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Programme

Introduction to the concept of deformation quantization (existence, classification and

representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie

algebra action) compatible with the classical Poisson structure, and one wants to consider star

products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations).

We recall in particular the link between left invariant star products on Lie groups and Drinfeld

twists, and the notion of universal deformation formulas.

Quantum moment map : Classically, symmetries are particularly interesting when they are

implemented by a moment map and we give indications to build a corresponding quantum

version.

Quantum reduction : reduction is a construction in classical mechanics with symmetries

which allows to reduce the dimension of the manifold; we describe one of the various quantum

analogues which have been considered in the framework of formal deformation quantization.

Considerations about convergence of star products.
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Group Action in a classical setting

A Lie group G acts by Poisson diffeomorphisms on (M,P) iff

{ g∗u, g∗v } = g∗({u, v}) ∀u, v ∈ C∞(M), ∀g ∈ G ,

or, equivalently, if and only if g∗P = P for all g ∈ G .
In the symplectic case, this is equivalent to g∗ω = ω for all g ∈ G .
Then G is a symmetry group for our classical system.

Any X in the Lie algebra g of G gives rise to a fundamental vector field X ∗M

X ∗Mp =
d

dt vert0
exp−tX · p;

then [X ∗M ,Y ∗M ] = [X ,Y ]∗M and we have an infinitesimal Poisson action of g

LX∗M {u, v} = {LX∗Mu, v}+ {u,LX∗M v} (1)

or equivalently LX∗MP = 0 or, in the symplectic case LX∗Mω = 0 which says that

ι(X ∗M)ω is a closed 1-form on M.
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Group action in the deformation quantization setting

The action of a Lie group on the classical Hilbert space framework of quantum mechanics is
described by a unitary representation of the group on the Hilbert space; such a representation
acts by conjugaison on the set of selfadjoint operators on that space and yields an
automorphism of the algebra of quantum observables.

In the setting of deformation quantization, the classical action of a group G on a Poisson
manifold extends to the algebra of observables C∞(M)[[ν]] and one can define different notions
of invariance of the deformation quantization under the action of a Lie group.

Assume (M,P) is a Poisson manifold and G is a Lie group acting on M. Let (C∞(M)[[ν]], ?) be
a deformation quantization of (M,P). The star product is said to be geometrically invariant if,

g∗ (u ? v) = g∗u ? g∗v ∀g ∈ G , ∀u, v ∈ C∞(M).

This clearly implies that g∗ ({u, v}) = {g∗u, g∗v} so G acts by Poisson diffeomorphisms.

X∗M is then a derivation of the star product X∗M (u ? v) = (X∗Mu) ? v + u ? (X∗Mv).
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Symmetries of star products

More generally, symmetries in quantum theories are automorphisms of the algebra of observables.
A symmetry σ of a star product ? is an automorphism of the C[[ν]]-algebra (C∞(M)[[ν]], ?)

σ(u ? v) = σ(u) ? σ(v), σ(1) = 1,

where σ is a formal series of linear maps.
One can show that σ(u) = T (u ◦ τ) where τ is a Poisson diffeomorphism of (M,P) and
T = Id +

∑
r≥1 ν

rTr a formal series of differential maps.

A Lie group G acts as symmetries of (C∞(M)[[ν]], ?) if there is a homomorphism

σ : G → Aut(M, ?).

In that case, σ(g)u = T (g)(τ(g)∗u) and τ defines a Poisson action of G on (M,P).
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Invariant star products and invariant connections

Two G -invariant star products are called G -equivariantly equivalent if there is an equivalence
between them which commutes with the action of G .

Existence and classification of invariant star products on a Poisson manifold is known, provided
there exists an invariant connection on the manifold.

Fedosov’s construction in the symplectic case builds a star product ?∇,0, from a symplectic
connection ∇. If ∇ is invariant under the action of G , ?∇,0 is invariant.

More generally, any diffeomorphism φ of (M, ω) is a symmetry of the Fedosov star product ?∇,Ω̃
iff it preserves the symplectic 2-form ω, the connection ∇ and the series of closed 2-forms Ω̃.

Reciprocally [Rawnsley-G], a natural star product on a symplectic manifold determines in a

unique way a symplectic connection. Hence, when G acts on (M, ω) and leaves a natural ?

product invariant, there is a unique symplectic connection which is invariant under G .
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Classification of invariant star products

Suppose ? is G -invariant on (M, ω) and assume there exists a G -invariant symplectic connection
∇. Then, there exists a series of G -invariant closed 2-form Ω ∈ Z2(M;R)G−inv [[ν]] such that ?
is G -equivalent to the Fedosov star product constructed from ∇ and Ω. Furthermore ∗∇,Ω and
∗∇,Ω′ are G - equivalent if and only if Ω− Ω′ is the boundary of a series of G -invariant 1-forms
on M.

Hence [Bertelson, Bieliavsky, G.],there is a bijection between the G -equivalence classes of
G -invariant ∗-products on (M, ω) and the space of formal series of elements in the second space
of invariant cohomology of M, H2(M,R)G−inv [[ν]].

Using Dolgushev’s construction of a formality starting from a connection, one has a similar
result in the Poisson setting : If there exists an invariant connection, there is a bijection between
the G -equivalence classes of G -invariant ∗-products on (M,P) and the G -equivariant
equivalence classes of G -invariant Poisson deformations of P.

Let us mention that there exist symplectic manifolds which are G -homogeneous but do not

admit any G -invariant symplectic connection. A first example was given by Arnal: the orbit of a

filiform nilpotent Lie group in the dual of its algebra.
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Invariant star products on Lie groups and Drinfeld twists

The class of manifolds with a simply transitive action are Lie groups with the action given by
left multiplication; one is interested in left invariant ?-products on Lie groups.

Since left invariant differential operators on a Lie group G are identified with elements in the
universal enveloping algebra U(g), left invariant bidifferential operators can be viewed as
elements of U(g)⊗ U(g) and a left invariant ?-product on a Lie group G is given by an element

F ∈ (U(g)⊗ U(g)) [[ν]].

such that

(∆⊗ Id)(F ) ◦ (F ⊗ 1) = (Id⊗∆)(F ) ◦ (1⊗ F ) where ◦ denotes the product in
U(g)⊗ U(g)⊗ U(g) and ∆ : U(g)→ U(g)⊗ U(g) is the usual coproduct
(∆ : U(g)→ U(g)⊗ U(g) is the algebra morphism such that ∆(x) = 1⊗ x + x ⊗ 1 for
x ∈ g.) , both extended C[[ν]]-linearly ; this expresses the associativity;

(ε⊗ Id)F = 1 = (Id⊗ ε)F , where ε : U(g)→ C is the counit; this expresses that
1 ? u = u ? 1 = u;

F = 1⊗ 1 + O(ν), which expresses that the zeroth order term is the usual product of
functions.

Such an element is called a formal Drinfeld twist.
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(ε⊗ Id)F = 1 = (Id⊗ ε)F , where ε : U(g)→ C is the counit; this expresses that
1 ? u = u ? 1 = u;

F = 1⊗ 1 + O(ν), which expresses that the zeroth order term is the usual product of
functions.

Such an element is called a formal Drinfeld twist.
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r -matrices and Drinfeld twists.

The skewsymmetric part of the first order term, which is automatically in g⊗ g corresponds to a
left invariant Poisson structure on G and is what is called a classical r-matrix.

Drinfeld has proven in 83 that any classical r -matrix arises as the first term of a Drinfeld twist
(see Halbout about formality of bialgebras , or Esposito, Schnitzer and Waldmann in 2017 about
a universal construction ).

An invariant equivalence is given by an element S ∈ U(g)[[ν]] of the form S = 1 + O(ν) and the
equivalent ?-product is defined by the new Drinfeld twist given by

F ′ = ∆(S−1)F (S ⊗ S).

An analogous algebraic construction on a homogeneous space M = G/H was given by Alekseev

and Lachowska in 2005 ; invariant bidifferential operators on G/H are viewed as elements of(
(U(g)/U(g) · h)⊗2

)H
; a star product is given in terms of a series B ∈

(
(U(g)/U(g) · h)⊗2

)H
[[ν]]

and associativity writes again as ((∆⊗ Id)B)(B ⊗ 1) = ((Id⊗∆)B)(1⊗ B) where both sides

define uniquely invariant tri-differential operators on G/H.
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Universal Deformation Formulas

Given a left invariant star product on a Lie group, hence a formal Drinfeld twist
F ∈ (U(g)⊗ U(g)) [[ν]] on its Lie algebra g, one can deform any associative algebra (A, µA)
acted upon by g through derivations.

This process is called a universal deformation formula and is defined as follows:

a ?F b := µA (F • (a⊗ b))

where • denotes the action of U(g)× U(g)[[ν]] on A× A[[ν]] which is the extension of the
action of g on A to an action of U(g)× U(g) on A× A extended C[[ν]]-linearly. The properties
of a twist ensure that ?F is an associative deformation of µA. (Giaquinto and Zhang in 1998, by
Bieliavsky and Gayral in a non formal setting, Esposito, Schnitzer and Waldmann).
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Programme

Introduction to the concept of deformation quantization (existence, classification and

representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie

algebra action) compatible with the classical Poisson structure, and one wants to consider star

products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations).

We recall in particular the link between left invariant star products on Lie groups and Drinfeld

twists, and the notion of universal deformation formulas.

Quantum moment map : Classically, symmetries are particularly interesting when they are

implemented by a moment map and we give indications to build a corresponding quantum

version.

Quantum reduction : reduction is a construction in classical mechanics with symmetries

which allows to reduce the dimension of the manifold; we describe one of the various quantum

analogues which have been considered in the framework of formal deformation quantization.

Considerations about convergence of star products.
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Hamiltonian Action in a classical setting

Of particular importance in physics is the case where the action is implemented by a moment
map. The action is called (almost) Hamiltonian when each fundamental vector field is
Hamiltonian, i.e. when for each X ∈ g there exists a function fX on M such that

X∗Mu = {fX , u} ∀u ∈ C∞(M).

In the symplectic case this amounts to say that ι(X∗M)ω = dfX .

When the Hamiltonian governing the dynamics on (M,P) is invariant under the action of G ,
any of those functions fX is a constant of the motion.

A further assumption is to ask that the action possesses a G equivariant moment map J:

J : M → g∗ s.t. X∗Mu = {< J,X >, u} ∀u ∈ C∞(M)

< J,X >: M → R : p 7→< J(p),X >, < ., . > denoting the pairing between g and its dual.
Equivariance means that the Hamiltonian functions fX :=< J,X > satisfy
fX (g · p) = fAdg−1X (p) and thus

{ fX , fY } = f[X ,Y ] ∀X ,Y ∈ g.

An action so that each fundamental vector field is Hamiltonian and so that one can choose

X 7→ fX to be a homomorphism of Lie algebras is also called a (strongly) Hamiltonian action. If

G is connected, it is equivalent to the existence of a G equivariant moment map.
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Hamiltonian action in the deformation quantization setting

An action of the Lie algebra g on the deformed algebra, (C∞(M)[ν]]], ?), is a homomorphism
D : g→ Der(M, ?) into the space of derivations of the star product.

A derivation D is essentially inner or Hamiltonian if D = 1
ν

ad? u for some u ∈ C∞(M)[[ν]].

We call an action of a Lie algebra (or of a Lie group) on a deformed algebra almost
?-Hamiltonian if each D(X ), for any X ∈ g, is essentially inner, and we call (quantum)
Hamiltonian a linear choice of functions uX satisfying

D(X ) = 1
ν

ad? uX , X ∈ g.

The action is ?-Hamiltonian if uX can be chosen to make the map

g→ C∞(M)[[ν]] : X 7→ uX

a homomorphism of Lie algebras (i.e. 1
ν

(uX ? uY − ?uY ? uX ) = u[X ,Y ] ∀X ,Y ∈ g).
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Quantum moment maps

When ? is invariant under the action of G on (M,P) and the corresponding action of the Lie
algebra g ( given by D(X ) = X∗M) is ?-Hamiltonian, a map g→ C∞(M)[[ν]] s.t.

X∗M = 1
ν

ad? uX ,
1
ν

(uX ? uY − ?uY ? uX ) = u[X ,Y ] X ,Y ∈ g.

is called a quantum moment map [Xu].

For a (strongly) Hamiltonian action of Lie group G on (M,P), with f : g→ C∞(M) describing
the classical moment map (i.e. X∗Mu = {fX , u}),

a star product is said to be covariant under G if

1
ν

(fX ? fY − fY ? fX ) = f[X ,Y ] ∀X ,Y ∈ g

and is called strongly invariant if it is geometrically invariant and

1
ν

(fX ? u − u ? fX ) = {fX , u} = X∗Mu ∀X ∈ g, u ∈ C∞(M).

In that case, f is a quantum moment map.
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Invariance of a Fedosov star product ?∇,Ω̃

Any diffeomorphism φ of (M, ω) is a symmetry of ?∇,Ω̃ iff it preserves the symplectic 2-form ω,

the connection ∇ and the series of closed 2-forms Ω̃.

X is a derivation of ?∇,Ω̃ iff LXω = 0, LX Ω̃ = 0, and LX∇ = 0.

X is an inner derivation of ?∇,Ω iff LX∇ = 0 and ∃λX ∈ C∞(M)[[ν]] such that

i(X )ω − i(X )Ω̃ = dλX .

In this case X (u) = 1
ν

(ad? λX )(u) [G. -Rawnsley, Bahns-Neumaier, Kravchenko].

A g -invariant Fedosov star product for (M, ω) is obtained from a g invariant connexion and a g
invariant series of closed 2-forms Ω. It admits a quantum moment map if and only if there is a
linear map J : g→ C∞(M)[[ν]] such that

dJ(X ) = ι(X∗M)ω − ι(X∗M)Ω̃ ∀X ∈ g.

(then have X∗Mu = 1
ν

ad? J(X )u), and so that

J([X ,Y ]) = −ω(X∗M ,Y ∗M) + Ω(X∗M ,Y ∗M) ∀X ,Y ∈ g.

Any symplectic manifold (M, ω) equipped with a g-strongly hamiltonian action with moment

map J and a g-invariant connection, admits strongly invariant star products.
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Link with equivariant cohomology

If one considers a pair (?, J) of an g-invariant star-product and a quantum moment map, there
is a natural notion of equivalence : two such pairs (?, J) and (?′, J′), are “equivariantly”
equivalent if there is a g-invariant equivalence T between ? and ?′ such that J′ = TJ.

On any symplectic manifold (M, ω) equipped with a g-strongly hamiltonian action with moment
map J and a g-invariant connection, the “equivariant” equivalence classes of such pairs are

parametrized by series of second equivariant cohomology classes ( |ω−J|
ν

+ H2
g(M)[[ν]])

[Reichert-Waldmann, 2017].

Let M be a manifold, g be a Lia algebra and ρ : g→ χ(M) a Lie algebra action of g on M.
The complex of g-equivariant forms Ωg(M) is defined as

Ωg(M) :=
(
⊕2i+j=k [S i (g∗)⊗ Ωj (M)]g , , dg := d + ι•

)
where invariants are taken with respect to X · (p ⊗ α) = (ad∗X p ⊗ α+ p ⊗ (Lρ(X )α) and

where ι• denotes the insertion of a vector field in the first component of the differential form

part : (ι•(p ⊗ α))(X ) = ι(ρ(X ))((p ⊗ α)(X )) when p ⊗ α is viewed as a polynomial on g with values in the space Ω(M).
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Derivations of a Kontsevich star product ?P

Given a Poisson structure P and a vector field X so that LXP = 0, then

AX = X +
∑
k≥1

νkFk+1(X ,P, · · · ,P)

is automatically a derivation of the ?-product ?P = µ+
∑

k≥1 ν
kF (X ,P, · · · ,P).

If X ,Y are two vector fileds M preserving P then

[AX ,AY ] = A[X ,Y ] +
∑
k≥1

νkFk+2(X ,Y ,P, · · · ,P).

Esposito, de Kleijn and Schnitzer have recently proven an equivariant version of formality of

multidifferential operators for a proper Lie group action; this allows to obtain a quantum

moment map from a classical moment map with respect to a G -invariant Poisson structure and

generalizes the theorem cited above from the symplectic setting to the Poisson setting.
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Derivations of a Kontsevich star product ?P

Given a Poisson structure P and a vector field X so that LXP = 0, then

AX = X +
∑
k≥1

νkFk+1(X ,P, · · · ,P)

is automatically a derivation of the ?-product ?P = µ+
∑

k≥1 ν
kF (X ,P, · · · ,P).

If X ,Y are two vector fileds M preserving P then
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k≥1

νkFk+2(X ,Y ,P, · · · ,P).
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Invariant star products on coadjoint orbits

A natural class of symplectic manifolds on which there is a strongly hamiltonian action of a Lie
group is the class of coadjoint orbits in Lie groups in the dual of their algebras.

Their interest comes from the Kirillov-Souriau-Kostant orbit method in representation theory
which associates certains irreducible unitary representations of a given Lie group to some of its
coadjoint orbits.

Much work has been devoted to the construction of interesting star-products on these orbits.

Remark that those orbits do not always possess an invariant connection so one can not hope to

get in all cases an invariant star-product!
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