Deformation Quantization and Symmetries

Simone Gutt

Université Libre de Bruxelles - Académie Royale de Belgique

Autumn School 2019 : Deformations and Rigidity in Algebra, Geometry and Analysis

Programme

Introduction to the concept of deformation quantization (existence, classification and representation results for formal star products).

```
Notion of formal star products with symmetries; one has a Lie group action (or a Lie
algebra action) compatible with the classical Poisson structure, and one wants to consider star
products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations)
We recall in particular the link between left invariant star products on Lie groups and Drinfeld
twists, and the notion of universal deformation formulas.
Quantum moment map: Classically, symmetries are particularly interesting when they are
implemented by a moment map. We give indications to build a corresponding quantum version
Concerning links between representation theory and the quantization of an orbit of a group in
the dual of its Lie algebra, we recall how some star products yield an adapted Fourier transform
Quantum reduction: reduction is a construction in classical mechanics with symmetries
which allows to reduce the dimension of the manifold; we describe one of the various quantum
analogues which have been considered in the framework of formal deformation quantization.
```

Considerations about convergence of star products.

Programme

Introduction to the concept of deformation quantization (existence, classification and representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie algebra action) compatible with the classical Poisson structure, and one wants to consider star products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations). We recall in particular the link between left invariant star products on Lie groups and Drinfeld twists, and the notion of universal deformation formulas.

Quantum moment map: Classically, symmetries are particularly interesting when they are implemented by a moment map. We give indications to build a corresponding quantum version Concerning links between representation theory and the quantization of an orbit of a groun in the dual of its Lie algebra, we recall how some star products yield an adapted Fourier transform Quantum reduction : reduction is a construction in classical mechanics with symmetries which allows to reduce the dimension of the manifold; we describe one of the various quantum analogues which have been considered in the framework of formal deformation quantization.

Programme

Introduction to the concept of deformation quantization (existence, classification and representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie algebra action) compatible with the classical Poisson structure, and one wants to consider star products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations). We recall in particular the link between left invariant star products on Lie groups and Drinfeld twists, and the notion of universal deformation formulas.

Quantum moment map: Classically, symmetries are particularly interesting when they are implemented by a moment map. We give indications to build a corresponding quantum version. Concerning links between representation theory and the quantization of an orbit of a group in the dual of its Lie algebra, we recall how some star products yield an adapted Fourier transform.

Quantum reduction: reduction is a construction in classical mechanics with symmetries
which allows to reduce the dimension of the manifold; we describe one of the various quantum
analogues which have been considered in the framework of formal deformation quantization
Considerations about convergence of star products.

Programme

Introduction to the concept of deformation quantization (existence, classification and representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie algebra action) compatible with the classical Poisson structure, and one wants to consider star products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations). We recall in particular the link between left invariant star products on Lie groups and Drinfeld twists, and the notion of universal deformation formulas.

Quantum moment map: Classically, symmetries are particularly interesting when they are implemented by a moment map. We give indications to build a corresponding quantum version. Concerning links between representation theory and the quantization of an orbit of a group in the dual of its Lie algebra, we recall how some star products yield an adapted Fourier transform.

Quantum reduction : reduction is a construction in classical mechanics with symmetries which allows to reduce the dimension of the manifold; we describe one of the various quantum analogues which have been considered in the framework of formal deformation quantization.
\square
Considerations about convergence of star products.

Programme

Introduction to the concept of deformation quantization (existence, classification and representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie algebra action) compatible with the classical Poisson structure, and one wants to consider star products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations). We recall in particular the link between left invariant star products on Lie groups and Drinfeld twists, and the notion of universal deformation formulas.

Quantum moment map: Classically, symmetries are particularly interesting when they are implemented by a moment map. We give indications to build a corresponding quantum version. Concerning links between representation theory and the quantization of an orbit of a group in the dual of its Lie algebra, we recall how some star products yield an adapted Fourier transform.

Quantum reduction : reduction is a construction in classical mechanics with symmetries which allows to reduce the dimension of the manifold; we describe one of the various quantum analogues which have been considered in the framework of formal deformation quantization.

Considerations about convergence of star products.

Why Quantization?

Quantum theory provides a description of nature which is more fundamental than classical theory. We shall consider here only non relativistic descriptions.
Why are we interested in quantization, nature being quantum?
> - Giving a quantum description a priori of a physical system is difficult, and the classical description is often easier to obtain; hence one often uses the classical description as a starting point to find a quantum description.
> - Any given physical theory remains valid within a range of measurements, so that any modified theory should give the same results in the initial range.

Why Quantization?

Quantum theory provides a description of nature which is more fundamental than classical theory. We shall consider here only non relativistic descriptions.

Why are we interested in quantization, nature being quantum?

- Giving a quantum description a priori of a physical system is difficult, and the classical description is often easier to obtain; hence one often uses the classical description as a starting point to find a quantum description.
- Any given physical theory remains valid within a range of measurements, so that any modified theory should give the same results in the initial range.

Why Quantization?

Quantum theory provides a description of nature which is more fundamental than classical theory. We shall consider here only non relativistic descriptions.

Why are we interested in quantization, nature being quantum?

- Giving a quantum description a priori of a physical system is difficult, and the classical description is often easier to obtain; hence one often uses the classical description as a starting point to find a quantum description.
- Any given physical theory remains valid within a range of measurements, so that any modified theory should give the same results in the initial range.

Classical Mechanics

Classical mechanics, in its Hamiltonian formulation on the motion space, has for framework a symplectic manifold (or more generally a Poisson manifold).
 On $\left(\mathbb{R}^{2 n}, d p_{i} \wedge d q^{i}\right)$, the bracket is $\{f, g\}=\partial_{q^{i}} f \partial_{p_{i}} g-\partial_{p_{i}} f \partial_{q^{i}} g$
The motion space is in general the quotient of the evolution space by the motion Observables are families of smooth functions on that manifold M The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t \in l} ; f_{t} \in C^{\infty}(M)$ is governed by the equation

Classical Mechanics

Classical mechanics, in its Hamiltonian formulation on the motion space, has for framework a symplectic manifold (or more generally a Poisson manifold).
A Poisson bracket defined on the space of real valued smooth functions on a manifold M, is a \mathbb{R} - bilinear map on $C^{\infty}(M),(u, v) \mapsto\{u, v\}$ such that for any $u, v, w \in C^{\infty}(M)$:

- $\{u, v\}=-\{v, u\}$ (skewsymmetry),
- $\{u, v w\}=\{u, v\} w+\{u, w\} v$ (Leibniz rule)
$\bullet\{\{u, v\}, w\}+\{\{v, w\}, u\}+\{\{w, u\}, v\}=0$ (Jacobi's identity).
A Poisson bracket is given in terms of a contravariant skew symmetric 2-tensor P on M, the
Poisson tensor, via $\{u, v\}=P(d u \wedge d v)=P^{r s} \partial_{r} u \partial_{s} v$ (so that $[P, P]=0$.)
(M, ω) is symplectic if ω is a non degenerate closed 2-form; one then defines
$\{u, v\}=-\omega\left(X_{u}, X_{v}\right)$ where X_{u} is the Hamiltonian vector field associated to u, i.e. $\iota\left(X_{u}\right) \omega=d u$ On $\left(\mathbb{R}^{2 n}, d p_{i} \wedge d q^{i}\right)$, the bracket is $\{f, g\}=\partial_{q^{i}} f \partial_{p_{i}} g-\partial_{p_{i}} f \partial_{q^{i}} g$.

The motion space is in general the quotient of the evolution space by the motion Observables are families of smooth functions on that manifold M. The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t \in I} ; f_{t} \in C^{\infty}(M)$ is governed by the equation

Classical Mechanics

Classical mechanics, in its Hamiltonian formulation on the motion space, has for framework a symplectic manifold (or more generally a Poisson manifold).
A Poisson bracket defined on the space of real valued smooth functions on a manifold M, is a \mathbb{R} - bilinear map on $C^{\infty}(M),(u, v) \mapsto\{u, v\}$ such that for any $u, v, w \in C^{\infty}(M)$:

- $\{u, v\}=-\{v, u\}$ (skewsymmetry),
- $\{u, v w\}=\{u, v\} w+\{u, w\} v$ (Leibniz rule)
$\bullet\{\{u, v\}, w\}+\{\{v, w\}, u\}+\{\{w, u\}, v\}=0$ (Jacobi's identity).
A Poisson bracket is given in terms of a contravariant skew symmetric 2-tensor P on M, the Poisson tensor, via $\{u, v\}=P(d u \wedge d v)=P^{r s} \partial_{r} u \partial_{s} v \quad$ (so that $[P, P]=0$.)
$\{u, v\}=-\omega\left(X_{u}, X_{v}\right)$ where X_{u} is the Hamiltonian vector field associated to u, i.e. $\iota\left(X_{u}\right) \omega=d u$ On $\left(\mathbb{R}^{2 n}, d p_{i} \wedge d q^{i}\right)$, the bracket is $\{f, g\}=\partial_{q^{i}} f \partial_{p_{i}} g-\partial_{p_{i}} f \partial_{q^{i}} g$.

The motion space is in general the quotient of the evolution space by the motion Observables are families of smooth functions on that manifold M. The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t \in l} ; f_{t} \in C^{\infty}(M)$ is governed by the equation

Classical Mechanics

Classical mechanics, in its Hamiltonian formulation on the motion space, has for framework a symplectic manifold (or more generally a Poisson manifold).
A Poisson bracket defined on the space of real valued smooth functions on a manifold M, is a \mathbb{R} - bilinear map on $C^{\infty}(M),(u, v) \mapsto\{u, v\}$ such that for any $u, v, w \in C^{\infty}(M)$:

- $\{u, v\}=-\{v, u\}$ (skewsymmetry),
- $\{u, v w\}=\{u, v\} w+\{u, w\} v$ (Leibniz rule)
$\bullet\{\{u, v\}, w\}+\{\{v, w\}, u\}+\{\{w, u\}, v\}=0$ (Jacobi's identity).
A Poisson bracket is given in terms of a contravariant skew symmetric 2-tensor P on M, the Poisson tensor, via $\{u, v\}=P(d u \wedge d v)=P^{r s} \partial_{r} u \partial_{s} v \quad$ (so that $[P, P]=0$.)
(M, ω) is symplectic if ω is a non degenerate closed 2-form; one then defines $\{u, v\}=-\omega\left(X_{u}, X_{v}\right)$ where X_{u} is the Hamiltonian vector field associated to u, i.e. $\iota\left(X_{u}\right) \omega=d u$. On $\left(\mathbb{R}^{2 n}, d p_{i} \wedge d q^{i}\right)$, the bracket is $\{f, g\}=\partial_{q^{i}} f \partial_{p_{i}} g-\partial_{p_{i}} f \partial_{q^{i}} g$.
The motion space is in general the quotient of the evolution space by the motion.
Observables are families of smooth functions on that manifold M.
The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t \in I} ; f_{t} \in C^{\infty}(M)$ is governed by the equation

Classical Mechanics

Classical mechanics, in its Hamiltonian formulation on the motion space, has for framework a symplectic manifold (or more generally a Poisson manifold).
A Poisson bracket defined on the space of real valued smooth functions on a manifold M, is a \mathbb{R} - bilinear map on $C^{\infty}(M),(u, v) \mapsto\{u, v\}$ such that for any $u, v, w \in C^{\infty}(M)$:

- $\{u, v\}=-\{v, u\}$ (skewsymmetry),
- $\{u, v w\}=\{u, v\} w+\{u, w\} v$ (Leibniz rule)
$\bullet\{\{u, v\}, w\}+\{\{v, w\}, u\}+\{\{w, u\}, v\}=0$ (Jacobi's identity).
A Poisson bracket is given in terms of a contravariant skew symmetric 2-tensor P on M, the Poisson tensor, via $\{u, v\}=P(d u \wedge d v)=P^{r s} \partial_{r} u \partial_{s} v \quad$ (so that $[P, P]=0$.)
(M, ω) is symplectic if ω is a non degenerate closed 2-form; one then defines
$\{u, v\}=-\omega\left(X_{u}, X_{v}\right)$ where X_{u} is the Hamiltonian vector field associated to u, i.e. $\iota\left(X_{u}\right) \omega=d u$.
On $\left(\mathbb{R}^{2 n}, d p_{i} \wedge d q^{i}\right)$, the bracket is $\{f, g\}=\partial_{q^{i}} f \partial_{p_{i}} g-\partial_{p_{i}} f \partial_{q^{i}} g$.
The motion space is in general the quotient of the evolution space by the motion.
Observables are families of smooth functions on that manifold M.
The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t \in I} ; f_{t} \in C^{\infty}(M)$ is governed by the equation

Classical Mechanics

Classical mechanics, in its Hamiltonian formulation on the motion space, has for framework a symplectic manifold (or more generally a Poisson manifold).
A Poisson bracket defined on the space of real valued smooth functions on a manifold M, is a \mathbb{R} - bilinear map on $C^{\infty}(M),(u, v) \mapsto\{u, v\}$ such that for any $u, v, w \in C^{\infty}(M)$:

- $\{u, v\}=-\{v, u\}$ (skewsymmetry),
- $\{u, v w\}=\{u, v\} w+\{u, w\} v$ (Leibniz rule)
$\bullet\{\{u, v\}, w\}+\{\{v, w\}, u\}+\{\{w, u\}, v\}=0$ (Jacobi's identity).
A Poisson bracket is given in terms of a contravariant skew symmetric 2-tensor P on M, the Poisson tensor, via $\{u, v\}=P(d u \wedge d v)=P^{r s} \partial_{r} u \partial_{s} v \quad$ (so that $[P, P]=0$.)
(M, ω) is symplectic if ω is a non degenerate closed 2-form; one then defines
$\{u, v\}=-\omega\left(X_{u}, X_{v}\right)$ where X_{u} is the Hamiltonian vector field associated to u, i.e. $\iota\left(X_{u}\right) \omega=d u$.
On $\left(\mathbb{R}^{2 n}, d p_{i} \wedge d q^{i}\right)$, the bracket is $\{f, g\}=\partial_{q^{i}} f \partial_{p_{i}} g-\partial_{p_{i}} f \partial_{q^{i}} g$.
The motion space is in general the quotient of the evolution space by the motion.
Observables are families of smooth functions on that manifold M.
The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t \in l} ; f_{t} \in C^{\infty}(M)$ is governed by the equation :

$$
\frac{d}{d t} f_{t}=-\left\{H, f_{t}\right\}
$$

Quantum Mechanics

Quantum mechanics, in its usual Heisenberg's formulation, has for framework a Hilbert space (states are rays in that space).
Observables are families of selfadjoint operators on the Hilbert space.

The dynamics is defined in terms of a Hamiltonian H, which is a selfadjoint

operator, and the time evolution of an observable $\left\{A_{t}\right\}_{t}$ is governed by the
equation

We have seen that classical mechanics has for framework a symplectic or Poisson manifold Observables are families of smooth functions on that manifold M.
The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t}, f_{t} \in C^{\infty}(M)$ is governed by the equation

A natural suggestion for quantization is a correspondence Q

Quantum Mechanics

Quantum mechanics, in its usual Heisenberg's formulation, has for framework a Hilbert space (states are rays in that space).
Observables are families of selfadjoint operators on the Hilbert space. The dynamics is defined in terms of a Hamiltonian H, which is a selfadjoint operator, and the time evolution of an observable $\left\{A_{t}\right\}_{t}$ is governed by the equation :

$$
\frac{d A_{t}}{d t}=\frac{i}{\hbar}\left[H, A_{t}\right] .
$$

> We have seen that classical mechanics has for framework a symplectic or Poisson manifold Observables are families of smooth functions on that manifold M.
> The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t}, f_{t} \in C^{\infty}(M)$ is governed by the equation

A natural suggestion for quantization is a correspondence $\mathcal{Q}: f \mapsto \mathcal{Q}(f)$

Quantum Mechanics

Quantum mechanics, in its usual Heisenberg's formulation, has for framework a Hilbert space (states are rays in that space).
Observables are families of selfadjoint operators on the Hilbert space. The dynamics is defined in terms of a Hamiltonian H, which is a selfadjoint operator, and the time evolution of an observable $\left\{A_{t}\right\}_{t}$ is governed by the equation :

$$
\frac{d A_{t}}{d t}=\frac{i}{\hbar}\left[H, A_{t}\right] .
$$

We have seen that classical mechanics has for framework a symplectic or Poisson manifold. Observables are families of smooth functions on that manifold M.
The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t}, f_{t} \in C^{\infty}(M)$ is governed by the equation :

$$
\frac{d}{d t} f_{t}=-\left\{H, f_{t}\right\}
$$

A natural suggestion for quantization is a correspondence $Q: f \mapsto \mathcal{Q}(f)$

Quantum Mechanics

Quantum mechanics, in its usual Heisenberg's formulation, has for framework a Hilbert space (states are rays in that space).
Observables are families of selfadjoint operators on the Hilbert space.
The dynamics is defined in terms of a Hamiltonian H, which is a selfadjoint operator, and the time evolution of an observable $\left\{A_{t}\right\}_{t}$ is governed by the equation :

$$
\frac{d A_{t}}{d t}=\frac{i}{\hbar}\left[H, A_{t}\right] .
$$

We have seen that classical mechanics has for framework a symplectic or Poisson manifold.
Observables are families of smooth functions on that manifold M.
The dynamics is defined in terms of a Hamiltonian $H \in C^{\infty}(M)$ and the time evolution of an observable $\left\{f_{t}\right\}_{t}, f_{t} \in C^{\infty}(M)$ is governed by the equation :

$$
\frac{d}{d t} f_{t}=-\left\{H, f_{t}\right\}
$$

A natural suggestion for quantization is a correspondence \mathcal{Q} : $f \mapsto \mathcal{Q}(f)$ mapping a function f to a self adjoint operator $\mathcal{Q}(f)$ on a Hilbert space \mathcal{H} in such a way that $\mathcal{Q}(1)=\mathrm{Id}$ and

$$
[\mathcal{Q}(f), \mathcal{Q}(g)]=i \hbar \mathcal{Q}(\{f, g\})+O\left(\hbar^{2}\right)
$$

Quantization

A natural suggestion for quantization is a correspondence $\mathcal{Q}: f \mapsto \mathcal{Q}(f)$ mapping a function f to a self adjoint operator $\mathcal{Q}(f)$ on a Hilbert space \mathcal{H} in such a way that $\mathcal{Q}(1)=\operatorname{Id}$ and

$$
[\mathcal{Q}(f), \mathcal{Q}(g)]=i \hbar \mathcal{Q}(\{f, g\})+O\left(\hbar^{2}\right)
$$

There is no correspondence defined on all smooth functions on M so that

$$
[\mathcal{Q}(f), \mathcal{Q}(g)]=i \hbar \mathcal{Q}(\{f, g\})
$$

when one puts an irreducibility requirement which is necessary not to violate Heisenberg's principle. More precisely, Van Hove proved that there is no irreducible representation of the Heisenberg algebra, viewed as the algebra of constants and linear functions on $\mathbb{R}^{2 n}$ endowed with the Poisson braket, which extends to a representation of the algebra of polynomials on $\mathbb{R}^{2 n}$ Flato, Lichnerowicz and Sternheimer introduced Deformation Quantization where they suggest that quantisation be understood as a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables.'

Quantization

A natural suggestion for quantization is a correspondence $\mathcal{Q}: f \mapsto \mathcal{Q}(f)$ mapping a function f to a self adjoint operator $\mathcal{Q}(f)$ on a Hilbert space \mathcal{H} in such a way that $\mathcal{Q}(1)=\operatorname{Id}$ and

$$
[\mathcal{Q}(f), \mathcal{Q}(g)]=i \hbar \mathcal{Q}(\{f, g\})+O\left(\hbar^{2}\right)
$$

There is no correspondence defined on all smooth functions on M so that

$$
[\mathcal{Q}(f), \mathcal{Q}(g)]=i \hbar \mathcal{Q}(\{f, g\})
$$

when one puts an irreducibility requirement which is necessary not to violate Heisenberg's principle. More precisely, Van Hove proved that there is no irreducible representation of the Heisenberg algebra, viewed as the algebra of constants and linear functions on $\mathbb{R}^{2 n}$ endowed with the Poisson braket, which extends to a representation of the algebra of polynomials on $\mathbb{R}^{2 n}$.

Flato, Lichnerowicz and Sternheimer introduced Deformation Quantization where they
suggest that quantisation be understood as a deformation of the structure of the algebra of classical ohservables rather than a radical change in the nature of the observables.

Quantization

A natural suggestion for quantization is a correspondence $\mathcal{Q}: f \mapsto \mathcal{Q}(f)$ mapping a function f to a self adjoint operator $\mathcal{Q}(f)$ on a Hilbert space \mathcal{H} in such a way that $\mathcal{Q}(1)=\operatorname{Id}$ and

$$
[\mathcal{Q}(f), \mathcal{Q}(g)]=i \hbar \mathcal{Q}(\{f, g\})+O\left(\hbar^{2}\right)
$$

There is no correspondence defined on all smooth functions on M so that

$$
[\mathcal{Q}(f), \mathcal{Q}(g)]=i \hbar \mathcal{Q}(\{f, g\}),
$$

when one puts an irreducibility requirement which is necessary not to violate Heisenberg's principle. More precisely, Van Hove proved that there is no irreducible representation of the Heisenberg algebra, viewed as the algebra of constants and linear functions on $\mathbb{R}^{2 n}$ endowed with the Poisson braket, which extends to a representation of the algebra of polynomials on $\mathbb{R}^{2 n}$. Flato, Lichnerowicz and Sternheimer introduced Deformation Quantization where they " suggest that quantisation be understood as a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables."

Deformation

" La richesse d'un concept scientifique se mesure à sa puissance de déformation."

La formation de l'esprit scientifique - Gaston Bachelard

Formal Deformation quantization - Star Products

A star product on a Poisson manifold (M, P) is a bilinear map

$$
C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)[[\nu]]: \quad(u, v) \mapsto u \star v=u \star_{\nu} v:=\sum_{r \geq 0} \nu^{r} C_{r}(u, v)
$$

such that:
(a) when the map is extended ν-linearly (and continuously in the ν-adic topology) to $C^{\infty}(M)[[\nu]] \times C^{\infty}(M)[[\nu]]$ it is formally associative:

$$
(u \star v) \star w=u \star(v \star w) ;
$$

(b) $C_{0}(u, v)=u v=: \mu(u, v)$,
(c) $C_{1}(u, v)-C_{1}(v, u)=\{u, v\}=P(d u \wedge d v)$;
(d) $1 \star u=u \star 1=u$;
the C_{r} 's are bidifferential operators on M (it is then a differential star product).
When each C_{r} is of order $\leq r$ in each argument, \star is called natural .
If $\overline{f \star g}=\bar{g} \star \bar{f}$ for any purely imaginary $\nu=i \lambda, \star$ is called Hermitian.

Example 1: Moyal-Weyl *-product and the Weyl algebra

Let P be a Poisson structure on $V=\mathbb{R}^{m}$ with constant coefficients:

$$
P=\sum_{i, j} P^{i j} \partial_{i} \wedge \partial_{j}, \quad P^{i j}=-P^{j i} \in \mathbb{R}
$$

The Weyl-Moyal \star product is

$$
\left(u \star_{M} v\right)(z)=\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=z}
$$

Associativity follows from the fact that $\partial_{t^{k}}\left(u *_{M} v\right)(t)=\left.\left(\partial_{x^{k}}+\partial_{y^{k}}\right) \exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=t}:$
$\begin{aligned}\left(\left(u \star_{M} v\right) \star_{M} w\right)\left(x^{\prime}\right) & =\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{t^{r}} \partial_{z^{s}}\right)\left(\left(u \star_{M} v\right)(t) w(z)\right)\right|_{t=z=x^{\prime}} \\ & =\left.\exp \left(\frac{\nu}{2} P^{r s}\left(\partial_{x^{r}}+\partial_{y^{r}}\right) \partial_{z^{s}}\right) \exp \left(\frac{\nu}{2} P^{r^{\prime} s^{\prime}} \partial_{x^{r^{\prime}}} \partial_{y^{s^{\prime}}}\right)((u(x) v(y)) w(z))\right|_{x=y=z=x^{\prime}} \\ & =\left.\exp \left(\frac{\nu}{2} P^{r s}\left(\partial_{x^{r}} \partial_{z^{s}}+\partial_{y} r \partial_{z^{s}}+\partial_{x^{r}} \partial_{y^{s} s}\right)\right)((u(x) v(y)) w(z))\right|_{x=y=z=x^{\prime}}=\left(u \star_{M}\left(v \star_{M} w\right)\left(x^{\prime}\right)\right.\end{aligned}$

Example 1: Moyal-Weyl *-product and the Weyl algebra

Let P be a Poisson structure on $V=\mathbb{R}^{m}$ with constant coefficients:

$$
P=\sum_{i, j} P^{i j} \partial_{i} \wedge \partial_{j}, \quad P^{i j}=-P^{j i} \in \mathbb{R}
$$

The Weyl-Moyal * product is

$$
\left(u \star_{M} v\right)(z)=\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=z}
$$

Associativity follows from the fact that $\partial_{t^{k}}\left(u \star_{M} v\right)(t)=\left.\left(\partial_{x^{k}}+\partial_{y^{k}}\right) \exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=t}$:

When P is non degenerate, $\left(S\left(V^{*}\right)[\nu], \star_{M}\right)$ is called the Weyl algebra

Example 1: Moyal-Weyl *-product and the Weyl algebra

Let P be a Poisson structure on $V=\mathbb{R}^{m}$ with constant coefficients:

$$
P=\sum_{i, j} P^{i j} \partial_{i} \wedge \partial_{j}, \quad P^{i j}=-P^{j i} \in \mathbb{R}
$$

The Weyl-Moyal * product is

$$
\left(u \star_{M} v\right)(z)=\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=z}
$$

Associativity follows from the fact that $\partial_{t^{k}}\left(u *_{M} v\right)(t)=\left.\left(\partial_{x^{k}}+\partial_{y^{k}}\right) \exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=t}$:

$$
\begin{aligned}
\left(\left(u \star_{M} v\right) \star_{M} w\right)\left(x^{\prime}\right) & =\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{t^{r}} \partial_{z^{s}}\right)\left(\left(u \star_{M} v\right)(t) w(z)\right)\right|_{t=z=x^{\prime}} \\
& =\left.\exp \left(\frac{\nu}{2} P^{r s}\left(\partial_{x^{r}}+\partial_{y r}\right) \partial_{z^{s}}\right) \exp \left(\frac{\nu}{2} P^{r^{\prime} s^{\prime}} \partial_{x^{\prime}} \partial_{y^{s^{\prime}}}\right)((u(x) v(y)) w(z))\right|_{x=y=z=x^{\prime}} \\
& =\left.\exp \left(\frac{\nu}{2} P^{r s}\left(\partial_{x^{r}} \partial_{z^{s}}+\partial_{y r} \partial_{z^{s}}+\partial_{x^{r} r} \partial_{y} s\right)\right)((u(x) v(y)) w(z))\right|_{x=y=z=x^{\prime}}=\left(u * M\left(v \star_{M} w\right)\left(x^{\prime}\right) .\right.
\end{aligned}
$$

When P is non degenerate, $\left(S\left(V^{*}\right)[\nu], \star_{M}\right)$ is called the Weyl algebra

Example 1: Moyal-Weyl *-product and the Weyl algebra

Let P be a Poisson structure on $V=\mathbb{R}^{m}$ with constant coefficients:

$$
P=\sum_{i, j} P^{i j} \partial_{i} \wedge \partial_{j}, \quad P^{i j}=-P^{j i} \in \mathbb{R}
$$

The Weyl-Moyal * product is

$$
\left(u \star_{M} v\right)(z)=\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=z}
$$

Associativity follows from the fact that $\partial_{t^{k}}\left(u *_{M} v\right)(t)=\left.\left(\partial_{x^{k}}+\partial_{y^{k}}\right) \exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=t}$:

$$
\begin{aligned}
\left(\left(u \star_{M} v\right) \star_{M} w\right)\left(x^{\prime}\right) & =\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{t^{r}} \partial_{z^{s}}\right)\left(\left(u \star_{M} v\right)(t) w(z)\right)\right|_{t=z=x^{\prime}} \\
& =\left.\exp \left(\frac{\nu}{2} P^{r s}\left(\partial_{x^{r}}+\partial_{y r}\right) \partial_{z^{s}}\right) \exp \left(\frac{\nu}{2} P^{r^{\prime} s^{\prime}} \partial_{x^{\prime}} \partial_{y^{s^{\prime}}}\right)((u(x) v(y)) w(z))\right|_{x=y=z=x^{\prime}} \\
& =\left.\exp \left(\frac{\nu}{2} P^{r s}\left(\partial_{x^{r}} \partial_{z^{s}}+\partial_{y^{r}} \partial_{z^{s}}+\partial_{x^{r} r} \partial_{y^{s} s}\right)\right)((u(x) v(y)) w(z))\right|_{x=y=z=x^{\prime}}=\left(u * M\left(v *_{M} w\right)\left(x^{\prime}\right) .\right.
\end{aligned}
$$

When P is non degenerate, $\left(S\left(V^{*}\right)[\nu], \star_{M}\right)$ is called the Weyl algebra .

Relation to Weyl's quantization

For the usual quantization of $\mathbb{R}^{2 n}$ with the canonical Poisson bracket [in coordinates $\left.\left\{q^{i}, p_{i} ; 1 \leq i \leq n\right\}\{u, v\}=\sum_{j=1}^{n}\left(\frac{\partial u}{\partial q^{j}} \frac{\partial v}{\partial p_{j}}-\frac{\partial u}{\partial p_{j}} \frac{\partial v}{\partial q^{j}}\right)\right]$
the Weyl ordering yields a bijection $\mathcal{Q}_{\text {Weyl }}$ between polynomials on $\mathbb{R}^{2 n}, \mathbb{C}\left[p_{i}, q^{j}\right]$ and the space of differential operators with complex polynomial coefficients $D_{\text {polyn }}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{Q}_{\text {Weyl }}(1)=\operatorname{Id}, \quad \mathcal{Q}_{\text {Weyl }}\left(q^{i}\right):=Q^{i}:=q^{i}, \quad \quad \mathcal{Q W}_{\text {Weyl }}\left(p_{i}\right):=P_{i}=i \hbar \frac{\partial}{\partial q^{i}}
$$

and to a polynomial in $p^{\prime} s$ and $q^{\prime} s$ the corresp. totally symmetrized polynomial in Q^{i} and P_{j} :

$$
\mathcal{Q}_{\text {Weyl }}\left(q^{1}\left(p^{1}\right)^{2}\right)=\frac{1}{3}\left(Q^{1}\left(P^{1}\right)^{2}+P^{1} Q^{1} P^{1}+\left(P^{1}\right)^{2} Q^{1}\right)
$$

Then

Hence the Moyal star product is related to the composition of operators via Weyl's quantisation

Relation to Weyl's quantization

For the usual quantization of $\mathbb{R}^{2 n}$ with the canonical Poisson bracket [in coordinates $\left.\left\{q^{i}, p_{i} ; 1 \leq i \leq n\right\}\{u, v\}=\sum_{j=1}^{n}\left(\frac{\partial u}{\partial q^{j}} \frac{\partial v}{\partial p_{j}}-\frac{\partial u}{\partial p_{j}} \frac{\partial v}{\partial q^{j}}\right)\right]$
the Weyl ordering yields a bijection $\mathcal{Q}_{\text {Weyl }}$ between polynomials on $\mathbb{R}^{2 n}, \mathbb{C}\left[p_{i}, q^{j}\right]$ and the space of differential operators with complex polynomial coefficients $D_{\text {polyn }}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{Q}_{\text {Weyl }}(1)=\operatorname{Id}, \quad \mathcal{Q}_{\text {Weyl }}\left(q^{i}\right):=Q^{i}:=q^{i}, \quad \quad \mathcal{Q W}_{\text {Weyl }}\left(p_{i}\right):=P_{i}=i \hbar \frac{\partial}{\partial q^{i}}
$$

and to a polynomial in $p^{\prime} s$ and $q^{\prime} s$ the corresp. totally symmetrized polynomial in Q^{i} and P_{j} :

$$
\mathcal{Q}_{\text {Weyl }}\left(q^{1}\left(p^{1}\right)^{2}\right)=\frac{1}{3}\left(Q^{1}\left(P^{1}\right)^{2}+P^{1} Q^{1} P^{1}+\left(P^{1}\right)^{2} Q^{1}\right)
$$

Then

$$
\begin{align*}
f *_{w} g: & =\mathcal{Q}_{\text {Weyl }}^{-1}\left(\mathcal{Q}_{\text {Weyl }}(f) \circ \mathcal{Q}_{\text {Weyl }}(g)\right) \\
& =f \cdot g+\frac{i \hbar}{2}\{f, g\}+O\left(\hbar^{2}\right)=\left.f \star_{M} g\right|_{\nu=i \hbar} \tag{1}
\end{align*}
$$

Hence the Moyal star product is related to the composition of operators via Weyl's quantisation of polynomials on $\mathbb{R}^{2 n}$.

Existence of a star product on any symplectic manifold

On any symplectic manifold (M, ω) there exists a differential star product (1983, De Wilde and Lecomte). In 1985 and 1994, Fedosov gave a recursive construction when one has chosen a symplectic connection and a sequence of closed 2-forms $\tilde{\Omega}=\sum_{k>1} \nu^{k} \omega_{k}$ on M (a symplectic connection is a linear torsion free connection ∇ such that $\nabla \omega=\overline{0}$. Such a connection exists on any symplectic manifold, but is not unique):

```
it is obtained by identifying C'm(M)[[\nu]] with an algebra of flat sections of the Weyl bundle
\mathcal{W}}=F(M)\times\mp@subsup{s}{sp(V,\Omega),\rho}{}W\mathrm{ endowed with a flat connection D built from }\nabla\mathrm{ et }\tilde{\Omega
F(MN) is the bundle of symplectic frames (a symplectic frame at }x\inM\mathrm{ is a linear sympl. iso
\xix: }(V,\Omega)->(\mp@subsup{T}{x}{}M,\mp@subsup{\omega}{x}{})).F(M)\mathrm{ is a principal }\operatorname{Sp}(V,\Omega)\mathrm{ -bundle over M.
V* is endowed with the constant Poisson structure P}=\mp@subsup{\Omega}{}{-1}\mathrm{ , and one puts a grading on the
Weyl algebra S(\mp@subsup{V}{}{*})[\nu], assigning the degree 1 to }y\inV\mathrm{ and the degree 2 to }\nu\mathrm{ . Recall that the
product is given by (u*Mv)(z)=\operatorname{exp}(\frac{\nu}{2}\mp@subsup{P}{}{rs}\mp@subsup{\partial}{\mp@subsup{x}{}{r}}{}\mp@subsup{\partial}{\mp@subsup{y}{}{s}}{})(u(x)v(y))\mp@subsup{|}{x=y=z}{}
The formal Weyl algebra W is the completion in that grading
\rho is the natural representation of the symplectic group Sp(V,\Omega) on W (for any B Esp(V,\Omega),
\rho*(B)a=\frac{-1}{\nu}[\overline{B},a]\mathrm{ where [a,b]:= (a*MM b)-(b*MM a) for any a,b b W W and }\overline{B}=\frac{1}{2}\mp@subsup{\sum}{ijr}{}\mp@subsup{\Omega}{ri}{}\mp@subsup{B}{j}{r}\mp@subsup{y}{}{i}\mp@subsup{y}{}{j});\mathrm{ it acts by}
automornhisms of *MM}\mathrm{ , so the Weyl bundle is a bundle of algebras, the fiber product being *MM
```


Existence of a star product on any symplectic manifold

On any symplectic manifold (M, ω) there exists a differential star product (1983, De Wilde and Lecomte). In 1985 and 1994, Fedosov gave a recursive construction when one has chosen a symplectic connection and a sequence of closed 2 -forms $\tilde{\Omega}=\sum_{k>1} \nu^{k} \omega_{k}$ on M (a symplectic connection is a linear torsion free connection ∇ such that $\nabla \omega=\overline{0}$. Such a connection exists on any symplectic manifold, but is not unique):
it is obtained by identifying $C^{\infty}(M)[[\nu]]$ with an algebra of flat sections of the Weyl bundle $\mathcal{W}=F(M) \times S_{p(V, \Omega), \rho} W$ endowed with a flat connection D built from ∇ et $\tilde{\Omega}$.
$F(M)$ is the bundle of symplectic frames (a symplectic frame at $x \in M$ is a linear sympl. iso $\left.\xi_{x}:(V, \Omega) \rightarrow\left(T_{x} M, \omega_{x}\right)\right) . F(M)$ is a principal $\operatorname{Sp}(V, \Omega)$-bundle over M.
V^{*} is endowed with the constant Poisson structure $P=\Omega^{-1}$, and one puts a grading on the Weyl algebra $S\left(V^{*}\right)[\nu]$, assigning the degree 1 to $y \in V$ and the degree 2 to ν. Recall that the product is given by $(u \star M v)(z)=\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=z}$ The formal Weyl algebra W is the completion in that grading
ρ is the natural representation of the symplectic group $\operatorname{Sp}(V, \Omega)$ on W (for any $B \in \operatorname{sp}(V, \Omega)$, $\rho_{*}(B) a=\frac{-1}{\nu}[\bar{B}, a]$ where $[a, b]:=\left(a *_{M} b\right)-\left(b \star_{M} a\right)$ for any $a, b \in W$ and $\left.\bar{B}=\frac{1}{2} \sum_{i j r} \Omega_{r i} B_{j}^{r} y^{i} y^{j}\right)$; it acts by automornhisms of \star_{M}, so the Weyl bundle is a bundle of algebras, the fiber product being \star_{M}

Existence of a star product on any symplectic manifold

On any symplectic manifold (M, ω) there exists a differential star product (1983, De Wilde and Lecomte). In 1985 and 1994, Fedosov gave a recursive construction when one has chosen a symplectic connection and a sequence of closed 2-forms $\tilde{\Omega}=\sum_{k>1} \nu^{k} \omega_{k}$ on M (a symplectic connection is a linear torsion free connection ∇ such that $\nabla \omega=\overline{0}$. Such a connection exists on any symplectic manifold, but is not unique):
it is obtained by identifying $C^{\infty}(M)[[\nu]]$ with an algebra of flat sections of the Weyl bundle $\mathcal{W}=F(M) \times{ }_{S p(V, \Omega), \rho} W$ endowed with a flat connection D built from ∇ et $\tilde{\Omega}$.
$F(M)$ is the bundle of symplectic frames (a symplectic frame at $x \in M$ is a linear sympl. iso. $\left.\xi_{x}:(V, \Omega) \rightarrow\left(T_{x} M, \omega_{x}\right)\right) . F(M)$ is a principal $\operatorname{Sp}(V, \Omega)$-bundle over M.
\qquad

Existence of a star product on any symplectic manifold

On any symplectic manifold (M, ω) there exists a differential star product (1983, De Wilde and Lecomte). In 1985 and 1994, Fedosov gave a recursive construction when one has chosen a symplectic connection and a sequence of closed 2-forms $\tilde{\Omega}=\sum_{k>1} \nu^{k} \omega_{k}$ on M (a symplectic connection is a linear torsion free connection ∇ such that $\nabla \omega=\overline{0}$. Such a connection exists on any symplectic manifold, but is not unique):
it is obtained by identifying $C^{\infty}(M)[[\nu]]$ with an algebra of flat sections of the Weyl bundle $\mathcal{W}=F(M) \times_{S_{p}(V, \Omega), \rho} W$ endowed with a flat connection D built from ∇ et $\tilde{\Omega}$.
$F(M)$ is the bundle of symplectic frames (a symplectic frame at $x \in M$ is a linear sympl. iso. $\left.\xi_{x}:(V, \Omega) \rightarrow\left(T_{x} M, \omega_{x}\right)\right) . F(M)$ is a principal $\operatorname{Sp}(V, \Omega)$-bundle over M.
V^{*} is endowed with the constant Poisson structure $P=\Omega^{-1}$, and one puts a grading on the Weyl algebra $S\left(V^{*}\right)[\nu]$, assigning the degree 1 to $y \in V$ and the degree 2 to ν. Recall that the product is given by $\left(u \star_{M} v\right)(z)=\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=z}$,
The formal Weyl algebra W is the completion in that grading.

[^0]
Existence of a star product on any symplectic manifold

On any symplectic manifold (M, ω) there exists a differential star product (1983, De Wilde and Lecomte). In 1985 and 1994, Fedosov gave a recursive construction when one has chosen a symplectic connection and a sequence of closed 2-forms $\tilde{\Omega}=\sum_{k>1} \nu^{k} \omega_{k}$ on M (a symplectic connection is a linear torsion free connection ∇ such that $\nabla \omega=\overline{0}$. Such a connection exists on any symplectic manifold, but is not unique):
it is obtained by identifying $C^{\infty}(M)[[\nu]]$ with an algebra of flat sections of the Weyl bundle $\mathcal{W}=F(M) \times_{S_{p}(V, \Omega), \rho} W$ endowed with a flat connection D built from ∇ et $\tilde{\Omega}$.
$F(M)$ is the bundle of symplectic frames (a symplectic frame at $x \in M$ is a linear sympl. iso. $\left.\xi_{x}:(V, \Omega) \rightarrow\left(T_{x} M, \omega_{x}\right)\right) . F(M)$ is a principal $\operatorname{Sp}(V, \Omega)$-bundle over M.
V^{*} is endowed with the constant Poisson structure $P=\Omega^{-1}$, and one puts a grading on the Weyl algebra $S\left(V^{*}\right)[\nu]$, assigning the degree 1 to $y \in V$ and the degree 2 to ν. Recall that the product is given by $\left(u \star_{M} v\right)(z)=\left.\exp \left(\frac{\nu}{2} P^{r s} \partial_{x^{r}} \partial_{y^{s}}\right)(u(x) v(y))\right|_{x=y=z}$,
The formal Weyl algebra W is the completion in that grading.
ρ is the natural representation of the symplectic group $\operatorname{Sp}(V, \Omega)$ on W (for any $B \in \operatorname{sp}(V, \Omega)$, $\rho_{*}(B) a=\frac{-1}{\nu}[\bar{B}, a]$ where $[a, b]:=\left(a \star_{M} b\right)-\left(b \star_{M} a\right)$ for any $a, b \in W$ and $\left.\bar{B}=\frac{1}{2} \sum_{i j r} \Omega_{r i} B_{j}^{r} y^{i} y^{j}\right)$; it acts by automorphisms of \star_{M}, so the Weyl bundle is a bundle of algebras, the fiber product being \star_{M}.

Fedosov's construction on any symplectic manifold

The symplectic connection induces a connection ∂ in $\mathcal{W}: \partial a=d a-\frac{1}{\nu}\left[\frac{1}{2} \omega_{k i} \Gamma_{r j}^{k} y^{i} y^{j}, a\right]$.

A flat section of \mathcal{W} is given inductively by $a=\hat{\delta}\left(\partial a-\frac{1}{\nu}[r, a]\right)+a_{00}$.
It is determined by $a_{00} \in \mathbb{C}^{\infty}(M)[[\nu]]$ and is denoted $Q\left(a_{00}\right)$.
The Fedosov's star product $* \nabla, \Omega$ is then obtained by $u * \nabla, \Omega v:=(Q(u) * M Q(v))_{00}$

Fedosov's construction on any symplectic manifold

The symplectic connection induces a connection ∂ in $\mathcal{W}: \partial a=d a-\frac{1}{\nu}\left[\frac{1}{2} \omega_{k i} \Gamma_{r j}^{k} y^{i} y^{j}, a\right]$.
Deform it into $D a=\partial a-\delta(a)-\frac{1}{\nu}[r, a]$ where $\delta(a)=\frac{1}{\nu}\left[-\omega_{i j} y^{i} d x^{j}, a\right]=\sum_{k} d x^{k} \wedge \frac{\partial a}{\partial y^{k}}$, with $r \in \Gamma\left(\mathcal{W} \otimes \wedge^{1}\right)$.
Then $D_{\circ} D a=\frac{1}{\nu}\left[\bar{R}-\partial r+\delta r+\frac{1}{2 \nu}[r, r], a\right]$.

A flat section of \mathcal{W} is given inductively by $a=\hat{\delta}\left(\partial a-\frac{1}{\nu}[r, a]\right)+a_{00}$.
It is determined by $a_{00} \in \mathbb{C}^{\infty}(M)[[\nu]]$ and is denoted $Q\left(a_{00}\right)$.
The Fedosov's star product $* \nabla, \Omega$ is then obtained by $u \star \nabla, \Omega v:=(Q(u) \star M Q(v))_{00}$.

Fedosov's construction on any symplectic manifold

The symplectic connection induces a connection ∂ in $\mathcal{W}: \partial a=d a-\frac{1}{\nu}\left[\frac{1}{2} \omega_{k i} \Gamma_{r j}^{k} y^{i} y^{j}, a\right]$.
Deform it into $D a=\partial a-\delta(a)-\frac{1}{\nu}[r, a]$ where $\delta(a)=\frac{1}{\nu}\left[-\omega_{i j} y^{i} d x^{j}, a\right]=\sum_{k} d x^{k} \wedge \frac{\partial a}{\partial y^{k}}$, with $r \in \Gamma\left(\mathcal{W} \otimes \wedge^{1}\right)$.
Then $D_{\circ} D a=\frac{1}{\nu}\left[\bar{R}-\partial r+\delta r+\frac{1}{2 \nu}[r, r], a\right]$.
A r so that $\delta r=-\bar{R}+\partial r-\frac{1}{\nu} r^{2}+\tilde{\Omega}$ is given inductively by $r=-\hat{\delta} \bar{R}+\hat{\delta} \partial r-\frac{1}{\nu} \hat{\delta} r^{2}+\hat{\delta} \tilde{\Omega}$ where, writing $a=\sum_{p \geq 0, q \geq 0} a_{p q}=\sum_{2 k+p \geq 0, q \geq 0} \nu^{k} a_{k, i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}} y^{i_{1}} \ldots y^{i_{p}} d x^{j_{1}} \wedge \cdots \wedge d x^{j_{q}}$, for any $a \in \Gamma\left(\mathcal{W} \otimes \wedge^{q}\right)$,

$$
\hat{\delta}\left(a_{p q}\right)=\frac{1}{p+q} \sum_{k} y^{k} i\left(\frac{\partial}{\partial x^{k}}\right) a_{p q} \text { if } \mathrm{p}+\mathrm{q}>0 \text { and } 0 \text { if } \mathrm{p}+\mathrm{q}=0
$$

A flat section of \mathcal{W} is given inductively by $a=\hat{\delta}\left(\partial a-\frac{1}{\nu}[r, a]\right)+a_{00}$. It is determined by $a_{00} \in \mathbb{C}^{\infty}(M)[[\nu]]$ and is denoted $Q\left(a_{00}\right)$.

The Fedosov's star product $* \nabla, \Omega$ is then obtained by $u * \nabla, \Omega v:=(Q(u) \star M Q(v)) 00$.

Fedosov's construction on any symplectic manifold

The symplectic connection induces a connection ∂ in $\mathcal{W}: \partial a=d a-\frac{1}{\nu}\left[\frac{1}{2} \omega_{k i} \Gamma_{r j}^{k} y^{i} y^{j}, a\right]$.
Deform it into $D a=\partial a-\delta(a)-\frac{1}{\nu}[r, a]$ where $\delta(a)=\frac{1}{\nu}\left[-\omega_{i j} y^{i} d x^{j}, a\right]=\sum_{k} d x^{k} \wedge \frac{\partial a}{\partial y^{k}}$, with $r \in \Gamma\left(\mathcal{W} \otimes \wedge^{1}\right)$.
Then $D_{\circ} D a=\frac{1}{\nu}\left[\bar{R}-\partial r+\delta r+\frac{1}{2 \nu}[r, r], a\right]$.
A r so that $\delta r=-\bar{R}+\partial r-\frac{1}{\nu} r^{2}+\tilde{\Omega}$ is given inductively by $r=-\hat{\delta} \bar{R}+\hat{\delta} \partial r-\frac{1}{\nu} \hat{\delta} r^{2}+\hat{\delta} \tilde{\Omega}$ where, writing $a=\sum_{p \geq 0, q \geq 0} a_{p q}=\sum_{2 k+p \geq 0, q \geq 0} \nu^{k} a_{k, i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}} y^{i_{1}} \ldots y^{i_{p}} d x^{j_{1}} \wedge \cdots \wedge d x^{j_{q}}$, for any $a \in \Gamma\left(\mathcal{W} \otimes \Lambda^{q}\right)$,

$$
\hat{\delta}\left(a_{p q}\right)=\frac{1}{p+q} \sum_{k} y^{k} i\left(\frac{\partial}{\partial x^{k}}\right) a_{p q} \text { if } \mathrm{p}+\mathrm{q}>0 \text { and } 0 \text { if } \mathrm{p}+\mathrm{q}=0
$$

A flat section of \mathcal{W} is given inductively by $a=\hat{\delta}\left(\partial a-\frac{1}{\nu}[r, a]\right)+a_{00}$. It is determined by $a_{00} \in \mathbb{C}^{\infty}(M)[[\nu]]$ and is denoted $Q\left(a_{00}\right)$.

[^1]
Fedosov's construction on any symplectic manifold

The symplectic connection induces a connection ∂ in \mathcal{W} : $\partial a=d a-\frac{1}{\nu}\left[\frac{1}{2} \omega_{k i} \Gamma_{r j}^{k} y^{i} y^{j}, a\right]$.
Deform it into $D a=\partial a-\delta(a)-\frac{1}{\nu}[r, a]$ where $\delta(a)=\frac{1}{\nu}\left[-\omega_{i j} y^{i} d x^{j}, a\right]=\sum_{k} d x^{k} \wedge \frac{\partial a}{\partial y^{k}}$, with $r \in \Gamma\left(\mathcal{W} \otimes \Lambda^{1}\right)$.
Then $D_{\circ} D a=\frac{1}{\nu}\left[\bar{R}-\partial r+\delta r+\frac{1}{2 \nu}[r, r], a\right]$.
A r so that $\delta r=-\bar{R}+\partial r-\frac{1}{\nu} r^{2}+\tilde{\Omega}$ is given inductively by $r=-\hat{\delta} \bar{R}+\hat{\delta} \partial r-\frac{1}{\nu} \hat{\delta} r^{2}+\hat{\delta} \tilde{\Omega}$ where, writing $a=\sum_{p \geq 0, q \geq 0} a_{p q}=\sum_{2 k+p \geq 0, q \geq 0} \nu^{k} a_{k, i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}} y^{i_{1}} \ldots y^{i_{p}} d x^{j_{1}} \wedge \cdots \wedge d x^{j_{q}}$, for any $a \in \Gamma\left(\mathcal{W} \otimes \Lambda^{q}\right)$,

$$
\hat{\delta}\left(a_{p q}\right)=\frac{1}{p+q} \sum_{k} y^{k} i\left(\frac{\partial}{\partial x^{k}}\right) a_{p q} \text { if } \mathrm{p}+\mathrm{q}>0 \text { and } 0 \text { if } \mathrm{p}+\mathrm{q}=0
$$

A flat section of \mathcal{W} is given inductively by $a=\hat{\delta}\left(\partial a-\frac{1}{\nu}[r, a]\right)+a_{00}$. It is determined by $a_{00} \in \mathbb{C}^{\infty}(M)[[\nu]]$ and is denoted $Q\left(a_{00}\right)$.

The Fedosov's star product $* \nabla, \Omega$ is then obtained by $u \star \nabla_{, \Omega} v:=\left(Q(u) \star_{M} Q(v)\right)_{00}$.

Equivalence of star products

Given a star product \star and any series $T=\sum_{r \geq 1} \nu^{r} T_{r}$ of linear operators on $\mathcal{A}=C^{\infty}(M)$, one can build another star product denoted $\star^{\prime}:=\bar{T} \bullet \star$ via

$$
\begin{equation*}
u \star^{\prime} v:=e^{T}\left(e^{-T} u \star e^{-T} v\right) . \tag{2}
\end{equation*}
$$

Two star products \star and \star^{\prime} are said to be equivalent if there exists a series T such that

 equation (2) is satisfied.If the star products are differential and equivalent, the equivalence can be defined by a series of differential operators.

The classification of star products up to equivalence on symplectic manifolds was obtained by Nest-Tsygan, Deligne, and Bertelson-Cahen-Gutt
\qquad

Fedosov had obtained the classification of star products obtained by his construction, and Deligne gave an instrinsic way to define the characteristic class associated to a star product.

Equivalence of star products

Given a star product \star and any series $T=\sum_{r \geq 1} \nu^{r} T_{r}$ of linear operators on $\mathcal{A}=C^{\infty}(M)$, one can build another star product denoted $\star^{\prime}:=\bar{T} \bullet \star$ via

$$
\begin{equation*}
u \star^{\prime} v:=e^{T}\left(e^{-T} u \star e^{-T} v\right) . \tag{2}
\end{equation*}
$$

Two star products \star and \star^{\prime} are said to be equivalent if there exists a series T such that equation (2) is satisfied.
If the star products are differential and equivalent, the equivalence can be defined by a series of differential operators.

The classification of star products up to equivalence on symplectic manifolds was obtained by Nest-Tsygan, Deligne, and Bertelson-Cahen-Gutt

Fedosov had obtained the classification of star products obtained by his construction, and Deligne gave an instrinsic way to define the characteristic class associated to a star product

Equivalence of star products

Given a star product \star and any series $T=\sum_{r \geq 1} \nu^{r} T_{r}$ of linear operators on $\mathcal{A}=C^{\infty}(M)$, one can build another star product denoted $\star^{\prime}:=T \bullet \star$ via

$$
\begin{equation*}
u \star^{\prime} v:=e^{T}\left(e^{-T} u \star e^{-T} v\right) . \tag{2}
\end{equation*}
$$

Two star products \star and \star^{\prime} are said to be equivalent if there exists a series T such that equation (2) is satisfied.
If the star products are differential and equivalent, the equivalence can be defined by a series of differential operators.

The classification of star products up to equivalence on symplectic manifolds was obtained by Nest-Tsygan, Deligne, and Bertelson-Cahen-Gutt :
Any star product on a symplectic manifold is equivalent to a Fedosov's one and its equivalence class is parametrised by the element in $H^{2}(M ; \mathbb{R})[[\nu]]$ given by the series $[\tilde{\Omega}]$ of de Rham classes of the closed 2-forms used in the construction.
Fedosov had obtained the classification of star products obtained by his construction, and Deligne gave an instrinsic way to define the characteristic class associated to a star product.

Star products for linear Poisson structures

An explicit construction of star product was known for linear Poisson structure, i.e. on the dual \mathfrak{g}^{*} of a Lie algebra \mathfrak{g} with the Poisson structure defined by

$$
P_{\xi}(X, Y):=<\xi,[X, Y]>, \quad \xi \in \mathfrak{g}^{*}, X, Y \in \mathfrak{g} \simeq T_{\xi}^{*} \mathfrak{g}^{*},
$$

using the fact that polynomials on \mathfrak{g}^{*} identify with the symmetric algebra $S(\mathfrak{g})$ which in turns is in bijection with the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ via

$$
\sigma: S(\mathfrak{g}) \rightarrow \mathcal{U} \quad X_{1} \ldots X_{k} \mapsto \frac{1}{k!} \sum_{\rho \in S_{k}} X_{\rho(1)} \circ \cdots \circ X_{\rho(k)} .
$$

Pulling back the associative structure of $\mathcal{U}(\mathfrak{g})$ to the space of polynomials on \mathfrak{g}^{*} yields a differential star product

This star product is characterised by

[^2]
Star products for linear Poisson structures

An explicit construction of star product was known for linear Poisson structure, i.e. on the dual \mathfrak{g}^{*} of a Lie algebra \mathfrak{g} with the Poisson structure defined by

$$
P_{\xi}(X, Y):=<\xi,[X, Y]>, \quad \xi \in \mathfrak{g}^{*}, X, Y \in \mathfrak{g} \simeq T_{\xi}^{*} \mathfrak{g}^{*}
$$

using the fact that polynomials on \mathfrak{g}^{*} identify with the symmetric algebra $S(\mathfrak{g})$ which in turns is in bijection with the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ via

$$
\sigma: S(\mathfrak{g}) \rightarrow \mathcal{U} \quad X_{1} \ldots X_{k} \mapsto \frac{1}{k!} \sum_{\rho \in S_{k}} X_{\rho(1)} \circ \cdots \circ X_{\rho(k)} .
$$

Pulling back the associative structure of $\mathcal{U}(\mathfrak{g})$ to the space of polynomials on \mathfrak{g}^{*} yields a differential star product
$U(\mathfrak{g})=\oplus_{n \geq 0} U_{n}$ where $U_{n}:=\sigma\left(S^{n}(\mathfrak{g})\right)$ and we decompose an element $u \in U(\mathfrak{g})$ accordingly $u=\sum u_{n}$. For $P \in S^{p}(\mathfrak{g})$ and $Q \in S^{q}(\mathfrak{g})$:

$$
\begin{equation*}
P * Q=\sum_{n \geq 0}(\nu)^{n} \sigma^{-1}\left((\sigma(P) \circ \sigma(Q))_{p+q-n}\right) . \tag{3}
\end{equation*}
$$

This star product is characterised by

$$
x * x_{1} \ldots x_{k}=x x_{1} \ldots x_{k}+\sum_{j=1}^{k} \frac{(-1)^{j}}{j!} \nu^{j} B j\left[\left[!.\left[x, x_{r_{1}}\right], \ldots\right], x_{r_{j}}\right] x_{1} \ldots \widehat{x_{r_{1}}} \ldots \widehat{x_{r_{j}}} \ldots x_{k}
$$

where B_{j} are the Bernouilli numbers.

Star products on a Poisson manifold

A proof by Masmoudi of existence of a star product on a regular Poisson manifold quickly followed the proofs in the symplectic setting.

For general Poisson manifolds, existence and classification of star products were given by Kontsevich in 1995 :
The set of equivalence classes of differential star products on a Poisson manifold (M, P) coincides with the set of equivalence classes of Poisson deformations of P :

$$
P_{\nu}=P \nu+P_{2} \nu^{2}+\cdots \in \nu \Gamma\left(X, \Lambda^{2} T_{X}\right)[[\nu]], \text { such that }\left[P_{\nu}, P_{\nu}\right]_{S}=0,
$$

where equivalence of Poisson deformations is defined via the action of a formal vector field on $M, X=\sum_{r \geq 1} \nu^{r} X_{r}$, via $\{u, v\}^{\prime}:=e^{X}\left\{e^{-X} u, e^{-X} v\right\}$.

Remark that in the symplectic framework, this result coincides with the previous one. Indeed any Poisson deformation P_{ν} of the Poisson bracket P on a symplectic manifold (M, ω) is of the form P^{Ω} for a series $\Omega=\omega+\sum_{k \geq 1} \nu^{k} \omega_{k}$ where the ω_{k} are closed 2-forms, through

$$
P^{\Omega}(d u, d v)=-\Omega\left(X_{u}^{\Omega}, X_{v}^{\Omega}\right), \quad \text { with } X_{u}^{\Omega} \in \Gamma(T M)[[\nu]] \text { defined by } \quad i\left(X_{u}^{\Omega}\right) \Omega=d u .
$$

Star products on a Poisson manifold

A proof by Masmoudi of existence of a star product on a regular Poisson manifold quickly followed the proofs in the symplectic setting.

For general Poisson manifolds, existence and classification of star products were given by Kontsevich in 1995 :
The set of equivalence classes of differential star products on a Poisson manifold (M, P) coincides with the set of equivalence classes of Poisson deformations of P :

$$
P_{\nu}=P \nu+P_{2} \nu^{2}+\cdots \in \nu \Gamma\left(X, \Lambda^{2} T_{X}\right)[[\nu]], \text { such that }\left[P_{\nu}, P_{\nu}\right]_{S}=0,
$$

where equivalence of Poisson deformations is defined via the action of a formal vector field on $M, X=\sum_{r \geq 1} \nu^{r} X_{r}$, via $\{u, v\}^{\prime}:=e^{X}\left\{e^{-X} u, e^{-X} v\right\}$.
Remark that in the symplectic framework, this result coincides with the previous one. Indeed any Poisson deformation P_{ν} of the Poisson bracket P on a symplectic manifold (M, ω) is of the form P^{Ω} for a series $\Omega=\omega+\sum_{k \geq 1} \nu^{k} \omega_{k}$ where the ω_{k} are closed 2-forms, through

$$
P^{\Omega}(d u, d v)=-\Omega\left(X_{u}^{\Omega}, X_{v}^{\Omega}\right), \quad \text { with } X_{u}^{\Omega} \in \Gamma(T M)[[\nu]] \text { defined by } \quad i\left(X_{u}^{\Omega}\right) \Omega=d u .
$$

Formal Deformation and DGLA

We briefly sketch how Kontsevich's theorem is a consequence of his formality theorem. A general yoga sees any deformation theory encoded in a differential graded Lie algebra structure.

A differential graded Lie algebra (briefly DGLA) $(\mathfrak{g},[], d$,$) is a \mathbb{Z}$-graded Lie algebra $\left(\mathfrak{g}=\oplus_{i \in \mathbb{Z}} \mathfrak{g}^{i},[\right.$,$] with \left[\mathfrak{g}^{i}, \mathfrak{g}^{j}\right] \subset \mathfrak{g}^{i+j}$,together with a differential $d: \mathfrak{g} \rightarrow \mathfrak{g}$, i.e. a graded derivation of degree $1\left(d: \mathfrak{g}^{i} \rightarrow \mathfrak{g}^{i+1}, d[a, b]=[d a, b]+(-1)^{|a|}[a, d b]\right)$ so that $d \circ d=0$.

A deformation is a Maurer-Cartan element, i.e. a $C \in \nu g^{1}[[\nu]]$ so that $d C-\frac{1}{2}[C, C]=0$.
Equivalence of deformations is obtained through the action of the group $\exp \nu \mathfrak{g}^{0}[[\nu]]$, the infinitesimal action of a $T \in \nu \mathfrak{g}^{0}[[\nu]]$ being $T \cdot C:=-d T+[T, C]$.

To express star products in that framework, consider the DGLA of polydifferential operators.
To express formal Poisson structures in that framework, consider the DGLA of polyvector fields.

Formal Deformation and DGLA

We briefly sketch how Kontsevich's theorem is a consequence of his formality theorem. A general yoga sees any deformation theory encoded in a differential graded Lie algebra structure.

A differential graded Lie algebra (briefly DGLA) $(\mathfrak{g},[], d$,$) is a \mathbb{Z}$-graded Lie algebra $\left(\mathfrak{g}=\oplus_{i \in \mathbb{Z}} \mathfrak{g}^{i},[\right.$,$] with \left[\mathfrak{g}^{i}, \mathfrak{g}^{j}\right] \subset \mathfrak{g}^{i+j}$,together with a differential $d: \mathfrak{g} \rightarrow \mathfrak{g}$, i.e. a graded derivation of degree $1\left(d: \mathfrak{g}^{i} \rightarrow \mathfrak{g}^{i+1}, d[a, b]=[d a, b]+(-1)^{|a|}[a, d b]\right)$ so that $d \circ d=0$. A deformation is a Maurer-Cartan element, i.e. a $C \in \nu \mathfrak{g}^{1}[[\nu]]$ so that $d C-\frac{1}{2}[C, C]=0$. Equivalence of deformations is obtained through the action of the group $\exp \nu \mathfrak{g}^{0}[[\nu]]$, the infinitesimal action of a $T \in \nu \mathfrak{g}^{0}[[\nu]]$ being $T \cdot C:=-d T+[T, C]$..
To express star products in that framework, consider the DGLA of polydifferential operators.
To express formal Poisson structures in that framework, consider the DGLA of polyvector fields.

Formal Deformation and DGLA

We briefly sketch how Kontsevich's theorem is a consequence of his formality theorem. A general yoga sees any deformation theory encoded in a differential graded Lie algebra structure.

A differential graded Lie algebra (briefly DGLA) $(\mathfrak{g},[], d$,$) is a \mathbb{Z}$-graded Lie algebra $\left(\mathfrak{g}=\oplus_{i \in \mathbb{Z}} \mathfrak{g}^{i},[\right.$,$] with \left[\mathfrak{g}^{i}, \mathfrak{g}^{j}\right] \subset \mathfrak{g}^{i+j}$,together with a differential $d: \mathfrak{g} \rightarrow \mathfrak{g}$, i.e. a graded derivation of degree $1\left(d: \mathfrak{g}^{i} \rightarrow \mathfrak{g}^{i+1}, d[a, b]=[d a, b]+(-1)^{|a|}[a, d b]\right)$ so that $d \circ d=0$. A deformation is a Maurer-Cartan element, i.e. a $C \in \nu \mathfrak{g}^{1}[[\nu]]$ so that $d C-\frac{1}{2}[C, C]=0$. Equivalence of deformations is obtained through the action of the group $\exp \nu \mathfrak{g}^{0}[[\nu]]$, the infinitesimal action of a $T \in \nu \mathfrak{g}^{0}[[\nu]]$ being $T \cdot C:=-d T+[T, C]$..

To express star products in that framework, consider the DGLA of polydifferential operators.
To express formal Poisson structures in that framework, consider the DGLA of polyvector fields.

The Hochschild DGLA associated to an associative algebra

Let (\mathcal{A}, μ) be an associative algebra with unit on a field \mathbb{K}.
Consider the Hochschild complex of multilinear maps from \mathcal{A} to itself:

$$
\mathcal{C}(\mathcal{A}):=\sum_{i=-1}^{\infty} \mathcal{C}^{i} \quad \text { with } \quad \mathcal{C}^{i}:=\operatorname{Hom}_{\mathbb{K}}\left(\mathcal{A}^{\otimes(i+1)}, \mathcal{A}\right)
$$

remark that the degree is shifted by one; the degree $|A|$ of a $(p+1)$-linear map A is equal to p. For $A_{1} \in \mathcal{C}^{m_{1}}, A_{2} \in \mathcal{C}^{m_{2}}$, define:
$\left(A_{1} \circ A_{2}\right) 1\left(f_{1}, \ldots, f_{m_{1}+m_{2}+1}\right):=\sum_{j=1}^{m_{1}}(-1)^{\left(m_{2}\right)(j-1)} A_{1}\left(f_{1}, \ldots, f_{j-1}, A_{2}\left(f_{j}, \ldots, f_{j+m_{2}}\right), f_{j+m_{2}+1}, \ldots, f_{m_{1}+m_{2}+1}\right)$.
The Gerstenhaber bracket is defined by $\left[A_{1}, A_{2}\right]_{G}:=A_{1} \circ A_{2}-(-1)^{m_{1} m_{2}} A_{2} \circ A_{1}$. It gives \mathcal{C} the structure of a graded Lie algebra.

An element $M \in \mathcal{C}^{1}$ defines an associative product iff $[M, M]_{G}=0$.
The differential d_{μ} is defined by $d_{\mu} A=-[\mu, A]_{G}$

The Hochschild DGLA associated to an associative algebra

Let (\mathcal{A}, μ) be an associative algebra with unit on a field \mathbb{K}.
Consider the Hochschild complex of multilinear maps from \mathcal{A} to itself:

$$
\mathcal{C}(\mathcal{A}):=\sum_{i=-1}^{\infty} \mathcal{C}^{i} \quad \text { with } \quad \mathcal{C}^{i}:=\operatorname{Hom}_{\mathbb{K}}\left(\mathcal{A}^{\otimes(i+1)}, \mathcal{A}\right)
$$

remark that the degree is shifted by one; the degree $|A|$ of a $(p+1)$-linear map A is equal to p. For $A_{1} \in \mathcal{C}^{m_{1}}, A_{2} \in \mathcal{C}^{m_{2}}$, define:
$\left(A_{1} \circ A_{2}\right) 1\left(f_{1}, \ldots, f_{m_{1}+m_{2}+1}\right):=\sum_{j=1}^{m_{1}}(-1)^{\left(m_{2}\right)(j-1)} A_{1}\left(f_{1}, \ldots, f_{j-1}, A_{2}\left(f_{j}, \ldots, f_{j+m_{2}}\right), f_{j+m_{2}+1}, \ldots, f_{m_{1}+m_{2}+1}\right)$.
The Gerstenhaber bracket is defined by $\left[A_{1}, A_{2}\right]_{G}:=A_{1} \circ A_{2}-(-1)^{m_{1} m_{2}} A_{2} \circ A_{1}$. It gives \mathcal{C} the structure of a graded Lie algebra.

An element $M \in \mathcal{C}^{1}$ defines an associative product iff $[M, M]_{G}=0$.
The differential d_{μ} is defined by $d_{\mu} A=-[\mu, A]_{G}$

The Hochschild DGLA associated to an associative algebra

Let (\mathcal{A}, μ) be an associative algebra with unit on a field \mathbb{K}.
Consider the Hochschild complex of multilinear maps from \mathcal{A} to itself:

$$
\mathcal{C}(\mathcal{A}):=\sum_{i=-1}^{\infty} \mathcal{C}^{i} \quad \text { with } \quad \mathcal{C}^{i}:=\operatorname{Hom}_{\mathbb{K}}\left(\mathcal{A}^{\otimes(i+1)}, \mathcal{A}\right)
$$

remark that the degree is shifted by one; the degree $|A|$ of a $(p+1)$-linear map A is equal to p. For $A_{1} \in \mathcal{C}^{m_{1}}, A_{2} \in \mathcal{C}^{m_{2}}$, define:
$\left(A_{1} \circ A_{2}\right) 1\left(f_{1}, \ldots, f_{m_{1}+m_{2}+1}\right):=\sum_{j=1}^{m_{1}}(-1)^{\left(m_{2}\right)(j-1)} A_{1}\left(f_{1}, \ldots, f_{j-1}, A_{2}\left(f_{j}, \ldots, f_{j+m_{2}}\right), f_{j+m_{2}+1}, \ldots, f_{m_{1}+m_{2}+1}\right)$.
The Gerstenhaber bracket is defined by $\left[A_{1}, A_{2}\right]_{G}:=A_{1} \circ A_{2}-(-1)^{m_{1} m_{2}} A_{2} \circ A_{1}$. It gives \mathcal{C} the structure of a graded Lie algebra.

An element $M \in \mathcal{C}^{1}$ defines an associative product iff $[M, M]_{G}=0$.
The differential d_{μ} is defined by $d_{\mu} A=-[\mu, A]_{G}$.

$$
\left(\mathcal{C}(\mathcal{A}),[,]_{G}, d_{\mu}\right) \text { is a differential graded Lie algebra. }
$$

Star products and DGLA of polydifferential operators

Here we consider $\mathcal{A}=C^{\infty}(M)$, and we deal with the subalgebra of $\mathcal{C}(\mathcal{A})$ consisting of multidifferential operators

$$
\mathcal{D}_{\text {poly }}(M):=\bigoplus \mathcal{D}_{\text {poly }}^{i}(M) \quad \text { with } \quad \mathcal{D}_{\text {poly }}^{i}(M)
$$

the set of multi differential operators acting on $i+1$ smooth functions on M and vanishing on constants.
$\mathcal{D}_{\text {poly }}(M)$ is closed under the Gerstenhaber bracket and under the differential d_{μ}, so that

A *-product is given by a series of bidifferential operators* $=\mu+C$ with $C \in \nu \mathcal{D}_{\text {poly }}^{1}(M)[[\nu]]$ a Maurer-Cartan element of the DGLA $\left(\mathcal{D}_{\text {molu }}(M) .[.]_{\mathrm{G}} . d_{\mathcal{N}}\right)$: indeed the associativity $[\mu+C, \mu+C]_{G}=0$ is equivalent to $d_{D} C-\frac{1}{2}[C, C]_{G}=0$.

Equivalence of star products is given by the action of e^{T} with $T \in \nu \mathcal{D}_{\text {poly }}^{0}(M)[[\nu]]$ via $\mu+C^{\prime}=\left(\exp [T,]_{G}\right)(\mu+C) ;$ the infinitesimal action is $T \cdot C:=-d_{\mathcal{D}} T+[T, C]_{G}$

Star products and DGLA of polydifferential operators

Here we consider $\mathcal{A}=C^{\infty}(M)$, and we deal with the subalgebra of $\mathcal{C}(\mathcal{A})$ consisting of multidifferential operators

$$
\mathcal{D}_{\text {poly }}(M):=\bigoplus \mathcal{D}_{\text {poly }}^{i}(M) \quad \text { with } \quad \mathcal{D}_{\text {poly }}^{i}(M)
$$

the set of multi differential operators acting on $i+1$ smooth functions on M and vanishing on constants.
$\mathcal{D}_{\text {poly }}(M)$ is closed under the Gerstenhaber bracket and under the differential d_{μ}, so that

$$
\left(\mathcal{D}_{\text {poly }}(M),[,]_{G}, d_{\mathcal{D}}:=\left.d_{\mu}\right|_{\mathcal{D}}\right) \quad \text { is a DGLA. }
$$

A *-product is given by a series of bidifferential operators* $=\mu+C$ with $C \in \nu \mathcal{D}{ }_{\text {poly }}^{1}(M)[[\nu]]$ a Maurer-Cartan element of the DGLA $\left(\mathcal{D}_{\text {nolv }}(M) .[]. G . d_{\mathcal{D}}\right)$: indeed the associativity $[\mu+C, \mu+C]_{G}=0$ is equivalent to $d_{D} C-\frac{1}{2}[C, C]_{G}=0$.

Equivalence of star products is given by the action of e^{T} with $T \in \nu \mathcal{D}_{\text {poly }}^{0}(M)[[\nu]]$ via $\mu+C^{\prime}=\left(\exp [T,]_{G}\right)(\mu+C)$; the infinitesimal action is $T \cdot C:=-d_{\mathcal{D}} T+[T \cdot C]_{G}$

Star products and DGLA of polydifferential operators

Here we consider $\mathcal{A}=C^{\infty}(M)$, and we deal with the subalgebra of $\mathcal{C}(\mathcal{A})$ consisting of multidifferential operators

$$
\mathcal{D}_{\text {poly }}(M):=\bigoplus \mathcal{D}_{\text {poly }}^{i}(M) \quad \text { with } \quad \mathcal{D}_{\text {poly }}^{i}(M)
$$

the set of multi differential operators acting on $i+1$ smooth functions on M and vanishing on constants.
$\mathcal{D}_{\text {poly }}(M)$ is closed under the Gerstenhaber bracket and under the differential d_{μ}, so that

$$
\left(\mathcal{D}_{\text {poly }}(M),[,]_{G}, d_{\mathcal{D}}:=\left.d_{\mu}\right|_{\mathcal{D}}\right) \quad \text { is a DGLA. }
$$

A \star-product is given by a series of bidifferential operators* $=\mu+C$ with $C \in \nu \mathcal{D}_{\text {poly }}^{1}(M)[[\nu]]$ a Maurer-Cartan element of the DGLA $\left(\mathcal{D}_{\text {poly }}(M),[,]_{G}, d_{\mathcal{D}}\right)$; indeed the associativity $[\mu+C, \mu+C]_{G}=0$ is equivalent to $d_{D} C-\frac{1}{2}[C, C]_{G}=0$.

Equivalence of star products is given by the action of e^{T} with $T \in \nu D_{\text {poly }}^{0}(M)[[\nu]]$ via $\mu+C^{\prime}=\left(\exp [T,]_{G}\right)(\mu+C)$; the infinitesimal action is $T \cdot C:=-d_{\mathcal{D}} T+[T, C]_{G}$

Star products and DGLA of polydifferential operators

Here we consider $\mathcal{A}=C^{\infty}(M)$, and we deal with the subalgebra of $\mathcal{C}(\mathcal{A})$ consisting of multidifferential operators

$$
\mathcal{D}_{\text {poly }}(M):=\bigoplus \mathcal{D}_{\text {poly }}^{i}(M) \quad \text { with } \quad \mathcal{D}_{\text {poly }}^{i}(M)
$$

the set of multi differential operators acting on $i+1$ smooth functions on M and vanishing on constants.
$\mathcal{D}_{\text {poly }}(M)$ is closed under the Gerstenhaber bracket and under the differential d_{μ}, so that

$$
\left(\mathcal{D}_{\text {poly }}(M),[,]_{G}, d_{\mathcal{D}}:=\left.d_{\mu}\right|_{\mathcal{D}}\right) \quad \text { is a DGLA. }
$$

A *-product is given by a series of bidifferential operators* $=\mu+C$ with $C \in \nu \mathcal{D}_{\text {poly }}^{1}(M)[[\nu]]$ a Maurer-Cartan element of the DGLA $\left(\mathcal{D}_{\text {poly }}(M),[,]_{G}, d_{\mathcal{D}}\right)$; indeed the associativity $[\mu+C, \mu+C]_{G}=0$ is equivalent to $d_{D} C-\frac{1}{2}[C, C]_{G}=0$.

Equivalence of star products is given by the action of e^{T} with $T \in \nu \mathcal{D}_{\text {poly }}^{0}(M)[[\nu]]$ via : $\mu+C^{\prime}=\left(\exp [T,]_{G}\right)(\mu+C)$; the infinitesimal action is $T \cdot C:=-d_{\mathcal{D}} T+[T, C]_{G}$.

Poisson deformations and the DGLA of polyvectorfields

Any DGLA $(\mathfrak{g},[], d$,$) has a cohomology complex defined by$

$$
H^{i}(\mathfrak{g}):=\operatorname{Ker}\left(d: \mathfrak{g}^{i} \rightarrow \mathfrak{g}^{i+1}\right) / \operatorname{Im}\left(d: \mathfrak{g}^{i-1} \rightarrow \mathfrak{g}^{i}\right)
$$

The set $H:=\bigoplus_{i} H^{i}(\mathfrak{g})$ inherits the structure of a graded Lie algebra, defined by: $[|a|,|b|]_{H}:=|[a, b]|$ where $|a| \in \mathcal{H}$ denote the equivalence classes of a closed element $a \in \mathfrak{g}$. Then $\left(H,[,]_{H}, 0\right)$ is a DGLA (with zero differential).

Thm [Vey]

The bracket induced on $\mathcal{T}_{\text {poly }}(M)$ is -(up to a sign $\left.\left[T_{1}, T_{2}\right]_{\mathcal{T}}:=-\left[T_{2}, T_{1}\right]_{S}\right)$ - the
Schouten-Nijenhuis bracket defined by extending the usual Lie bracket of vector fields

Poisson deformations and the DGLA of polyvectorfields

Any DGLA $(\mathfrak{g},[], d$,$) has a cohomology complex defined by$

$$
H^{i}(\mathfrak{g}):=\operatorname{Ker}\left(d: \mathfrak{g}^{i} \rightarrow \mathfrak{g}^{i+1}\right) / \operatorname{Im}\left(d: \mathfrak{g}^{i-1} \rightarrow \mathfrak{g}^{i}\right)
$$

The set $H:=\bigoplus_{i} H^{i}(\mathfrak{g})$ inherits the structure of a graded Lie algebra, defined by: $[|a|,|b|]_{H}:=|[a, b]|$ where $|a| \in \mathcal{H}$ denote the equivalence classes of a closed element $a \in \mathfrak{g}$. Then $\left(H,[,]_{H}, 0\right)$ is a DGLA (with zero differential).
Thm [Vey] Every $C \in \mathcal{D}_{\text {poly }}^{p}(M)$ such that $d_{\mathcal{D}}(C)=0$ is the sum of the coboundary of a $B \in \mathcal{D}_{\text {poly }}^{p-1}(M)$ and a 1-differential skewsymmetric p-cocycle A :

$$
H^{p}\left(\mathcal{D}_{\text {poly }}(M)\right)=H H_{\text {diff }}^{p}\left(C^{\infty}(M), C^{\infty}(M)\right)=\Gamma\left(\wedge^{p+1} T M\right)=: \mathcal{T}_{\text {poly }}^{p}(M)
$$

The bracket induced on $\mathcal{T}_{\text {poly }}(M)$ is -(up to a $\operatorname{sign}\left[T_{1}, T_{2}\right]_{\mathcal{T}}:=-\left[T_{2}, T_{1}\right]_{S}$) - the Schouten-Nijenhuis bracket defined by extending the usual Lie bracket of vector fields

Poisson deformations and the DGLA of polyvectorfields

Any DGLA $(\mathfrak{g},[], d$,$) has a cohomology complex defined by$

$$
H^{i}(\mathfrak{g}):=\operatorname{Ker}\left(d: \mathfrak{g}^{i} \rightarrow \mathfrak{g}^{i+1}\right) / \operatorname{Im}\left(d: \mathfrak{g}^{i-1} \rightarrow \mathfrak{g}^{i}\right)
$$

The set $H:=\bigoplus_{i} H^{i}(\mathfrak{g})$ inherits the structure of a graded Lie algebra, defined by: $[|a|,|b|]_{H}:=|[a, b]|$ where $|a| \in \mathcal{H}$ denote the equivalence classes of a closed element $a \in \mathfrak{g}$. Then $\left(H,[,]_{H}, 0\right)$ is a DGLA (with zero differential).
Thm [Vey] Every $C \in \mathcal{D}_{\text {poly }}^{p}(M)$ such that $d_{\mathcal{D}}(C)=0$ is the sum of the coboundary of a $B \in \mathcal{D}_{\text {poly }}^{p-1}(M)$ and a 1-differential skewsymmetric p-cocycle A :

$$
H^{p}\left(\mathcal{D}_{\text {poly }}(M)\right)=H H_{\mathrm{diff}}^{p}\left(C^{\infty}(M), C^{\infty}(M)\right)=\Gamma\left(\wedge^{p+1} T M\right)=: \mathcal{T}_{\text {poly }}^{p}(M)
$$

The bracket induced on $\mathcal{T}_{\text {poly }}(M)$ is -(up to a sign $\left.\left[T_{1}, T_{2}\right]_{\mathcal{T}}:=-\left[T_{2}, T_{1}\right]_{S}\right)$ - the Schouten-Nijenhuis bracket defined by extending the usual Lie bracket of vector fields $\left[X_{1} \wedge \ldots \wedge X_{k}, Y_{1} \wedge \ldots \wedge Y_{l}\right] s=\sum_{r=1}^{k} \sum_{s=1}^{\prime}(-1)^{r+s}\left[X_{r}, X_{s}\right] X_{1} \wedge \ldots \widehat{X_{r}} \wedge \ldots \wedge X_{k} \wedge Y_{1} \wedge \ldots \widehat{Y_{s}} \wedge \ldots \wedge Y_{1}$.

$$
\left(\mathcal{T}_{\text {poly }}(M),[,]_{\mathcal{T}}, 0\right) \text { is a DGLA. }
$$

Poisson deformations and the DGLA of polyvectorfields

Any DGLA $(\mathfrak{g},[], d$,$) has a cohomology complex defined by$

$$
H^{i}(\mathfrak{g}):=\operatorname{Ker}\left(d: \mathfrak{g}^{i} \rightarrow \mathfrak{g}^{i+1}\right) / \operatorname{Im}\left(d: \mathfrak{g}^{i-1} \rightarrow \mathfrak{g}^{i}\right)
$$

The set $H:=\bigoplus_{i} H^{i}(\mathfrak{g})$ inherits the structure of a graded Lie algebra, defined by: $[|a|,|b|]_{H}:=|[a, b]|$ where $|a| \in \mathcal{H}$ denote the equivalence classes of a closed element $a \in \mathfrak{g}$. Then $\left(H,[,]_{H}, 0\right)$ is a DGLA (with zero differential).
Thm [Vey] Every $C \in \mathcal{D}_{\text {poly }}^{p}(M)$ such that $d_{\mathcal{D}}(C)=0$ is the sum of the coboundary of a $B \in \mathcal{D}_{\text {poly }}^{p-1}(M)$ and a 1-differential skewsymmetric p-cocycle A :

$$
H^{p}\left(\mathcal{D}_{\text {poly }}(M)\right)=H H_{\mathrm{diff}}^{p}\left(C^{\infty}(M), C^{\infty}(M)\right)=\Gamma\left(\wedge^{p+1} T M\right)=: \mathcal{T}_{\text {poly }}^{p}(M)
$$

The bracket induced on $\mathcal{T}_{\text {poly }}(M)$ is -(up to a sign $\left.\left[T_{1}, T_{2}\right]_{\mathcal{T}}:=-\left[T_{2}, T_{1}\right]_{S}\right)$ - the Schouten-Nijenhuis bracket defined by extending the usual Lie bracket of vector fields $\left[X_{1} \wedge \ldots \wedge X_{k}, Y_{1} \wedge \ldots \wedge Y_{l}\right] s=\sum_{r=1}^{k} \sum_{s=1}^{\prime}(-1)^{r+s}\left[X_{r}, X_{s}\right] X_{1} \wedge \ldots \widehat{X_{r}} \wedge \ldots \wedge X_{k} \wedge Y_{1} \wedge \ldots \widehat{Y_{s}} \wedge \ldots \wedge Y_{l}$.

$$
\left(\mathcal{T}_{\text {poly }}(M),[,]_{\mathcal{T}}, 0\right) \text { is a DGLA. }
$$

A $P \in \nu \mathcal{T}_{\text {poly }}^{1}(M)[[\nu]]$ defines a formal Poisson structure on M iff $d_{T} P-\frac{1}{2}[P, P]_{S}^{\prime}=0$.

Maps between the DGLA's

The natural map $U_{1}: \mathcal{T}_{\text {poly }}^{i}(M) \longrightarrow \mathcal{D}_{\text {poly }}^{i}(M)$

$$
\begin{equation*}
U_{1}\left(X_{0} \wedge \ldots \wedge X_{n}\right)\left(f_{0}, \ldots, f_{n}\right)=\frac{1}{(n+1)!} \sum_{\sigma \in S_{n+1}} \epsilon(\sigma) X_{0}\left(f_{\sigma(0)}\right) \cdots X_{n}\left(f_{\sigma(n)}\right) \tag{4}
\end{equation*}
$$

intertwines the differential and induces the identity in cohomology, but is not a DGLA morphism. A DGLA morphism from $\left(\mathcal{T}_{\text {poly }}(M),[,]_{\mathcal{T}}, 0\right)$ to $\left(\mathcal{D}_{\text {poly }}(M),[,]_{G}, d_{\mathcal{D}}\right)$, inducing the identity in
cohomology, would give a correspondence between a formal Poisson tensor on M and a formal
differential star product on M and a bijection between equivalence classes. The existence of such a morphism fails; to circumvent this problem, one extends the notion of morphism between two DGLA introducing L_{∞}-morphisms.

Maps between the DGLA's

The natural map $U_{1}: \mathcal{T}_{\text {poly }}^{i}(M) \longrightarrow \mathcal{D}_{\text {poly }}^{i}(M)$

$$
\begin{equation*}
U_{1}\left(X_{0} \wedge \ldots \wedge X_{n}\right)\left(f_{0}, \ldots, f_{n}\right)=\frac{1}{(n+1)!} \sum_{\sigma \in S_{n+1}} \epsilon(\sigma) X_{0}\left(f_{\sigma(0)}\right) \cdots X_{n}\left(f_{\sigma(n)}\right) \tag{4}
\end{equation*}
$$

intertwines the differential and induces the identity in cohomology, but is not a DGLA morphism.
A DGLA morphism from $\left(\mathcal{T}_{\text {poly }}(M),[,]_{\mathcal{T}}, 0\right)$ to $\left(\mathcal{D}_{\text {poly }}(M),[,]_{G}, d_{\mathcal{D}}\right)$, inducing the identity in cohomology, would give a correspondence between a formal Poisson tensor on M and a formal differential star product on M and a bijection between equivalence classes.

Maps between the DGLA's

The natural map $U_{1}: \mathcal{T}_{\text {poly }}^{i}(M) \longrightarrow \mathcal{D}_{\text {poly }}^{i}(M)$

$$
\begin{equation*}
U_{1}\left(X_{0} \wedge \ldots \wedge X_{n}\right)\left(f_{0}, \ldots, f_{n}\right)=\frac{1}{(n+1)!} \sum_{\sigma \in S_{n+1}} \epsilon(\sigma) X_{0}\left(f_{\sigma(0)}\right) \cdots X_{n}\left(f_{\sigma(n)}\right) \tag{4}
\end{equation*}
$$

intertwines the differential and induces the identity in cohomology, but is not a DGLA morphism.
A DGLA morphism from $\left(\mathcal{T}_{\text {poly }}(M),[,]_{\mathcal{T}}, 0\right)$ to $\left(\mathcal{D}_{\text {poly }}(M),[,]_{G}, d_{\mathcal{D}}\right)$, inducing the identity in cohomology, would give a correspondence between a formal Poisson tensor on M and a formal differential star product on M and a bijection between equivalence classes.

The existence of such a morphism fails; to circumvent this problem, one extends the notion of morphism between two DGLA introducing L_{∞}-morphisms.

L_{∞} algebras

Let $W=\oplus_{j \in \mathbb{Z}} W^{j}$ be a \mathbb{Z}-graded vector space; $V=W[1]$ is the shifted graded vector space.
The graded symmetric bialgebra of V, denoted $\mathcal{S V}$, is the quotient of the free algebra $\mathcal{T} V$ by the two-sided ideal generated by $x \otimes y-(-1)^{|x||y|} y \otimes x$ for any homog. elements x, y in V.
$\Delta_{s h}$ is induced by $\Delta_{s h}: \mathcal{T V} \rightarrow \mathcal{T} V \otimes \mathcal{T} V$ which is the morphism of assoc. algebras so that $\Delta_{s h}(x)=1 \otimes x+x \otimes 1$.
A L_{∞}-structure on W is defined to be a graded coderivation \mathcal{Q} of $\mathcal{S}(W[1])$ of degree 1 satisfying $\mathcal{Q}^{2}=0$ and $\mathcal{Q}\left(\mathbf{1}_{\mathcal{S W}[1]}\right)=0$.
Such a \mathcal{Q} is determined by $Q:=\operatorname{pr}_{W[1]} \circ \mathcal{Q}: \mathcal{S}(W[1]) \rightarrow W[1]$ via $\mathcal{Q}=\mu_{\text {sh }} \circ Q \otimes \operatorname{Id} \circ \Delta_{\text {sh }}$ and we write $\mathcal{Q}=\bar{Q}$.
The pair (W, \mathcal{Q}) is called an L_{∞}-algebra .
Ex: $(g,[], d$,$) a DGLA \Rightarrow(g, Q=d[1]+[],[1])$ (with \mathcal{Q} defined on $\mathcal{S}(g[1]))$.
For $\left.\phi: v^{\otimes k} \rightarrow W^{\otimes \ell}, \phi[j]: V[j]^{\otimes k} \rightarrow W_{[j}\right]^{\otimes \ell}$ via $\phi[j]:=\left(s^{\otimes \ell}\right)^{-j} \circ \phi \circ\left(s^{\otimes k j}\right.$ where $s: V \rightarrow V[-1]$ is the identity.

> A solution $d C+\frac{1}{2}[C, C]_{G}=0$ corresponds to a $C \in \nu V^{0}[[\nu]]$ such that $\mathcal{Q}\left(e^{C}\right)=0$

L_{∞} algebras

Let $W=\oplus_{j \in \mathbb{Z}} W^{j}$ be a \mathbb{Z}-graded vector space; $V=W[1]$ is the shifted graded vector space.
The graded symmetric bialgebra of V, denoted $\mathcal{S V}$, is the quotient of the free algebra $\mathcal{T} V$ by the two-sided ideal generated by $x \otimes y-(-1)^{|x||y|} y \otimes x$ for any homog. elements x, y in V.
$\Delta_{s h}$ is induced by $\Delta_{\text {sh }}: \mathcal{T V} \rightarrow \mathcal{T V} \otimes \mathcal{T} V$ which is the morphism of assoc. algebras so that $\Delta_{s h}(x)=1 \otimes x+x \otimes 1$.
A L_{∞}-structure on W is defined to be a graded coderivation \mathcal{Q} of $\mathcal{S}(W[1])$ of degree 1 satisfying $\mathcal{Q}^{2}=0$ and $\mathcal{Q}\left(\mathbf{1}_{\mathcal{S W}[1]}\right)=0$.
Such a \mathcal{Q} is determined by $Q:=\operatorname{pr}_{W[1]} \circ \mathcal{Q}: \mathcal{S}(W[1]) \rightarrow W[1]$ via $\mathcal{Q}=\mu_{\text {sh }} \circ Q \otimes \operatorname{Id} \circ \Delta_{\text {sh }}$ and we write $\mathcal{Q}=\bar{Q}$.
The pair (W, \mathcal{Q}) is called an L_{∞}-algebra .
Ex: $(\mathfrak{g},[], d$,$) a DGLA \Rightarrow(\mathfrak{g}, \mathcal{Q}=\overline{d[1]+[,][1]})$ (with \mathcal{Q} defined on $\mathcal{S}(\mathfrak{g}[1])$).
For $\left.\phi: V^{\otimes k} \rightarrow W^{\otimes \ell}, \phi[j]: V[j]^{\otimes k} \rightarrow W^{[j]}\right]^{\otimes \ell}$ via $\phi[j]:=\left(s^{\otimes \ell}\right)^{-j} \circ \phi \circ\left(s^{\otimes k}\right)^{j}$ where $s: V \rightarrow V[-1]$ is the identity.
A solution $d C+\frac{1}{2}[C, C]_{G}=0$ corresponds to a $C \in \nu V^{0}[[\nu]]$ such that $\mathcal{Q}\left(e^{C}\right)=0$.

Quasi-isomorphisms and Formality

A L_{∞}-morphism from a L_{∞}-algebra (W, \mathcal{Q}) to a L_{∞}-algebra $\left(W^{\prime}, \mathcal{Q}^{\prime}\right)$ is a morphism of graded con. coalgebras $\Phi: \mathcal{S}(W[1]) \rightarrow \mathcal{S}\left(W^{\prime}[1]\right)$, intertwining differentials

$$
\Phi \circ \mathcal{Q}=\mathcal{Q}^{\prime} \circ \Phi .
$$

Such a morphism is determined by $\varphi:=p r_{W^{\prime}[1]} \circ \Phi: \mathcal{S}(W[1]) \rightarrow W^{\prime}[1]$ with $\varphi(1)=0$ via $\Phi=e^{* \varphi}$ with $A * B=\mu \circ A \otimes B \circ \Delta$ for $A, B \in \operatorname{Hom}\left(\mathcal{S}(W[1]), \mathcal{S}\left(W^{\prime}[1]\right)\right)$
Φ is a quasi-isomorphism if $\Phi_{1}=\left.\Phi\right|_{W[1]}=\varphi_{1}: W[1] \rightarrow W^{\prime}[1]$ induces an iso. in cohomology.
A formality for a DGLA $(\mathfrak{g},[], d$,$) is a quasi-isomorphism from the L_{\infty}$-algebra corresponding to $\left(H,[,]_{H}, 0\right)$ (the cohomology of \mathfrak{g} with respect to d), to the L_{∞}-algebra corresponding to (g, [,], d') i.e.
$\Phi: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathcal{S}(\mathfrak{g}[1])$ such that $\Phi \circ \overline{[,]_{H}[1]}=\overline{(d[1]+[,][1])} \circ \Phi$

[^3]
Quasi-isomorphisms and Formality

A L_{∞}-morphism from a L_{∞}-algebra (W, \mathcal{Q}) to a L_{∞}-algebra $\left(W^{\prime}, \mathcal{Q}^{\prime}\right)$ is a morphism of graded con. coalgebras $\Phi: \mathcal{S}(W[1]) \rightarrow \mathcal{S}\left(W^{\prime}[1]\right)$, intertwining differentials

$$
\Phi \circ \mathcal{Q}=\mathcal{Q}^{\prime} \circ \Phi
$$

Such a morphism is determined by $\varphi:=\operatorname{pr}_{W^{\prime}[1]} \circ \Phi: \mathcal{S}(W[1]) \rightarrow W^{\prime}[1]$ with $\varphi(1)=0$ via $\Phi=e^{* \varphi}$ with $A * B=\mu \circ A \otimes B \circ \Delta$ for $A, B \in \operatorname{Hom}\left(\mathcal{S}(W[1]), \mathcal{S}\left(W^{\prime}[1]\right)\right)$ Φ is a quasi-isomorphism if $\Phi_{1}=\left.\Phi\right|_{W[1]}=\varphi_{1}: W[1] \rightarrow W^{\prime}[1]$ induces an iso. in cohomology. A formality for a DGLA $(\mathfrak{g},[], d$,$) is a quasi-isomorphism from the L_{\infty}$-algebra corresponding to $\left(H,[,]_{H}, 0\right)$ (the cohomology of \mathfrak{g} with respect to d), to the L_{∞}-algebra corresponding to $(\mathfrak{g},[], d$,$) i.e.$

$$
\Phi: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathcal{S}(\mathfrak{g}[1]) \text { such that } \Phi \circ \overline{[,]_{H}[1]}=\overline{(d[1]+[,][1])} \circ \Phi .
$$

A quasi-isomorphism yields isomorphic moduli spaces of deformations.

Kontsevich's formality for \mathbb{R}^{d}

Kontsevich gave an explicit formula for the Taylor coefficients of a formality for \mathbb{R}^{d}, i.e. the Taylor coefficients F_{n} of an L_{∞}-morphism between the two L_{∞}-algebras

$$
F:\left(\mathcal{T}_{\text {poly }}\left(\mathbb{R}^{d}\right), \mathcal{Q}\right) \rightarrow\left(\mathcal{D}_{\text {poly }}\left(\mathbb{R}^{d}\right), \mathcal{Q}^{\prime}\right)
$$

corresponding to the DGLA $\left(\mathcal{T}_{\text {poly }}\left(\mathbb{R}^{d}\right),[,]_{\mathcal{T}}, d_{\mathcal{T}}=0\right)$ and to the DGLA $\left(\mathcal{D}_{\text {poly }}\left(\mathbb{R}^{d}\right),[,]_{G}, d_{\mathcal{D}}\right)$ with the first coefficient

$$
F_{1}: \mathcal{T}_{\text {poly }}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{D}_{\text {poly }}\left(\mathbb{R}^{d}\right)
$$

given by $F_{1}=U_{1}: U_{1}\left(X_{0} \wedge \ldots \wedge X_{n}\right)\left(f_{0}, \ldots, f_{n}\right)=\frac{1}{(n+1)!} \sum_{\sigma \in S_{n+1}} \epsilon(\sigma) X_{0\left(f_{\sigma(0)}\right)} \ldots X_{n}\left(f_{\sigma(n)}\right)$. The formula is

$$
F_{n}=\sum_{m \geq 0} \sum_{\vec{\Gamma} \in G_{n, m}} \mathcal{W}_{\vec{\Gamma}} B_{\vec{\Gamma}}
$$

where $G_{n, m}$ is a set of oriented admissible graphs; $B_{\vec{\Gamma}}$ asoociates a m-differential operator to an n-tuple of multivectorfields; and $\mathcal{W}_{\vec{r}}$ is the integral of a form $\omega_{\vec{r}}$ over the compactification of a configuration space $C_{\left\{p_{1}, \ldots, p_{n}\right\}\left\{q_{1}, \ldots, q_{m}\right\}}^{+}$.

An explicit globalisation on any manifold has been built by Cattaneo, Felder and Tomassini.
Given a manifold and a torsion free connection ∇ on it, Dolgushev has built a formality

Kontsevich's formality for \mathbb{R}^{d}

Kontsevich gave an explicit formula for the Taylor coefficients of a formality for \mathbb{R}^{d}, i.e. the Taylor coefficients F_{n} of an L_{∞}-morphism between the two L_{∞}-algebras

$$
F:\left(\mathcal{T}_{\text {poly }}\left(\mathbb{R}^{d}\right), \mathcal{Q}\right) \rightarrow\left(\mathcal{D}_{\text {poly }}\left(\mathbb{R}^{d}\right), \mathcal{Q}^{\prime}\right)
$$

corresponding to the DGLA $\left(\mathcal{T}_{\text {poly }}\left(\mathbb{R}^{d}\right),[,]_{\mathcal{T}}, d_{\mathcal{T}}=0\right)$ and to the DGLA $\left(\mathcal{D}_{\text {poly }}\left(\mathbb{R}^{d}\right),[,]_{G}, d_{\mathcal{D}}\right)$ with the first coefficient

$$
F_{1}: \mathcal{T}_{\text {poly }}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{D}_{\text {poly }}\left(\mathbb{R}^{d}\right)
$$

given by $F_{1}=U_{1}: U_{1}\left(X_{0} \wedge \ldots \wedge X_{n}\right)\left(f_{0}, \ldots, f_{n}\right)=\frac{1}{(n+1)!} \sum_{\sigma \in S_{n+1}} \epsilon(\sigma) X_{0\left(f_{\sigma(0)}\right)} \ldots X_{n}\left(f_{\sigma(n)}\right)$. The formula is

$$
F_{n}=\sum_{m \geq 0} \sum_{\vec{\Gamma} \in G_{n, m}} \mathcal{W}_{\vec{\Gamma}} B_{\vec{r}}
$$

where $G_{n, m}$ is a set of oriented admissible graphs; $B_{\vec{\Gamma}}$ asoociates a m-differential operator to an n-tuple of multivectorfields; and $\mathcal{W}_{\vec{r}}$ is the integral of a form $\omega_{\vec{r}}$ over the compactification of a configuration space $C_{\left\{p_{1}, \ldots, p_{n}\right\}\left\{q_{1}, \ldots, q_{m}\right\}}^{+}$.
An explicit globalisation on any manifold has been built by Cattaneo, Felder and Tomassini. Given a manifold and a torsion free connection ∇ on it, Dolgushev has built a formality

$$
F:\left(\mathcal{T}_{\text {poly }}(M), \mathcal{Q}\right) \rightarrow\left(\mathcal{D}_{\text {poly }}(M), \mathcal{Q}^{\prime}\right)
$$

Classification of star products.

Given a Poisson tensor $P_{(\nu)}=\sum_{k \geq 1} \nu^{k} P_{k}$, then $\star P_{(\nu)}:=\mu+\sum_{k \geq 1} F_{k}\left(P_{(\nu)}, \cdots, P_{(\nu)}\right)$ is a star product on $\left(M, P_{1}\right)$ and any \star product is equivalent to such a one. Equivalence classes of star products are in bijection with equivalence classes of Poisson deformations.

Hermitian star products and *-algebras over ordered rings

To study representations of the deformed algebras, parts of the algebraic theory of states and representations which exist for C^{*}-algebras have been extended by Bordemann, Bursztyn and Waldmann to the framework of $*$-algebras over ordered rings

A C^{*}-algebra is a Banach algebra over \mathbb{C} with a $*$ involution (i.e. an involutive semilinear antiautomorphism) such that $\|a\|=\left\|a^{*}\right\|$ and $\left\|a a^{*}\right\|=\|a\|^{2}$ for each a.
If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ is the algebra of bounded linear operators on a Hilbert space \mathcal{H} and if $0 \neq \psi \in \mathcal{H}$,

$$
\omega: \mathcal{A} \rightarrow \mathbb{C}: A \mapsto \omega(A):=\frac{\langle\psi, A \psi\rangle}{\langle\psi, \psi>}
$$

is a linear functional which is positive in the sense that $\omega\left(A^{*} A\right) \geq 0$. It is defined by the ray ψ
generates. This lead to define a state in the theory of C^{*} algebras as a positive linear functional.
An associative commutative unital ring R is said to be ordered with positive elements P if the
product and the sum of two elements in P are in P, and if R is the disjoint union
$R=P \cup\{0\} \cup-P$. Examples are given by $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R}[[\lambda]]$ in the case of $\mathbb{R}[[\lambda]]$, a series
a= $\sum_{r=r_{0}}^{\infty} a_{r} \lambda^{r}$ is positive if its lowest order non vanishing term is positive ($\left(a_{r}>0\right)$.
Let R be an ordered ring and $C=R(i)$ be the ring extension by a square root i of -1 (for
deformation quantization, $C=\mathbb{C}[[\lambda]]$ for $R=\mathbb{R}[[\lambda]]$ with $\nu=i \lambda)$.
An associative algebra \mathcal{A} over C is called a *-algebra if it has an involutive antilinear
antiautomorphism *: $\mathcal{A} \rightarrow \mathcal{A}$ called the *-involution;for instance $\left(C^{\infty}(M)[[\nu=i \lambda]], *\right)$ with a

Hermitian star products and *-algebras over ordered rings

To study representations of the deformed algebras, parts of the algebraic theory of states and representations which exist for C^{*}-algebras have been extended by Bordemann, Bursztyn and Waldmann to the framework of $*$-algebras over ordered rings

A C^{*}-algebra is a Banach algebra over \mathbb{C} with a $*$ involution (i.e. an involutive semilinear antiautomorphism) such that $\|a\|=\left\|a^{*}\right\|$ and $\left\|a a^{*}\right\|=\|a\|^{2}$ for each a.
If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ is the algebra of bounded linear operators on a Hilbert space \mathcal{H} and if $0 \neq \psi \in \mathcal{H}$,

$$
\omega: \mathcal{A} \rightarrow \mathbb{C}: A \mapsto \omega(A):=\frac{\langle\psi, A \psi\rangle}{\langle\psi, \psi\rangle}
$$

is a linear functional which is positive in the sense that $\omega\left(A^{*} A\right) \geq 0$. It is defined by the ray ψ generates. This lead to define a state in the theory of C^{*} algebras as a positive linear functional.

An associative commutative unital ring R is said to be ordered with positive elements P if the
product and the sum of two elements in P are in P, and if R is the disjoint union
$R=P \cup\{0\} \cup-P$. Examples are given by $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R}[[\lambda]]$; in the case of $\mathbb{R}[[\lambda]]$, a series
$a=\sum_{r=r_{0}}^{\infty}$ ar λ^{r} is positive if its lowest order non vanishing term is positive $\left(a_{r_{0}}>0\right)$.
Let R be an ordered ring and $C=R(i)$ be the ring extension by a square root i of -1 (for
deformation quantization, $C=\mathbb{C}[[\lambda]]$ for $R=\mathbb{R}[[\lambda]]$ with $\nu=i \lambda)$.
An associative algebra \mathcal{A} over C is called a *-algebra if it has an involutive antilinear
antiautomorphism *: $\rightarrow \mathcal{A}$ called the *-involution;for instance $\left(C^{\infty}(M)[[\nu=i \lambda]]\right.$, $\left.\star\right)$ with a

Hermitian star products and *-algebras over ordered rings

To study representations of the deformed algebras, parts of the algebraic theory of states and representations which exist for C^{*}-algebras have been extended by Bordemann, Bursztyn and Waldmann to the framework of $*$-algebras over ordered rings
A C^{*}-algebra is a Banach algebra over \mathbb{C} with a $*$ involution (i.e. an involutive semilinear antiautomorphism) such that $\|a\|=\left\|a^{*}\right\|$ and $\left\|a a^{*}\right\|=\|a\|^{2}$ for each a.
If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ is the algebra of bounded linear operators on a Hilbert space \mathcal{H} and if $0 \neq \psi \in \mathcal{H}$,

$$
\omega: \mathcal{A} \rightarrow \mathbb{C}: A \mapsto \omega(A):=\frac{\langle\psi, A \psi\rangle}{\langle\psi, \psi\rangle}
$$

is a linear functional which is positive in the sense that $\omega\left(A^{*} A\right) \geq 0$. It is defined by the ray ψ generates. This lead to define a state in the theory of C^{*} algebras as a positive linear functional.

An associative commutative unital ring R is said to be ordered with positive elements P if the product and the sum of two elements in P are in P, and if R is the disjoint union $R=P \cup\{0\} \cup-P$. Examples are given by $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R}[[\lambda]]$; in the case of $\mathbb{R}[[\lambda]]$, a series $a=\sum_{r=r_{0}}^{\infty} a_{r} \lambda^{r}$ is positive if its lowest order non vanishing term is positive ($a_{r_{0}}>0$).

Let R be an ordered ring and $C=R(i)$ be the ring extension by a square root i of -1 (for deformation quantization, $C=\mathbb{C}[[\lambda]]$ for $R=\mathbb{R}[[\lambda]]$ with $\nu=i \lambda)$.
An associative algebra \mathcal{A} over C is called a^{*}-algebra if it has an involutive antilinear

Hermitian star products and *-algebras over ordered rings

To study representations of the deformed algebras, parts of the algebraic theory of states and representations which exist for C^{*}-algebras have been extended by Bordemann, Bursztyn and Waldmann to the framework of $*$-algebras over ordered rings

A C^{*}-algebra is a Banach algebra over \mathbb{C} with a $*$ involution (i.e. an involutive semilinear antiautomorphism) such that $\|a\|=\left\|a^{*}\right\|$ and $\left\|a a^{*}\right\|=\|a\|^{2}$ for each a.
If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ is the algebra of bounded linear operators on a Hilbert space \mathcal{H} and if $0 \neq \psi \in \mathcal{H}$,

$$
\omega: \mathcal{A} \rightarrow \mathbb{C}: A \mapsto \omega(A):=\frac{\langle\psi, A \psi\rangle}{\langle\psi, \psi\rangle}
$$

is a linear functional which is positive in the sense that $\omega\left(A^{*} A\right) \geq 0$. It is defined by the ray ψ generates. This lead to define a state in the theory of C^{*} algebras as a positive linear functional.

An associative commutative unital ring R is said to be ordered with positive elements P if the product and the sum of two elements in P are in P, and if R is the disjoint union $R=P \cup\{0\} \cup-P$. Examples are given by $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R}[[\lambda]]$; in the case of $\mathbb{R}[[\lambda]]$, a series $a=\sum_{r=r_{0}}^{\infty} a_{r} \lambda^{r}$ is positive if its lowest order non vanishing term is positive ($a_{r_{0}}>0$).

Let R be an ordered ring and $C=R(i)$ be the ring extension by a square root i of -1 (for deformation quantization, $C=\mathbb{C}[[\lambda]]$ for $R=\mathbb{R}[[\lambda]]$ with $\nu=i \lambda)$.
An associative algebra \mathcal{A} over C is called a ${ }^{*}$-algebra if it has an involutive antilinear antiautomorphism ${ }^{*}: \mathcal{A} \rightarrow \mathcal{A}$ called the ${ }^{*}$-involution; for instance $\left(C^{\infty}(M)[[\nu=i \lambda]], \star\right)$ with a

Hermitian star products and *-algebras over ordered rings

To study representations of the deformed algebras, parts of the algebraic theory of states and representations which exist for C^{*}-algebras have been extended by Bordemann, Bursztyn and Waldmann to the framework of $*$-algebras over ordered rings
A C^{*}-algebra is a Banach algebra over \mathbb{C} with a $*$ involution (i.e. an involutive semilinear antiautomorphism) such that $\|a\|=\left\|a^{*}\right\|$ and $\left\|a a^{*}\right\|=\|a\|^{2}$ for each a.
If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ is the algebra of bounded linear operators on a Hilbert space \mathcal{H} and if $0 \neq \psi \in \mathcal{H}$,

$$
\omega: \mathcal{A} \rightarrow \mathbb{C}: A \mapsto \omega(A):=\frac{\langle\psi, A \psi\rangle}{\langle\psi, \psi\rangle}
$$

is a linear functional which is positive in the sense that $\omega\left(A^{*} A\right) \geq 0$. It is defined by the ray ψ generates. This lead to define a state in the theory of C^{*} algebras as a positive linear functional.

An associative commutative unital ring R is said to be ordered with positive elements P if the product and the sum of two elements in P are in P, and if R is the disjoint union $R=P \cup\{0\} \cup-P$. Examples are given by $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R}[[\lambda]]$; in the case of $\mathbb{R}[[\lambda]]$, a series $a=\sum_{r=r_{0}}^{\infty} a_{r} \lambda^{r}$ is positive if its lowest order non vanishing term is positive ($a_{r_{0}}>0$).

Let R be an ordered ring and $C=R(i)$ be the ring extension by a square root i of -1 (for deformation quantization, $C=\mathbb{C}[[\lambda]]$ for $R=\mathbb{R}[[\lambda]]$ with $\nu=i \lambda)$.
An associative algebra \mathcal{A} over C is called a ${ }^{*}$-algebra if it has an involutive antilinear antiautomorphism ${ }^{*}: \mathcal{A} \rightarrow \mathcal{A}$ called the ${ }^{*}$-involution;for instance $\left(C^{\infty}(M)[[\nu=i \lambda]], \star\right)$ with a

States for Hermitian star products

A linear functional $\omega: \mathcal{A} \rightarrow C$ over a ${ }^{*}$-algebra over C is called positive if

$$
\omega\left(A^{*} A\right) \geq 0 \quad \text { for any } A \in \mathcal{A}
$$

A state for a ${ }^{*}$-algebra \mathcal{A} with unit over C is a positive linear functional so that $\omega(1)=1$. The positive linear functionals on $C^{\infty}(M)$ are the compactly supported Borel measures. The δ-functional on $\mathbb{R}^{2 n}$ is not positive with respect to the Moyal star product: if $H:=\frac{1}{2 m} p^{2}+k q^{2}$ $\left(H \star_{M} H\right)(0,0)=\frac{k \nu^{2}}{2 m}=\frac{-k \lambda^{2}}{2 m}<0$. Bursztyn and Waldmann proved that for a Hermitian star product, any classical state ω_{0} on $C^{\infty}(M)$ can be deformed into a state for the deformed algebra, $\omega=\sum_{r=0}^{\infty} \lambda^{r} \omega_{r}$.
Given a positive functional ω over the *-algebra \mathcal{A}, one can extend the GNS construction of an associated representation of the algebra: the Gel'fand ideal of ω is $\mathcal{J}_{\omega}=\left\{a \in \mathcal{A} \mid \omega\left(a^{*} a\right)=0\right\}$ and on obtains the GNS- representation of the algebra \mathcal{A} by left multiplication on the space $\mathcal{H} \omega=A / \mathcal{J} \omega$ with the pre Hilbert space structure defined via $\langle[a],[b]\rangle=\omega\left(a^{*} b\right)$ where $[a]=a+\mathcal{J}_{\omega}$ denotes the class in $\mathcal{A} / \mathcal{J}_{\omega}$ of $a \in \mathcal{A}$.
In that setting, Bursztyn and Waldmann introduced a notion of strong Morita equivalence
(yielding equivalence of $*$-representations) and the complete classification of star products up to Morita equivalence was given, first on a symplectic and later in collaboration with Dolgushev on
a general Poisson manifold

States for Hermitian star products

A linear functional $\omega: \mathcal{A} \rightarrow C$ over a ${ }^{*}$-algebra over C is called positive if

$$
\omega\left(A^{*} A\right) \geq 0 \quad \text { for any } A \in \mathcal{A}
$$

A state for a ${ }^{*}$-algebra \mathcal{A} with unit over C is a positive linear functional so that $\omega(1)=1$. The positive linear functionals on $C^{\infty}(M)$ are the compactly supported Borel measures. The δ-functional on $\mathbb{R}^{2 n}$ is not positive with respect to the Moyal star product: if $H:=\frac{1}{2 m} p^{2}+k q^{2}$, $\left(H \star_{M} H\right)(0,0)=\frac{k \nu^{2}}{2 m}=\frac{-k \lambda^{2}}{2 m}<0$. Bursztyn and Waldmann proved that for a Hermitian star product, any classical state ω_{0} on $C^{\infty}(M)$ can be deformed into a state for the deformed algebra, $\omega=\sum_{r=0}^{\infty} \lambda^{r} \omega_{r}$.

Given a positive functional ω over the *-algebra \mathcal{A}, one can extend the GNS construction of an associated representation of the algebra: the Gel'fand ideal of ω is $\mathcal{J}_{\omega}=\left\{a \in \mathcal{A} \mid \omega\left(a^{*} a\right)=0\right\}$ and on obtains the GNS- representation of the algebra \mathcal{A} by left multiplication on the space $\mathcal{H} \omega=\mathcal{A} / \mathcal{J}_{\omega}$ with the pre Hilbert space structure defined via $\langle[a],[b]\rangle=\omega\left(a^{*} b\right)$ where $[a]=a+\mathcal{J}_{\omega}$ denotes the class in $\mathcal{A} / \mathcal{J}_{\omega}$ of $a \in \mathcal{A}$.

In that setting, Bursztyn and Waldmann introduced a notion of strong Morita equivalence
(yielding equivalence of $*$-representations) and the complete classification of star products up to Morita equivalence was given, first on a symplectic and later in collaboration with Dolgushev on
a general Poisson manifold

States for Hermitian star products

A linear functional $\omega: \mathcal{A} \rightarrow C$ over a ${ }^{*}$-algebra over C is called positive if

$$
\omega\left(A^{*} A\right) \geq 0 \quad \text { for any } A \in \mathcal{A}
$$

A state for a ${ }^{*}$-algebra \mathcal{A} with unit over C is a positive linear functional so that $\omega(1)=1$. The positive linear functionals on $C^{\infty}(M)$ are the compactly supported Borel measures. The δ-functional on $\mathbb{R}^{2 n}$ is not positive with respect to the Moyal star product: if $H:=\frac{1}{2 m} p^{2}+k q^{2}$, $\left(H \star_{M} H\right)(0,0)=\frac{k \nu^{2}}{2 m}=\frac{-k \lambda^{2}}{2 m}<0$. Bursztyn and Waldmann proved that for a Hermitian star product, any classical state ω_{0} on $C^{\infty}(M)$ can be deformed into a state for the deformed algebra, $\omega=\sum_{r=0}^{\infty} \lambda^{r} \omega_{r}$.
Given a positive functional ω over the ${ }^{*}$-algebra \mathcal{A}, one can extend the GNS construction of an associated representation of the algebra: the Gel'fand ideal of ω is $\mathcal{J}_{\omega}=\left\{a \in \mathcal{A} \mid \omega\left(a^{*} a\right)=0\right\}$ and on obtains the GNS- representation of the algebra \mathcal{A} by left multiplication on the space $\mathcal{H}_{\omega}=\mathcal{A} / \mathcal{J}_{\omega}$ with the pre Hilbert space structure defined via $\langle[a],[b]\rangle=\omega\left(a^{*} b\right)$ where [a] $=a+\mathcal{J}_{\omega}$ denotes the class in $\mathcal{A} / \mathcal{J}_{\omega}$ of $a \in \mathcal{A}$.

In that setting, Bursztyn and Waldmann introduced a notion of strong Morita equivalence
(yielding equivalence of $*$-representations) and the complete classification of star products up to
Morita equivalence was given first on a symplectic and later in collaboration with Dolgushev on
a general Poisson manifold

States for Hermitian star products

A linear functional $\omega: \mathcal{A} \rightarrow C$ over a ${ }^{*}$-algebra over C is called positive if

$$
\omega\left(A^{*} A\right) \geq 0 \quad \text { for any } A \in \mathcal{A}
$$

A state for a ${ }^{*}$-algebra \mathcal{A} with unit over C is a positive linear functional so that $\omega(1)=1$. The positive linear functionals on $C^{\infty}(M)$ are the compactly supported Borel measures. The δ-functional on $\mathbb{R}^{2 n}$ is not positive with respect to the Moyal star product: if $H:=\frac{1}{2 m} p^{2}+k q^{2}$, $\left(H \star_{M} H\right)(0,0)=\frac{k \nu^{2}}{2 m}=\frac{-k \lambda^{2}}{2 m}<0$. Bursztyn and Waldmann proved that for a Hermitian star product, any classical state ω_{0} on $C^{\infty}(M)$ can be deformed into a state for the deformed algebra, $\omega=\sum_{r=0}^{\infty} \lambda^{r} \omega_{r}$.
Given a positive functional ω over the ${ }^{*}$-algebra \mathcal{A}, one can extend the GNS construction of an associated representation of the algebra: the Gel'fand ideal of ω is $\mathcal{J}_{\omega}=\left\{a \in \mathcal{A} \mid \omega\left(a^{*} a\right)=0\right\}$ and on obtains the GNS- representation of the algebra \mathcal{A} by left multiplication on the space $\mathcal{H}_{\omega}=\mathcal{A} / \mathcal{J}_{\omega}$ with the pre Hilbert space structure defined via $\langle[a],[b]\rangle=\omega\left(a^{*} b\right)$ where [a] $=a+\mathcal{J}_{\omega}$ denotes the class in $\mathcal{A} / \mathcal{J}_{\omega}$ of $a \in \mathcal{A}$.
In that setting, Bursztyn and Waldmann introduced a notion of strong Morita equivalence (yielding equivalence of $*$-representations) and the complete classification of star products up to Morita equivalence was given, first on a symplectic and later in collaboration with Dolgushev on a general Poisson manifold .

[^0]: ρ is the natural representation of the symplectic group $\operatorname{Sp}(V, \Omega)$ on W (for any $B \in \operatorname{sp}(V, \Omega)$,
 $\rho_{*}(B) a=\frac{-1}{\nu}[\bar{B}, a]$ where $[a, b]:=\left(a \star_{M} b\right)-\left(b \star_{M} a\right)$ for any $a, b \in W$ and $\left.\bar{B}=\frac{1}{2} \sum_{i j r} \Omega_{r i} B_{j}^{r} y^{i} y^{j}\right)$; it acts by
 automornhisms of \star_{M}, so the $W / e y l$ bundle is a bundle of algebras the fiber product being *M

[^1]: The Fedosov's star product $* \nabla, \Omega$ is then obtained by $u \star_{\nabla, \Omega} v:=\left(Q(u) \star_{M} Q(v)\right)_{00}$

[^2]: where B_{j} are the Bernouilli numbers.

[^3]: A quasi-isomorphism yields isomorphic moduli spaces of deformations.

