
Exercises 313

memory. If we hâve only a fixed number k of processors, then previous complexity bounds
are changed by at most \/k. If we allow thé number of processors to grow as thé size of
thé data grows, however, then problem complexity is sometimes reduced significantly.

At thé time of this writing, development of quantum computers, which would dépend
on quantum-mechanical principles to implement massive amounts of parallelism, look to
be conceivable. For such computers, complexity analysis might also change.

Exercises

1. Calculate how many times statement S is executed in each block of code. Simplify ail
your answers.

(a) / = 1
while / < N

S
1 = 2 - 7

(b) Counterl - 1
while Counterl < N — 1

Counter2 = 1
while Counter2 < N — 1

S
Counter2 — Counter2 + 1

Counterl = Counterl + 1
(c) Counterl = 1

while Counterl < X
Counter2 = 1
while Counter2 < X

S
Counter2 = Counter2 + 2

Counterl = Counterl + 1
(d) Counterl ~ 1

while Counterl < N
Counter2 = 1
while Counter2 < N

S
Counter2 = Counter2 + 1

CounterS = 1
while CounterS < N

Counter4 = 1
while Counter4 < N

S
Counter4 = Counter4 + 1

CounterS = CounterS + 1
Counterl = Counterl + 1



I
314 CHAPTER 5 Analysis of Algorithms

(e) Counterl — 1
while Counterl < X

Counter2 = 1
while Counterl < X

S
Counter2 = 2 * Counter2

Counterl = Counterl + 1
(f) Counterl = 1

while Counterl < N — 1
Counter2 = 1
while Counter2 < Counterl

S
Counter2 = Counter2 + 1

Counterl — Counterl + 1

2. Confirm thé claims of parts (a) and (b) of Example 1.
3. Show that thé following SelectionSort algorithm, on any input list of size «,

exactly n(n - l)/2 comparisons and exactly n — 1 calls to Swap.

Algorithm: Sélection4,

INPUT: A list of distinct values List[\],..., List[N]
OUTPUT: List[\],..., List[N] with values in increasing order

SelectionSort(List, N)
for Position = 1 to N — 1 do

Small — List[Position]
Place = Position
for / = Position + 1 to N do

if (Small > List[I]) then
Small - List[I]
Place = l

Swap(List[Position],List[Place])

4. Suppose y ou record thé run times of program P. You find out that on inputs of la
1, its run time is always 1/8 second, and on inputs of length 10, ils run time is ali
1/4 second. Under each of thé following assumptions, calculate how long it will
to run thé program on inputs of length 20, 100, 1000, and 10,000:

(a) For some constants a and b (thé values of which you must détermine), runnins
program on a data set of size d always takes ad + b seconds.

(b) For some constants a and b, running thé program on a data set of size d
takes ad1 + b seconds.



Exercises 315

(c) For some constants a and b, running thé program on a data set of size d always
takes a • 2bd seconds.

5. Write an algorithm in pseudocode that follows thé description in Example 2 for thé
spécial case where thé formula <j> is in CNF. For thé saké of simplicity, assume that
each proposition letter is a lowercase letter (a-z), but try to ignore thé fact that there
are only 26 such letters. Also, assume that each of thé symbols (A, v, -•) is also just
one character, some ASCII character other than a through z. (Hint: Suppose you are
given thé formula from that example,

<t> = (avbvcvdv ->b) A (c v d v ->c v e v /)

and thé example truth assignment of TRUE to a, —>b, c, —>d, e, and ->/. Your program
should scan through (p from left to right, keeping track of (i) thé value so far of thé
current clause — thé disjunction of ail thé literals seen so far in that clause — and (ii)
thé value so far of thé entire formula — thé conjunction of thé values of ail thé clauses
completed so far.)

Since this can be donc with just one scan through thé formula, you may be tempted
to think thé algorithm is linear time, but it is not. Why? For formulas not in CNF, thé
algorithm is also O(n2) but more complicated: One must first parse thé formula to get
an expression tree and then keep track of truth values on thé tree. The student may hâve
seen such problems in a data structures or algorithms course.

6. For each of thé problems (a)-(d) below;

(i) Write an algorithm in pseudocode to solve thé problem (be sure your algorithm
works correctly if m = 0 or n = 0; it should not make any assignments to éléments
of thé array), and

(ii) Calculate how many assignment statements and how many comparisons thé al-
gorithm causes to be executed as a function of m and n. In this case, count as-
signments to and comparisons of index variables, as well as assignments to and
comparisons of positions in thé array. Simplify your answers.

(a) Initialize ail thé éléments of an m x n array to 0.
(b) Initialize ail thé éléments of an m x n array that lie on or above thé diagonal to 0.

(Hère, by "diagonal" we mean positions [r, c] where r = c.)
(c) Initialize ail thé éléments of an m x n array that lie above thé diagonal to 0.
(d) Initialize ail thé éléments on thé diagonal of an m x « array on thé diagonal to 0.

7. It is tempting to compute thé complexity of an algorithm by counting statements, as
we did with thé BubbleSort example, but only keeping track of thé number of steps
along thé way up to O(*). This turns out not to work with loops. For example, it is
possible that each time through thé loop, thé number of statements executed is in O(l),
but that thé number of statements executed by a loop of length n is not in O(n). Find an
example. (Hint: Each time through thé loop, thé number of statements executed may
be in O(l), but thé constants c and NQ may change).
Compare thé graphs of F\(x) = 3 ln(;c + 1), F2(x) = 2x, F^(x) = x2, FI(X) = x38
F$(x) = 2* and — 3x~l. What does this suggest about thé usefulness of
nonpolynomial-time algorithms?

9. Is it reasonable to consider ail polynomial-time algorithms to be practical? Why, or
why not?


