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SummarySummary

1. Introduction
– Statistics, management science, operations research, decision aid, … 

2. Advanced optimization
– Linear programming
– Integer programming
– Non-linear programming 

3. Multicriteria decision aid
4. Networks

– Transportation problems
– Network flow problems
– Project management

5. Inventory management
6. Simulation models
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DecisionDecision--MakingMaking

• To Describe,

• To Understand,

• To Manage.

2 Approaches :

• Qualitative Approach,

• Quantitative Approach.

Real World
•Social
•Political
•Economical
•Industrial
•Environmental
•Military
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Decision AidDecision Aid

• Possible decisions ?

• How to compare them ?

• Preferences, Objectives ?

Quantitative Model

Real World
•Social
•Political
•Economical
•Industrial
•Environmental
•Military
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Decision AidDecision Aid

• Approximation of the 
real world !

�Decision Aid.

Quantitative Model

Real World
•Social
•Political
•Economical
•Industrial
•Environmental
•Military
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2. Optimization2. Optimization

• Linear programming

• Integer programming

• Model building

• Optimization software:

– Excel’s solver

– MPL 4
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A simple exampleA simple example

• Giapetto’s Woodcarving, Inc., manufactures two 
types of wooden toys: soldiers and trains.

• A soldier sells for $27 and uses $10 worth of raw 
materials. Each soldier that is manufactured 
increases Giapetto’s variable labor and overhead 
costs by $14.

• A train sells for $21 and uses $9 worth of raw 
materials. Each train built increases Giapetto’s 
variable labor and overhead costs by $10.
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A simple exampleA simple example

• The manufacture of wooden soldiers and 
trains requires two types of skilled labor: 
carpentry and finishing.

• A soldier requires 2 hours of finishing 
labor and 1 hour of carpentry labor.

• A train requires 1 hour of finishing and 1 
hour of carpentry labor.
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A simple exampleA simple example

• Each week, Giapetto can obtain all the 
needed raw material but only 100 
finishing hours and 80 carpentry hours.

• Demand for trains is unlimited, but at 
most 40 soldiers are bought each week.

• Giapetto wants to maximize weekly profit 
(revenues - costs).
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FormulationFormulation
of a mathematical model (1)of a mathematical model (1)

• Decision variables:
– x1 = number of soldiers produced each week

– x2 = number of trains produced each week

• Objective function:
– Weekly revenues =

– Weekly raw material costs =

– Other weekly variable costs =

– Objective function to maximize =

1 227 21x x+

1 210 9x x+

1 214 10x x+

1 2
3 2z x x= +
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FormulationFormulation
of a mathematical model (2)of a mathematical model (2)

• Constraints:

– Finishing time (100h) :

– Carpentry time (80h):

– Soldiers (max 40):

• Sign restrictions:

1 2
2 100x x+ ≤

1 2
80x x+ ≤

1
40x ≤

1
0x ≥

2
0x ≥
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Linear program (LP)Linear program (LP)

1 2
Max  3 2z x x= +

1 2
2 100x x+ ≤

1 2
80x x+ ≤

1
40x ≤

1
0x ≥

2
0x ≥
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Linear programming Linear programming 
assumptionsassumptions

• Proportionality: The contributions of each variable 
to the objective function and to the constraints 
are proportional to the value of that variable.

• Additivity: The contributions of each variable to 
the objective function and to the constraints are 
independent from the values of the other 
variables.

• Divisibility: Each decision variable can assume 
fractional values. (cf. integer programming)

• Certainty: Each parameter is known with certainty.
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Some definitionsSome definitions

• Feasible region:
– Set of all solutions satisfying all the LP’s 

constraints and sign restrictions (feasible 
points or feasible solutions).

• Optimal solution:
– Feasible solution that optimizes (max or min) 

the objective function.

– Does it exist ?

– Is it unique ?
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Graphical solutionGraphical solution
of a 2of a 2--variable LPvariable LP

•Feasible region 
= region in the 
plane.

•Constraint: 
equation = 
straight line
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GraphicalGraphical
solutionsolution

• Constraints

• Iso-profit lines

• Optimal solution
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Binding constraint Binding constraint -- FinishingFinishing
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Binding constraint Binding constraint -- FinishingFinishing

110 hours
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Binding constraint Binding constraint -- FinishingFinishing
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NonNon--binding constraint binding constraint --
SoldiersSoldiers
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NonNon--binding constraint binding constraint --
SoldiersSoldiers

45 soldiers
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NonNon--binding constraint binding constraint --
SoldiersSoldiers

35 soldiers
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Multiple optimal solutionsMultiple optimal solutions
exampleexample

An auto company manufactures cars and trucks. 
Each vehicle must be processed in the paint shop 
and body assembly shop. If the paint shop were 
only painting trucks, 40 per day could be painted. If 
the paint shop were only painting cars, 60 per day 
could be painted. If the body shop were only 
producing cars, it could process 50 per day. It it 
were only producing trucks, it could process 50 per 
day. Each truck produced contributes $300 to 
profit, and each car contributes $200. Determine a 
daily production schedule that will maximize the 
company’s profit.
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Multiple optimal solutionsMultiple optimal solutions
exampleexample

x1 = number of trucks produced daily 
x2 = number of cars produced daily 

max 1 2300 200z x x= +  
s.t. 

1 2

1 1
1

40 60
x x+ ≤  

1 2

1 1
1

50 50
x x+ ≤  

1 0x ≥  2 0x ≥  
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Unfeasible LP exampleUnfeasible LP example

Suppose now that the auto company is required to product at 
least 30 trucks and 20 cars per day. 
→ 2 additional constraints: 

1 30x ≥  2 20x ≥  
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Unbounded LP exampleUnbounded LP example

max 1 22z x x= −  
s.t. 

1 2 1x x− ≤  

1 22 6x x+ ≥  

1 0x ≥  2 0x ≥  
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Optimal solutionOptimal solution

• Can be:

– Unique → extreme point of the feasible region,

– Multiple → side of the feasible region,

– Unbounded (missing constraints),

– Non-existent (conflicting constraints).

• Some contraints are binding:
LHS = RHS

• Some contraints are nonbinding:
LHS ≠ RHS (difference = slack)
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Typical LP’s:Typical LP’s:
Diet problemsDiet problems

Four foods are available for consumption: brownies, 
chocolate ice cream, cola and pineapple cheesecake. 
One brownie costs ¢50, one scoop of chocolate ice cream 
costs ¢20, one bottle of cola costs ¢30, and one piece of 
cheesecake costs ¢80. Each day, you must ingest at least 
500 calories, 6 oz of chocolate, 10 oz of sugar and 8 oz of 
fat. Formulate a LP to satisfy these requirements at 
minimum cost.

Per unit: Calories Chocolate Sugar Fat 

Brownie 400 3 2 2 

Chocolate ice cream 200 2 2 4 

Cola 150 0 4 1 

Cheesecake 500 0 4 5 
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Typical LP’s:Typical LP’s:
Diet problemsDiet problems

x1 number of brownies 

x2 number of scoops of chocolate ice cream 

x3 bottles of cola 

x4 pieces of pineapple cheesecake 
 

• LP formulation: 

1 2 3 4min 50 20 30 80z x x x x= + + +  

1 2 3 4

1 2

1 2 3 4

1 2 3 4

400 200 150 500 500

3 2 6

2 2 4 4 10

2 4 5 8

x x x x

x x

x x x x

x x x x

+ + + ≥
+ ≥
+ + + ≥
+ + + ≥

 

( )0 1,2,3,4ix i≥ =  

• LP solution: 

1 2 3 40 3 1 0 90x x x x z= = = = =  

• Slacks: 

1 2 3 4250 0 0 5t t t t= = = =  
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Typical LP’s:Typical LP’s:
Work scheduling problemsWork scheduling problems

A fast food restaurant requires different numbers of full-time 
employees on different days of the week. 

 

Day Full-time employees 

1: Monday 17 

2: Tuesday 13 

3: Wednesday 15 

4: Thursday 19 

5: Friday 14 

6: Saturday 16 

7: Sunday 11 

 

Each full-time employee must work five consecutive days and 
then receive two days off. The manager wants to use only full-
time employees. Formulate a LP to minimize the number of 
full-time employees that must be hired. 
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Typical LP’s:Typical LP’s:
Work scheduling problemsWork scheduling problems

xi = number of employees beginning work on day i 

 

• LP formulation: 

1 2 3 4 5 6 7min z x x x x x x x= + + + + + +  

1 4 5 6 7

1 2 5 6 7

1 2 3 6 7

1 2 3 4 7

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

17

13

15

19

14

16

11

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

+ + + + ≥
+ + + + ≥
+ + + + ≥
+ + + + ≥
+ + + + ≥
+ + + + + ≥

+ + + + + ≥

 

( )0 1,2, ,7ix i≥ = …  

• LP solution: 

1 2 3 4 5 6 7

4 10 22 10 67
2 0 5

3 3 3 3 3
x x x x x x x z= = = = = = = =  

 

• Rounded up solution: 

1 2 3 4 5 6 72 4 2 8 0 4 5 25x x x x x x x z= = = = = = = =  

 

• IP optimal solution: 

1 2 3 4 5 6 74 4 2 6 0 4 3 23x x x x x x x z= = = = = = = =  
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Typical LP’s:Typical LP’s:
Capital budgeting problemsCapital budgeting problems

Star Oil Company is considering 5 different investment 
opportunities. The cash outflows and net present values (in 
M$) are the following: 

 

 Inv.1 Inv.2 Inv.3 Inv.4 Inv.5 

Time 0 cash outflow $11 $53 $5 $5 $29 

Time 1 cash outflow $3 $6 $5 $1 $34 

NPV $13 $16 $16 $14 $39 
 

Star Oil has $40 million available for investment at the present 
time (time 0); it estimates that one year from now (time 1) $20 
million will be available for investment. Star Oil may 
purchase any fraction of each investment. In this case, the cash 
outflows and NPV are adjusted accordingly. Star Oil wants to 
maximize the NPV that can be obtained by investment. 
Formulate an LP to achieve this goal. Any funds left over at 
time 0 cannot be used at time 1. 
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Typical LP’s:Typical LP’s:
Capital budgeting problemsCapital budgeting problems

xi = fraction of investment i purchased by Star Oil 

• LP formulation: 

1 2 3 4 5max 13 16 16 14 39z x x x x x= + + + +  

1 2 3 4 5

1 2 3 4 5

1

2

3

4

5

11 53 5 5 29 40

3 6 5 34 20

1

1

1

1

1

x x x x x

x x x x x

x

x

x

x

x

+ + + + ≤
+ + + + ≤

≤
≤
≤
≤
≤

 

( )0 1,2, ,5ix i≥ = …  

• LP solution: 

1 2 3 4 51 0.201 1 1 0.288 57.449x x x x x z= = = = = =  
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Typical LP’s:Typical LP’s:
Blending problemsBlending problems

Sunco Oil manufactures 3 types of gasoline (gas 1, gas 2 and 
gas 3). Each type is produced by blending 3 types of crude oil 
(crude 1, crude 2, and crude 3). The sales price per barrel of 
gasoline and the purchase price per barrel of crude oil are as 
follows: 

 

 Sales price  Purchase price 

Gas 1 $70 Crude 1 $45 

Gas 2 $60 Crude 2 $35 

Gas 3 $50 Crude 3 $25 
 

Sunco can purchase up to 5000 barrels of each type of crude 
oil daily. 

The 3 types of gasoline differ in their octane rating and sulfur 
content. Gas 1 must have an octane rating of at least 10 and 
contain at most 1% of sulphur. Gas 2 must have an octane 
rating of at least 8 and contain at most 2% of sulphur. Gas 3 
must have an octane rating of at least 6 and contain at most 
1% of sulphur. It costs $4 to transform one barrel of oil into 
one barrel of gasoline, and Sunco’s refinery can produce up to 
14,400 barrels of gasoline daily. 

 Octane rating Sulfur content 

Crude 1 12 0.5% 

Crude 2 6 2.0% 

Crude 3 8 3.0% 
 

Sunco’s customers require the following amounts of each 
gasoline: gas 1 – 3000 barrels per day, gas 2 – 2000 barrels 
per day, gas 3 – 1000 barrels per day. The company wants to 
meet these demands. Sunco has also the option of advertising 
to stimulate demand for its products. Each dollar spent daily in 
advertising a particular type of gas increases the daily demand 
for that type of gas by 10 barrels. 

Formulate an LP to maximize the daily profits (revenues – 
costs) of Sunco. 
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Typical LP’s:Typical LP’s:
Blending problemsBlending problems

ai = dollars spent daily on advertising gas i 

xij = barrels of crude oil i used daily to produce gas j 

• LP formulation: 

x11 x12 x13 x21 x22 x23 x31 x32 x33 a1 a2 a3  
21 11 1 31 21 11 41 31 21 -1 -1 -1 MAX 

1 0 0 1 0 0 1 0 0 -10 0 0 = 3000 

0 1 0 0 1 0 0 1 0 0 -10 0 = 2000 

0 0 1 0 0 1 0 0 1 0 0 -10 = 1000 

1 1 1 0 0 0 0 0 0 0 0 0 ≤ 5000 

0 0 0 1 1 1 0 0 0 0 0 0 ≤ 5000 

0 0 0 0 0 0 1 1 1 0 0 0 ≤ 5000 

1 1 1 1 1 1 1 1 1 0 0 0 ≤14000 

2 0 0 -4 0 0 -2 0 0 0 0 0 ≥ 0 

0 4 0 0 -2 0 0 0 0 0 0 0 ≥ 0 
-0.005 0 0 0.01 0 0 0 0 0.02 0 0 0 ≤ 0 

0 -0.015 0 0 0 0 0 0.01 0 0 0 0 ≤ 0 

0 0 -0.005 0 0 0.01 0 0 0.02 0 0 0 ≤ 0 
 

• LP solution: 
287,500z =  

11 12 13

21 22 23

31 23 33

2222.22 2111.11 666.67

444.44 4222.22 333.34

333.33 3166.67 0

x x x

x x x

x x x

= = =
= = =
= = =

 

1 2 30 750 0a a a= = =  
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MultiMulti--period decision problems: period decision problems: 
An inventory modelAn inventory model

Sailco Corp. must determine how many sailboats should be 
produced during each of the next four quarters. The demand 
during each quarter is as follows: Q1 – 40 sailboats, Q2 – 60, 
Q3 – 75, Q4 – 25. Sailco must meet demands on time. At the 
beginning of Q1, Sailco has an inventory of 10 sailboats. At 
the beginning of each quarter, Sailco must decide how many 
sailboats should be produced during this quarter. We assume 
that sailboats manufactured during a quarter can be used to 
meet demand for that quarter. During each quarter, Sailco can 
produce up to 40 sailboats with regular-time labor at a total 
cost of $400 per sailboat. Additional boats can be produced 
with overtime labor at a total cost of $450 per sailboat. 

At the end of each quarter (after demand has been satisfied), a 
carrying or holding cost of $20 per sailboat is incurred. Use 
LP to schedule production to minimize the sum of production 
and inventory costs during the next four quarters. 
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MultiMulti--period decision period decision 
problems: An inventory modelproblems: An inventory model

xt = number of sailboats produced (regular-time) during Qt 

yt = number of sailboats produced (overtime) during Qt 

it = number of sailboats on hand at the end of Qt 

• LP formulation: 

( ) ( ) (1 2 3 4 1 2 3 4 1 2 3 4min 400 450 20x x x x y y y y i i i i+ + + + + + + + + + +

1 2 3 440 40 40 40x x x x≤ ≤ ≤ ≤  

1 1 1 2 1 2 2

3 2 3 3 4 3 4 4

10 40 60

75 25

i x y i i x y

i i x y i i x y

= + + − = + + −
= + + − = + + −

 

( )0 0 0 1,2,3,4t t tx y i t≥ ≥ ≥ =  

• LP solution:  78,450z =  

1 2 3 440 25x x x x= = = =  

1 2 3 40 10 35 0y y y y= = = =  

1 2 3 410 0i i i i= = = =  
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Multiperiod financial modelsMultiperiod financial models

Finco Investment Corp. must determine investment strategy 
for the firm during the next three years. At present time (time 
0), $100,000 is available for investment. Investments A, B, C, 
D and E are available. The cash flow associated with investing 
$1 in each investment are: 

 

 0 1 2 3 

A -$1 +$0.50 +$1 $0 

B $0 -$1 +$0.50 +$1 

C -$1 +$1.2 $0 $0 

D -$1 $0 $0 +$1.9 

E $0 $0 -$1 +$1.5 

To ensure that the company’s portfolio is diversified, Finco 
requires that at most $75,000 be placed in a single investment. 
In addition to investments A-E, Finco can earn interest at 8% 
per year by keeping univested cash in money market funds. 
Returns from investments may be immediately reinvested. 
Finco cannot borrow funds. Formulate an LP to maximize 
cash on hand at time 3. 
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Multiperiod financial modelsMultiperiod financial models

A = dollars invested in A 

B = dollars invested in B 

C = dollars invested in C 

D = dollars invested in D 

E = dollars invested in E 

St = dollars invested in MM funds at time t 

• LP formulation: 

2max 1.9 1.5 1.08z B D E S= + + +  

0 100,000A C D S+ + + =  

0 10.5 1.2 1.08A C S B S+ + = +  

1 20.5 1.08A B S E S+ + = +  

75,000 75,000 75,000 75,000 75,000A B C D E≤ ≤ ≤ ≤ ≤
1 2, , , , , , 0A B C D E S S ≥  
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Some definitionsSome definitions

• Linear program:

  

Max  z = c1x1 + c2x2 +  … +cnxn (1)

a11x1 + a12x2 +  … + a1nxn ≤ b1

a21x1 + a22x2 +  … + a2nxn ≤ b2

⋮ ⋮

ai1x1 + ai2x2 +  … + ainxn ≤ bi

⋮ ⋮

am1x1 + am2x2 +  … + amnxn ≤ bm

 

 

 
 
  

 

 
 
 
 

(2)

x j ≥ 0     j = 1,2,…,n (3)
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DefinitionsDefinitions

• Objective function (max or min) :

Min z  =  – Max ( – z )

• Constraints : ≤ or ≥ or =

  

ai1x1 + ai2x2 +  … + ainxn ≥ bi

⇕

−ai1x1 − ai2x2 −  … − ainxn ≤ −bi

  

ai1x1 + ai2x2 +  … + ainxn = bi

⇕
ai1x1 + ai2x2 +  … + ainxn ≤ bi

ai1x1 + ai2x2 +  … + ainxn ≥ bi

 
 
 
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NotationsNotations

• Standard LP form:

  

Min  z = c1x1 + c2x2 +  … +cnxn (1)

a11x1 + a12x2 +  … + a1nxn ≤ b1
a21x1 + a22x2 +  … + a2nxn ≤ b2

⋮ ⋮
ai1x1 + ai2x2 +  … + ainxn ≤ bi

⋮ ⋮
am1x1 + am2x2 +  … + amnxn ≤ bm

 

 

 
  

 

 
 
 

(2)

x j ≥ 0     j = 1,2,…,n (3)

Min z = cjx j
j=1

n

∑

aijx j ≤ bi  ,    i = 1,2,…,m
j =1

n

∑

x j ≥ 0 ,    j = 1,2,…,n

 
 
 

 
 

où c1, c2, …, cn, a11, a12, …, amn, b1, b2, …, bm ∈ R 
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NotationsNotations

• Vector notation:

• Matrix notation:

Min z = c jx j
j=1

n

∑

x jPj ≤ P0
j=1

n

∑

x j ≥ 0 ,    j =1,2,…, n

 
 
 

 
 

  

Pj =

a1j

a2 j

⋮

amj

 

 

 
 
 
 
 

 

 

 
 
 
 
 

  , ⋯  , P0 =

b1

b2

⋮

bm

 

 

 
 
 
  

 

 

 
 
 
  

  

C' =

c1
c2

⋮

cn

 

 

 
 
 
 
  

 

 

 
 
 
 
  

X =

x1
x2

⋮

xn

 

 

 
 
 
 
  

 

 

 
 
 
 
  

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am1 ⋯ amn

 

 

 
 
 

 

 

 
 
 

b =

b1
b2
⋮

bm

 

 

 
 
 

 

 

 
 
 

Min { CX  AX ≤ b , X ≥ 0 } 
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Slack variablesSlack variables

• To transform unequalities into equations.

• All constraints can be changed to  
equations, with additional slack variables 
→ 2nd LP standard form.

  

ai1x1 + ai2x2 +  … + ainxn ≤ bi
⇕

ai1x1 + ai2x2 +  … + ainxn + t i = bi
avec ti ≥ 0

  

ai1x1 + ai2x2 +  … + ainxn ≥ bi
⇕

ai1x1 + ai2x2 +  … + ainxn − t i = bi
avec ti ≥ 0
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Example 2Example 2

Max z = 40x1 + 30x2 
 
 

 x1       ≤  8  
       x2 ≤  6  
 x1 + 2x2 ≤ 15  
2x1 +  x2 ≤ 18  

 
 

x1 ≥ 0  x2 ≥ 0 
 

⇓⇑⇓⇑⇓⇑⇓⇑    
 

Max z = 40x1 + 30x2 
 
 

 x1       + t1                =  8  
       x2      + t2           =  6  
 x1 + 2x2           + t3      = 15  
2x1 +  x2                + t4 = 18  

 
 

x1 ≥ 0 x2 ≥ 0  t1 ≥ 0 t2 ≥ 0 t3 ≥ 0 t4 ≥ 0 

2012/2013 56

Example 2Example 2
x1 = 0

t3 = 0

t2 = 0

t1 = 0

x2 = 0

t4 = 0
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Example 2 Example 2 -- RemarksRemarks

• The feasible region is a convex polygon.

• Constraint = side of the polygon = one 
variable is equal to 0.

• Vertex = intersection of two sides = two 
variables equal to 0.

• n = 6, m = 4
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BasisBasis

• Non singular submatrix B, m×m, of A.

• Columns of B :

– B = { Pj1 , Pj2 , … , Pjm } .

– I(B) = { j 1 , j2 , … , jm } = basic indices.

– xj1 , xj2 , … , xjm : basic variables.

– J(B) =non basic indices → non basic 
variables. 
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Basic solutionBasic solution

• Solution obtained from a basis B, by 
setting all n–mnon basic variables equal 
to 0 and solving the resulting basic 
system:

AX = b  ⇒ BXB = b  ⇒ XB = B–1 b
• Special cases:

– Feasible basic solution (f.b.s.): XB ≥ 0
– Explicit basic solution: if B = I, 
⇒ XB = b
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Example 2 : basesExample 2 : bases

Max z = 40x1 + 30x2 
 
 

 x1       ≤  8  
       x2 ≤  6  
 x1 + 2x2 ≤ 15  
2x1 +  x2 ≤ 18  

 
 

x1 ≥ 0  x2 ≥ 0 
 

⇓⇑⇓⇑⇓⇑⇓⇑    
 

Max z = 40x1 + 30x2 
 
 

 x1       + t1                =  8  
       x2      + t2           =  6  
 x1 + 2x2           + t3      = 15  
2x1 +  x2                + t4 = 18  

 
 

x1 ≥ 0 x2 ≥ 0  t1 ≥ 0 t2 ≥ 0 t3 ≥ 0 t4 ≥ 0 



31

2012/2013 61

Example 2 Example 2 -- RemarksRemarks

• The feasible region is a convex polygon.

• Constraint = side of the polygon = one 
variable is equal to 0.

• Vertex = intersection of two sides = two 
variables equal to 0.

• n = 6, m = 4

• Basic solution: n−m = 2non-basic 
variables (equal to 0) !
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f.b.s. for example 2f.b.s. for example 2
Enumération des Solutions de Base 

Sommet x1 x2 t1 t2 t3 t4 z Solution 

O 0 0 8 6 15 18 0 s.b.r. 

 0  0    - - 

E 0 6 8 0 3 12 180 s.b.r. 

 0 7,5 8 -1,5 0 10,5 - s.b. 

 0 18 8 -12 -21 0 - s.b. 

A 8 0 0 6 7 2 320 s.b.r. 

  0  0   - - 

 15 0 -7 6 0 -12 - s.b. 

 9 0 -1 6 6 0 - s.b. 

 8 6 0 0 -5 -4 - s.b. 

 8 3,5 0 2,5 0 -1,5 - s.b. 

B 8 2 0 4 3 0 380 s.b.r. 

D 3 6 5 0 0 6 300 s.b.r. 

 6 6 2 0 -3 0 - s.b. 

C 7 4 1 2 0 0 400 s.b.r.≡s.o. 
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Example 2Example 2
x1 = 0

t3 = 0

t2 = 0

t1 = 0

x2 = 0

t4 = 0
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Theoretical resultsTheoretical results

• If the feasible region is bounded and non-
empty, there is at least one vertex of the 
feasible region that is an optimal solution 
of the LP.

• There is a 1-1 relation between the 
vertices of the feasible region and the 
feasible basic solutions.
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Simplex algorithmSimplex algorithm

• Principle :
To go from vertex 
(f.b.s.) to vertex 
improving each time the 
value of the objective 
function z, until either 
an optimal solution is 
obtained or it appears 
that the problem is not 
bounded.
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Simplex algorithmSimplex algorithm
(included in Excel Solver a.o.)(included in Excel Solver a.o.)

• Iterative algorithm (1948).

• Finds optimal basic solution (extreme point of 
feasible region).

• Detects unbounded solutions and unfeasibility.

• Provides additional results:
Post-optimal analysis (sensitivity analysis)

– Reduced costs:
impact of a unit increase of a non-basic variable
(0 → 1) on the optimal value of the objective 
function.

– Shadow prices:
impact of a unit change of the RHS of a constraint 
on the optimal value of the objective function.
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Optimization algorithmsOptimization algorithms

• Continuous variables (LP) :

– Simplex,

– «Interior point» algorithms.

• Integer variables (IP) :

– «Branch and bound» algorithms,

– «Branch and cut» algorithms

• Mixed programs (continuous-integer)
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Giapetto and Excel’s solverGiapetto and Excel’s solver
Microsoft Excel 11.0 Rapport des réponses
Feuille: [LPexemples.xls]Giapetto
Date du rapport: 16/10/2005 18:50:49

Cellule cible (Max)
Cellule Nom Valeur initiale Valeur finale

$D$4 Fonction écon. MAX 180 180

Cellules variables
Cellule Nom Valeur initiale Valeur finale

$B$3 x1 20 20
$C$3 x2 60 60

Contraintes
Cellule Nom Valeur Formule État Marge

$D$6 Finition MAX 100 $D$6<=$F$6 Lié 0
$D$7 Menuiserie MAX 80 $D$7<=$F$7 Lié 0
$D$8 Soldats MAX 20 $D$8<=$F$8 Non lié 20
$B$3 x1 20 $B$3>=0 Non lié 20
$C$3 x2 60 $C$3>=0 Non lié 60

I.

II.
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ResultsResults

I. Optimal solution found by the solver.

II. Binding and nonbinding constraints, 
slack variables.

2012/2013 70

Giapetto and Excel’s solverGiapetto and Excel’s solver

Microsoft Excel 11.0 Rapport de la sensibilité
Feuille: [LPexemples.xls]Giapetto
Date du rapport: 16/10/2005 18:50:49

Cellules variables
Finale Réduit Objectif Admissible Admissible

Cellule Nom Valeur Coût Coefficient Augmentation Réduction
$B$3 x1 20 0 3 1 1
$C$3 x2 60 0 2 1 0,5

Contraintes
Finale Ombre Contrainte Admissible Admissible

Cellule Nom Valeur Coût à droite Augmentation Réduction
$D$6 Finition MAX 100 1 100 20 20
$D$7 Menuiserie MAX 80 1 80 20 20
$D$8 Soldats MAX 20 0 40 1E+30 20

III. IV.

V. VI.
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ResultsResults

III. Reduced costs for non-basic variables.

IV. Stability intervals for the optimal basic 
solution (objective function 
coefficients).

V. Shadow prices of the constraints.

VI. Validity intervals for the shadow 
prices.
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Objective function Objective function -- TrainsTrains
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Objective function Objective function -- TrainsTrains

2,5€/train

z = 210
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Objective function Objective function -- TrainsTrains

3€/train
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Objective function Objective function -- TrainsTrains

z = 60
z = 120
z = 180
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Objective function Objective function -- TrainsTrains

1,75€/train
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Objective function Objective function -- TrainsTrains

1,5€/train

z = 150
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Objective function Objective function -- TrainsTrains

1€/train
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Shadow price Shadow price -- FinishingFinishing
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z = 120
z = 180
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Shadow price Shadow price -- FinishingFinishing

110 hours
z = 60
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Shadow price Shadow price -- FinishingFinishing

90 hours
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Giapetto and Excel’s solverGiapetto and Excel’s solver

Microsoft Excel 11.0 Rapport de la sensibilité
Feuille: [LPexemples.xls]Giapetto
Date du rapport: 16/10/2005 18:50:49

Cellules variables
Finale Réduit Objectif Admissible Admissible

Cellule Nom Valeur Coût Coefficient Augmentation Réduction
$B$3 x1 20 0 3 1 1
$C$3 x2 60 0 2 1 0,5

Contraintes
Finale Ombre Contrainte Admissible Admissible

Cellule Nom Valeur Coût à droite Augmentation Réduction
$D$6 Finition MAX 100 1 100 20 20
$D$7 Menuiserie MAX 80 1 80 20 20
$D$8 Soldats MAX 20 0 40 1E+30 20

III. IV.

V. VI.
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……

• Big Mac Example 

• MPL4 solver:

http://www.maximal-usa.com
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Typical LP’sTypical LP’s

• Allocation models.

• Covering models.

• Blending models.

• Network models:

– Transportation model,

– Assignment model,

– Transshipment model.
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Covering model Covering model -- exampleexample

2012/2013 86

Blending model Blending model -- exampleexample
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Transportation model Transportation model --
exampleexample
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Assignment model Assignment model -- exampleexample
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Transshipment model Transshipment model --
exampleexample
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Integer programming (IP)Integer programming (IP)

• Integer programming model:

– Some variables are integer variables.

– Some variables are binary variables (yes/no).

– Expression of logical or qualitative 
constraints by binary variables.

• Branch and bound procedure
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Integer variablesInteger variables
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Binary variablesBinary variables
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Qualitative constraintsQualitative constraints

• Additional constraints:

1. Select at least one project from the 
international area (P2 or P5).

2. P2 and P5 are mutually exclusive.

3. P5 requires that P3 be selected.
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The matching problemThe matching problem

ModelSheets
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SetSet--covering problemcovering problem
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Qualitative constraintsQualitative constraints

• Linking constraints

– Force two variables to behave consistently.

• Disjunctive constraints

– Choice of one option or its opposite.

• Tour constraints

– Requirement that a travel path must stop at 
every location.
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Linking constraintsLinking constraints

ModelSheets
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Disjunctive constraintsDisjunctive constraints
MachineMachine--sequencing problemsequencing problem
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Tour constraintsTour constraints
Traveling salesperson problemTraveling salesperson problem


