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Typical frequencies of footbridges
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Figure 1.1: Footbridge fundamental frequency as a function of span

[Vibration problems in structures, H. Bachman, 1995] 3
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High tuning vs low tuning
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Footbridges : influence of stiffness
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Figure 1.3: Bridge response to a pedestrian
walking at f, in relation to stiffness

[Vibration problems in structures, H. Bachman, 1995] 6
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Stiffening
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— Stiffening leads to lower vibration for the same value of damping 7

ADDING DAMPING




Dynamics of Structures 2020-2021 Design
modifications

Footbridges : influence of damping
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Equivalent viscous damping (legarithmic decrement)

Figure 1.2: Response of footbridges to a pedestrian
walking at f"l for different values of damping

[Vibration problems in structures, H. Bachman, 1995]

Adding damping
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Types and origin of damping

Damping = dissipation of energy

Damping
Internal External
Material Cp_nnections Non-structural elements,
(joints, bearings) energy radition in soil

—> Local damping models

[Vibration problems in structures, H. Bachman, 1995] n
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Material damping

Viscous damping
C; = o K; Ir) each moTerioI ‘
(time domain computations)

Loss factor — Hysteretic damping

E(1 +in(w)) Loss factor can be different for each
material and frequency dependent
(frequency domain computations)

—> Those damping coefficients can be identified
experimentally on small material samples

Material £

Reinforced concrete | 0.004-0.012

Composite 0.002-0.003

Steel 0.001-0.002 12
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Contributions to damping
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Estimation of damping

Logarithmic decrement method

Damping
Internal External
Material Connections

@

(joints, bearings)

Non-structural elements,
energy radition in soil

—» Damping coefficients are usually derived from
practice or measured if the structure is built
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Estimation of § in the
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Logarithmic decrement method
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Half-power bandwidth
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