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Programme

Introduction to the concept of deformation quantization (existence, classification and

representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie

algebra action) compatible with the classical Poisson structure, and one wants to consider star

products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations).

We recall in particular the link between left invariant star products on Lie groups and Drinfeld

twists, and the notion of universal deformation formulas.

Quantum moment map : Classically, symmetries are particularly interesting when they are

implemented by a moment map. We give indications to build a corresponding quantum version.

Concerning links between representation theory and the quantization of an orbit of a group in

the dual of its Lie algebra, we recall how some star products yield an adapted Fourier transform.

Quantum reduction : reduction is a construction in classical mechanics with symmetries

which allows to reduce the dimension of the manifold; we describe one of the various quantum

analogues which have been considered in the framework of formal deformation quantization.

Considerations about convergence of star products.
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The orbit method in representation theory

The aim is to describe the unitary dual Ĝ of the Lie group G (Ĝ is the set of equivalence classes
of irreducible unitary representations of G) from the coadjoint orbits of G .

If π is a unitary representation of G on H and φ an integrable function on G ,

π(φ) :=

∫
G
φ(g)π(g)dg with dg a fixed Haar measure on G

is a bounded operator.

For a class of unimodular Lie group G , there exists a measure on Ĝ called the Plancherel
measure such that∫

G
|φ|2dg =

∫
Ĝ

tr ((π(φ)(π(φ))∗) dm(π) ∀φ ∈ L2(G) ∩ L1(G).

For a large subclass of representations, the operator (π(φ)) for φ smooth with compact support
is tracable, and the map the map φ→ Tr(π(φ)) is called the character distribution of the
representation.

An orbit O is said to be associated with the representation π if there is a so called Fourier
transform F : C∞c (G)→ Dist(g∗) such that

Tr(π(φ)) =

∫
O
F (φ)dµO

where dµO is the symplectic volume form of the orbit.
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Deformation quantization and adapted Fourier transform

In deformation quantization, the idea is to build an adapted Fourier transform
E : C∞c (G)→ Dist(g∗) of the form

(E(φ))(ξ) =

∫
G
φ(g)(EO(g))(ξ)dg for ξ ∈ O

where EO(g) is obtained from a covariant star product on O. It should again yield

Tr(π(φ)) =

∫
O
E(φ)dµO

where dµO is the symplectic volume form of the orbit.
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Some invariant star products on coadjoint orbits

For a nilpotent Lie group, Arnal and Cortet have built a covariant star product using Moyal star
product in good adapted coordinates. They showed that a covariant star product gives rise to a
representation of the group into the automorphisms of the star product. One can define the star
exponential of the elements in the Lie algebras, and this gives a construction of adapted Fourier
transforms. They extended their construction to orbits of exponential solvable groups.

For a compact group G , a star product was obtained by asymptotic expansion of the translation
at the level of Berezin’s symbols of the composition of operators acting on the finite Hilbert
spaces of sections of powers of a line bundle built on the Kähler manifold G/T [Cahen-G-Rawnsley].

Observe that the star product on the dual of a Lie algebra does not in general restrict to orbits.
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Berezin’s symbols

Let (L
π→ M,∇, h) be a quantization bundle over the compact Kähler manifold (M, ω, J)

(i.e., L is a holomorphic line bundle with connection ∇ admitting an invariant hermitian
structure h, such that the curvature is curv(∇) = −2iπω).
Let H be the Hilbert space of holomorphic sections of L.
Since evaluation at a point is a continuous linear functional on H, let, for any q ∈ L0 let eq be
the so-called coherent state defined by

s(π(q)) =< s, eq > q for any s ∈ H;

then ecq = c−1eq for any 0 6= c ∈ C, and let ε be the characteristic function on M defined by
ε(x) = ‖q‖2‖eq‖2, with q ∈ L0 so that π(q) = x .
Any linear operator A on H has a Berezin’s symbol

Â(x) :=
< Aeq , eq >

‖eq‖2
q ∈ L0, π(q) = x ∈ M (1)

which is a real analytic function on M. The operator can be recovered from its symbol:

(As)(x) :=

∫
M
hy (s(y), eq(y))Â(x , y)

ωn(y)

n!
q s ∈ H, q, q′ ∈ L0, π(q) = x , π(q′) = y ,

where Â(x , y) :=
<Aeq′ ,eq>

<eq′ ,eq>
is the analytic continuation of the symbol, holomophic in x and

antiholomorphic in y , defined on the open dense set of M ×M consisting of points (x , y) such

that < eq′ , eq >6= 0. Denote by Ê(L) the space of these symbols.
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Simone Gutt DQ and Symmetries Würzburg, Oct 2019 6 / 19



Berezin’s symbols

Let (L
π→ M,∇, h) be a quantization bundle over the compact Kähler manifold (M, ω, J)

(i.e., L is a holomorphic line bundle with connection ∇ admitting an invariant hermitian
structure h, such that the curvature is curv(∇) = −2iπω).
Let H be the Hilbert space of holomorphic sections of L.
Since evaluation at a point is a continuous linear functional on H, let, for any q ∈ L0 let eq be
the so-called coherent state defined by

s(π(q)) =< s, eq > q for any s ∈ H;

then ecq = c−1eq for any 0 6= c ∈ C, and let ε be the characteristic function on M defined by
ε(x) = ‖q‖2‖eq‖2, with q ∈ L0 so that π(q) = x .
Any linear operator A on H has a Berezin’s symbol
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Star products from Berezin’s symbols

For any positive integer k, (Lk = ⊗kL,∇(k), h(k)) is a quantization bundle for (M, kω, J).

If Hk is the Hilbert space of holomorphic sections of Lk , we denote by Ê(Lk ) the space of
symbols of linear operators on Hk .

If, for every k, the characteristic function ε(k) on M is constant (which is true in a homogeneous
case), one says that the quantization is regular.

In that case, the space Ê(Ll ) is contained in the space Ê(Lk ) for any k ≥ l .

Furthermore CL := ∪∞l=1Ê(Ll ) is a dense subspace of the space of continuous functions on M.

Any function f in CL belongs to a particular Ê(Ll ) and is thus the symbol of an operator A
(k)
f

acting on Hk for k ≥ l . One has thus constructed, for a given f , a family of quantum operators
parametrized by an integer k. From the point of view of deformation theory, one has constructed
a family of associative products ∗k on Ê(Ll ), with values in CL, parametrized by an integer k :

f ∗k g =
̂

A
(k)
f A

(k)
g f , g ∈ Ê(Ll ); k ≥ l . (2)
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symbols of linear operators on Hk .

If, for every k, the characteristic function ε(k) on M is constant (which is true in a homogeneous
case), one says that the quantization is regular.
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g f , g ∈ Ê(Ll ); k ≥ l . (2)

Simone Gutt DQ and Symmetries Würzburg, Oct 2019 7 / 19



Programme

Introduction to the concept of deformation quantization (existence, classification and

representation results for formal star products).

Notion of formal star products with symmetries; one has a Lie group action (or a Lie

algebra action) compatible with the classical Poisson structure, and one wants to consider star

products such that the Lie group acts by automorphisms (or the Lie algebra acts by derivations).

We recall in particular the link between left invariant star products on Lie groups and Drinfeld

twists, and the notion of universal deformation formulas.

Quantum moment map : Classically, symmetries are particularly interesting when they are

implemented by a moment map. We give indications to build a corresponding quantum version.

Concerning links between representation theory and the quantization of an orbit of a group in

the dual of its Lie algebra, we recall how some star products yield an adapted Fourier transform.

Quantum reduction : reduction is a construction in classical mechanics with symmetries

which allows to reduce the dimension of the manifold; we describe one of the various quantum

analogues which have been considered in the framework of formal deformation quantization.

Considerations about convergence of star products.

Simone Gutt DQ and Symmetries Würzburg, Oct 2019 8 / 19



Reduction in Poisson geometry

Reduction is an important classical tool to “reduce the number of variables”, (start from a “big”
Poisson manifold (M,P) and construct a smaller one (Mred ,Pred )).
Consider an embedded coisotropic submanifold in the Poisson manifold,

ι : C ↪→ M.

A submanifold of a Poisson manifold is called coisotropic iff the vanishing ideal

JC = {f ∈ C∞(M) | ι∗f = 0} = ker ι∗.

is closed under Poisson bracket. This is equivalent to say that P](N∗C) ⊂ TC where
N∗C(x) = {αx ∈ T∗x M |αx (X ) = 0 ∀X ∈ TxC } and where P] : T∗M → TM is defined by
β(P](α) := P(α, β). In the symplectic case P](N∗C) = TC⊥ is the orthogonal with respect to
the symplectic form ω of the tangent space to C .
The characteristic distribution defined by P](N∗C) is involutive; it is spanned at each point by
the Hamiltonian vector fields corresponding to functions which are locally in JC .

We assume the canonical foliation to have a nice leaf space Mred (i.e. a structure of a smooth manifold

such that the canonical projection π : C −→ Mred is a submersion). Then Mred is a Poisson manifold in a
canonical way: one defines the normalizer of JC

BC = {f ∈ C∞(M) | {f ,JC} ⊆ JC} ,

then BC
/
JC 3 [f ] 7→ ι∗f ∈ π∗C∞(Mred )

induces an isomorphism of Poisson algebras.
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Reduction in Deformation Quantization following Bordemann, Herbig,,Waldmann

The associative algebra A = (C∞(M)[[λ]], ?) is playing the role of the quantized observables of
the big system.

A good analog of the vanishing ideal JC will be a left ideal J
C
⊆ C∞(M)[[λ]] such that the

quotient C∞(M)[[λ]]
/
J

C
is in C[[λ]]-linear bijection to the functions C∞(C)[[λ]] on C .

Then one defines
BC = {a ∈ A | [a,J

C
] ⊆ J

C
},

and considers the associative algebra
BC
/
J

C

as the reduced algebra Ared . Of course, one need then to show that BC
/
J

C
is in C[[λ]]-linear

bijection to C∞(Mred )[[λ]] in such a way, that the isomorphism induces a star product ?red on

Mred .

Simone Gutt DQ and Symmetries Würzburg, Oct 2019 10 / 19



Reduction in Deformation Quantization following Bordemann, Herbig,,Waldmann

The associative algebra A = (C∞(M)[[λ]], ?) is playing the role of the quantized observables of
the big system.

A good analog of the vanishing ideal JC will be a left ideal J
C
⊆ C∞(M)[[λ]] such that the

quotient C∞(M)[[λ]]
/
J

C
is in C[[λ]]-linear bijection to the functions C∞(C)[[λ]] on C .

Then one defines
BC = {a ∈ A | [a,J

C
] ⊆ J

C
},

and considers the associative algebra
BC
/
J

C

as the reduced algebra Ared . Of course, one need then to show that BC
/
J

C
is in C[[λ]]-linear

bijection to C∞(Mred )[[λ]] in such a way, that the isomorphism induces a star product ?red on

Mred .

Simone Gutt DQ and Symmetries Würzburg, Oct 2019 10 / 19



Reduction in Deformation Quantization following Bordemann, Herbig,,Waldmann

The associative algebra A = (C∞(M)[[λ]], ?) is playing the role of the quantized observables of
the big system.

A good analog of the vanishing ideal JC will be a left ideal J
C
⊆ C∞(M)[[λ]] such that the

quotient C∞(M)[[λ]]
/
J

C
is in C[[λ]]-linear bijection to the functions C∞(C)[[λ]] on C .

Then one defines
BC = {a ∈ A | [a,J

C
] ⊆ J

C
},

and considers the associative algebra
BC
/
J

C

as the reduced algebra Ared . Of course, one need then to show that BC
/
J

C
is in C[[λ]]-linear

bijection to C∞(Mred )[[λ]] in such a way, that the isomorphism induces a star product ?red on

Mred .

Simone Gutt DQ and Symmetries Würzburg, Oct 2019 10 / 19



Marsden Weinstein reduction

We shall start from a strongly invariant star product on M, and consider here the particular case
of the Marsden-Weinstein reduction: let L : G ×M −→ M be a smooth left action of a
connected Lie group G on M by Poisson diffeomorphisms and assume we have an
ad∗-equivariant momentum map J.
The constraint manifold C is chosen to be the level surface of J for momentum 0 ∈ g∗ ( we
assume, for simplicity, that 0 is a regular value) :

C = J−1({0})

(it is an embedded submanifold which is coisotropic).
The group G acts on C and the reduced space is the orbit space of this group action of G on C .
In order to guarantee a good quotient we assume that G acts freely and properly and we assume
that G acts properly not only on C but on all of M.
In this case we can find an open neighbourhood Mnice ⊆ M of C with the following properties:
there exists a G -equivariant diffeomorphism

Φ : Mnice −→ Unice ⊆ C × g∗

onto an open neighbourhood Unice of C × {0}, where the G -action on C × g∗ is the product

action of the one on C and Ad∗, such that for each p ∈ C the subset Unice ∩ ({p} × g∗) is

star-shaped around the origin {p} × {0} and the momentum map J is given by the projection

onto the second factor, i.e. J|Mnice
= pr2 ◦ Φ.
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star-shaped around the origin {p} × {0} and the momentum map J is given by the projection

onto the second factor, i.e. J|Mnice
= pr2 ◦ Φ.
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classical Koszul resolution

BRST is a technique to describe the functions on the reduced space and was used in the theory
of reduction in deformation quantization Bordemann, Herbig and Waldmann; a simpler description is

the Koszul complex :
(
C∞(Mnice,Λ

•
Cg) = C∞(Mnice)⊗ Λ•Cg , ∂

)
,

∂ being the Koszul differential ∂x = i(J)x =
∑

a Ja i(ea)x with {ea} a basis of g.

Defining the prolongation map : C∞(C) 3 φ 7→ prol(φ) = (pr1 ◦Φ)∗φ ∈ C∞(Mnice), and the

homotopy : C∞(Mnice,Λ
k
Cg) 3 x 7→ (hkx)(p) = ea ∧

∫ 1
0 tk ∂(x◦Φ−1)

∂µa
(c, tµ) d t,

one shows that prol ι∗ + ∂1h0 = IdC∞(Mnice), ι
∗∂1 = 0, thus JC = ker ι∗ = Im ∂1 and

C∞(Mnice)
/

(JC ∩ C∞(Mnice)) = ker ∂0

/
Im ∂1

∼= C∞(C)

If BC is the normalizer of JC , the map :

BC
/
JC → π∗C∞(Mred ) : [f ] 7→ ι∗f

induces indeed an isomorphism of vector spaces because JC = Im ∂1 and f is in BC iff
0 = ι∗{Jξ, f } = ι∗(Lξ∗M f ) = Lξ∗C (ι∗f ) ∀ξ ∈ g iff ι∗f ∈ π∗C∞(Mred ).

The Poisson bracket on Mred is defined through this bijection and gives explicitly

π∗{u, v}red = ι∗{prol(π∗u),prol(π∗v)} u, v ∈ C∞(Mred ).
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Deformation of the Koszul complex

Let ? be a strongly invariant bidifferential formal star product (Recall that a star product is
strongly invariant if it is invariant and Jξ ? f − f ? Jξ = ν{Jξ, f } = ν Lξ∗M f for all

f ∈ C∞(M)[[ν]] and ξ ∈ g.) on M, so that we start from the “big” algebra of quantized
observables

A = (C∞(Mnice)[[ν]], ?).

To define the left ideal, one first deforms the Koszul complex, introducing
a quantized Koszul operator ∂(κ) : C∞(Mnice,Λ

•
Cg)[[ν]] −→ C∞(Mnice,Λ

•−1
C g)[[ν]] defined by

∂(κ)x = i(ea)x ? Ja +
ν

2
C c
abec ∧ i(ea) i(eb)x + νκ i(∆)x ,

where C c
ab = ec ([ea, eb]) are the structure constants in the basis {ea}, {ea} being the dual basis,

and ∆ ∈ g∗ is the modular form ∆(ξ) = tr ad(ξ); one checks that ∂(κ) is left ?-linear, ∂(κ) is

G -equivariant and ∂(κ) ◦ ∂(κ) = 0;

a deformation of the restriction map : ι
∗
κ : C∞(Mnice)[[ν]] −→ C∞(C)[[ν]] defined by

ι
∗
κ = ι∗

(
Id +

(
∂

(κ)
1 − ∂1

)
h0

)−1
; one can prove that although h0 is not local, there exists a

formal series Sκ = Id +
∑∞

r=1 λ
rS

(κ)
r of G -invariant differential operators on Mnice such that

ι
∗
κ = ι∗ ◦ Sκ and Sκ1 = 1;

a deformation of the homotopies; h
(κ)
0 : C∞(Mnice)[[ν]] −→ C∞(M, g)[[ν]] given by

h
(κ)
0 = h0

(
Id +

(
∂

(κ)
1 − ∂1

)
h0

)−1
and higher terms h

(κ)
k = hk

(
hk−1∂

(κ)
k + ∂

(κ)
k+1hk

)−1
.
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The deformed left ideal

All those maps are G -invariant, h
(κ)
0 prol = 0, ι

∗
κ∂

(κ)
1 = 0, ι

∗
κ prol = IdC∞(C)[[ν]], and

prol ι
∗
κ + ∂

(κ)
1 h

(κ)
0 = IdC∞(Mnice)[[ν]] as well as h

(κ)
k−1∂

(κ)
k + ∂

(κ)
k+1h

(κ)
k = IdC∞(M,Λk

Cg)[[ν]].

One defines the deformed left star ideal

J
C

= im ∂
(κ)
1 = ker ι∗κ.

The left module C∞(Mnice)[[ν]]
/
J

C
is isomorphic to C∞(C)[[ν]] with module structure •κ

defined by f •κ φ = ι
∗
κ(f ? prol(φ)) for φ ∈ C∞(C)[[ν]], f ∈ C∞(Mnice)[[ν] via the map

C∞(Mnice)[[ν]]
/
J

C
→ C∞(C)[[ν]] : [f ] 7→ ι∗κf

whose inverse is φ 7→ [prol(φ)]. This left module structure is G -invariant

(L∗g (f •κ φ) = (L∗g f ) •κ (L∗gφ) for all g ∈ G , f ∈ C∞(M)[[ν]], and φ ∈ C∞(C)[[ν]]) and for all

ξ ∈ g one has, using the fact that the star product is strongly invariant,

Jξ •κ φ = ν Lξ∗C φ− νκ∆(ξ)φ.
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The reduced star product

One considers its normalizer BC =
{
f ∈ C∞(M)[[ν]]

∣∣ [f ,J
C

]? ⊆ J C

}
.

For a g in J
C

, g = ga ? Ja + νκC a
bag

b with ga ∈ C∞(M)[[ν]]; for f ∈ C∞(M)[[ν]], the

?-bracket is [f , g ]? = ∂
(κ)
1 h − νga ? L(ea)∗M f with h = (f ? ga)ea ∈ C∞(M, g).

Thus [f , g ]? is in J
C

iff ga ? L(ea)∗M f is in the image of ∂
(κ)
1 for all ga.

This shows that f ∈ BC iff Lξ∗M f ∈ im ∂
(κ)
1 = ker ι

∗
κ thus iff Lξ∗C ι

∗
κf = 0 for all ξ ∈ g, i.e. iff

ι
∗
κf ∈ π∗C∞(Mred )[[ν]].

The quotient algebra BC
/
J

C
is isomorphic to C∞(Mred )[[ν]] via the map

BC
/
J

C
→ π∗C∞(Mred )[[ν]] : [f ] 7→ ι∗κf

whose inverse is u 7→ [prol(π∗u)].

The reduced star product ?
(κ)
red on C∞(Mred )[[ν]] is induced from BC

/
J

C
and explicitly given by

π∗(u ?
(κ)
red v) = ι∗κ (prol(π∗u) ? prol(π∗v)) .

One checks that it is given by a series of bidifferential operators.
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The quotient algebra BC
/
J

C
is isomorphic to C∞(Mred )[[ν]] via the map

BC
/
J

C
→ π∗C∞(Mred )[[ν]] : [f ] 7→ ι∗κf

whose inverse is u 7→ [prol(π∗u)].

The reduced star product ?
(κ)
red on C∞(Mred )[[ν]] is induced from BC

/
J

C
and explicitly given by

π∗(u ?
(κ)
red v) = ι∗κ (prol(π∗u) ? prol(π∗v)) .

One checks that it is given by a series of bidifferential operators.
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Involutions

In quantum mechanics, the algebra of quantum observables has a ∗-involution given in the usual
picture, where observables are represented by operators, by the passage to the adjoint operator.

In deformation quantization, a ∗-involution on A = (C∞(M)[[ν]], ?) for ν = iλ (with λ ∈ R)
may be obtained, asking the star product to be Hermitian, i.e such that f ? g = g ? f and the
∗-involution is then complex conjugation.

With Stefan Waldmann, we have studied how to get in a natural way a ∗-involution for the
reduced algebra, assuming that ? is a Hermitian star product on M.

The main idea here is to use a representation of the reduced quantum algebra and to translate
the notion of the adjoint.

Observe that B
/
J can be identified (with the opposite algebra structure) to the algebra of

A-linear endomorphisms of A
/
J .
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Reduced involutions

We use an additional positive linear functional ω : A −→ C[[λ]] such that the Gel’fand ideal of
ω, J

ω
=
{
a ∈ A

∣∣ ω(a∗a) = 0
}

, coincides with the left ideal J used in reduction, and such

that all left A-linear endomorphisms of the space of the GNS representation Hω = A
/
J
ω

, with
the pre Hilbert space structure defined via 〈ψa, ψb〉 = ω(a∗b), are adjointable.

Then the algebra of A-linear endomorphisms of Hω (with the opposite structure) is equal to
B
/
J
ω

so that B
/
J becomes in a natural way a ∗-subalgebra of the set B(Hω) of adjointable

maps.

A formal series of smooth densities
∑∞

r=0 λ
rµr ∈ Γ∞(|Λtop|T∗C)[[ν]] on the coisotropic

submanifold C , such that µ = µ is real, µ0 > 0 and so that µ transforms under the G -action as
L∗
g−1µ = 1

∆(g)
µ (where ∆ is the modular function), yields a positive linear functional which

defines a ∗-involution on the reduced space.

In the classical Marsden Weinstein reduction, complex conjugation is a ∗-involution of the

reduced quantum algebra. Looking whether the ∗-involution corresponding to a series of

densities µ is the complex conjugation yields a new notion of quantized modular class.
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Representations of the reduced star product

We also studied representations of the reduced algebra with the ∗-involution given by complex
conjugation, relating the categories of modules of the big algebra and the reduced algebra.

The usual technique to relate categories of modules is to use a bimodule and the tensor product
to pass from modules of one algebra to modules of the other.

The construction of the reduced star products gives a bimodule structure on C∞(C)[[ν].
The space of formal series C∞cf (C)[[ν]] where

C∞cf (C) =
{
φ ∈ C∞(C)

∣∣ supp(φ) ∩ π−1(K) is compact for all compactK ⊆ Mred

}
is a left (C∞(M)[[ν]], ?)- and a right (C∞(Mred )[[ν]], ?red )-module; on this bimodule there is a
C∞(Mred )[[ν]]-valued inner product.

This bimodule structure and inner product on C∞cf (C)[[ν]] give a strong Morita equivalence
bimodule between C∞(Mred )[[ν]] and the finite rank operators on C∞cf (C)[[ν]].
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