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Abstract. We consider the equation ∆gu + hu = |u|2∗−2u in a closed Rie-

mannian manifold (M, g), where h ∈ C0,θ(M), θ ∈ (0, 1) and 2∗ = 2n
n−2

,

n := dim(M) ≥ 3. We obtain a sharp compactness result on the sets of sign-

changing solutions whose negative part is a priori bounded. We obtain this
result under the conditions that n ≥ 7 and h < n−2

4(n−1)
Scalg in M , where

Scalg is the Scalar curvature of the manifold. We show that these conditions

are optimal by constructing examples of blowing-up solutions, with arbitrarily

large energy, in the case of the round sphere with a constant potential function
h.

1. Introduction and main results

Let (M, g) be a closed (i.e. compact, without boundary) Riemannian manifold
of dimension n ≥ 3. We are interested in this paper in the asymptotic behavior of
sequences of sign-changing solutions (uk)k to the scalar curvature-type equation

∆gu+ hu = |u|2
∗−2u in M, (1.1)

where ∆g := −divg∇ is the Laplace–Beltrami operator, h ∈ C0,θ(M), θ ∈ (0, 1)
and 2∗ = 2n

n−2 is the critical exponent for the embeddings of the Sobolev space

H1 (M) into the Lebesgue spaces Lq (M).

The case of positive solutions of (1.1) has originated a vast amount of work
in the last decades and is now well understood. In particular, assuming that the
operator ∆g + h is coercive (which is a necessary condition to the existence of
positive solutions for (1.1)), Druet [14] showed that if

h <
n− 2

4 (n− 1)
Scalg in M, (1.2)

where Scalg is the Scalar curvature of the manifold, then there exists a constant
C > 1 such that every solution u of (1.1) satisfies

1

C
≤ u ≤ C in M.

We are concerned in this article with sign-changing solutions. Our first result
establishes the boundedness of the set of solutions of (1.1) whose negative part is
a priori bounded:
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Theorem 1.1. Let (M, g) be a closed manifold of dimension n ≥ 7, and let h ∈
C0,θ (M) and θ ∈ (0, 1). Assume that (1.2) holds true. Then for every A > 0, there
exists CA > 0 such that for every solution u of (1.1), if u ≥ −A in M , then

u ≤ CA in M.

We prove in this paper a slightly more general result, Theorem 2.1 below, which
also addresses the case of subcritical powers and allows to take into account per-
turbations of the potential h and the exponent 2∗. By standard elliptic regularity
results, Theorem 1.1 establishes in particular the compactness in C2,θ(M) of the
set of solutions to (1.1) which are uniformly bounded from below. Note that in
the statement of Theorem 1.1, the operator ∆g + h is not assumed to be coercive,
unlike in the positive case, and in particular (M, g) is not assumed to be of positive
Yamabe type.

The next result shows that the assumptions of Theorem 1.1 are sharp in the case
of the round sphere (Sn, g0) with a constant potential function h (note that in this
case Scalg0 ≡ n(n− 1)):

Theorem 1.2. Let (Sn, g0) be the n–dimensional round sphere. Assume that h is
a constant and h > 0 in case n ∈ {3, 4, 5}, h > 2 in case n = 6, h > n (n− 2) /4 in
case n ≥ 7. Assume moreover that h 6= j (j + n− 1) (n− 2) /4 for all j ≥ 1. Then
there exists a sequence of solutions (uk)k∈N to the equation

∆g0uk + huk = |uk|2
∗−2

uk in Sn (1.3)

such that
−∞ < lim

k→∞
min
M

uk < 0 and lim
k→∞

max
M

uk =∞. (1.4)

The sequence (uk)k∈N that we construct in Theorem 1.2 also satisfies

lim
k→∞

‖uk‖H1(Sn) = +∞. (1.5)

We point out that according to Druet’s result [14], it is not possible to construct
positive blowing-up solutions of (1.3) when h < n (n− 2) /4; when h > n (n− 2) /4,
however, such solutions were constructed by Chen, Wei and Yan [7] (see also Vétois
and Wang [44]). Theorem 1.2 highlights the specificity of the six-dimensional case:
when n = 6, n(n− 2)/4 = 6, but we manage to obtain non-compactness under the
weaker assumption h > 2. This is due to a subtle interaction between the bubbling
profiles, the negative part of the solution and the potential h, see for instance (3.57).

The result of Theorem 1.2 is also true when h ≡ n (n− 2) /4, namely in the case
of the Yamabe equation. Solutions of this type have been constructed in this case
by del Pino, Musso, Pacard and Pistoia [10,11].

Few results are known concerning the question of compactness of the set of
solutions of (1.1) in the context of sign-changing solutions. On the one hand, the
non-compactness of the whole set of solutions in the case of the Yamabe equation on
the sphere was established by Ding [13]. More recently, several examples of solutions
were constructed in the case of the Yamabe equation on the sphere. In this case, del
Pino, Musso, Pacard and Pistoia [10, 11] obtained examples of solutions satisfying
(1.4) and concentrating along some special submanifolds. Musso and Wei [28]
constructed another type of solutions satisfying a non-degeneracy property. In a
different direction, Clapp [8] and Clapp and Fernández [9] used topological methods
to obtain examples of solutions satisfying equivariance properties and, very recently,
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by using ODE methods, Fernández and Petean [18] discovered the existence of a
new type of solutions vanishing on an arbitrary number of hypersurfaces.

On the other hand, a compactness result for energy-bounded, sign-changing so-
lutions was established by Vétois [43]. In this work, it is the compactness of sets
of solutions whose energy is a priori bounded which was obtained, also in the case
where n ≥ 7 and (1.2) holds true in M , with the additional assumption that (M, g)
is locally conformally flat. The proof of [43] uses in a crucial way the H1–bubble
tree decomposition result obtained by Struwe [41]. This type of result (see also the
C0–blow-up theory developed by Druet, Hebey and Robert [16] in the context of
positive solutions) applies to energy-bounded sequences of solutions. Theorem 1.1
and the results in [43] are therefore very different in nature, and so are their proofs.
It is in particular worth noting that Theorem 1.1 is the first compactness result
for sign-changing solutions of (1.1) which does not require an a priori bound on
the energy. It is also worth noting that, in view of Theorem 1.3 in Vétois [43],
the boundedness assumption on the negative part of the solutions in Theorem 1.1
is optimal, since – at least on locally conformally flat manifolds – infinite-energy
blow-up occurs otherwise.

Different types of existence results of sign-changing blowing-up solutions were
also established by Deng, Musso and Wei [12], Pistoia and Vétois [31] and Robert
and Vétois [35,37]. More precisely, these papers are concerned with the existence of
families of sign-changing blowing-up solutions (uε)ε>0 to the asymptotically critical
equations

∆guε + huε = |uε|2
∗−2−εuε in M

for small ε > 0. In particular, we point out that the solutions constructed by
Robert and Vétois [35,37] satisfy (1.4), however, in contrast with (1.5), their energy
is bounded from above. The existence of such solutions was obtained in [35] for
manifolds with positive Yamabe invariant, under the conditions that there exists
a non-degenerate solution u0 to (1.1) with either [n ∈ {3, 4, 5} and h is arbitrary],
[n = 6 and n−2

4(n−1) Scalg −h < 2u0], [n ∈ {7, 8, 9} and h ≡ n−2
4(n−1) Scalg] or [n ≥

10, h ≡ n−2
4(n−1) Scalg and (M, g) is locally conformally flat]. The non-degeneracy

condition was then relaxed in [37] in the case where u0 is a strict local minimizer
of an energy functional.

More generally, these compactness questions originated with the investigation of
the set of positive solutions of the Yamabe equation in manifolds of positive Yamabe
type. In the case of the sphere, the positive solutions of the Yamabe equation were
classified by Obata [29]. For more general manifolds, references in the context
of positive solutions include Druet [14], Khuri, Marques, and Schoen [23], Li and
Zhang [24, 25], Li and Zhu [26], Marques [27] and Schoen [39, 40] for compactness
results and Brendle [4] and Brendle and Marques [5] for non-compactness results.

We prove Theorem 1.1 in Section 2. Its proof is based on an a priori asymptotic
analysis of sequences of blowing-up solutions (uk)k∈N of (1.1). We identify, for each
k, a suitable set of points in M where uk is likely to blow-up (the number of such
points is not known to be a priori bounded in k). Around each one of these points
xk a local analysis is carried on, and we prove that uk blows-up at first order, and
on a controlled scale around xk, as a canonical bubbling profile. The conclusion
is then obtained by analyzing the pointwise interactions between all these defects
of compactness. The new difficulty here is of course that the sequence (uk)k∈N



4 BRUNO PREMOSELLI AND JÉRÔME VÉTOIS

that we investigate changes sign. We overcome this issue by adapting the approach
introduced in Druet–Premoselli [17] (see also Premoselli [32]).

We prove Theorem 1.2 in Section 3. The proof of this result relies on a Lyapunov–
Schmidt-type method, which was invented, developed and successfully used in a
series of works by Wang, Wei and Yan [45, 46] and Wei and Yan [47–50]; see also
del Pino, Musso, Pacard and Pistoia [10, 11] and Guo, Li, Pistoia and Yan [20] for
more recent works inspired from this method. The solutions that we construct are
of the form

uk =

k∑
i=1

Bi,k − λ0 + Φk,

where k ∈ N, B1,k, . . . , Bk,k are standard bubbles concentrating at k equidistant

points of the equator, λ0 := h1/(2∗−2) is the constant solution of (1.1) and Φk → 0
as k → ∞ in H1 (M). This ansatz is similar to the one used by del Pino, Musso,
Pacard and Pistoia [10,11] in the case of the Yamabe equation. Note, however, that
in contrast with [10, 11], our proof does not rely on weighted L∞–norms. Instead,
we use the Sobolev norm induced by the operator ∆g + h, an approach which is
closer to the one used for instance by Chen, Wei and Yan [7] in the context of
positive solutions.

2. Proof of Theorem 1.1

In this section, we will prove the following result, which is more general than
Theorem 1.1:

Theorem 2.1. Let (M, g) be a closed manifold of dimension n ≥ 3, q ∈ (2, 2∗]
and h0 ∈ C0,θ (M), θ ∈ (0, 1). In case q = 2∗, assume that n ≥ 7 and h0 <
n−2

4(n−1) Scalg in M . Let A ∈ R. Then for every sequences (hk)k in C0,θ(M) such

that ‖hk − h0‖C0,θ(M) → 0 as k → +∞, (qk)k∈N ⊂ (2, 2∗] such that qk → q and

(uk)k ⊂ C2,θ(M) such that

4guk + hkuk = |uk|qk−2uk, (2.1)

if (uk)k satisfies
u−k ≤ A for any k ∈ N, (2.2)

then up to a subsequence, uk → u0 in C2,θ(M), where u0 solves

∆gu0 + h0u0 = |u0|q−2u0 in M.

In (2.2) we have let u−k := −min(uk, 0) which is always non-negative. Assump-
tion (2.2) ensures that the sequence (uk) does not develop sign-changing bubbles.

Remark 2.2. If (uk)k is a sequence satisfying the assumptions of Theorem 2.1,
(2.2) is in particular true if one of the following two conditions is satisfied:

• Either ‖uk‖Lp(M) is uniformly bounded in k for some p > 2∗, or
• ‖uk‖L2∗ (M) is smaller than some (small) constant ε0(n, g, h) for all k.

Proof of the Remark: Following Ouyang [30], u−k satisfies, weakly in H1(M):

4gu−k + hku
−
k ≤ (u−k )qk−1.

Now, if u−k is uniformly bounded in some Lp(M) with p > 2∗ then a bootstrap

argument shows that u−k is uniformly bounded in L∞(M). On the other hand, if we
assume that ‖uk‖L2∗ (M) is small enough then an adaptation of Trudinger’s classical
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argument (see for instance the proof of Theorem 2.15 in Hebey [22]) similarly yields
that u−k is uniformly bounded in some Ls(M) with s > 2∗, and we again conclude
with a bootstrap argument. �

The proof of Theorem 2.1 goes through an a priori asymptotic analysis. In
what follows we let (hk)k, (qk)k and (uk)k be sequences as in the statement of
Theorem 2.1. In case q = 2∗, we assume that n ≥ 7 and h0 < n−2

4(n−1) Scalg in

M . Note that we do not assume that ∆g + h0 is coercive anymore. We assume
that (uk)k satisfies assumption (2.2) and, up to a subsequence, we assume that
uk 6≡ 0 for all k. If the sequence (‖uk‖L∞(M))k is uniformly bounded Theorem 2.1
easily follows by standard elliptic theory. We therefore proceed by contradiction
and assume that

‖uk‖L∞(M) −→ +∞ (2.3)

as k → +∞. We first prove Theorem 1.1 in the subcritical case q < 2∗:

Proof of Theorem 1.1 when q < 2∗. Assume that limk→+∞ qk = q < 2∗. Let yk ∈
M be such that

|uk(yk)| = max
M
|uk| −→ +∞

by (2.3). We then obtain uk(yk) = |uk(yk)| by (2.2), and we can let νk :=
uk(yk)−(qk−2)/2. For any x ∈ B

(
0, ig(M)/2νk

)
, where ig(M) is the injectivity

radius of M , define

vk(x) := ν
2

qk−2

k uk
(

expyk(νkx)
)
.

It satisfies ‖vk‖∞ ≤ 1 and solves

4gkvk + ν2
khk

(
expyk(νk·)

)
vk = |vk|qk−2vk in B (0, ig(M)/2νk) ,

where gk := exp∗yk g(νk·). By standard elliptic theory we then get that vk → v0 in

C2,η
loc (Rn), for any 0 < η < 1, where

4v0 = |v0|q−2v0 in Rn.

Here 4 := −
∑n
i=1 ∂

2
i stands for the non-negative Euclidean Laplacian. By as-

sumption (2.2) we have 0 ≤ v−k ≤ Aν
2/(qk−2)
k pointwise for any k, so that v0 ≥ 0.

Since q < 2∗ the classification result of Gidas and Spruck [19] shows that v0 ≡ 0,
but this is impossible since v0(0) = 1. This ends the proof of Theorem 1.1 when
q < 2∗. �

The next two subsections are devoted to the proof of Theorem 1.1 in the asymp-
totically critical case. We will assume from now on that limk→+∞ qk = 2∗ and
therefore that n ≥ 7 and h0 <

n−2
4(n−1) Scalg.

2.1. Local analysis. In this section we consider sequences of critical points (xk)k
of uk and a sequence of positive numbers (ρk)k with 16ρk < ig(M) such that
|uk(xk)| > 0,

dg(xk, x)
2

qk−2 |uk(x)| ≤ C for any x ∈ Bxk(8ρk) (2.4)

and

ρ
2

qk−2

k max
Bxk (8ρk)

|uk| −→ +∞ (2.5)
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as k → +∞. Relevant examples of such sequences (xk)k and (ρk)k will be con-
structed in the next subsection. We first prove that uk develops a concentration
point at xk. Let

µk := |uk(xk)|−
qk−2

2 . (2.6)

Lemma 2.3. Assume (2.4) and (2.5). Then as k → +∞ one has µk → 0 and

µ
2

qk−2

k uk
(

expxk(µk·)
)
−→

(
1 +

| · |2

n(n− 2)

)1−n2

in C2
loc(Rn).

Proof. Let yk ∈ Bg(xk, 8ρk) be such that

|uk(yk)| = max
Bg(xk,8ρk)

|uk| −→ +∞

as k → +∞ by (2.5). We have in particular uk(yk) = |uk(yk)| by (2.2), and we
let νk := uk(yk)−(qk−2)/2. By (2.5) one has ρk

νk
→ +∞ as k → +∞. For any

x ∈ B (0, ρk/νk) define

vk(x) := ν
2

qk−2

k uk
(

expxk(νkx)
)
.

It satisfies

4gkvk + ν2
khk

(
expxk(νk·)

)
vk = |vk|qk−2vk in B (0, ρk/νk) ,

where gk := exp∗yk g(νk·). Also, ‖vk‖∞ ≤ 1 by definition of yk. By standard elliptic

theory we get that vk → v0 as k →∞ in C2,η
loc (Rn) for any 0 < η < 1, where

4v0 = |v0|2
∗−2v0 in Rn.

By assumption (2.2) we have 0 ≤ v−k ≤ Aν
2/(qk−2)
k pointwise for any k, so that

v0 ≥ 0. Also v0 is non-trivial, since v0(y0) = 1, where y0 := limk→+∞
1
νk

exp−1
xk

(yk),

and the latter limit is finite since dg(xk, yk) = O(νk) by (2.4). By the classification
result in Caffarelli, Gidas and Spruck [6] we get

v0(x) =

(
1 +
|x− y0|2

n(n− 2)

)1−n2
for all x ∈ Rn.

Since∇uk(xk) = 0, 0 is also a critical point of v0 and therefore y0 = 0. In particular,
uk(xk) > 0 and νk

µk
= vk(0)(qk−2)/2 → 1 as k → ∞, where µk is as in (2.6), which

concludes the proof of Lemma 2.3. �

Define, for any k ≥ 1 and for any x ∈M ,

Bk(x) := µ
n−2− 2

qk−2

k

(
µ2
k +

dg(xk, x)2

n(n− 2)

)−n−2
2

. (2.7)

Let ε ∈ (0, 1) be fixed. Following the approach of Druet and Premoselli [17] (see
also Premoselli [32]) we define, for any k ≥ 1,

rk := sup
{
µk ≤ r ≤ ρk such that |uk(x)−Bk(x)| ≤ εBk(x)

and |∇ (uk −Bk) (x)| ≤ ε|∇Bk| for all x ∈ Bg(xk, r)
}
. (2.8)

Here Bg(xk, r) denotes the Riemannian ball of center xk and radius r. The radius
rk measures the distance from xk at which uk deviates from the bubbling profile
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Bk due to the pointwise influence of other concentration points. By Lemma 2.3
there holds uk(xk) > 0 hence µk = uk(xk)−(qk−2)/2 and

rk
µk
−→ +∞ as k −→ +∞. (2.9)

The definition of rk shows in particular that uk > 0 on Bg(xk, rk). We first obtain
a control on rk in terms of µk:

Lemma 2.4. Assume that ε is chosen small enough (independently of k). We have

rk = O

(
µ
n−4
n−2

k

)
.

Proof. Let Xk be the 1-form defined in Bg(xk, rk) by

Xk(x) :=

(
1− 1

6(n− 1)
Ricg(∇fk(x),∇fk(x))

)
∇fk(x),

where fk(x) := 1
2dg(xk, x)2 and Ricg is the Ricci curvature of the manifold. We let

Ωk := Bg(xk, rk) and write a Pohozaev identity for uk in Ωk. Following Proposition
6.2 in Hebey [22] (and identifying Xk with the associated vector field through g),
it can be written as follows∫

Ωk

hkuk 〈Xk,∇uk〉 dvg +

(
1

qk
− 1

2∗

)∫
Ωk

divgXk|uk|qkdvg

+

∫
Ωk

(
∇Xk −

1

n
divgXk · g

)
(∇uk,∇uk)dvg

+
n− 2

4n

∫
Ωk

4g (divgXk)u2
kdvg +

n− 2

2n

∫
Ωk

divgXkhku
2
kdvg

=

∫
∂Ωk

(
1

qk
〈Xk, ν〉 |uk|qk + 〈Xk,∇uk〉 ∂νuk −

1

2
〈Xk, ν〉 |∇uk|2

− n− 2

4n
∂ν (divgXk)u2

k +
1

2∗
divgXk∂νukuk

)
dσg. (2.10)

By definition of Xk it is easily checked that

|Xk(x)| = O (dg(xk, x)) ,

4g (divgXk) (x) =
n

n− 1
Scalg(xk) + O (dg(xk, x)) ,

divgXk(x) = n+ O
(
dg(xk, x)2

)
,

∂ν (divgXk) (x) = O (dg(xk, x)) .

(2.11)

Straightforward computations using Lemma 2.3, (2.8), (2.9), (2.11) and the C0,θ

convergence of the hk yield∫
Ωk

hkuk 〈Xk,∇uk〉 dvg +
n− 2

4n

∫
Ωk

4g (divgXk)u2
kdvg

+
n− 2

2n

∫
Ωk

divgXkhku
2
kdvg = C(n)

(
n− 2

4(n− 1)
Scalg(xk)− h0(xk)

)
µ
n− 4

qk−2

k

+ o

(
µ
n− 4

qk−2

k

)
(2.12)
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as k →∞, where

C(n) :=

∫
Rn

(
1 +

|x|2

n(n− 2)

)2−n

dx

Similarly one obtains, with (2.8), that∫
∂Ωk

(
1

qk
〈Xk, ν〉 |uk|qk + 〈Xk,∇uk〉 ∂νuk −

1

2
〈Xk, ν〉 |∇uk|2

− n− 2

4n
∂ν (divgXk)u2

k +
1

2∗
divgXk∂νukuk

)
dσg = O

(
µ

2(n−2)− 4
qk−2

k r2−n
k

)
.

(2.13)

Now, since Bk defined in (2.7) is radial, one gets by definition of Xk that∣∣∣∣(∇Xk −
1

n
divgXk · g

)
(∇Bk,∇Bk)

∣∣∣∣ = O
(
dg(xk, ·)3|∇Bk|2

)
(see for instance Lemma 8.10 in Hebey [22]), so that with (2.8) we get∫

Ωk

(
∇Xk −

1

n
divgXk · g

)
(∇uk,∇uk)dvg = O

(
εµ

n− 4
qk−2

k

)
. (2.14)

Finally, up to reducing ρk if necessary and since qk ≤ 2∗, it is easily seen with (2.8)
and (2.11) that (

1

qk
− 1

2∗

)∫
Ωk

divgXk|uk|qkdvg ≥ 0. (2.15)

For ε small enough (but independent of k), plugging (2.12)–(2.15) into (2.10) and
using that h0 <

n−2
4(n−1) Scalg proves Lemma 2.4. �

Since n ≥ 7, Lemma 2.4 shows in particular that

rk = o (
√
µk) as k −→ +∞. (2.16)

Coming back to the definition of Bk in (2.7) this implies that for any R > 0 and
for any sequence yk ∈ Bg(xk, Rrk),

Bk(yk) ≥
(
n(n− 2)

1 +R2

)n−2
2

µ
n−2
2 −

2
qk−2

k µ
n−2
2

k r2−n
k ,

so that with (2.16) we get

Bk(yk) −→ +∞ as k −→ +∞. (2.17)

To prove (2.17) we also used that µk ≤ 1 for k large enough and that n−2
2 −

2
qk−2 ≤ 0.

The following lemma shows in particular that uk remains positive on balls of radii
comparable to rk:

Lemma 2.5. Let R > 0 be fixed. There exists a sequence (ηk)k of positive numbers
with ηk → 0 as k → +∞ such that for any y ∈ Bg(xk, Rrk),

uk(y) ≥ (1− ηk)Bk(y).

Proof. Let δ > 0 be fixed. Let Λ > ‖h0‖L∞(M) be a positive constant and for
any x ∈ Bg(xk, δ) denote by Gk the Green’s function of 4g + Λ on Bg(xk, δ) with
Dirichlet boundary condition. Let (yk)k be a sequence of points in Bg(xk, δ/2).
Since Gk(yk, y) > 0 for y ∈ Bg(xk, δ)\{yk} and ∂νGk(yk, y) < 0 for y ∈ ∂Bg(xk, δ)
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(see for instance Robert [34]) and since for k large enough we have Λ − hk ≥ 0 in
M , a representation formula with (2.1) and (2.2) gives

uk(yk) =

∫
Bg(xk,δ)

Gk(yk, ·)|uk|qk−2ukdvg

+

∫
Bg(xk,δ)

Gk(yk, ·) (Λ− hk)ukdvg −
∫
∂Bg(xk,δ)

∂νGk(yk, ·)ukdσg

≥
∫
Bg(xk,rk)

Gk(yk, ·)uqk−1
k dvg − C(n, δ)Aqk−1, (2.18)

where A is the constant appearing in (2.2) and C(n, δ) is a numerical constant.
Assume now that yk ∈ Bg(xk, Rrk), so that in particular dg(xk, yk) = o(1) as
k → ∞ by Lemma 2.4. Fatou’s Lemma using Lemma 2.3, (2.8) and standard
properties of the Green’s function show that∫

Bg(xk,rk)

Gk(yk, ·)uqk−1
k dvg ≥ (1 + o(1))Bk(yk)

as k → ∞ (see for instance Hebey [22], Proposition 6.1). With (2.17) and (2.18)
this concludes the proof of Lemma 2.5. �

Note that, unlike in the case of positive solutions, the lower bound on uk given
by Lemma 2.5 is really a consequence of the estimate on rk given by Lemma 2.4 and
of the assumption that n ≥ 7 . Lemma 2.5 shows in particular that uk is positive
in Bg(xk, 7rk). Standard Harnack inequalities for positive solutions of (2.1) then
apply (see for instance Han and Lin [21], Theorem 4.17) and using (2.4) we in
particular get that

1

C
Bk ≤ uk ≤ CBk (2.19)

on Bg(xk, 6rk), for some positive C independent of k. Define now, for x ∈ B(0, 5),

ũk(x) := µ
2

qk−2−(n−2)

k rn−2
k uk

(
expxk(rkx)

)
. (2.20)

Lemma 2.6. As k →∞, there holds

ũk −→
(n(n− 2))

n−2
2

| · |n−2
(2.21)

in C2
loc(B(0, 5)\{0}). As a consequence, for k large enough,

rk = ρk (2.22)

holds.

Proof. By (2.1) ũk satisfies

4g̃k ũk + r2
khk

(
expxk(rk·)

)
ũk =

(
µk
rk

)(n−2)(qk−2)−2

ũqk−1
k (2.23)

in B(0, 5), where g̃k := exp∗xk g(rk·), so that by (2.16) and (2.19) ũk converges

in C2,η
loc (B(0, 5)\{0}), for any 0 < η < 1, towards a harmonic function ũ∞ in

B(0, 5)\{0}. By (2.19) and Bôcher’s theorem, ũ∞ can be written as

ũ∞(x) =
λ

|x|n−2
+H(x) for all x ∈ B(0, 5),
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where H is harmonic in B(0, 5). By integrating (2.23) in B(0, 1), using (2.19)
and Lemma 2.3, and since H is harmonic one gets, since rk = o(1), that λ =

(n(n− 2))
(n−2)/2

and hence that

ũ∞(x) =
(n(n− 2))

n−2
2

|x|n−2
+H(x) for all x ∈ B(0, 5).

We now claim that
H ≡ 0 in B(0, 5).

First, as a consequence of Lemma 2.5, we have H ≥ 0 everywhere in B(0, 5). We
now come back to the Pohozaev identity (2.10). The boundary term in the right-
hand side now can be written as∫

∂Bg(xk,rk)

(
1

qk
〈Xk, ν〉 |uk|qk + 〈Xk,∇uk〉 ∂νuk −

1

2
〈Xk, ν〉 |∇uk|2

− n− 2

4n
∂ν (divgXk)u2

k +
1

2∗
divgXk∂νukuk

)
dσg

=

(
− (n− 2)2

2
(n(n− 2))

n−2
2 ωn−1H(0) + o(1)

)
µ

2(n−2)− 4
qk−2

k r2−n
k ,

where ωn−1 is the area of the unit sphere in Rn. With (2.12), (2.14) and (2.15),
equality (2.10) gives H(0) ≤ 0, and hence H(0) = 0 and H ≡ 0 in B(0, 5) since H
is harmonic.

It remains to prove (2.22). Assume, up to a subsequence, that rk < ρk for
k large enough. By the definition of rk in (2.8) and by Lemma 2.5 this means
that there exists yk ∈ ∂Bg(xk, rk) such that either uk(yk) = (1 + ε)Bk(yk), or
|∇ (uk −Bk) (yk)| = ε|∇Bk(yk)|. But this is impossible by (2.21). This ends the
proof of Lemma 2.6. �

Lemma 2.6 shows that the assumption h0 <
n−2

4(n−1) Scalg forces uk to be close to

the bubble Bk at first order on the whole of Bg(xk, rk). With (2.16) and Lemma 2.6
we obtain in particular that

ρk = o (
√
µk) (2.24)

as k → +∞ and that ∣∣∣∣∣∣∣∣ ukBk − 1

∣∣∣∣∣∣∣∣
L∞(Bg(xk,ρk))

≤ ε.

Since ε can be chosen as small as needed, up to a subsequence we obtain∣∣∣∣∣∣∣∣ ukBk − 1

∣∣∣∣∣∣∣∣
L∞(Bg(xk,ρk))

= o(1) (2.25)

as k → +∞, where Bk is defined in (2.7).

2.2. Proof of Theorem 1.1. Recall that (uk)k is the sequence introduced in (2.1)
which satisfies (2.2) and (2.3). We first identify a set of points of M where we expect
the blow-up for (uk)k to occur:

Lemma 2.7. There exist Nk ≥ 1 points (x1,k, . . . , xNk,k) of M satisfying, up to a
subsequence,

(1) ∇uk(xi,k) = 0 for 1 ≤ i ≤ Nk,

(2) dg (xi,k, xj,k)
2

qk−2 |uk(xi,k)| ≥ 1 for all 1 ≤ i, j ≤ Nk, i 6= j, and
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(3) there exists a positive constant C independent of k such that(
min

1≤i≤Nk
dg (xi,k, x)

) 2
qk−2 |uk(x)| ≤ C (2.26)

for any x ∈M .

By construction the xi,k satisfy in particular |uk(xi,k)| > 0.

Proof. The proof of this Lemma follows closely the proof of Lemma 2.3. First, an
adaptation of Lemma 1.1 in Druet–Hebey [15] shows that for any k there exist
Nk ≥ 1 critical points x1,k, . . . , xNk,k of uk such that for any 1 ≤ i, j ≤ Nk, i 6= j,
one has

dg(xi,k, xj,k)
2

qk−2 |uk(xi,k)| ≥ 1

and that (
min

1≤i≤Nk
dg (xi,k, x)

) 2
qk−2 |uk(x)| ≤ 1 (2.27)

for any critical point x of uk. We prove Lemma 2.7 by contradiction and we let, up
to a subsequence, yk ∈M be such that(

min
1≤i≤Nk

dg (xi,k, yk)
) 2
qk−2 |uk(yk)|

= max
y∈M

(
min

1≤i≤Nk
dg (xi,k, y)

) 2
qk−2 |uk(y)| −→ +∞ (2.28)

as k → +∞. By (2.28) we have uk(yk) 6= 0 and, since M is compact and by (2.2),
uk(yk) = |uk(yk)| → +∞ as k → +∞. Letting νk := uk(yk)−(qk−2)/2, (2.28) shows
that

1

νk

(
min

1≤i≤Nk
dg (xi,k, yk)

)
→ +∞ as k → +∞. (2.29)

For 0 < δ < 1
2 ig(M) and x ∈ B (0, δ/νk) we define

ûk(x) := ν
2

qk−2

k uk
(
expyk(νkx)

)
.

Using (2.28) and (2.29) we have vk(0) = 1 and, for R > 0,

|ûk(x)| ≤ 1 + o(1) for any x ∈ B(0, R).

By standard elliptic theory and (2.2), ûk converges in C2,η
loc (Rn), for any 0 < η < 1,

towards a non-negative function û0 which solves

4û0 = û2∗−1
0 in Rn.

By the classification result in [6], we again have

û0(x) =

(
1 +

|x|2

n(n− 2)

)1−n2
.

Since 0 is a non-degenerate critical point of û0, this implies in particular that for
k large enough uk possesses a critical point zk ∈ M , with dg(yk, zk) = o(νk) and

ν
2/(qk−2)
k uk(zk) = 1 + o(1) as k →∞. But then(

min
1≤i≤Nk

dg (xi,k, zk)
) 2
qk−2 |uk(zk)| −→ +∞

as k → ∞ by (2.29), which is in contradiction with (2.27). This ends the proof of
Lemma 2.7. �
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For any k, consider the points {x1,k, . . . , xNk,k} constructed in Lemma 2.7. It is
a first, simple remark that the analysis of subsection 2.1 shows that Nk ≥ 2 – so
there are at least two concentration points. Indeed, if up to a subsequence we had
Nk ≡ 1, conditions (2.4) and (2.5) would be satisfied for the sequences (x1,k)k and
ρk = 1

32 ig(M). More precisely, (2.4) would follow from (2.26), while (2.5) would
follow from (2.3). But this would then contradict (2.24).

Hence Nk ≥ 2 up to a subsequence. Define then

16dk := min
(

min
1≤i<j≤Nk

dg(xi,k, xj,k),
1

2
ig(M)

)
, (2.30)

and assume that the concentration points are ordered so that

dg(x1,k, x2,k) ≤ dg(x1,k, x3,k) ≤ . . . ≤ dg(x1,k, xNk,k). (2.31)

Another important observation is that

dk −→ 0 as k −→ +∞. (2.32)

Indeed, assume by contradiction that, up to a subsequence, dk 6→ 0 as k → +∞.
In this case, as a consequence of (2.30), Nk is uniformly bounded – that is, that
there only are finitely many, isolated, possible concentration points xi,k – and we
can assume that Nk = N for all k. By the initial assumption (2.3), there exists
then i0 ∈ {1, . . . , N} such that

d
2

qk−2

k max
Bg(xi0,k,8dk)

|uk| −→ +∞

as k → ∞. But the sequences (xi0,k)k and ρk = dk now satisfy (2.4) and (2.5),
which again contradicts (2.24). This proves (2.32).

Let R ≥ 1 and define, for any k, Nk,R by

1 ≤ i ≤ Nk,R ⇐⇒ dg(x1,k, xi,k) ≤ Rdk,

which is well-defined in view of (2.31). Clearly Nk,R ≥ 2 for any R ≥ 16. With
(2.30) it is also easily seen that, for fixed R, Nk,R is uniformly bounded in k. In
what follows we will fix R ≥ 16 and, up to a subsequence, we will therefore assume
that Nk,R is constant and equal to NR ≥ 2 . Let now 1 ≤ i ≤ NR. At each point
xi,k two alternatives can occur, up to a subsequence,

either d
2

qk−2

k max
Bg(xi,k,8dk)

|uk| ≤ C (Case one)

or d
2

qk−2

k max
Bg(xi,k,8dk)

|uk| −→ +∞ (Case two)

(2.33)

as k → +∞, where C > 0 is independent of k. It turns out that cases one and two
cannot simultaneously occur among the points xi,k with 1 ≤ i ≤ NR:

Lemma 2.8. Assume that, for some i0 ∈ {1, . . . , NR}, xi0,k satisfies the first case
in (2.33). Then each other xi,k, i ∈ {1, . . . , NR}\{i0}, also satisfies the first case
in (2.33).

Proof. Choose R ≥ 16. We assume that there exists i0 ∈ {1, . . . , NR} for which
Case one in (2.33) holds. We first remark that we then also have

d
2

qk−2

k min
Bg(xi0,k,4dk)

uk ≥ Ci0 (2.34)
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for some positive constant Ci0 > 0 independent of k. Indeed, define

ǔk(x) := d
2

qk−2

k uk
(

expxi0,k
(dkx)

)
for all x ∈ B(0, 8). By (2.1), (2.2), (2.32) and the assumption of Case one in (2.33)

ǔk converges in C2,η
loc (B(0, 7)), for any 0 < η < 1, towards a nonnegative solution

ǔ0 of

4ǔ0 = ǔ2∗−1
0 in B(0, 7).

By Lemma 2.7 one has ǔ0(0) ≥ 1, so that minx∈B(0,4) ǔ0(x) ≥ Ci0 > 0 by the
maximum principle, which proves (2.34).

Let now Λ > ‖h0‖L∞(M), i ∈ {1, . . . , NR}, i 6= i0 and let Gk denote the Green’s
function of 4g + Λ, with Dirichlet boundary condition on Bg(xi,k, 3Rdk). By stan-
dard properties of Green’s functions (see again Robert [34]), for x ∈ B(xi,k, 2Rdk)
we have

1

C
dg(x, y)2−n ≤ Gk(x, y) ≤ Cdg(x, y)2−n for any y ∈ Bg(xi,k, 3Rdk)

and

|∂νGk(x, y)| ≤ CR1−nd1−n
k for any y ∈ ∂Bg(xi,k, 3Rdk)

for some C > 0 independent of k and R. Let (zk)k be a sequence of points in
Bg(xi,k, 2Rdk). With (2.1), a representation formula for uk on Bg(xi,k, 3Rdk) gives

uk(zk) =

∫
Bg(xi,k,3Rdk)

Gk(zk, ·)|uk|qk−2ukdvg

+

∫
Bg(xi,k,3Rdk)

Gk(zk, ·) (Λ− hk)ukdvg −
∫
∂Bg(xi,k,3Rdk)

∂νGk(zk, ·)ukdσg

≥
∫
Bg(xi0,k,4dk)

Gk(zk, ·)|uk|qk−2ukdvg − C

≥ 1

C
d
− 2
qk−2

k − C (2.35)

for some positive constant C depending on n and A, where A is the constant
appearing in (2.2). Here we used (2.2) to estimate the integrals on the region of M
where uk is negative and (2.34) to estimate uk from below on Bg(xi0,k, 4dk). With
(2.32), (2.35) now becomes

min
Bg(xi,k,2Rdk)

d
2

qk−2

k uk ≥ C0 + o(1)

as k → ∞, for some positive constant C0 independent of k. In particular, by the
analysis of subsection 2.1, Case two in (2.33) cannot be satisfied at xi,k, since by
(2.25) it would contradict the latter inequality. Hence Case one in (2.33) is satisfied
at xi,k and this ends the proof of Lemma 2.8. �

Lemma 2.8 shows in particular that, for any R ≥ 16, either all the concentration
points xi,k, 1 ≤ i ≤ NR satisfy case one in (2.33) or they all satisfy case two.

End of the proof of Theorem 1.1. We first assume that, for any R ≥ 16, all the
i ∈ {1, . . . , NR} satisfy case one in (2.33). Then the function

wk(x) := d
2

qk−2

k uk
(

expx1,k
(dkx)

)
,
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defined for x ∈ B (0, ig(M)/2dk), is locally bounded and by (2.1), (2.2) and stan-

dard elliptic theory converges in C2,η
loc (Rn), for any 0 < η < 1, towards a nonnegative

solution w0 of

4w0 = w2∗−1
0 in Rn.

Also, w0 is non-zero by Lemma 2.7, and by construction 0 and

x̌2 := lim
k→+∞

1

dk
exp−1

x1,k
(x2,k)

are distinct critical points of w0. But this is impossible by the classification result
of [6].

Hence, all the points xi,k, 1 ≤ i ≤ NR satisfy case two in (2.33). By Lemma 2.7,
and for all i ∈ {1, . . . , Nk}, the sequences (xi,k)k and (dk)k satisfy (2.4) and (2.5)
with ρk = dk. Hence the analysis of subsection 2.1 applies and (2.25) shows that∣∣∣∣∣∣∣∣ ukBi,k − 1

∣∣∣∣∣∣∣∣
L∞(Bg(xi,k,dk))

= o(1) (2.36)

as k → +∞, for any 1 ≤ i ≤ NR, where

Bi,k := µ
n−2− 2

qk−2

i,k

(
µ2
i,k +

dg(xi,k, x)2

n(n− 2)

)−n−2
2

and µi,k := uk(xi,k)−(qk−2)/2. Let 0 < δ < 1
2 be fixed and let (zk)k be a sequence

of points in M such that

dg(x1,k, zk) = δdk. (2.37)

We let Gk be the Green’s function with Dirichlet boundary condition of 4g + Λ on
Bg(x1,k, Rdk). A representation formula for uk as in (2.35) gives, with (2.36),

uk(zk) ≥
(
1 + o(1)

) ∫
Bg(x1,k,dk)

Gk(zk, y)Bqk−1
1,k dvg

+
(
1 + o(1)

) ∫
Bg(x2,k,dk)

Gk(zk, y)Bqk−1
2,k dvg − C (2.38)

as k →∞, for some positive constant C depending on n and A. Let G̃ denote the
Green’s function with Dirichlet boundary condition of the non-negative Euclidean
Laplacian 4 on B(0, R). Define, for any z ∈ B(0, R),

f(z) := (n− 2)ωn−1|z|n−2G̃(0, z).

Using Fatou’s lemma and standard properties of Green’s functions we get that as
k →∞, ∫

Bg(x1,k,dk)

Gk(zk, y)Bqk−1
1,k dvg ≥

(
1 + o(1)

)
f(ž)B1,k(zk) (2.39)

holds, where ž := limk→+∞
1
dk

exp−1
x1,k

(zk). Similarly, we obtain∫
Bg(x2,k,dk)

Gk(zk, y)Bqk−1
2,k dvg ≥

1

C
B2,k(zk) (2.40)

for some C > 0 independent of k and R. Coming back to (2.38) with (2.36), (2.39)
and (2.40) we obtain(

1− f(ž) + o(1)
)
B1,k(zk) ≥

( 1

C
+ o(1)

)
B2,k(zk)
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as k →∞ which yields, with (2.37),

lim sup
k→+∞

(
µ2,k

µ1,k

)n−2− 2
qk−2

≤ C 1− f(ž)

δn−2
(2.41)

for some C > 0 independent of k and R. On the Euclidean ball B(0, R) the Green’s

function G̃ is explicit, so that

f(ž) = 1− |ž|
n−2

Rn−2
.

Since |ž| = δ, after letting R→ +∞ in (2.41), this yields

lim sup
k→+∞

µ2,k

µ1,k
= 0. (2.42)

Now, by the choice of x1,k and x2,k in (2.31), the roles of B1,k and B2,k are sym-
metric. In particular, repeating the analysis from (2.37) to (2.42) by centering
everything at x2,k yields in the same way

lim sup
k→+∞

µ1,k

µ2,k
= 0.

This is an obvious contradiction with (2.42), and concludes the proof of Theo-
rem 1.1. �

The idea behind this last argument is as follows: since by (2.36) uk is equivalent
to B1,k on the whole ball Bg(x1,k, dk), the bubble B2,k cannot interact at a pointwise
level with B1,k on Bg(x1,k, dk) – otherwise uk would deviate at first order from B1,k.
As (2.42) shows, B2,k therefore has to concentrate much faster. But if (2.42) holds,
then uk cannot be equivalent at first order to B2,k on Bg(x2,k, dk) anymore.

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. Throughout this sec-
tion, we assume that h is a constant and h > 0 in case n ∈ {3, 4, 5}, h > 2
in case n = 6 and h > n (n− 2) /4 in case n ≥ 7. We assume moreover that
h 6= j (j + n− 1) (n− 2) /4 for all j ∈ N. By using the stereographic projection, we
can write the equation (1.3) as{

∆u+ h0u = |u|2
∗−2

u in Rn

u ∈ D1,2 (Rn) ,
(3.1)

where ∆u := −div∇u is the Laplace operator for the Euclidean metric, h0 is the
function defined by

h0 (x) :=
4h− n (n− 2)(

1 + |x|2
)2 ∀x ∈ Rn

andD1,2 (Rn) is the completion of the set of smooth functions with compact support
in Rn with respect to the norm

‖u‖D1,2(Rn) = ‖∇u‖L2(Rn) .
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For every k ∈ N, we let Hk be the set of all functions u ∈ D1,2 (Rn) such that u is
even in x2, . . . , xn and

u (r cos (θ) , r sin (θ) , x3, . . . , xn)

= u (r cos (θ + 2π/k) , r sin (θ + 2π/k) , x3, . . . , xn)

for all θ, x3, . . . , xn ∈ R and r > 0. We equip Hk with the inner product

〈u, v〉h :=

∫
Rn

(〈∇u,∇v〉+ h0uv) dx ∀u, v ∈ Hk

and the norm

‖u‖h :=
√
〈u, u〉h ∀u ∈ Hk.

For every k ≥ 1 and r, t > 0, we define

Uk,r,t (x) :=
k∑
i=1

Bi,k,r,t (x)− u0 (x) ∀x ∈ Rn,

where

Bi,k,r,t (x) :=

( √
n (n− 2)tδk

(tδk)
2

+ |x− xi,k,r|2

)n−2
2

,

xi,k,r := (r cos (2 (i− 1)π/k) , r sin (2 (i− 1)π/k) , 0, . . . , 0) ,

δk :=


k−2 (ln k)

−2
if n = 3

k−2 if n ∈ {4, 5, 6}

k−
n−2
n−4 if n ≥ 7

and

u0 (x) :=

(
2
√
h

1 + |x|2

)n−2
2

.

Remark that the functions Bi,k,r,t and u0 are solutions to the problems{
∆Bi,k,r,t = B2∗−1

i,k,r,t in Rn

Bi,k,r,t ∈ D1,2 (Rn)
(3.2)

and {
∆u0 + h0u0 = u2∗−1

0 in Rn

u0 ∈ D1,2 (Rn) .
(3.3)

We let (∆ + h0)
−1

: L
2n
n+2 (Rn)→ D1,2 (Rn) be such that for every v ∈ L

2n
n+2 (Rn),

the function u := (∆ + h0)
−1
v is the unique solution to the problem{
∆u+ h0u = v in Rn

u ∈ D1,2 (Rn) .

It follows from the Sobolev inequality that (∆ + h0)
−1

is a continuous operator

from L
2n
n+2 (Rn) to D1,2 (Rn). We then define

Rk,r,t := (∆ + h0)
−1 ( |Uk,r,t|2∗−2

Uk,r,t
)
− Uk,r,t. (3.4)

As a first step, we prove the following estimate:
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Lemma 3.1. For every a, b, c, d > 0 such that a < b and c < d, there exists a
constant C0 > 0 such that

‖Rk,r,t‖h ≤ C0


(ln k)

−1
if n = 3

k3−n if n ∈ {4, 5, 6}

k−
(n+2)(n+4)

2n(n−4) if n ≥ 7

(3.5)

for all k ≥ 2, r ∈ [a, b] and t ∈ [c, d].

Proof. By continuity of (∆ + h0)
−1

: L
2n
n+2 (Rn) → D1,2 (Rn), by using (3.2) and

(3.3) and since h0 = O
(
u2∗−2

0

)
, we obtain∥∥ (∆ + h0)

−1 ( |Uk,r,t|2∗−2
Uk,r,t

)
− Uk,r,t

∥∥
h

= O
(∥∥ |Uk,r,t|2∗−2

Uk,r,t − (∆ + h0)Uk,r,t
∥∥

2n
n+2

)
= O

(∥∥∥∥ |Uk,r,t|2∗−2
Uk,r,t − h0

k∑
i=1

Bi,k,r,t −
k∑
i=1

B2∗−1
i,k,r,t + u2∗−1

0

∥∥∥∥
2n
n+2

)

= O

(∥∥∥∥u2∗−2
0

k∑
i=1

Bi,k,r,t + u0

( k∑
i=1

Bi,k,r,t

)2∗−2∥∥∥∥
2n
n+2

+

∥∥∥∥( k∑
i=1

Bi,k,r,t

)2∗−1

−
k∑
i=1

B2∗−1
i,k,r,t

∥∥∥∥
2n
n+2

)
. (3.6)

Moreover, by symmetry, we obtain∥∥∥∥( k∑
i=1

Bi,k,r,t

)2∗−1

−
k∑
i=1

B2∗−1
i,k,r,t

∥∥∥∥ 2n
n+2

2n
n+2

= O

(
k

∥∥∥∥(B2∗−2
1,k,r,t

k∑
i=2

Bi,k,r,t +

( k∑
i=2

Bi,k,r,t

)2∗−1)
χΩ1

∥∥∥∥ 2n
n+2

2n
n+2

)
, (3.7)

where χΩ1
is the characteristic function of Ω1 and

Ω1 := {x ∈ Rn : |x− x1,k,r| < |x− xi,k,r| ∀i ∈ {2, . . . , k}} . (3.8)

Finally, we infer (3.5) from (3.6) and (3.7) by applying Lemma A.1 in the appendix
and using the definition of δk. This ends the proof of Lemma 3.1. �

We define

Pk,r,t :=

{
φ ∈ Hk :

k∑
i=1

〈φ,Zi,j,k,r,t〉h = 0 ∀j ∈ {1, 2}

}
,

where

Zi,1,k,r,t := δk
d

dr
[Bi,k,r,t] and Zi,2,k,r,t :=

d

dt
[Bi,k,r,t] .

We let Πk,r,t be the orthogonal projection of Hk onto Pk,r,t. We prove the following
result:
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Lemma 3.2. For every a, b, c, d > 0 such that a < b and c < d, there exist k1 ∈ N
and C1 > 0 such that for every k ≥ k1, r ∈ [a, b] and t ∈ [c, d], the linear operator

Lk,r,t : φ 7−→ Πk,r,t

(
φ− (∆ + h0)

−1 (
(2∗ − 1) |Uk,r,t|2

∗−2
φ
))

(3.9)

is an isomorphism from Pk,r,t to itself and

1

C1
‖φ‖h ≤ ‖Lk,r,t (φ)‖h ≤ C1 ‖φ‖h ∀φ ∈ Pk,r,t. (3.10)

Proof. We begin with proving the second inequality in (3.10). Assume by contra-
diction that this inequality is not true. Then there exist sequences (rk)k in [a, b],
(tk)k in [c, d] and (φk)k, (ψk)k in D1,2 (Rn) such that

φk, ψk ∈ Pk,rk,tk , Lk,rk,tk (φk) .ψk = k, ‖ψk‖2h = k and ‖φk‖2h = o (k) (3.11)

as k →∞. By symmetry, it follows from (3.11) that∫
Ω1

(
〈∇φk,∇ψk〉+ h0φkψk − (2∗ − 1) |Uk,rk,tk |

2∗−2
φkψk

)
dx = 1, (3.12)∫

Ω1

(
|∇ψk|2 + h0ψ

2
k

)
dx = 1 (3.13)

and ∫
Ω1

(
|∇φk|2 + h0φ

2
k

)
dx −→ 0 (3.14)

as k →∞. In particular, it follows from (3.12)–(3.14) that∫
Ω1

|Uk,rk,tk |
2∗−2

φkψkdx −→
1

2∗ − 1
(3.15)

as k →∞. On the other hand, straightforward estimates give∫
Ω1

|Uk,rk,tk |
2∗−2

φkψkdx = O

(∫
Ω1

[( k∑
i=2

Bi,k,rk,tk

)2∗−2

+B2∗−2
1,k,rk,tk

+ u2∗−2
0

]
|φkψk| dx

)
. (3.16)

By using Hölder’s and Sobolev inequalities together with (3.11), Lemma A.1 in the
appendix and the definition of δk, we obtain∫

Ω1

( k∑
i=2

Bi,k,rk,tk

)2∗−2

|φkψk| dx ≤
∥∥∥∥ k∑
i=2

Bi,k,rk,tkχΩ1

∥∥∥∥2∗−2

2∗
‖φkχΩ1

‖2∗ ‖ψkχΩ1
‖2∗

= o

(∥∥∥∥ k∑
i=2

Bi,k,rk,tkχΩ1

∥∥∥∥2∗−2

2∗
k

2
n

)
= o (1) (3.17)

as k →∞. Similarly, straightforward calculations give∫
Ω1\B(x1,k,rk

,rk/k)

B2∗−2
1,k,rk,tk

|φkψk| dx

≤
∥∥B1,k,rk,tkχΩ1\B(x1,k,rk

,rk/k)

∥∥2∗−2

2∗
‖φkχΩ1

‖2∗ ‖ψkχΩ1
‖2∗

= o (1) (3.18)
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as k →∞, where B(x1,k,rk , rk/k) is the Euclidean ball of center x1,k,rk and radius
rk/k. It is easy to see that B(x1,k,rk , rk/k) ⊂ Ω1. On the other hand, by rescaling,
we obtain∫

B(x1,k,rk
,rk/k)

B2∗−2
1,k,rk,tk

|φkψk| dx =

∫
B(0,rk/(ktkδk))

U2∗−2
∣∣φ̃kψ̃k∣∣dx, (3.19)

where

U (x) :=

(√
n (n− 2)

1 + |x|2

)n−2
2

,

φ̃k (x) := (tkδk)
n−2
2 η

(
ktkδkr

−1
k x

)
φk ((tkδk)x+ x1,rk,tk) ,

ψ̃k (x) := (tkδk)
n−2
2 η

(
ktkδkr

−1
k x

)
ψk ((tkδk)x+ x1,rk,tk) ,

and η : Rn → [0,∞) is a smooth cutoff function such that η ≡ 1 in B (0, 1) and
η ≡ 0 in Rn\B (0, 2). It follows from (3.13), (3.14) and the Sobolev inequality

that
(
ψ̃k
)
k

and
(
φ̃k
)
k

are bounded in L2∗ (Rn) and, up to a subsequence,
(
φ̃k
)
k

converges weakly to 0 in L2∗ (Rn) and φ̃k → 0 a.e. in Rn as k →∞. It then follows
from (3.19) and standard integration theory that∫

B(x1,k,rk
,rk/k)

B2∗−2
1,k,rk,tk

|φkψk| dx −→ 0 (3.20)

as k →∞. To estimate the last term in (3.16), we write∫
Ω1

u2∗−2
0 |φkψk| dx =

∫
Rn
u2∗−2

0

∣∣φk/√k∣∣∣∣ψk/√k∣∣dx. (3.21)

By using (3.13), (3.14) and the Sobolev inequality, we obtain that
(
ψk/
√
k
)
k

and(
φk/
√
k
)
k

are bounded in L2∗ (Rn), up to a subsequence,
(
φk/
√
k
)
k

converges

weakly to 0 in L2∗ (Rn) and φk/
√
k → 0 a.e. in Rn as k →∞. It then follows from

(3.21) and standard integration theory that∫
Rn
u2∗−2

0

∣∣φk/√k∣∣∣∣ψk/√k∣∣dx −→ 0 (3.22)

as k →∞. By putting together (3.16)–(3.18), (3.20) and (3.22), we obtain∫
Ω1

|Uk,rk,tk |
2∗−2

φkψkdx −→ 0 (3.23)

as k →∞, which is in contradiction with (3.15). This ends the proof of the second
inequality in (3.10).

Now we prove the first inequality in (3.10). Assume by contradiction that this
inequality is not true. Then there exist sequences (rk)k in [a, b], (tk)k in [c, d] and
(φk)k in D1,2 (Rn) such that

φk ∈ Pk,rk,tk , ‖φk‖2h = k and ‖Lk,rk,tk (φk)‖2h = o (k) (3.24)

as k →∞. By symmetry, it follows from (3.24) that∫
Ω1

(
|∇φk|2 + h0φ

2
k

)
dx = 1 (3.25)
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and∫
Ω1

(
〈∇φk,∇ψ〉+ h0φkψ − (2∗ − 1) |Uk,rk,tk |

2∗−2
φkψ

)
dx

= o

(√∫
Ω1

(
|∇ψ|2 + h0ψ2

)
dx

)
(3.26)

as k →∞ uniformly in ψ ∈ Pk,rk,tk . In particular, it follows from (3.25) and (3.26)
that ∫

Ω1

|Uk,rk,tk |
2∗−2

φ2
kdx −→

1

2∗ − 1
(3.27)

as k →∞. On the other hand, similarly as in (3.16)–(3.19), we obtain∫
Ω1

|Uk,rk,tk |
2∗−2

φ2
kdx = O

(∫
Ω1

[ k∑
i=1

B2∗−2
i,k,rk,tk

+ u2∗−2
0

]
φ2
kdx

)
, (3.28)

∫
Ω1

( k∑
i=2

Bi,k,rk,tk

)2∗−2

φ2
kdx = o (1) , (3.29)∫

Ω1\B(x1,k,rk
,rk/k)

B2∗−2
1,k,rk,tk

φ2
kdx = o (1) (3.30)

as k →∞ and∫
B(x1,k,rk

,rk/k)

B2∗−2
1,k,rk,tk

φ2
kdx =

∫
B(0,rk/(ktkδk))

U2∗−2φ̃2
kdx. (3.31)

It follows from (3.26) that∫
Ω1

(〈
∇φ̃k,∇ψ

〉
+ h̃kφ̃kψ − (2∗ − 1)

∣∣Ũk,rk,tk ∣∣2∗−2
φ̃kψ

)
dx = o (‖ψ‖h) (3.32)

as k →∞ uniformly in ψ ∈ C∞c (Rn), where

h̃k := (tkδk)
2
h ((tkδk)x+ x1,rk,tk)

and

Ũk,rk,tk := (tkδk)
n−2
2 Uk,rk,tk ((tkδk)x+ x1,rk,tk) .

It is easy to see that h̃k → 0 and Ũk,rk,tk → U in C0
loc (Rn) as k → ∞. Hence it

follows from (3.25) and (3.32) that, up to a subsequence,
(
φ̃k
)
k

converges weakly in

D1,2 (Rn) and pointwise almost everywhere in Rn to a solution φ̃0 of the equation

∆φ̃0 = (2∗ − 1)U2∗−2φ̃0 in Rn.

Moreover, since φk ∈ Pk,rk,tk , by passing to the limit as k →∞, we obtain that φ̃0

is even in x2, . . . , xn and∫
Rn

〈
∇φ̃0,∇ [∂x1

U ]

〉
dx =

∫
Rn

〈
∇φ̃0,∇

[
d

dδ

[
δ
n−2
2 U (δx)

]
δ=1

]〉
dx = 0

and so φ̃0 = 0 (see Bianchi and Egnell [3] and Rey [33]). It then follows from (3.31)
and standard integration theory that∫

B(x1,k,rk
,rk/k)

B2∗−2
1,k,rk,tk

φ2
kdx −→ 0 (3.33)



COMPACTNESS OF SIGN-CHANGING SOLUTIONS 21

as k →∞. To estimate the last term in (3.28), we write∫
Ω1

u2∗−2
0 φ2

kdx =

∫
Rn
u2∗−2

0

(
φk/
√
k
)2
dx. (3.34)

It follows from (3.24) that∫
Rn

(〈
∇
(
φk/
√
k
)
,∇ψ

〉
+ h0

(
φk/
√
k
)
ψ

− (2∗ − 1) |Uk,rk,tk |
2∗−2 (

φk/
√
k
)
ψ
)
dx = o (‖ψ‖h) (3.35)

as k →∞ uniformly in ψ ∈ Pk,rk,tk . Moreover, straightforward estimates give∫
Rn

(
|Uk,rk,tk |

2∗−2 − u2∗−2
0

)(
φk/
√
k
)
ψdx

=

∫
Ω1

(
|Uk,rk,tk |

2∗−2 − u2∗−2
0

)
φkψkdx

=


O

(∫
Ω1

[( k∑
i=1

Bi,k,rk,tk

)2∗−2

+ u2∗−3
0

k∑
i=1

Bi,k,rk,tk

]
|φkψk| dx

)
if n ≤ 5

O

(∫
Ω1

[( k∑
i=2

Bi,k,rk,tk

)2∗−2

+B2∗−2
1,k,rk,tk

]
|φkψk| dx

)
if n ≥ 6,

(3.36)

where ψk :=
√
kψ. Similarly as in (3.17)–(3.19), we obtain∫

Ω1

( k∑
i=2

Bi,k,rk,tk

)2∗−2

|φkψk| dx = o (1) , (3.37)

∫
Ω1\B(x1,k,rk

,rk/k)

B2∗−2
1,k,rk,tk

|φkψk| dx = o (1) , (3.38)

k∑
i=1

∫
Ω1

u2∗−3
0 Bi,k,rk,tk |φkψk| dx = o (1) for n ≤ 5 (3.39)

as k →∞ and∫
B(x1,k,rk

,rk/k)

B2∗−2
1,k,rk,tk

|φkψk| dx =

∫
B(0,rk/(ktkδk))

U2∗−2
∣∣φ̃kψ̃k∣∣dx. (3.40)

Since
(
φ̃k
)
k

and
(
ψ̃k
)
k

are bounded in L2∗ (Rn) and φ̃k → 0 a.e. in Rn, it follows

from (3.40) and standard integration theory that∫
B(x1,k,rk

,rk/k)

B2∗−2
1,k,rk,tk

|φkψk| dx −→ 0 (3.41)

as k →∞. By putting together (3.36)–(3.39) and (3.41), we obtain∫
Rn

(
|Uk,rk,tk |

2∗−2 − u2∗−2
0

)(
φk/
√
k
)
ψdx −→ 0 (3.42)

as k → ∞. It follows from (3.24), (3.35) and (3.42) that, up to a subsequence,(
φk/
√
k
)
k

converges weakly in D1,2 (Rn) and pointwise almost everywhere in Rn
to a solution φ0 of the equation

∆φ0 + h0φ0 = (2∗ − 1)u2∗−2
0 φ0 in Rn. (3.43)
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By letting ϕP : Sn\ {P} → Rn be the stereographic projection with respect to the
point P := (0, . . . , 0, 1), we can write (3.43) as

∆g0 φ̂0 =
4hφ̂0

n− 2
in Sn, (3.44)

where

φ̂0 :=

(
1 + |ϕP (x)|2

2

)n−2
2

φ0 (ϕP (x)) ∀x ∈ Rn.

Since h 6= j (j + n− 1) (n− 2) /4 for all j ≥ 1, it follows from (3.44) that φ̂0 = 0
and so φ0 = 0. It then follows from (3.34) and standard integration theory that∫

Ω1

u2∗−2
0 φ2

kdx −→ 0 (3.45)

as k →∞. By putting together (3.28)–(3.30), (3.33) and (3.45), we obtain∫
Ω1

|Uk,rk,tk |
2∗−2

φ2
kdx −→ 0 (3.46)

as k → ∞, which is in contradiction with (3.27). This completes the proof of
Lemma 3.2. �

By using Lemmas 3.1 and 3.2, we prove the following result:

Lemma 3.3. Let a, b, c, d > 0 be such that a < b and c < d. Let k1 be as in
Lemma 3.2. Then there exist k2 ≥ k1 and C2 > 0 such that for every k ≥ k2,
r ∈ [a, b] and t ∈ [c, d], there exists a unique solution φk,r,t ∈ Pk,r,t of the equation

Πk,r,t

(
Uk,r,t+φk,r,t−(∆ + h0)

−1 ( |Uk,r,t + φk,r,t|2
∗−2

(Uk,r,t + φk,r,t)
))

= 0 (3.47)

such that

‖φk,r,t‖2h +

∫
Rn
|Uk,r,t|2

∗−2
φ2
k,r,tdx ≤ C2


(ln k)

−2
if n = 3

k−2(n−3) if n ∈ {4, 5, 6}

k−
(n+2)(n+4)
n(n−4) if n ≥ 7.

(3.48)

Moreover, the map (r, t) 7→ φk,r,t is continuously differentiable.

Proof. We define the operators

Nk,r,t : φ 7−→ (∆ + h0)
−1 ( |Uk,r,t + φ|2

∗−2
(Uk,r,t + φ)

− |Uk,r,t|2
∗−2

Uk,r,t − (2∗ − 1) |Uk,r,t|2
∗−2

φ
)

and

Tk,r,t : φ 7−→ L−1
k,r,t (Πk,r,t (Nk,r,t (φ) +Rk,r,t)) ,
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where Rk,r,t and Lk,r,t are as in (3.4) and (3.9). For every C > 0, k ∈ N, r ∈ [a, b]
and t ∈ [c, d], we define the set

Vk,r,t (C) :=

{
φ ∈ Pk,r,t : ‖φ‖2h +

∫
Rn
|Uk,r,t|2

∗−2
φ2dx

≤ C


(ln k)

−2
if n = 3

k−2(n−3) if n ∈ {4, 5, 6}

k−
(n+2)(n+4)
n(n−4) if n ≥ 7.


 .

We will prove that if C is chosen large enough, then Tk,r,t has a fixed point
in Vk,r,t (C), which is equivalent to solving the equation (3.47). It follows from
Lemma 3.2 that

‖Tk,r,t (φ)‖h ≤ C1

(
‖Nk,r,t (φ)‖h + ‖Rk,r,t‖h

)
(3.49)

and∫
Rn
|Uk,r,t|2

∗−2
Tk,r,t (φ)

2
dx =

1

2∗ − 1
〈Tk,r,t (φ)− Lk,r,t (Tk,r,t (φ)) , Tk,r,t (φ)〉h

=
1

2∗ − 1
〈Tk,r,t (φ)−Nk,r,t (φ)−Rk,r,t, Tk,r,t (φ)〉h

≤ C1 (C1 + 1)

2∗ − 1

(
‖Nk,r,t (φ)‖h + ‖Rk,r,t‖h

)2
(3.50)

for all k ≥ k1, r ∈ [a, b], t ∈ [c, d] and φ ∈ Pk,r,t. By continuity of (∆ + h0)
−1

:

L
2n
n+2 (Rn) → D1,2 (Rn) and using Hölder’s inequality and Sobolev inequality, we

obtain

‖Nk,r,t (φ)‖h = O
(∥∥ |Uk,r,t + φ|2

∗−2
(Uk,r,t + φ)− |Uk,r,t|2

∗−2
Uk,r,t

− (2∗ − 1) |Uk,r,t|2
∗−2

φ
∥∥

2n
n+2

)
=


O
(∥∥ |Uk,r,t|2∗−3

φ2 + |φ|2
∗−1 ∥∥

2n
n+2

)
if n ≤ 6

O
(∥∥ |φ|2∗−1 ∥∥

2n
n+2

)
if n ≥ 7

=


O
(∥∥ |Uk,r,t|2∗−2

φ2
∥∥ 6−n

4

1

∥∥φ∥∥n−2
2

h
+
∥∥φ∥∥2∗−1

h

)
if n ≤ 6

O
(∥∥φ∥∥2∗−1

h

)
if n ≥ 7

=


O
(

(ln k)
−2
)

if n = 3

O
(
k−2(n−3)

)
if n ∈ {4, 5, 6}

O
(
k−

(n+2)2(n+4)
2n(n−2)(n−4)

)
if n ≥ 7

(3.51)

uniformly in k ≥ k1, r ∈ [a, b], t ∈ [c, d] and φ ∈ Vk,r,t (C). It follows from (3.5) and
(3.49)–(3.51) that there exists k2 ≥ k1 and C2 > 0 such that Tk,r,t (Vk,r,t (C2)) ⊂
Vk,r,t (C2) for all k ≥ k2, r ∈ [a, b] and t ∈ [c, d]. It remains to prove that Tk,r,t is a
contraction mapping on Vk,r,t (C2). It follows from Lemma 3.2 that

‖Tk,r,t (φ1)− Tk,r,t (φ2)‖h ≤ C1 ‖Nk,r,t (φ1)−Nk,r,t (φ2)‖h (3.52)
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for all φ ∈ Pk,r,t. By continuity of (∆ + h0)
−1

: L
2n
n+2 (Rn) → D1,2 (Rn) and using

Hölder’s and Sobolev inequalities, we obtain

‖Nk,r,t (φ1)−Nk,r,t (φ2)‖h
= O

(∥∥ |Uk,r,t + φ1|2
∗−2

(Uk,r,t + φ1)− |Uk,r,t + φ2|2
∗−2

(Uk,r,t + φ2)

− (2∗ − 1) |Uk,r,t|2
∗−2

(φ1 − φ2)
∥∥

2n
n+2

)

=


O
(∥∥( |Uk,r,t|2∗−3

(|φ1|+ |φ2|)

+ |φ1|2
∗−2

+ |φ2|2
∗−2 ) |φ1 − φ2|

∥∥
2n
n+2

)
if n ≤ 6

O
(∥∥( |φ1|2

∗−2
+ |φ2|2

∗−2 ) |φ1 − φ2|
∥∥

2n
n+2

)
if n ≥ 7

=



O
((∥∥ |Uk,r,t|2∗−2

(|φ1|+ |φ2|) |φ1 − φ2|
∥∥ 6−n

4

1

× (‖φ1‖h + ‖φ2‖h)
n−2
4
∥∥φ1 − φ2

∥∥n−2
4

h

+
(∥∥φ1

∥∥2∗−2

h
+
∥∥φ2

∥∥2∗−2

h

)∥∥φ1 − φ2

∥∥
h

)
if n ≤ 6

O
((∥∥φ1

∥∥2∗−2

h
+
∥∥φ2

∥∥2∗−2

h

)∥∥φ1 − φ2

∥∥
h

)
if n ≥ 7

(3.53)

uniformly in k ≥ k1, r ∈ [a, b], t ∈ [c, d] and φ ∈ Pk,r,t. Moreover, we obtain∥∥ |Uk,r,t|2∗−2
(|φ1|+ |φ2|) |φ1 − φ2|

∥∥
1

=
1

2∗ − 1
〈|φ1|+ |φ2| − Lk,r,t (|φ1|+ |φ2|) , |φ1 − φ2|〉h

≤ C1 + 1

2∗ − 1
(‖φ1‖h + ‖φ2‖h) ‖φ1 − φ2‖h . (3.54)

It follows from (3.52)–(3.54) that

‖Tk,r,t (φ1)− Tk,r,t (φ2)‖h = o (‖φ1 − φ2‖h) (3.55)

as k → ∞ uniformly in k ≥ k1, r ∈ [a, b], t ∈ [c, d] and φ ∈ Vk,r,t (C2). By
using (3.55) and increasing if necessary the values of k2 and C2, we obtain that
Tk,r,t is a contraction mapping on Vk,r,t for all k ≥ k2, r ∈ [a, b] and t ∈ [c, d].
We can then apply the fixed point theorem, which gives the existence of a unique
solution φk,r,t ∈ Vk,r,t (C2) to the equation (3.47). The continuous differentiability
of (r, t) 7→ φk,r,t is standard (see for instance Robert and Vétois [36]). This ends
the proof of Lemma 3.3. �

We define

I (u) :=
1

2

∫
Rn

(
|∇u|2 + h0u

2
)
dx− 1

2∗

∫
Rn
|u|2

∗
dx ∀u ∈ D1,2 (Rn) .

We prove the following result:
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Lemma 3.4. Let a, b, c, d > 0 be such that a < b and c < d. Let φk,r,t be as in
Lemma 3.1. Then

I (Uk,r,t + φk,r,t) =
1

n

∫
Rn
|u0|2

∗
+
k

n
K−nn +

2

n
K−nn E (r, t)

×


(ln k)

−1
(1 + o (1)) if n = 3

k3−n (1 + o (1)) if n ∈ {4, 5, 6}

k−
n
n−4 (1 + o (1)) if n ≥ 7

(3.56)

as k →∞ uniformly in r ∈ [a, b] and t ∈ [c, d], where

E (r, t) :=



8

π

(
u0 (r) t1/2

31/4
− t

4πr

)
if n = 3

ωn−1

ωn

(
2n−1u0 (r) t

n−2
2

[n (n− 2)]
n−2
4

−
(

2t

πr

)n−2

Sn

)
if n ∈ {4, 5}

5

8

(
(2u0 (r) + h0 (r)) t2 − 3t4

2 (πr)
4S6

)
if n = 6

(n− 1)h0 (r) t2

(n− 2) (n− 4)
− ωn−1t

n−2

ωn (πr)
n−2Sn if n ≥ 7,

(3.57)

ωn−1 and ωn are the areas of the unit spheres in Rn and Rn+1, respectively,

Sn :=

∞∑
i=1

i2−n and Kn :=
2ω
−1/n
n√

n (n− 2)

i.e. Kn is the best constant for the embedding D1,2 (Rn) ↪→ L2∗ (Rn) (see Aubin [1],
Rodemich [38] and Talenti [42]).

Proof. By integrating by parts and using (3.2) and (3.3), we obtain

∫
Rn
|∇ (Uk,r,t + φk,r,t)|2 dx =

∫
Rn

[
u2∗

0 − h0u
2
0 + 2

(
h0u0 − u2∗−1

0

) k∑
i=1

Bi,k,r,t

+

k∑
i,j=1

B2∗−1
i,k,r,tBj,k,r,t + 2

(
h0u0 − u2∗−1

0 +

k∑
i=1

B2∗−1
i,k,r,t

)
φk,r,t + |∇φk,r,t|2

]
dx.

(3.58)

If follows from (3.58) that

I (Uk,r,t + φk,r,t) =

∫
Rn

[
1

n
u2∗

0 +
1

n

k∑
i=1

B2∗

i,k,r,t + u0

k∑
i=1

B2∗−1
i,k,r,t

− 1

2

k∑
i=1

∑
j 6=i

B2∗−1
i,k,r,tBj,k,r,t +

1

2
h0

k∑
i,j=1

Bi,k,r,tBj,k,r,t −
1

2∗

(
|Uk,r,t + φk,r,t|2

∗
− u2∗

0
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−
k∑
i=1

B2∗

i,k,r,t + 2∗u0

k∑
i=1

B2∗−1
i,k,r,t + 2∗u2∗−1

0

k∑
i=1

Bi,k,r,t − 2∗
k∑
i=1

∑
j 6=i

B2∗−1
i,k,r,tBj,k,r,t

− 2∗ |Uk,r,t|2
∗−2

Uk,r,tφk,r,t

)]
dx+

1

2
‖φk,r,t‖2h − 〈Rk,r,t, φk,r,t〉h , (3.59)

where Rk,r,t is as in (3.4). Moreover, straightforward estimates give

k∑
i=1

∑
j 6=i

∫
Rn
B2∗−1
i,k,r,tBj,k,r,tdx = k

k∑
i=1

∑
j 6=i

∫
Ω1

B2∗−1
i,k,r,tBj,k,r,tdx

= k

k∑
i=2

∫
Ω1

B2∗−1
1,k,r,tBi,k,r,tdx+ O

(
k

∫
Ω1

[( k∑
i=2

Bi,k,r,t

)2∗

+B1,k,r,t

k∑
i=2

B2∗−1
i,k,r,t

]
dx

)
, (3.60)

∫
Rn

(
|Uk,r,t + φk,r,t|2

∗
− |Uk,r,t|2

∗
− 2∗ |Uk,r,t|2

∗−2
Uk,r,tφk,r,t

)
dx

= O

(∫
Rn

(
|Uk,r,t|2

∗−2
φ2
k,r,t + |φk,r,t|2

∗)
dx

)
, (3.61)

∫
Rn

[
|Uk,r,t|2

∗
− u2∗

0 −
( k∑
i=1

Bi,k,r,t

)2∗

+ 2∗u0

( k∑
i=1

Bi,k,r,t

)2∗−1

+ 2∗u2∗−1
0

k∑
i=1

Bi,k,r,t

]
dx

=



O

(∫
Rn

[
u2∗−2

0

( k∑
i=1

Bi,k,r,t

)2

+ u2
0

( k∑
i=1

Bi,k,r,t

)2∗−2]
dx

)
if n ≤ 5 (i.e. 2∗ − 2 > 1)

0 if n = 6 (i.e. 2∗ − 2 = 1)

O

(∫
Rn

min

[
u2∗−2

0

( k∑
i=1

Bi,k,r,t

)2

, u2
0

( k∑
i=1

Bi,k,r,t

)2∗−2]
dx

)
if n ≥ 7 (i.e. 2∗ − 2 < 1),

(3.62)

∫
Rn

[( k∑
i=1

Bi,k,r,t

)2∗

−
k∑
i=1

B2∗

i,k,r,t − 2∗
k∑
i=1

∑
j 6=i

B2∗−1
i,k,r,tBj,k,r,t

]
dx

= O

(
k

∫
Ω1

[
B1,k,r,t

k∑
i=2

B2∗−1
i,k,r,t +B2∗−2

1,k,r,t

( k∑
i=2

Bi,k,r,t

)2

+

( k∑
i=2

Bi,k,r,t

)2∗]
dx

)
(3.63)
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and∫
Rn
u0

[( k∑
i=1

Bi,k,r,t

)2∗−1

−
k∑
i=1

B2∗−1
i,k,r,t

]
dx

= O

(
k

∫
Ω1

u0

[
B2∗−2

1,k,r,t

k∑
i=2

Bi,k,r,t +

( k∑
i=2

Bi,k,r,t

)2∗−1]
dx

)
, (3.64)

where Ω1 is as in (3.8). By remarking that h0 = O
(
u2∗−2

0

)
and putting together

(3.59)–(3.64), we obtain

I (Uk,r,t + φk,r,t) =

∫
Rn

[
1

n
u2∗

0 +
1

n

k∑
i=1

B2∗

i,k,r,t + u0

k∑
i=1

B2∗−1
i,k,r,t +

1

2
h0

k∑
i=1

B2
i,k,r,t

+ O
(
|Uk,r,t|2

∗−2
φ2
k,r,t + |φk,r,t|2

∗)]
dx+ O

(
‖φk,r,t‖2h + ‖Rk,r,t‖h ‖φk,r,t‖h

)
− k

2

∫
Ω1

B2∗−1
1,k,r,t

k∑
i=2

Bi,k,r,tdx+ O (kJk,r,t) , (3.65)

where

Jk,r,t =

∫
Ω1

[( k∑
i=2

Bi,k,r,t

)2∗

+B1,k,r,t

k∑
i=2

B2∗−1
i,k,r,t +B2∗−2

1,k,r,t

( k∑
i=2

Bi,k,r,t

)2

+ u2∗−2
0

( k∑
i=2

Bi,k,r,t

)2]
dx

+



∫
Ω1

[
u2∗−2

0 B2
1,k,r,t + u2

0B
2∗−2
1,k,r,t + u2

0

( k∑
i=2

Bi,k,r,t

)2∗−2]
dx if n ≤ 5

∫
Ω1

u0B1,k,r,t

k∑
i=2

Bi,k,r,tdx if n = 6∫
Ω1\B(x1,k,r,

√
δk)

u2∗−2
0 B2

1,k,r,tdx+

∫
B(x1,k,r,

√
δk)

u2
0B

2∗−2
1,k,r,tdx

+

∫
Ω1

[
u0B

2∗−2
1,k,r,t

k∑
i=2

Bi,k,r,t + u2∗−2
0 B1,k,r,t

k∑
i=2

Bi,k,r,t

+ u0

( k∑
i=2

Bi,k,r,t

)2∗−1]
dx if n ≥ 7,

(3.66)

where B(x1,k,r,
√
δk) is the Euclidean ball of center x1,k,rk and radius

√
δk. Straight-

forward calculations (see for instance Aubin [2] and Robert and Vétois [37]) give∫
Rn
B2∗

i,k,r,tdx = K−nn , (3.67)

∫
Rn
u0B

2∗−1
i,k,r,tdx =

2nωn−1K
−n
n u0 (r) (tδk)

n−2
2

n
n+2
4 (n− 2)

n−2
4 ωn

(1 + o (1)) (3.68)
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and

∫
Rn
h0B

2
i,k,r,tdx =


O (δk) if n = 3

O
(
δ2
k |ln δk|

)
if n = 4

4 (n− 1)K−nn h0 (r) (tδk)
2

n (n− 2) (n− 4)
+ o

(
δ2
k

)
if n ≥ 5

(3.69)

as k → ∞. For every i ∈ {2, . . . , k}, by applying the mean value theorem and
observing that |x1,k,r − xi,k,r| ≥ 4r/k, we obtain

Bi,k,r,t =

[√
n (n− 2)tδk

]n−2
2

|x1,k,r − xi,k,r|n−2 +O

(
δ
n+2
2

k

|x1,k,r − xi,k,r|n
+

δ
n−2
2

k |x− x1,k,r|
|x1,k,r − xi,k,r|n−1

)
(3.70)

in B(x1,k,r, r/k). Direct calculations give∫
B(x1,k,r,r/k)

B2∗−1
1,k,r,tdx =

2nωn−1K
−n
n (tδk)

n−2
2

n
n+2
4 (n− 2)

n−2
4 ωn

(1 + o (1)) , (3.71)

∫
B(x1,k,r,r/k)

B2∗−1
1,k,r,t |x− x1,k,r| dx = O

(
δ
n/2
k

)
(3.72)

and

k∑
i=2

1

|x1,k,r − xi,k,r|p
=


k

2πr
(ln k + o (ln k)) if p = 1(
k

2πr

)p ∞∑
i=1

i−p + o (1) if p > 1
(3.73)

as k → ∞ since |x1,k,r − xi,k,r| = 2r sin ((i− 1)π/k). By putting together (3.70)–
(3.73), we obtain

∫
B(x1,k,r,r/k)

B2∗−1
1,k,r,t

k∑
i=2

Bi,k,r,tdx

=
4ωn−1K

−n
n

nωn

(
ktδk
πr

)n−2

×

{
ln k (1 + o (1)) if n = 3

Sn + o (1) if n ≥ 4
(3.74)

as k →∞. On the other hand, by similar calculations as in the proof of Lemma A.1,
we obtain∫

Ω1\B(x1,k,r,r/k)

B2∗−1
1,k,r,t

k∑
i=2

Bi,k,r,tdx

= O

(
δnk

k∑
i=2

∫
Ω1\B(x1,k,r,r/k)

dx

|x− xi,k,r|n−2 |x− x1,k,r|n+2

)

=

O
(

(kδk)
3

ln k
)

if n = 3

O ((kδk)
n
) if n ≥ 4.

(3.75)



COMPACTNESS OF SIGN-CHANGING SOLUTIONS 29

Now we estimate the integrals in the remainder terms of (3.65). By using (3.5) and
(3.48) together with the Sobolev inequality, we obtain∫

Rn

(
|Uk,r,t|2

∗−2
φ2
k,r,t + |φk,r,t|2

∗)
dx+ ‖φk,r,t‖2h + ‖Rk,r,t‖h ‖φk,r,t‖h

=


O
(

(ln k)
−2 )

if n = 3

O
(
k−2(n−3)

)
if n ∈ {4, 5, 6}

O
(
k−

(n+2)(n+4)
n(n−4)

)
if n ≥ 7.

(3.76)

Finally, by applying Lemma A.1 in the appendix and using the definition of δk, we
obtain

Jk,r,t =


o
(

(k ln k)
−1
)

if n = 3

o
(
k2−n) if n ∈ {4, 5, 6}

o
(
k−

2(n−2)
n−4

)
if n ≥ 7.

(3.77)

We then obtain (3.56) by combining (3.65)–(3.69) and (3.74)–(3.77) and using the
definition of δk. This ends the proof of Lemma 3.4. �

Now we can end the proof of Theorem 1.2.

Proof of Theorem 1.2. We let E be the function defined in (3.57). Observe that
the assumptions of Theorem 1.2 imply that 2u0 + h0 > 0 in case n = 6 and h0 > 0
in case n ≥ 7. Then it is easy to check that E attains a strict maximum at the
point (1, t0), where

t0 :=



π2u0 (1)
2

√
3

if n = 3

4π2√
n (n− 2)

(
u0 (1)

Sn

) 2
n−2

if n ∈ {4, 5}

π2

√
2u0 (1) + h0 (1)

3S6
if n = 6

(
2πn−2 (n− 1)ωnh0 (1)

(n− 2)
2

(n− 4)ωn−1Sn

) 1
n−4

if n ≥ 7.

It then follows from (3.56) that for k large, there exists a critical point (rk, tk) of
the function (r, t) 7→ I (Uk,r,t + φk,r,t) such that (rk, tk) → (1, t0) as k → ∞. We
then define uk := Uk,r,tk + φk,r,tk .

Since uk is also a solution of the equation (3.47), we obtain that there exist real
numbers c1,k and c2,k such that

DI (uk) =

2∑
j=1

cj,k

k∑
i=1

〈Zi,j,k,rk,tk , ·〉h . (3.78)

Since (rk, tk) is a critical point of (r, t) 7→ I (Uk,r,t + φk,r,t), we obtain

DI (uk) .
d

dr
[Uk,r,tk + φk,r,tk ]r=rk = DI (uk) .

d

dt
[Uk,rk,t + φk,rk,t]t=tk = 0. (3.79)
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Direct calculations give〈
Zi,j,k,rk,tk ,

d

dr
[Uk,r,tk ]r=rk

〉
h

=
1

δk

k∑
α=1

〈Zi,j,k,rk,tk , Zα,1,k,rk,tk〉h

=


1

δk

(
‖∇V1‖22 + o (1)

)
if j = 1

o

(
1

δk

)
if j = 2

(3.80)

and 〈
Zi,j,k,rk,tk ,

d

dt
[Uk,rk,t]t=tk

〉
h

=

k∑
α=1

〈Zi,j,k,rk,tk , Zα,2,k,rk,tk〉h

=

{
o (1) if j = 1

‖∇V2‖22 + o (1) if j = 2
(3.81)

as k →∞, where

V1 :=
n
n−2
4 (n− 2)

n+2
4 x1(

1 + |x|2
)n

2
and V2 :=

n
n−2
4 (n− 2)

n+2
4

(
|x|2 − 1

)
2
(

1 + |x|2
)n

2
.

Moreover, since φk,r,t ∈ Pk,r,t, we obtain

k∑
i=1

〈
Zi,j,k,rk,tk ,

d

dr
[φk,r,tk ]r=rk

〉
h

= −
k∑
i=1

〈
d

dr
[Zi,j,k,r,tk ]r=rk , φk,rk,tk

〉
h

(3.82)

and

k∑
i=1

〈
Zi,j,k,rk,tk ,

d

dt
[φk,rk,t]t=tk

〉
h

= −
k∑
i=1

〈
d

dt
[Zi,j,k,rk,t]t=tk , φk,rk,tk

〉
h

. (3.83)

By using Cauchy–Schwartz inequality together with (3.48) and direct calculations,
we obtain∣∣∣∣〈 d

dr
[Zi,j,k,r,tk ]r=rk , φk,rk,tk

〉
h

∣∣∣∣ ≤ ∥∥∥∥ ddr [Zi,j,k,r,tk ]r=rk

∥∥∥∥
h

‖φk,rk,tk‖h

= o

(∥∥∥∥ ddr [Zi,j,k,r,tk ]r=rk

∥∥∥∥
h

)
= o

(
1

δk

)
(3.84)

and ∣∣∣∣〈 d

dt
[Zi,j,k,rk,t]t=tk , φk,rk,tk

〉
h

∣∣∣∣ ≤ ∥∥∥∥ ddt [Zi,j,k,rk,t]t=tk

∥∥∥∥
h

‖φk,rk,tk‖h

= o

(∥∥∥∥ ddt [Zi,j,k,rk,t]t=tk

∥∥∥∥
h

)
= o (1) (3.85)

as k →∞. It follows from (3.78)–(3.84) that if k is large enough, then c1,k = c2,k =
0, i.e. the function uk is a solution of the equation (3.1).

It remains to verify that (1.4) holds true. For this, we define

vk := u−k = −min (0, uk) .
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By remarking that vk → u0 a.e. in Rn, we obtain

lim inf
k→∞

min
M

uk = − lim sup
k→∞

max
M

vk ≤ −max
M

u0 < 0. (3.86)

Moreover, since 0 ≤ vk < u0−φk,rk,tk and φk,rk,tk → 0 in L2∗ (Rn), we obtain that

vk → u0 in L2∗ (Rn) as k →∞. For every p ≥ 2, by multiplying (3.1) by vp−1
k and

integrating by parts, we obtain∫
Rn
vp+2∗−2
k dx =

∫
Rn

(
(p− 1) vp−2

k |∇vk|2 + h0v
p
k

)
dx

=

∫
Rn

(
4 (p− 1)

p2

∣∣∇[vp/2k

]∣∣2 + h0v
p
k

)
dx ≥ 4 (p− 1)

p2

∥∥vp/2k

∥∥2

h
. (3.87)

It follows from the Sobolev inequality and (3.86) that

‖vk‖
p

p+2∗−2

2∗p/2 =
∥∥vp/2k

∥∥ 2
p+2∗−2

2∗
≤ C ‖vk‖p+2∗−2 (3.88)

for some constant C > 0 independent of k. On the other hand, by applying the
triangle inequality together with an interpolation inequality, we obtain

‖vk‖p+2∗−2 ≤ ‖u0‖p+2∗−2 + ‖vk − u0‖p+2∗−2

≤ ‖u0‖p+2∗−2 + ‖vk − u0‖
p

p+2∗−2

2∗p/2 ‖vk − u0‖
2∗−2
p+2∗−2

2∗

≤ ‖u0‖p+2∗−2 +
(
‖vk‖2∗p/2 + ‖u0‖2∗p/2

) p
p+2∗−2 ‖vk − u0‖

2∗−2
p+2∗−2

2∗ . (3.89)

Since vk → u0 in L2∗ (Rn) as k → ∞, it follows from (3.87)–(3.89) that (vk)k is

bounded in L2∗p/2 (Rn). By applying Theorem 4.1 in the book of Han and Lin [21],
we then obtain that (vk)k is bounded in L∞ (M). This, together with (3.85), implies
the first part of (1.4).

Now we prove the second part of (1.4). Assume by contradiction that ‖uk‖∞ ≤ C
for some constant C > 0 independent of k. We then obtain

−φk,rk,tk ≥ B1,k,rk,tk − u0 −C ≥

(√
n (n− 2)

2tkδk

)n−2
2

− u0 −C in B (x1,k,rk , tkδk)

and so

‖φk,rk,tk‖2∗ ≥

(√
n (n− 2)

2

)n
+ o (1)

as k → ∞, which is in contradiction with (3.48). This completes the proof of
Theorem 1.2. �

Appendix A. Integral estimates

In this appendix, we prove the following lemma, which we used several times in
the proof of Theorem 1.2.

Lemma A.1. Let Ω1 and Bi,k,r,t be as in the previous section. For every α, β ≥ 0
and a, b, c, d > 0 such that α + β ≤ 2∗, a < b and c < d, there exists a constant
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C > 0 such that∫
Ω1

u2∗−α−β
0 Bα1,k,r,t

( k∑
i=2

Bi,k,r,t

)β
dx

≤ C

(
δ

(α+β)(n−2)
2

k ×



kβ−1 if α (n− 2) + β (n− 3) < n− 1

kβ−1 (ln k)
β+1

if α = 2 and n = 3

kα+β−3 (ln k)
β

if α > 2 and n = 3

kβ−1 ln k if α (n− 2) + β (n− 3) = n− 1 and n ≥ 4

k(α+β)(n−2)−n if α (n− 2) + β (n− 3) > n− 1 and n ≥ 4

+

{
(k ln k)

β
if n = 3

kβ(n−2) if n ≥ 4

}
×


δ

(α+β)(n−2)
2

k kα(n−2)−n if α <
n

n− 2

δ
n+β(n−2)

2

k |ln δk| if α =
n

n− 2

δ
n+

(β−α)(n−2)
2

k if α >
n

n− 2


)

(A.1)

for all k ≥ 2, r ∈ [a, b] and t ∈ [c, d].

Proof. By splitting the integral into three parts, in the domains Ω′1 := B (x1,k,r, δk),
Ω′′1 := Ω1 ∩ B (0, 2r) \B (x1,k,r, δk) and Ω′′′1 := Ω1\B (0, 2r) and remarking that
|x− x1,k,r| ≥ |x| /2 for all x ∈ Ω′′′1 , we obtain∫

Ω1

u2∗−α−β
0 Bα1,k,r,t

( k∑
i=2

Bi,k,r,t

)β
dx

= O

(
δ

(β−α)(n−2)
2

k

∫
Ω′1

( k∑
i=2

1

|x− xi,k,r|n−2

)β
dx

+ δ
(α+β)(n−2)

2

k

∫
Ω′′1

( k∑
i=2

1

|x− xi,k,r|n−2

)β
dx

|x− x1,k,r|α(n−2)

+ δ
(α+β)(n−2)

2

k

∫
Ω′′′1

( k∑
i=2

1

|x− xi,k,r|n−2

)β
dx

|x|2n−β(n−2)

)
. (A.2)

For every x ∈ Ω1, since |x− x1,k,r| < |x− xi,k,r|, we obtain

〈x1,k,r − x, x1,k,r − xi,k,r〉 <
1

2
|x1,k,r − xi,k,r|2 . (A.3)

Moreover, by applying Young’s inequality, we obtain

〈x1,k,r − x, x1,k,r − xi,k,r〉 ≤
3

4
|x− x1,k,r|2 +

1

3
|x1,k,r − xi,k,r|2 . (A.4)

It follows from (A.3) and (A.4) that

|x− xi,k,r|2 >
1

4
|x− x1,k,r|2 +

1

6
|x1,k,r − xi,k,r|2

=
1

4
|x− x1,k,r|2 +

2

3
r2 sin ((i− 1)π/k)

2
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and thus

k∑
i=2

1

|x− xi,k,r|n−2 ≤
k∑
i=2

1(
1
4 |x− x1,k,r|2 + 2

3r
2 sin ((i− 1)π/k)

2
)n−2

2

≤ 2k

∫ 1/2

1/k

ds(
1
4 |x− x1,k,r|2 + 2

3r
2 sin (πs)

2
)n−2

2

+
2(

1
4 |x− x1,k,r|2 + 2

3r
2 sin (π/k)

2
)n−2

2

≤ 2k

∫ 1/2

1/k

ds(
1
4 |x− x1,k,r|+

√
2rs√
3

)n−2 +
2(

1
4 |x− x1,k,r|+

√
2r√
3k

)n−2

≤


Ck ln

(
|x− x1,k,r|+ 1

|x− x1,k,r|+ 1/k

)
if n = 3

Ck

(
1

(|x− x1,k,r|+ 1/k)
n−3 −

1

(|x− x1,k,r|+ 1)
n−3

)
if n ≥ 4

(A.5)

for some constant C > 0 independent of k. It follows from (A.5) that

k∑
i=2

1

|x− xi,k,r|n−2 ≤

{
Ck ln k if n = 3

Ckn−2 if n ≥ 4
(A.6)

and

k∑
i=2

1

|x− xi,k,r|n−2 ≤


Ck ln

(
1 +

1

|x− x1,k,r|

)
if n = 3

Ck

max
(
|x− x1,k,r|n−3

, |x− x1,k,r|n−2 ) if n ≥ 4.
(A.7)

It follows from (A.6) that

∫
Ω′1

( k∑
i=2

1

|x− xi,k,r|n−2

)β
dx =

O
(
δnk (k ln k)

β )
if n = 3

O
(
δnk k

β(n−2)
)

if n ≥ 4.
(A.8)

We define

Γ1 :=

{
(x1, . . . , xn) ∈ Ω1 : |x1 − r|2 +

n∑
i=3

|xi|2 <
1

k2

}
.

By remarking that

Ω′′1 ⊂ {(x1, . . . , xn) ∈ Rn : |x2| < 2rπ/k} (A.9)
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and since kδk → 0 as k →∞, it follows from (A.6) that∫
Ω′′1∩Γ1

( k∑
i=2

1

|x− xi,k,r|n−2

)β
dx

|x− x1,k,r|α(n−2)

=

O
(

(k ln k)
β )

if n = 3

O
(
kβ(n−2)

)
if n ≥ 4

×


O
(
kα(n−2)−n

)
if α <

n

n− 2

O (|ln δk|) if α =
n

n− 2

O
(
δ
n−α(n−2)
k

)
if α >

n

n− 2
.

(A.10)

By using (A.7) and (A.9), straightforward estimates give∫
Ω′′1 \Γ1

( k∑
i=2

1

|x− xi,k,r|n−2

)β
dx

|x− x1,k,r|α(n−2)

=



O
(
kβ−1

)
if α (n− 2) + β (n− 3) < n− 1

O
(
kβ−1 (ln k)

β+1 )
if α = 2 and n = 3

O
(
kα+β−3 (ln k)

β )
if α > 2 and n = 3

O
(
kβ−1 ln k

)
if α (n− 2) + β (n− 3) = n− 1 and n ≥ 4

O
(
k(α+β)(n−2)−n

)
if α (n− 2) + β (n− 3) > n− 1 and n ≥ 4.

(A.11)

By using (A.7), we obtain∫
Ω′′′1

( k∑
i=2

1

|x− xi,k,r|n−2

)β
dx

|x|2n−β(n−2)
= O

(
kβ−1

)
. (A.12)

Finally, (A.1) follows from (A.2), (A.8) and (A.10)–(A.12). This ends the proof of
Lemma A.1. �
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