

Statistics, management science, operations research, decision aid, dvanced optimization	
dvanced optimization	
Linear programming	
Integer programming	
Non-tillear programming ulticriteria decision aid	
etworks	
Transportation problems	
Network flow problems	
Project management	
iventory management	
mulation models	
ו F ive mu	Network flow problems Project management ntory management Ilation models

Grape Juice Management at Welch's

 W^{ith} al sales over \$550 million, Welch's is one of the What annual acts over \$550 million, Welch's is one of the world's largest grape-processing companies. Founded in 1869 by Dr. Thomas B. Welch, it processes raw grapes (nearly 500,000 tons per year) into juice, as well as jellies and frozen concentrates. Welch's is owned by the National Grape Cooperative Association (NGCA), which has a membership of 1,400 growers. Welch's is NGCA's production, distribution, and marketing organization. Welch's operates its grape processing plants near its growers. Because of the dynamic nature of product demand and customer service, Welch's holds finished goods inventory as a buffer, and maintains a large raw materials inventory stored as grape juice in refrigerated tank farms. Packaging operations at each plant draw juice from the tank farms during the year as needed. The value of the stored grape juice often exceeds \$50 million. Harvest yields and grape quality vary between localities. In order to maintain national quality and consistency in its products, Welch's transfers juices between plants and adjusts produces, recipes. To do this Welch's uses a spreadsheet-based linear programming model. The juice logistics model (JLM) encompasses 324 decision variables and 361 constraints, that minimizes the combined costs of transporting grape juice between plants and the product recipes at each plant, and the carrying cost of storing grape juice. The model decision variables include the grape juice shipped to customers for different product groups, the grape juice transferred between plants, and inventory levels at each plant. Constraints are for recipe requirements, inventories, and grape juice usage and transfers. During the first year the linear program-ming model was used, it saved Welch's between \$130 thousand

and \$170 thousand in carrying costs alone by showing Welch's it did not need to purchase extra grapes that were then available. The model has enabled Welch's management to make quick decsions regarding inventories, purchasing grapes, and adjusting product recipes when grape harvests are higher or lower than expected, and when demand changes, resulting in significant con savings.

Source: E. W. Schuster and S. J. Allen, "Raw Material Management at Welch's. Inc.," *Interfaces* 28, no. 5 (September–Octoher 1998 13–24.

9

Gasoline Blending at Texaco

The petroleum industry first began using linear programming to solve gasoline blending problems in the 1950s. A single grade of gasoline can be a blend of from three to ten different components. A typical refinery might have as many as 20 different components it blends into four or more grades of gasoline. Each grade of gasoline differs according to octane level, volatility, and

constraints

Source: C. E. Bodington and T. E. Baker, "A History of Mathemat-ical Programming in the Petroleum Industry," *Interfaces* 20, no. 4 (July–August 1990): 117–27; and, C. W. DeWitt et al., "OMEGA: An Improved Gasoline Blending System for Texaco," *Interfaces* 19, pp. 1. (Journey Technery, 1980). 57 no. 1 (January-February 1989): 85-101.

11

Selecting Freight Carriers at Reynolds Metals Company

In 1991, Reynolds Metals Company spent over \$0.25 billion to Ideliver its products and receive raw materials through a transportation network that included truck, rail, ocean, and air shipments from over 120 shipping locations to over 5,000 receiving destinations. Truck shipments accounted for over half the company's freight costs, and interstate truck shipments alone cost over \$80 million.

Reynolds Metals encompasses 12 decentralized operating divisons; and consistent with their decentralized operating philosophy, each division and plant traditionally was responsible for negotiating with and selecting its own carriers and arranging for shipments.

However, because of concerns about variability in service quality and high costs, in 1987 the company developed a new central dispatch system located in Richmond, Virginia, to select all (independent) truck carriers and dispatch them centrally. A vital component of this new central dispatch was a mixed integer programming model that selected the number and type of carrier to be firther evaluated for final selection with a simulation model. The objective of the model was to optimize central dispatch freight costs. The model optimally selected a specific number of truck carriers and assigned them to shipping locations. Constraints included a limit on the number of carriers to be selected, carrier limits on the number of carriers to be selected, carrier limits on the number of carriers to service individual locations. A typical model had over 5,000 constraints, 200 integer variables, and 9,000 total variables. Based on the

model results, the number of truck carriers used by Reynolds was reduced from over 200 to 14. Savings in freight casts using the entire central dispatch system is over \$7 million annually, and ontime delivery service was increased from 80% to 95%.

Source: E. W. Moore Jr., "The Indispensable Role of Management Science in Centralizing Freight Operations at Reynolds Metals Company," *Interfaces* 21, no. 1 (January-February 1991): 107-29.

13

Optimal Assignment of Gymnasts to Events

An integer programming model was developed to assign conducted at a typical NCAA meet—vault, uneven bars, balance beam, and floor exercises. Each team can enter up to six gymnasts in each event, and the top five scores among these entrants contribute to the team score. At least four of the entrants must participate in all four events. These conditions formed the model constraints; the objective was to maximize the team's overall expected score. The model was tested at Utah State University and allowed officials to analyze the effects of changing conditions, such as improved performance or injurites, on the team score to indicate to a team member why she was not selected for a particular event: and to eliminate the time the coach spent manually evaluating different team combinations.

Source: P. Ellis and R. Corn. "Using Bivalent Integer Program to Select Teams for Intercollegiate Women's Cymnastics Con tion," Interfaces 14, no. 3 (May–June 1984): 41–46.

2012/2013

15

Multiple optimal solutions example

An auto company manufactures *cars* and *trucks*. Each vehicle must be processed in the *paint shop* and *body assembly shop*. If the paint shop were only painting trucks, 40 per day could be painted. If the paint shop were only painting cars, 60 per day could be painted. If the body shop were only producing cars, it could process 50 per day. It it were only producing trucks, it could process 50 per day. Each truck produced contributes \$300 to *profit*, and each car contributes \$200. Determine a *daily production schedule* that will *maximize the company's profit*.

33

		Ty Die	vpica et pr	al LP [:] oble	's: ms		
F () () () () () () () () () () () () ()	Four choce Dne b costs chees 500 c fat. F minin	foods are availablate ice cream, prownie costs ¢5 ¢20, one bottle secake costs ¢80 alories, 6 oz of c formulate a LP to num cost.	ble for o cola an 0, one s of cola . Each o chocola o satisfy	consump of pineap scoop of costs ¢3 day, you te, 10 oz y these ro	tion: I pple cl chocc 0, and must of su equire	brov hees late d on inge gar eme	vnies, secake. e ice cream e piece of est at least and 8 oz of nts at
		Per unit:	Calories	Chocolate	Sugar	Fat	
		Brownie	400	3	2	2	
		Chocolate ice cream	200	2	2	4	
		Cola	150	0	4	1	
2012	/2013	Cheesecake	500	0	4	5	38

	Typ Nork schee A fast food restaurant requi employees on different days	ical LP's: duling pr res different numbers of s of the week.	oblems full-time
	Day	Full-time employees	
	1: Monday	17	
	2: Tuesday	13	
	3: Wednesday	15	
	4: Thursday	19	
	5: Friday	14	
	6: Saturday	16	
	7: Sunday	11	
2012/2013	Each full-time employee mu then receive two days off. T time employees. Formulate full-time employees that mu	ust work five consecutiv 'he manager wants to us a LP to minimize the nu 1st be hired.	e days and e only full- umber of 40

g problems
nt investment resent values (in
v.3 Inv.4 Inv.5
\$5 \$5 \$29
\$5 \$1 \$34
16 \$14 \$39

gas 3). Each	nanufactures 3 type is produc	types of gasoli ced by blending	ne (gas 1, gas 2 and g 3 types of crude oil			Octane rating	Sulfur content
(crude 1, cr	ide 2, and crud	le 3). The sales	price per barrel of		Crude 1	12	0.5%
gasoline and	the purchase	price per barre	l of crude oil are as		Crude 2	6	2.0%
ionows.		1			Crude 3	8	3.0%
oil daily. The 3 types content. Ga contain at n rating of at must have a	of gasoline dif s 1 must have a lost 1% of sulp least 8 and con n octane rating	fer in their oct in octane rating whur. Gas 2 mu tain at most 29 g of at least 6 ar	ane rating and sulfur g of at least 10 and st have an octane 6 of sulphur. Gas 3 nd contain at most	for that t Formulat costs) of	ng a particu ype of gas l e an LP to Sunco.	nar type of gas i by 10 barrels. maximize the da	ncreases the daily d

Multi-period decision problems: An inventory model

	f.t). S	5. 1	foi	r e	Xa	am	pl	e 2	
		En	uméra	tion c	les Sol	ution	s de B	ase		
	Sommet	\mathbf{x}_1	x2	t_1	t ₂	t3	t4	z	Solution	
	0	0	0	8	6	15	18	0	s.b.r.	
		0		0				-	-	
	Е	0	6	8	0	3	12	180	s.b.r.	
		0	7,5	8	-1,5	0	10,5	-	s.b.	
		0	18	8	-12	-21	0	-	s.b.	
	А	8	0	0	6	7	2	320	s.b.r.	
			0		0			-	-	
		15	0	-7	6	0	-12	-	s.b.	
		9	0	-1	6	6	0	-	s.b.	
		8	6	0	0	-5	-4	-	s.b.	
		8	3,5	0	2,5	0	-1,5	-	s.b.	
	В	8	2	0	4	3	0	380	s.b.r.	
	D	3	6	5	0	0	6	300	s.b.r.	
2012 (2012		6	6	2	0	-3	0	-	s.b.	(2
2012/2013	<u>C</u>	7	4	1	2	0	0	400	s.b.r.≡s.o.	62

(iapetto and Excel's solve	٦r
	hapetto and Excet 5 5000	
	Microsoft Excel 11.0 Rapport des réponses	
	Peullie: [LPexemples.xis]Glapetto Date du rapport: 16/10/2005 18:50:49	
	Cellule cible (Max)	
	Cellule Nom Valeur initiale Valeur finale	
	\$D\$4 Fonction écon. MAX 180 180	
	Cellules variables	
	Cellule Nom Valeur initiale Valeur finale	
	\$B\$3 x1 20 20	
	$\frac{\text{$C$3 x2}}{60 60}$	
	Contraintes	11
	Cellule Nom Valeur Formule Etat Marge	
	\$D\$6 Finition MAX 100 \$D\$6<=\$F\$6 Lié 0	
	\$U\$7 Menulserie MAX 80 \$U\$7<=\$F\$ Lie 0 \$D\$8 Soldata MAX 20 \$D\$8<<-\$E\$	
	$\frac{5050}{\text{$883}}$ x1 20 \$0\$\$ Non lié 20	
	\$C\$3 x2 60 \$C\$3>=0 Non lié 60	
2012/2012		20
2012/2013		60

Covering model - example

Herrick Foods Company

Herrick Foods Company wishes to introduce packaged trail mix as a new product. The ingredients for the trail mix are seeds, raisins, flakes, and two kinds of nuts. Each ingredient contains certain amounts of vitamins, minerals, protein, and calories; the marketing department has specified the product be designed so that a certain minimum nutritional profile is met. The decision problem is to minimize the product cost and determine the product composition—that is, by choosing the amount of each ingredient in the mix. The data shown below summarize the parameters of the problem.

	Section 1		Grams/Pou	nd		Nutritional
noladisconst	SEEDS	RAISINS	FLAKES	PECANS	WALNUTS	Requirement
Vitamins	10	20	10	30	20	16
Minerals	5	7	4	9	2	10
Protein	1	4	10	2	1	15
Calories	500	450	160	300	500	600
Cost/Pound (\$)	4	5	3	7	6	

Keogh Coffee Roas and Peruvian) into	sters blends three type	es of coffee beans (Bra	vilian Colombian
distinctive aroma a	nd taste, and the corr	s sold at retail. Each la pany has a chief taste	kind of bean has a r who can rate the
fragrance of the art tures of the beans a Bean	oma and the strength or are tabulated below: Aroma Rating	of the taste on a scale of Strength Rating	of 1 to 100. The fea
Brazilian	75	15	.50
Colombian	60	20	.60
Colombian			
Peruvian	85	18	.70

Transportation model example

Goodwin Manufacturing Company

Goodwin Manufacturing Company is planning next week's shipments from its three manufacturing plants to its four distribution warehouses and seeking a minimum-cost shipping schedule. Each plant has a potential capacity, expressed in cartons of product, and each warehouse has a demand requirement for the week that must be met. There are 12 possible shipment routes, and for every plant-warehouse combination, the unit shipping cost is known. The following table provides the given information:

From: Plant	ATLANTA	BOSTON	CHICAGO	DENVER	Capacity
Minneapolis	\$0.60	\$0.56	\$0.22	\$0.40	10,000
Pittsburgh	\$0.36	\$0.30	\$0.28	\$0.58	15,000
Tucson	\$0.65	\$0.68	\$0.55	\$0.42	15,000
Requirement	8,000	10,000	12,000	9000	

E	to Commence					
Europa Au	to Company					
actimenta 1 4	ha annual aact	(in millions	of dollars) of	f implemen	ting the ass	ignment
The cost da and identifi total cost o	ata take the forr es the products f the assignmen	n shown in the by number.	te following The automak	table, which	h lists plant l ve is to mini	locations mize the
The cost da and identifi total cost o	the annual cost that take the forr es the products f the assignmen Compact (1)	n shown in the by number. 'nt. Coupe (2)	the following The automak Sedan (3)	table, which ter's objecti SUV (4)	h lists plant by ve is to mini Truck (5)	locations mize the Van (6
The cost da and identifi total cost o	the annual cost at take the forr es the products f the assignmen <u>Compact (1)</u> 80	(in minoris) n shown in th by number. nt. Coupe (2) 56	the following The automak Sedan (3) 43	table, which er's objecti SUV (4) 62	h lists plant l ve is to mini Truck (5) 46	locations mize the Van (6 58
Akron Buffalo	ta take the forr es the products f the assignmen <u>Compact (1)</u> 80 94	(in finitions) in shown in the by number. int. Coupe (2) 56 50	the following The automak Sedan (3) 43 88	table, which er's objecti SUV (4) 62 64	h lists plant l ve is to mini Truck (5) 46 63	locations imize the Van (6 58 52
Akron Buffalo Columbus	ta take the forr es the products f the assignmen <u>Compact (1)</u> 80 94 94	(in finitions) in shown in the by number. int. Coupe (2) 56 50 46	the following The automak Sedan (3) 43 88 50	table, which table, which suv (4) 62 64 40	h lists plant l ve is to mini Truck (5) 46 63 55	Van (6 58 52 73
Akron Buffalo Columbus Detroit	ta take the forr es the products f the assignmen <u>Compact (1)</u> 80 94 94 94 98	(in finitions) in shown in the by number. The st. Coupe (2) 56 50 46 79	Sedan (3) 43 88 50 71	table, which ter's objecti SUV (4) 62 64 40 65	h lists plant l ve is to mini Truck (5) 46 63 55 91	Van (6 58 52 73 59
Akron Buffalo Columbus Detroit Evansville	Compact (1) 80 94 94 98 61	(in finitions) in shown in the by number. int. Coupe (2) 56 50 46 79 59	e following The automak Sedan (3) 43 88 50 71 89	table, whicl ser's objecti SUV (4) 62 64 40 65 98	h lists plant l ve is to mini Truck (5) 46 63 55 91 45	Van (6 58 52 73 59 52

	Bina	ry va	ariat	oles	
Newton Corpor	ation	Aliguite e suu			
Division A of N ects this year. M proposed five pr cover a variety The projects are	ewton Corpora lanagers in divi ojects for the co of activities and the following:	tion has been s sion A have ex apital-budgetir functional are	allocated \$40 amined various of committee teas, and there	million for cap us possibilities to consider. The is just one of e	and have projects ach type.
P1: Renova	te the productio	n facility for g	reater efficien	cy.	
P2: License	a new technolo	gy for use in p	oroduction.		
P3: Expand	advertising by	naming a stadi	um.		
P4 Purchas	e land and cons	struct a new he	adquarters bu	ilding.	
P5: Introdu	ce a new produ	t to compleme	ent the current	line.	
Each project ital expenditure lowing table so committee, with	t has an estimat , which must c immarizes the all figures in n	red net present ome out of the possibilities, nillions of doll	value (NPV), e budget for c as they have ars.	and each require apital projects. been provide	res a cap- The fol- ed to the
Project	P1	P2	P3	P4	P5
NPV	2.0	3.6	3.2	1.6	2.8
Expenditure	12	24	20	8	10

Linking constraints

Moore Office Products

Moore Office Products has been producing and selling three product families (F1, F2, and F3) and planning for those products using a product mix type of linear programming model. Each product family requires production hours in each of three departments. In addition, each family requires its own sales force, which must be supported no matter how large or small the sales volume happens to be. The parameters describing the situation are summarized in the following table. Moore's management is wondering whether it should continue to market the three product families.

Hours Required/1000 Units

	F1	F2	F3	Hours Available	
Department A	3	4	8	2000	
Department B	3	5	6	2000	
Department C	2	3	9	2000	
Profit/Unit (\$)	1.20	1.80	2.20		
Sales Cost (\$1000s)	60	200	100		
Demand (1000s)	300	200	50		
/2013				ModelSheets	•

Tour constraints Traveling salesperson problem

Douglas Electric Cart Company

Douglas Electric Cart Company assembles small electric vehicles, which are sold for use on golf courses, at university campuses, and in sports stadiums. In these markets, customers like to buy in a variety of colors, so Douglas offers several choices. As a result, its manufacturing operations include a sophisticated painting operation, which is separately scheduled.

In today's schedule, there are six colors (C1–C6) with cleaning times as shown in the table below.

	C1	C2	C3	C4	C5	C6
C1	100	16	63	21	20	66
C2	57		40	46	69	42
C3	23	11		55	53	47
C4	71	53	58		47	5
C5	27	79	53	35	_	30
C6	57	47	51	17	24	-

The entry in row i and column j of the table gives the cleaning time required between product lots of color Ci and color Cj. Each production run consists of a cycle through the full set of colors, and the operations manager wishes to sequence the colors so that the total cleaning time in a cycle is minimized.

2012/2013

99