Dynamics of Structures 2020-2021 Design modifications

DESIGN MODIFICATIONS

Typical frequencies of footbridges

[Vibration problems in structures, H. Bachman, 1995]

High tuning vs low tuning

5

Footbridges : influence of stiffness

[Vibration problems in structures, H. Bachman, 1995]

Dynamics of Structures 2020-2021 Design modifications

Stiffening

Stiffening leads to lower vibration for the same value of damping

7

Footbridges : influence of damping

[Vibration problems in structures, H. Bachman, 1995]

9

Adding damping

Material damping

Viscous damping

 $C_i = \alpha_i K_i$ In each material (time domain computations)

Loss factor – Hysteretic damping

 $E(1+i\eta(\omega))$

Loss factor can be different for each material and frequency dependent (frequency domain computations)

Those damping coefficients can be identified experimentally on small material samples

Material	ξ
Reinforced concrete	0.004-0.012
Composite	0.002-0.003
Steel	0.001-0.002

12

Estimation of damping

Estimation of ξ in the time domain

