈ Γ(TM)[[ν]] defined by i(XΩ
u )Ω = du.
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Formal Deformation and DGLA

We briefly sketch how Kontsevich’s theorem is a consequence of his formality theorem. A
general yoga sees any deformation theory encoded in a differential graded Lie algebra structure.

A differential graded Lie algebra (briefly DGLA) (g, [ , ], d) is a Z-graded Lie algebra
(g = ⊕i∈Zg

i , [ , ] with [gi , gj ] ⊂ gi+j ,together with a differential d : g→ g, i.e. a graded
derivation of degree 1 (d : gi → gi+1, d [a, b] = [da, b] + (−1)|a|[a, db]) so that d ◦ d = 0.

A deformation is a Maurer-Cartan element, i.e. a C ∈ νg1[[ν]] so that dC − 1
2

[C ,C ] = 0.

Equivalence of deformations is obtained through the action of the group exp νg0[[ν]], the
infinitesimal action of a T ∈ νg0[[ν]] being T · C := −dT + [T ,C ]..

To express star products in that framework, consider the DGLA of polydifferential operators.

To express formal Poisson structures in that framework, consider the DGLA of polyvector

fields.
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The Hochschild DGLA associated to an associative algebra

Let (A, µ) be an associative algebra with unit on a field K.
Consider the Hochschild complex of multilinear maps from A to itself:

C(A) :=
∞∑

i=−1

Ci with Ci := HomK(A⊗(i+1),A);

remark that the degree is shifted by one; the degree |A| of a (p + 1)–linear map A is equal to p.

For A1 ∈ Cm1 , A2 ∈ Cm2 , define:

(A1 ◦ A2)1(f1, . . . , fm1+m2+1) :=
∑m1

j=1(−1)(m2)(j−1)A1(f1, . . . , fj−1, A2(fj , . . . , fj+m2
), fj+m2+1, . . . , fm1+m2+1).

The Gerstenhaber bracket is defined by [A1,A2]G := A1 ◦ A2 − (−1)m1m2A2 ◦ A1. It gives C the
structure of a graded Lie algebra.

An element M ∈ C1 defines an associative product iff [M,M]G = 0.

The differential dµ is defined by dµA = −[µ,A]G .

(C(A), [ , ]G , dµ) is a differential graded Lie algebra.
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Star products and DGLA of polydifferential operators

Here we consider A = C∞(M), and we deal with the subalgebra of C(A) consisting of
multidifferential operators

Dpoly (M) :=
⊕
Di

poly (M) with Di
poly (M)

the set of multi differential operators acting on i + 1 smooth functions on M and vanishing on
constants.

Dpoly (M) is closed under the Gerstenhaber bracket and under the differential dµ, so that(
Dpoly (M), [ , ]G , dD := dµ|D

)
is a DGLA.

A ?-product is given by a series of bidifferential operators? = µ+ C with C ∈ νD1
poly (M)[[ν]] a

Maurer-Cartan element of the DGLA
(
Dpoly (M), [ , ]G , dD

)
; indeed the associativity

[µ+ C , µ+ C ]G = 0 is equivalent to dDC − 1
2

[C ,C ]G = 0.

Equivalence of star products is given by the action of eT with T ∈ νD0
poly (M)[[ν]] via :

µ+ C ′ = (exp[T , ]G ) (µ+ C); the infinitesimal action is T · C := −dDT + [T ,C ]G .
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Poisson deformations and the DGLA of polyvectorfields

Any DGLA (g, [ , ], d) has a cohomology complex defined by

H i (g) := Ker(d : gi → gi+1)
/

Im(d : gi−1 → gi ).

The set H :=
⊕

i H
i (g) inherits the structure of a graded Lie algebra, defined by:

[|a|, |b|]H := |[a, b]| where |a| ∈ H denote the equivalence classes of a closed element a ∈ g.
Then (H, [ , ]H , 0) is a DGLA (with zero differential).

Thm [Vey] Every C ∈ Dp
poly (M) such that dD(C) = 0 is the sum of the coboundary of a

B ∈ Dp−1
poly (M) and a 1-differential skewsymmetric p-cocycle A:

Hp(Dpoly (M)) = HHp
diff(C∞(M),C∞(M)) = Γ(Λp+1TM) =: T p

poly (M).

The bracket induced on Tpoly (M) is -(up to a sign [T1,T2]T := −[T2,T1]S ) - the

Schouten-Nijenhuis bracket defined by extending the usual Lie bracket of vector fields

[X1 ∧ . . . ∧ Xk , Y1 ∧ . . . ∧ Yl ]S =
∑k

r=1

∑l
s=1(−1)r+s [Xr , Xs ]X1 ∧ . . . X̂r ∧ . . . ∧ Xk ∧ Y1 ∧ . . . Ŷs ∧ . . . ∧ Yl .

(Tpoly (M), [ , ]T , 0) is a DGLA.

A P ∈ νT 1
poly (M)[[ν]] defines a formal Poisson structure on M iff dTP − 1

2
[P,P]′S = 0.
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[X1 ∧ . . . ∧ Xk , Y1 ∧ . . . ∧ Yl ]S =
∑k

r=1

∑l
s=1(−1)r+s [Xr , Xs ]X1 ∧ . . . X̂r ∧ . . . ∧ Xk ∧ Y1 ∧ . . . Ŷs ∧ . . . ∧ Yl .

(Tpoly (M), [ , ]T , 0) is a DGLA.

A P ∈ νT 1
poly (M)[[ν]] defines a formal Poisson structure on M iff dTP − 1

2
[P,P]′S = 0.
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Maps between the DGLA’s

The natural map U1 : T i
poly (M) −→ Di

poly (M)

U1(X0 ∧ . . . ∧ Xn)(f0, . . . , fn) =
1

(n + 1)!

∑
σ∈Sn+1

ε(σ) X0(fσ(0)) · · ·Xn(fσ(n)), (4)

intertwines the differential and induces the identity in cohomology, but is not a DGLA morphism.

A DGLA morphism from (Tpoly (M), [ , ]T , 0) to
(
Dpoly (M), [ , ]G , dD

)
, inducing the identity in

cohomology, would give a correspondence between a formal Poisson tensor on M and a formal
differential star product on M and a bijection between equivalence classes.

The existence of such a morphism fails; to circumvent this problem, one extends the notion of

morphism between two DGLA introducing L∞-morphisms.
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L∞ algebras

Let W = ⊕j∈ZW
j be a Z-graded vector space; V = W [1] is the shifted graded vector space.

The graded symmetric bialgebra of V , denoted SV , is the quotient of the free algebra TV by

the two-sided ideal generated by x ⊗ y − (−1)|x||y|y ⊗ x for any homog. elements x , y in V .

∆sh is induced by ∆sh : TV → TV ⊗ TV which is the morphism of assoc. algebras so that ∆sh(x) = 1⊗ x + x ⊗ 1.

A L∞-structure on W is defined to be a graded coderivation Q of S (W [1]) of degree 1

satisfying Q2 = 0 and Q(1SW [1]) = 0.

Such a Q is determined by Q := prW [1] ◦ Q : S (W [1])→ W [1] via Q = µsh ◦ Q ⊗ Id ◦ ∆sh and we write Q = Q.

The pair (W ,Q) is called an L∞-algebra .

Ex: (g, [ , ], d) a DGLA ⇒
(
g,Q = d [1] + [ , ][1]

)
(with Q defined on S(g[1])).

For φ : V⊗k → W⊗`, φ[j] : V [j]⊗k → W [j]⊗` via φ[j] := (s⊗`)−j ◦ φ ◦ (s⊗k )j where s : V → V [−1] is the identity.

A solution dC + 1
2

[C ,C ]G = 0 corresponds to a C ∈ νV 0[[ν]] such that Q(eC ) = 0.
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Quasi-isomorphisms and Formality

A L∞-morphism from a L∞-algebra (W ,Q) to a L∞-algebra (W ′,Q′) is a morphism of graded
con. coalgebras Φ : S(W [1])→ S(W ′[1]), intertwining differentials

Φ ◦ Q = Q′ ◦ Φ.

Such a morphism is determined by ϕ := prW ′[1] ◦ Φ : S (W [1])→W ′[1] with ϕ(1) = 0

via Φ = e∗ϕ with A ∗ B = µ ◦ A⊗ B ◦∆ for A,B ∈ Hom(S(W [1]),S(W ′[1]))

Φ is a quasi-isomorphism if Φ1 = Φ|W [1] = ϕ1 : W [1]→W ′[1] induces an iso. in cohomology.

A formality for a DGLA (g, [ , ], d) is a quasi-isomorphism from the L∞-algebra corresponding
to (H, [ , ]H , 0) (the cohomology of g with respect to d ), to the L∞-algebra corresponding to
(g, [ , ], d) i.e.

Φ : S(H[1])→ S(g[1]) such that Φ ◦ [ , ]H [1] = (d [1] + [ , ][1]) ◦ Φ.

A quasi-isomorphism yields isomorphic moduli spaces of deformations.
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Kontsevich’s formality for Rd

Kontsevich gave an explicit formula for the Taylor coefficients of a formality for Rd , i.e. the
Taylor coefficients Fn of an L∞–morphism between the two L∞-algebras

F : (Tpoly (Rd ),Q)→ (Dpoly (Rd ),Q′)

corresponding to the DGLA (Tpoly (Rd ) , [ , ]T , dT = 0) and to the DGLA

(Dpoly (Rd ) , [ , ]G , dD) with the first coefficient

F1 : Tpoly (Rd )→ Dpoly (Rd )

given by F1 = U1 : U1(X0 ∧ . . . ∧ Xn)(f0, . . . , fn) = 1
(n+1)!

∑
σ∈Sn+1

ε(σ) X0(fσ(0)) · · · Xn(fσ(n)). The

formula is
Fn =

∑
m≥0

∑
~Γ∈Gn,m

W~ΓB~Γ

where Gn,m is a set of oriented admissible graphs; B~Γ asoociates a m–differential operator to an
n–tuple of multivectorfields; and W~Γ is the integral of a form ω~Γ over the compactification of a

configuration space C+
{p1,...,pn}{q1,...,qm}

.

An explicit globalisation on any manifold has been built by Cattaneo, Felder and Tomassini.

Given a manifold and a torsion free connection ∇ on it, Dolgushev has built a formality

F : (Tpoly (M),Q)→ (Dpoly (M),Q′)
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Classification of star products.

Given a Poisson tensor P(ν) =
∑

k≥1 ν
kPk , then

?P(ν)
:= µ+

∑
k≥1 Fk(P(ν), · · · ,P(ν)) is a star product on (M,P1) and any ?

product is equivalent to such a one. Equivalence classes of star products are in

bijection with equivalence classes of Poisson deformations.
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Hermitian star products and ∗-algebras over ordered rings

To study representations of the deformed algebras, parts of the algebraic theory of states and
representations which exist for C∗-algebras have been extended by Bordemann, Bursztyn and
Waldmann to the framework of ∗-algebras over ordered rings

A C∗-algebra is a Banach algebra over C with a ∗ involution (i.e. an involutive semilinear
antiautomorphism) such that ‖a‖ = ‖a∗‖ and ‖aa∗‖ = ‖a‖2 for each a .
If A = B(H) is the algebra of bounded linear operators on a Hilbert space H and if 0 6= ψ ∈ H,

ω : A → C : A 7→ ω(A) :=
< ψ,Aψ >

< ψ,ψ >

is a linear functional which is positive in the sense that ω(A∗A) ≥ 0. It is defined by the ray ψ
generates. This lead to define a state in the theory of C∗ algebras as a positive linear functional.

An associative commutative unital ring R is said to be ordered with positive elements P if the
product and the sum of two elements in P are in P, and if R is the disjoint union
R = P ∪ {0} ∪ −P. Examples are given by Z,Q,R,R[[λ]]; in the case of R[[λ]], a series
a =

∑∞
r=r0

arλr is positive if its lowest order non vanishing term is positive (ar0 > 0).

Let R be an ordered ring and C = R(i) be the ring extension by a square root i of −1 (for
deformation quantization, C = C[[λ]] for R = R[[λ]] with ν = iλ).

An associative algebra A over C is called a ∗-algebra if it has an involutive antilinear

antiautomorphism ∗ : A → A called the ∗-involution;for instance (C∞(M)[[ν = iλ]], ?) with a

Hermitian star product and conjugaison is a ∗-algebra over C[[λ]].
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States for Hermitian star products

A linear functional ω : A → C over a ∗-algebra over C is called positive if

ω(A∗A) ≥ 0 for any A ∈ A.

A state for a ∗-algebra A with unit over C is a positive linear functional so that ω(1) = 1.
The positive linear functionals on C∞(M) are the compactly supported Borel measures. The
δ-functional on R2n is not positive with respect to the Moyal star product : if H := 1

2m
p2 + kq2,

(H ?M H) (0, 0) = kν2

2m
= −kλ2

2m
< 0. Bursztyn and Waldmann proved that for a Hermitian star

product, any classical state ω0 on C∞(M) can be deformed into a state for the deformed
algebra, ω =

∑∞
r=0 λ

rωr .

Given a positive functional ω over the ∗-algebra A, one can extend the GNS construction of an
associated representation of the algebra: the Gel’fand ideal of ω is Jω =

{
a ∈ A

∣∣ ω(a∗a) = 0
}

and on obtains the GNS- representation of the algebra A by left multiplication on the space
Hω = A

/
Jω with the pre Hilbert space structure defined via 〈[a], [b]〉 = ω(a∗b) where

[a] = a + Jω denotes the class in A
/
Jω of a ∈ A.

In that setting, Bursztyn and Waldmann introduced a notion of strong Morita equivalence

(yielding equivalence of ∗-representations) and the complete classification of star products up to

Morita equivalence was given, first on a symplectic and later in collaboration with Dolgushev on

a general Poisson manifold .
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States for Hermitian star products
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2m
p2 + kq2,

(H ?M H) (0, 0) = kν2

2m
= −kλ2

2m
< 0. Bursztyn and Waldmann proved that for a Hermitian star
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∑∞
r=0 λ

rωr .

Given a positive functional ω over the ∗-algebra A, one can extend the GNS construction of an
associated representation of the algebra: the Gel’fand ideal of ω is Jω =

{
a ∈ A

∣∣ ω(a∗a) = 0
}

and on obtains the GNS- representation of the algebra A by left multiplication on the space
Hω = A

/
Jω with the pre Hilbert space structure defined via 〈[a], [b]〉 = ω(a∗b) where

[a] = a + Jω denotes the class in A
/
Jω of a ∈ A.

In that setting, Bursztyn and Waldmann introduced a notion of strong Morita equivalence

(yielding equivalence of ∗-representations) and the complete classification of star products up to

Morita equivalence was given, first on a symplectic and later in collaboration with Dolgushev on

a general Poisson manifold .

Simone Gutt (ULB-ARB) DQ and Symmetries Würzburg, Oct 2019 28 / 28


