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ABSTRACT

Advanced sparse sampling acquisition systems capture only scat-
tered information from the continuous image domain. Unfortu-
nately, conventional image encoders are not yet able to properly
compress arbitrarily subsampled image data. This work introduces a
system leveraging the JPEG 2000 image compression framework by
enabling scalable compression of the selected image samples. Using
a complete dictionary of CDF 9/7 wavelets, a minimum l1-norm
compressed sensing solution is recovered which can be fed directly
into the encoder, producing a bitstream that can be decoded with
existing JPEG 2000-compliant implementations. Experiments on
standard images with quasi-random subsampling demonstrate that
the proposed system outperforms regular JPEG 2000 compression
of stacked sample images and quad-tree based compression for
point-clouds. We also demonstrate the robustness of the technique
for images that infringe the sparsity prior of compressed sensing.

Index Terms— Compressed sensing, CDF 9/7 wavelets, quasi-
random sampling, lossy image compression.

1. INTRODUCTION

Upcoming new compression scenarios for digital images are needed
when sampling full image data becomes impractical. For example,
in ultra-high definition imaging, the uncompressed raw data may ex-
ceed computational resources for transfer and storage such that an
out-of-core architecture is required [1]. In medical applications with
high-sensitivity infrared cameras, the sensor is expensive. Fortu-
nately, a single pixel camera architecture [2, 3] allows for sequential
measurements by redirecting light to a single small sensor instead of
conventional parallel acquisition on a sensor array.

For sparsely sampled image data, the conventional compression
techniques in the literature are based on quadtree coding methods or
simple adaptive arithmetic entropy coding. However, they provide
either only lossless compression, or very limited scalability, with a
dramatic drop of quality at medium to low rates. In this paper, we
propose an alternative practical encoding scheme for sparsely sam-
pled data. The rationale is to first find a maximally sparse interpola-
tive wavelet decomposition from the input samples. This renders
the resulting signal to be compressible using conventional wavelet-
based image coding techniques, such as the JPEG 2000 encoder. A
key aspect is that the sparsifying basis functions are dictated by the
wavelet transform employed in the JPEG 2000 codec. Therefore,
our system is also able to produce fully interpolated images, given a
limited collection of scattered samples.

A string of techniques for interpolating missing samples have
been proposed in the literature. When the fraction of missing sam-
ples is low, local regression analysis techniques such as the kernel
density estimate (KDE) have shown to be very flexible [4, 5]. How-
ever, fitting kernels becomes unstable at random under-sampling

rates below ≈ 15%. Physics of diffusion may also be used to fill
gaps in images [6, 7]. The most advanced implementations solves
a complex inverse problem iterative reweighted least squares [8].
The interpolated images are typically very regular; however, solu-
tions to the partial differential equations (PDE) of diffusions lead to
unappealing visual deformations at low sampling rates.

In current JPEG 2000 image compression implementations, a
discrete wavelet transform (DWT) [9] is applied on the complete
image data before the lossy quantization and entropy coding stage
[10]. If only a subset of raw image sample is available, the DWT
stage can not be explicitly computed. We therefore use the paradigm
of compressed sensing (CS) [11, 12] for producing sets of wavelet
coefficients that exactly recover the acquired samples. Many solu-
tions are possible, corresponding to every possible way to interpo-
late the missing samples. We compared two regularization priors for
solving the estimation problem: energy minimization and sparsity
maximization. A energy minimization prior produces dense sets of
wavelet coefficients, while minimizing the l1-norm of the decompo-
sition promotes sparsity [13].

We envision several practical applications for reconstructing im-
ages when only a few samples are available. As digital image defini-
tion increases tremendously, the relative visual information carried
by individual image elements vanishes. Recording few pixels from a
scene can be practically implemented with coded aperture masks in
front of a standard lower-resolution sensor array [14]. Our method
could also be combined with 3D extensions of JPEG 2000 [15] for
storing volumetric images that contains an order of magnitude more
voxels than planar slices.

2. SYSTEM OVERVIEW

The overall architecture of our system is shown in Figure 1. The first
step at the acquisition side is to perform a sparse sampling of the
input data. Subsampling masks are chosen by the user and may be
arbitrary. In this work, we emulated a sparse data acquisition sys-
tem by using a low-discrepancy quasi-random mask to ensure nearly
even but not regular spacing between samples. Irregularity is meant
to avoid aliasing in case of repeated structures present in the source
image [16]. A comprehensive introduction on quasi-random sam-
pling generation are given in the volume of Niederreiter [17].

The second step in the processing pipeline is the recovery of
the wavelet coefficients from the sparsely sampled image data (high-
lighted by the gray background on the top of the illustration). It is
important to point that the set of wavelet basis functions used in this
process is exactly the same as the ones used in the JPEG 2000 (in
our case CDF 9/7). Details on the specific recovery algorithm are
provided in Section 3.

The last step in our algorithm is to employ the encoding engine
of the JPEG 2000 standard, namely the Embedded Block Coding
by Optimized Truncation (EBCOT) [10] entropy coder. EBCOT is
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Fig. 1. Schematic diagram of the modified JPEG 2000 workflow
for compression from few pixels. The DWT stage is replaced by an
optimization solver for producing a maximally sparse set of wavelet
coefficients, interpolating missing image samples. Then the sparse
wavelet coefficients are quantized and compressed by EBCOT. The
gray background highlights our addition to the default encoder.

especially suited for efficient and scalable wavelet coefficient cod-
ing. EBCOT consists out of two parts: Tier-1 contains the actual
entropy coder and Tier-2 performs the rate-distortion optimization
to generate data packets. We would like to point out that, although
we modify the JPEG 2000 encoding system, the resulting bit-stream
is fully compliant with the JPEG 2000 standard.

3. WAVELET COEFFICIENTS RECOVERY

Given a limited collection of image samples, we use the compressed
sensing framework to estimate likely wavelet coefficients represent-
ing the underlying full image. Let f ∈ RN be a single channel image
with N = Nx×Ny pixels that are vectorized in raster order. Statis-
tics of natural photographic images suggests that only few wavelets
coefficients are sufficient to represents salient visual features. We
hereby describe two priors for estimating such coefficients: The first
prior is based on conventional energy-minimization, and the second
prior assumes sparsity of wavelet decompositions.

Given a set of M << N measurements b ∈ RM , we can ex-
press these image samples as coming from either the ground truth
original image f as well as two different image approximations f̂1
and f̂2 such that

b = Φf = Φf̂1 = Φf̂2,

with corresponding decompositions in CDF9/7 wavelets

f = Ψx, f̂1 = Ψx̂1 and f̂2 = Ψx̂2,

where the sensing matrix Φ ∈ RN×M is a binary mask selecting the
M measurements. We represented images f̂1 and f̂2 as coefficients
in CDF 9/7 wavelets [18] that are noted x̂1 and x̂2 respectively. The
matrix Ψ ∈ RN×N contains footprints of all the N wavelet basis
functions up to the level 4.

l2-norm recovery l1-norm recovery Reference image

Fig. 2. l2-norm recovery (left) produces dense decompositions that
minimize the total energy of wavelet coefficients while the l1-norm
recovery (middle) produces sparse sets of coefficients that minimize
the complexity of the image representation. Recovered images from
15% of samples compare visually to the best-case theoretical bound,
i.e., 7.5% of the most significant original wavelet coefficients (right).

From the vector of data b and using the system matrix A = ΦΨ,
we compared two possible solutions. First, the minimum energy set
of coefficients x̂2 was retrieved by

f̂2 = Ψx̂2 with x̂2 = argmin
b=Ax

‖x‖2,

that is solved with the Moore-Penrose pseudo-inverse:

x̂2 = A>(AA>)−1 b .

From now on, we refer to this l2-norm solution as a dense decompo-
sition since every coefficient has squared contribution in the l2-norm;
therefore, this solution has the tendency to limit the magnitude of co-
efficients such that the total energy is spread over many coefficients.

Alternatively, we sought for a sparse set of coefficients by
searching for the minimum l1-norm solution:

f̂1 = Ψx̂1 with x̂1 = argmin
b=Ax

‖x‖1,

that is solved with the iterative reweighted least squares (IRLS) al-
gorithm using the recurrence

x̂
(n+1)
1 = D(n)A>(AD(n)A>)−1 b .

The IRLS method has been shown to converge to a sparse solution
with a certain class of iteration-dependent weighting matrices D(n)

that are functions of x̂(n)
1 [19]. In this work, we used the following

diagonal entries to minimize the l1-norm:

D
(n)
i,i =

√(
x̂
(n)
1 (i)

)2
+ ε(n)

with the decreasing sequence of smoothing constants ε(n) for al-
leviating numerical instabilities with small coefficients [19]. Note
that the result of vector-matrix products may be implemented with
weighted fast discrete wavelet transforms such that it is not needed
to store explicitly the system matrix A.
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Fig. 3. Schematic representation of the two tested pipelines for com-
pressing sparsely samples images with the JPEG 2000 architecture.
The first row performs a minimum l1-norm recovery at the encoder
side for producing compressible interpolative wavelet coefficients.
The second row pack samples for optimizing spatial coherence be-
fore coding with the regular full JPEG 2000 encoder.
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Fig. 4. Compression performances of the proposed system (solid
lines) compared against plain lossy compression of stacked samples
with JPEG 2000 (dashed lines). The quality of samples recovery is
quantified in terms of PSNR as a function of the compression bit-
rate for various subsampling rates from 5% up to 20%, expressed in
percentage of all pixels in the original images.
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Fig. 5. Quantitative analyses of image similarity in terms of PSNR as
a function of the compression bit-rate for various subsampling rates
from 5% up to 20%, expressed in percentage of all pixels in the orig-
inal images. Dashed lines represent the compression of sparsified
images. Solid lines are equivalent recovery from original pictures.

Images Encoders 5% 10% 15% 20%
Lena Quadtree 1.155 1.981 2.801 3.582

JPEG-LS 1.138 2.317 3.679 5.082
MRI Quadtree 1.084 1.832 2.539 3.206

JPEG-LS 0.921 1.842 2.917 4.089
Mandrill Quadtree 1.150 1.958 2.784 3.568

JPEG-LS 1.131 2.303 3.708 5.093
Cameraman Quadtree 1.127 1.911 2.677 3.385

JPEG-LS 1.110 2.236 3.535 4.852

Table 1. Lossless coding rates for quadtree coding and JPEG-LS.

4. EXPERIMENTS

Our first round of experiments assess the performances of conven-
tional lossless compression with JPEG-LS as well as lossy and loss-
less compression using quadtree based techniques. With respect to
the latter, we have proposed quadtree based coding approaches to
encode in a scalable manner wavelet subbands [20]. We have used
a similar quadtree coding approach operating directly in the spatial
domain. As example, the lossless coding rates obtained on the four
test image with these two methods are reported in Table 1. We notice
that the JPEG-LS predictor fail to deliver competitive lossless coding
performances when compared to quadtree coding. However, experi-
mental results reveal that quadtree coding yields very limited scala-
bility range in lossy coding, with dramatic drop in quality at medium
and low rates. This behavior is caused by the uniformity of the sam-
ples distribution over the image plane that prevent efficient encoding
of sample’s locations using quadtrees. In these experiments, posi-
tions are explicitly encoded in the representation. Storing this infor-
mation is a major overhead on acquisition systems where we could
assume that the sampling masks are known at the decoder side.

For our second round of experiments, we evaluate the perfor-
mance of our system against a reference technique that first removes
the spatial position information from the input samples using a stack-
ing operator. The stacking operator packs image samples row-wise
and employs a standard JPEG-2000 encoding on the result. The un-
derlying assumption for this reference system is that the sample lo-
cations are completely known at the decoder side. The processing
pipelines for the proposed and reference systems are depicted in the
first and second row in Figure 3, respectively. We use a 4-level Mal-
lat CDF 9/7 wavelet decomposition in both configurations. The lossy
compression results obtained at a conventional dyadic set of rates
ranging from 0.125 bpp to 2 bpp are given in Figure 4. The PSNR
is measured on the reconstructed samples only. The results reveal
that for all sampling rates and tested images, the proposed system
outperforms the reference approach. The average PSNR differences
computed over all images and all experimented subsampling masks
range between 0.83 dB at 2 bpp to 7.08 dB at 0.25 bpp.

In the last set of experiments, we evaluated the impact of sam-
pling from natural images that do not strictly comply with the fun-
damental sparsity hypothesis of CS. As shown quantitatively in Fig-
ure 5, the results confirm theoretical arguments that sparsity should
provide more compressible sets of coefficients [9]. For these eval-
uations, we reconstructed artificially sparsified images retaining the
most significant wavelet coefficients. The number of retained coef-
ficients equals half of the number of samples, according to the most
optimistic theoretical bound for exact recovery in compressed sens-
ing. For completeness, the quality of the two image reconstructions
can be compared in Figure 6 for 15% subsampling. For closer visual
examination, cropped windows of 64× 64 pixels are extracted.
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Fig. 6. JPEG 2000 compressions at 0.5bpp from the the dense minimum l2-norm coefficients and the sparse l1-norm coefficients that are
recovered after convergence of the IRLS method. At very similar image quality, the sparse sets of coefficients are much more compressible.

5. CONCLUSION

In this work we propose a scalable system for efficiently compress-
ing sparsely sampled images at lossy to near-lossless rates. We rely
on a compressed sensing technique to compute sparse compressible
sets of interpolative wavelet coefficients such that the input data are
exactly reconstructed. The dictionary of basis functions in the com-
pressed sensing system corresponds to the CDF 9/7 wavelets which
are used in the JPEG 2000 system. The recovered coefficients are
a good match for subsequent encoding with the EBCOT engine of
JPEG 2000. Results on a set of classical test images indicate that
our technique outperforms a conventional JPEG 2000 compression
of the sample values. The solution is an alternative to quadtree cod-
ing of scattered points and it provides a new practical compression
tool when only partial image information is available. As added ben-
efits, the resulting bit-stream is JPEG 2000-compliant and a plausi-
ble complete interpolated image can be retrieved at the decoder side.
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