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Abstract: We extend to rank-based tests of multivariate independence the
Chernoff-Savage and Hodges-Lehmann classical univariate results. More pre-
cisely, we show that the Taskinen, Kankainen and Oja (2004) normal-score rank
test for multivariate independence uniformly dominates – in the Pitman sense –
the classical Wilks (1935) test, which establishes the Pitman non-admissibility
of the latter, and provide, for any fixed space dimensions p, q of the marginals,
the lower bound for the asymptotic relative efficiency, still with respect to
Wilks’ test, of the Wilcoxon version of the same.

1. Introduction

1.1. Testing multivariate independence

The problem of testing for independence between two random variables with un-
specified densities has been among the very first applications of ranks in statistical
inference. Spearman’s correlation coefficient was proposed as early as 1904 (Spear-
man [29]), long before Wilcoxon [33]’s rank sum and signed rank tests for location,
and Kendall introduced his rank correlation measure in 1938 (Kendall [18]).

The multivariate version of the same problem, namely, testing independence be-
tween two random vectors with unspecified densities, is harder. The first rank-based
counterpart to the Gaussian likelihood ratio method of Wilks [34] was developed
in Chapter 8 of the monograph by Puri and Sen [25] and, for almost thirty years,
has remained the only rank-based solution to the problem. The proposed test, how-
ever, is based on componentwise rankings, hence is neither invariant under affine
transformations, nor distribution-free – unless of course both random vectors have
dimension one, in which case we are back to the traditional context of rank-based
tests of bivariate independence.

Of course, the asymptotic null distributions of the Puri and Sen test statistics
do not depend on the underlying distributions. This however is a simple conse-
quence of central-limit behavior and studentization – the matrix of the quadratic
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form involved being a consistent empirical version of its population counterpart.
Such property, in the terminology of Randles [27] is only a weak form of asymp-
totic distribution-freeness, the strong form being asymptotic equivalence with a
genuinely distribution-free random variable.

Alternatives to the Puri and Sen test have been made possible by the recent
developments of multivariate concepts of signs and ranks. Gieser and Randles [3]
propose a sign test based on Randles [28]’s interdirections. Taskinen, Kankainen and
Oja [30] also propose a sign test, based on the so-called standardized spatial signs,
which is asymptotically equivalent to the Gieser and Randles one under elliptic
symmetry assumptions. Multivariate ranks are introduced, along with the signs, in
Taskinen, Oja and Randles [32], where multivariate analogs of Spearman’s rho and
Kendall’s tau (based on Wilcoxon scores) are considered. This is extended, in Task-
inen, Kankainen and Oja [31], to arbitrary score functions. All these tests rely on
exactly affine-invariant and strongly (in Randles’ sense) asymptotically distribution-
free statistics – this latter property, however, is obtained at the expense of stronger
assumptions of elliptical symmetry.

The objective of this paper is to show that Chernoff-Savage and Hodges-Lehmann
results can be established for the normal (van der Waerden, say) and Wilcoxon score
versions of the Taskinen, Kankainen and Oja [31] tests, establishing their excellent
performances with respect to the Gaussian likelihood ratio procedure of Wilks [34].

1.2. Chernoff-Savage and Hodges-Lehmann results

Rank-based inference long has been considered as a somewhat heuristic and het-
eroclite collection of “quick-and-easy” methods applicable under a broad range of
assumptions. The Spearman, Kendall, Wilcoxon, . . . tests were not introduced in
the context of a general theory, but as isolated tools, to be used when everything
else fails. Certainly, their performances were not expected to compare favorably
with those of their parametric competitors.

This widespread opinion was partly dispelled by two famous papers – Hodges and
Lehmann [15] and Chernoff and Savage [1] – establishing that rank-based methods
not only compete very well, but even may outperform their parametric counter-
parts (quite remarkably, Hotelling and Pabst [17] already show that the asymptotic
relative efficiency, under bivariate Gaussian densities, of Spearman with respect to
the traditional correlation coefficient, is as high as 0.9119). These papers certainly
played a triggering role in the subsequent development of the well-structured theory
of rank-based inference associated, mainly, with the name of Hájek, culminating in
the monographs by Hájek and Šidák (see Hájek, Šidák and Sen [4]) and Puri and
Sen [26].

In their celebrated “.864 theorem”, Hodges and Lehmann [15] proved that, in
the two-sample location model (but this extends to more general location problems,
such as one-sample, c-sample, ANOVA, regression, etc.), the Pitman asymptotic
relative efficiency (ARE) of Wilcoxon (i.e., linear-score) rank tests with respect to
their normal-theory competitor (namely, Student’s standard two-sample t-test) is
never less than .864. In other words, irrespective of the underlying distribution,
Wilcoxon tests asymptotically never need more than 13.6% observations more than
t-tests to achieve the same power.

No less surprising is the Chernoff and Savage [1] result establishing the amazing
fact that, in the same class of models, the ARE of van der Waerden (i.e., normal-
score) rank tests, still with respect to the corresponding standard Gaussian ones,
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are always larger than one, and that this minimal value is reached at Gaussian
distributions only. It should be stressed that these results deal with the “worst
cases”: both for the Wilcoxon and the van der Waerden tests, it is possible to show
that there is no “best case”, in the sense that it is possible to construct a sequence of
underlying distributions along which AREs (still with respect to standard Gaussian
tests) tend to infinity.

With the extensions of rank-based inference to other models and other inference
problems, it has been discovered that these Chernoff-Savage and Hodges-Lehmann
results are not just a happy accident specific to location problems and univariate
observations. Hallin [5] showed that the van der Waerden version of the serial
rank tests proposed by Hallin and Puri [13] also uniformly beats (in the Pitman
sense) the corresponding everyday practice parametric Gaussian tests based on
autocorrelations. As for the extension of the Hodges-Lehmann [15] result to this
time series setup, the lower bound of the Wilcoxon version of those tests, still
with respect to the parametric Gaussian tests, was shown to be .856 by Hallin and
Tribel [14].

Extensions to (nonserial as well as serial) problems involving multivariate ob-
servations were recently obtained by Hallin and Paindaveine [7, 8, 10], who showed
that their various multivariate van der Waerden rank tests uniformly dominate the
corresponding parametric Gaussian procedures in a broad class of problems (culmi-
nating in the problem of testing linear restrictions on the parameters of a multivari-
ate general linear model with vector ARMA errors); the Pitman non-admissibility
of the associated everyday practice Gaussian tests (one-sample and two-sample
Hotelling tests, multivariate F -tests, multivariate portmanteau and Durbin-Watson
tests, etc.) follows. Hallin and Paindaveine [7] (resp., Hallin and Paindaveine [8])
also extended Hodges-Lehmann’s result to the multivariate location (resp., serial)
setup, providing, for any fixed dimension of the observation space, the lower bound
for the AREs of the proposed multivariate linear-score (i.e., Wilcoxon type) rank
tests with respect to the parametric Gaussian ones.

Results recently have also been obtained beyond the case of location parameters
(in a broad sense, including regression and autoregression coefficients): Paindav-
eine [23] shows that the uniform Pitman dominance of normal-score rank-based
procedures over their parametric Gaussian competitors extends to the shape pa-
rameter of elliptical populations; see Hallin and Paindaveine [11] and Hallin, Oja
and Paindaveine [6]. It follows that, for any space dimension k ≥ 2, the Gaussian
maximum likelihood estimator of shape, based on empirical covariances, as well as
the corresponding Gaussian likelihood ratio tests, are Pitman-nonadmissible.

In this paper, similar results are established for the problem of testing inde-
pendence between elliptical random vectors. More precisely, we consider the van
der Waerden and Wilcoxon versions of the rank score tests recently proposed by
Taskinen, Kankainen and Oja [31]. We first establish, under (multivariate exten-
sions of) the Konijn [19] alternatives, a Chernoff-Savage result, showing that the
van der Waerden version of their test uniformly dominates the parametric Gaussian
procedure – Wilks [34]’s test – which establishes the Pitman-nonadmissibility of the
latter. Similarly, we extend the Hodges-Lehmann [15] “.864 result”, providing, for
any fixed couple of marginal space dimensions (p, q), the lower bound for the as-
ymptotic relative efficiency of the Taskinen, Kankainen and Oja [31] Wilcoxon test
with respect to Wilks.
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1.3. Outline of the paper

The paper is organized as follows. In Section 2, we define the notation to be used
throughout, describe the problem of testing for independence between elliptically
symmetric marginals, and briefly recall the rank score tests developed by Taskinen,
Kankainen and Oja [31]. In Section 3, we establish the Pitman non-admissibility
of Wilks’ test for multivariate independence. The analog of Hodges-Lehmann [15]’s
result for the problem under study is derived in Section 4. Section 5 briefly con-
cludes.

2. Rank-based tests for multivariate independence

2.1. Elliptical symmetry

Recall that the distribution of a random k-vector X is said to be elliptically sym-
metric if and only if its probability density function is of the form

(2.1) f
μμμ,ΣΣΣ;f

(x) := ck,f (detΣΣΣ)−1/2f
((

(x −μμμ)′ΣΣΣ−1(x −μμμ)
)1/2

)
, x ∈ R

k,

for some k-vector μμμ (the centre of the distribution), some symmetric positive definite
real k × k matrix ΣΣΣ = (Σij) with |Σ| = 1 (the shape matrix), and some function
f : R

+
0 −→ R

+ such that f > 0 a.e. and μk−1;f :=
∫ ∞
0

rk−1f(r) dr < ∞ (ck,f is a
normalization factor depending on the dimension k and f). Denote by Pk(μμμ,ΣΣΣ, f)
the corresponding distribution.

The shape matrix ΣΣΣ determines the orientation and shape of the equidensity
contours associated with f

μμμ,ΣΣΣ;f
, which are a family of hyper-ellipsoids centered at μμμ.

The definition we are adopting here involves a determinant-based normalization
which, in a sense, can be considered as canonical : see Paindaveine [24] and Hallin
and Paindaveine [8] for details. Other normalizations are also possible (such as
Σ11 = 1 or trΣΣΣ = k); the choice of such a normalization does not play any role in
the sequel.

The problem of testing for multivariate independence (see Section 2.2 below)
is invariant under (block-)affine transformations, and so are all tests considered in
this paper. Therefore we can restrict – without loss of generality – to the class of
centered spherical distributions, for which μμμ and ΣΣΣ do coincide with the origin 0
in R

k and the k-dimensional identity matrix Ik, respectively.
Under Pk(0, Ik, f), the radial function f determines the distribution of ‖X‖.

More precisely, ‖X‖ has probability density function f̃k(r) := (μk−1;f )−1rk−1f(r)
I[r>0] (IA stands for the indicator function of the Borel set A); denote by F̃k the
corresponding distribution function.

The assumption that μk−1;f < ∞ guarantees that (2.1) is a density. The classi-
cal Gaussian procedure for testing multivariate independence – namely, Wilks [34]’s
test – requires the underlying distribution to have a finite variance (note that Puri
and Sen [25] erroneously require finite moments of order four – an error which is
repeated in Muirhead and Waternaux [20]). Consequently, when considering AREs
with respect to Wilks’ test, we will restrict to radial functions satisfying the stronger
condition μk+1;f :=

∫ ∞
0

rk+1f(r) dr < ∞, under which the distribution Pk(0, Ik, f)
has finite second-order moments. One can associate with each radial function f the
radial function type of f defined as the class {fa, a > 0}, where fa(r) := f(ar), for
all r > 0. By affine-invariance, one could restrict to parameter values of the form
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(μμμ,ΣΣΣ, f) = (0, Ik, fa0) for which the variances of the associated elliptical distribu-
tions are equal to Ik. However, it will be convenient in the sequel to consider all
possible radial functions, so that we will only fix (μμμ,ΣΣΣ) = (0, Ik) and let f range
over its radial function type. Some extremely mild smoothness conditions on f –
which we throughout will assume to be fulfilled – are required to derive AREs. We
refer to Taskinen, Kankainen and Oja [31] for details.

The radial function f is said to be Gaussian if and only if f = φa for some
a > 0, where φ(r) := exp(−r2/2). Under Pk(0, Ik, φ), the probability density of
‖X‖ is φ̃k(r) := (2(k−2)/2Γ(k/2))−1rk−1φ(r)I[r>0] where Γ(.) stands for the Euler
gamma function; denote by Φ̃k the corresponding distribution function. Therefore,
the distribution of ‖X‖2 D= (Φ̃−1

k (U))2 (throughout, U stands for a random variable
uniformly distributed over (0, 1)), still under Pk(0, Ik, φ), is χ2

k, and the distribu-
tion function of ‖X‖ is simply Φ̃k(r) = Ψk(r2), where Ψk denotes the chi-square
distribution function with k degrees of freedom.

2.2. Testing for multivariate independence

Consider an i.i.d. sample (X′
11,X

′
21)

′, (X′
12,X

′
22)

′, . . . , (X′
1n,X′

2n)′ of (p+q)-dimen-
sional random vectors with the same distribution as (X′

1,X
′
2)

′. We are interested
in the null hypothesis under which X1 and X2, with elliptically symmetric distrib-
utions Pp(μμμ1,ΣΣΣ1, f) and Pq(μμμ2,ΣΣΣ2, g), respectively, are mutually independent. As
already mentioned, we can – without loss of generality (since the testing problem
under study is invariant under block-diagonal affine transformations) – restrict to
centered spherical marginal distributions, that is, to assume (μμμ1,ΣΣΣ1) = (0, Ip) and
(μμμ2,ΣΣΣ2) = (0, Iq).

The standard parametric procedure is Wilks [34]’s Gaussian likelihood ratio test
(φN , say), which rejects the null hypothesis (at asymptotic level α) whenever

−n log
|S|

|S11||S22|
> χ2

pq,1−α,

where

S :=
(

S11 S12

S21 S22

)
:= avei

{[(
X1i

X2i

)
− avej

(
X1j

X2j

)][(
X1i

X2i

)
− avej

(
X1j

X2j

)]′}

stands for the partitioned sample covariance matrix, and where χ2
pq,1−α denotes the

α-upper quantile of the chi-square distribution with pq degrees of freedom.
The Taskinen, Kankainen and Oja [31] rank-based competitors of Wilks’ test are

defined as follows. Define the standardized subvectors Z11, . . . ,Z1n associated with

original subvectors X11, . . . ,X1n as Z1i := Σ̂ΣΣ
−1/2

1 (X1i − μ̂μμ1), i = 1, . . . , n, where μ̂μμ1

and Σ̂ΣΣ1 are affine-equivariant root-n consistent estimators of location and scatter,
respectively. Consider the corresponding standardized spatial signs U1i = Z1i/‖Z1i‖
and let R1i denote the rank of ‖Z1i‖ among ‖Z11‖, . . . , ‖Z1n‖; note that the scatter
matrix estimate Σ̂ΣΣ1 can be replaced by any affine-equivariant root-n consistent
estimator of the shape matrix, as only the directions and ranks of distances are
used in the analysis. The statistics U2i and R2i are defined in the same way within
the sample X21, . . . ,X2n. Letting K1, K2 : (0, 1) → R be two square-integrable
score functions, the (K1, K2)-score version of the rank test statistics for multivariate
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independence proposed in Taskinen, Kankainen and Oja [31] is

(2.2) TK1,K2 :=
npq

σ2
K1

σ2
K2

∥∥∥∥ avei

{
K1

(
R1i

n + 1

)
K2

(
R2i

n + 1

)
U1i U′

2i

}∥∥∥∥
2

,

where σ2
K :=

∫ 1

0
K2(u) du, and ‖A‖2 := tr (AA′) is the squared Frobenius norm

of A. Under the null hypothesis of independence (with elliptical marginals), this
rank score statistic is asymptotically chi-square with pq degrees of freedom, and
the associated test φK1,K2 rejects the null hypothesis (still at asymptotic level α)
as soon as TK1,K2 > χ2

pq,1−α.
As we show in the sequel, two particular cases (corresponding to two specific

types of score functions) of the above rank score tests exhibit a remarkably good
uniform efficiency behavior.

3. Pitman non-admissibility of Wilks’ test

The van der Waerden (normal-score) version of the rank-based test statistic (2.2) is
obtained with the score functions K1 = Φ̃−1

p = (Ψ−1
p )1/2, K2 = Φ̃−1

q = (Ψ−1
q )1/2 :

TvdW := n

∥∥∥∥ avei

{
Φ̃−1

p

(
R1i

n + 1

)
Φ̃−1

q

(
R2i

n + 1

)
U1i U′

2i

}∥∥∥∥
2

.

In order to compute asymptotic relative efficiencies of the resulting van der Waer-
den test φvdW with respect to Wilks’ test φN , we must embed the null hypothesis of
independence in a model allowing for local (contiguous) alternatives of dependence.
Such an embedding is not as obvious as in classical parametric models, where lo-
cal values of the parameter usually provide the required alternatives. As in Gieser
and Randles [3] and Taskinen, Kankainen and Oja [31], we adopt (a multivariate
extension of) the local alternatives considered by Konijn [19], of the form

(
X1i

X2i

)
=

(
(1 − n−1/2δ) Ip n−1/2δ M

n−1/2δ M′ (1 − n−1/2δ) Iq

)(
Y1i

Y2i

)
,(3.1)

i = 1, . . . , n,

where Y1i and Y2i denote mutually independent random vectors, with elliptic
distributions Pp(0, Ip, f) and Pq(0, Iq, g), respectively, M is a non-random matrix
with appropriate dimensions, and δ ∈ R. In that local model, the null hypothesis
of independence reduces to H0 : δ = 0. As shown in Taskinen, Kankainen and
Oja [31], the asymptotic relative efficiency of the rank score test φK1,K2 with respect
to Wilks’ test does not depend on M. Their results imply that the asymptotic
relative efficiency of the van der Waerden test φvdW based on TvdW with respect
to Wilks’ test, under the sequence of local alternatives in (3.1) is

(3.2) AREp,f
q,g (φvdW /φN ) =

1
4p2q2

(
Dp(φ, f)Cq(φ, g) + Dq(φ, g)Cp(φ, f)

)2

,

where, denoting by ϕf (r) := −f ′(r)/f(r) the optimal location score function asso-
ciated with the radial function f , we let

Ck(φ, f) := E
[
Φ̃−1

k (U)ϕf (F̃−1
k (U))

]
and Dk(φ, f) := E

[
Φ̃−1

k (U) F̃−1
k (U)

]
.
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Table 1

AREs of the van der Waerden rank score test φvdW for multivariate independence with respect
to Wilks’ test φN , under standard multivariate Student (with 3, 4, 6, and 12 degrees of

freedom) and standard multinormal densities, for subvector dimensions p = 2 and
q = 1, 2, 3, 4, 6, and 10, respectively

νp

q νq 3 4 6 12 ∞
1 3 1.378 1.295 1.266 1.281 1.339

4 1.293 1.190 1.141 1.135 1.167
6 1.267 1.144 1.078 1.054 1.067

12 1.285 1.141 1.058 1.019 1.016
∞ 1.343 1.174 1.072 1.017 1.000

2 3 1.400 1.311 1.277 1.289 1.343
4 1.311 1.204 1.152 1.144 1.174
6 1.277 1.152 1.085 1.060 1.072

12 1.289 1.144 1.060 1.021 1.017
∞ 1.343 1.174 1.072 1.017 1.000

3 3 1.417 1.323 1.286 1.294 1.346
4 1.325 1.214 1.161 1.150 1.179
6 1.286 1.159 1.091 1.065 1.076

12 1.292 1.146 1.062 1.023 1.019
∞ 1.343 1.174 1.072 1.017 1.000

4 3 1.430 1.332 1.292 1.298 1.348
4 1.336 1.223 1.167 1.156 1.183
6 1.294 1.165 1.096 1.069 1.080

12 1.295 1.149 1.064 1.024 1.020
∞ 1.343 1.174 1.072 1.017 1.000

6 3 1.448 1.345 1.301 1.304 1.351
4 1.353 1.236 1.177 1.163 1.189
6 1.306 1.175 1.103 1.075 1.085

12 1.300 1.153 1.068 1.027 1.023
∞ 1.343 1.174 1.072 1.017 1.000

10 3 1.471 1.361 1.312 1.311 1.353
4 1.375 1.252 1.190 1.173 1.196
6 1.323 1.188 1.114 1.084 1.092

12 1.308 1.159 1.073 1.032 1.027
∞ 1.343 1.174 1.072 1.017 1.000

Some numerical values of these AREs, under multivariate t- and normal distribu-
tions, are provided in Table 1. All these values are larger than or equal to 1, and
seem to be equal to 1 only if both marginals are multinormal.

Taskinen, Kankainen and Oja [31] point out that it is remarkable that, in the
multinormal case, the limiting Pitman efficiency of the van der Waerden score test
φvdW equals that of Wilks’ test. But, it is even more remarkable that, as we shall
see, the multinormal case is actually the least favorable one for the van der Waerden
procedure. Proposition 1 below indeed states that, as soon as one of the marginals is
not Gaussian, the van der Waerden test strictly beats Wilks’ test (Table 1 provides
an empirical confirmation of this fact). The Pitman non-admissibility of Wilks’ test
follows.

Proposition 1. For all integers p, q ≥ 1 and all radial functions f, g such that
μp+1;f < ∞ and μq+1;g < ∞, we have

AREp,f
q,g (φvdW /φN ) ≥ 1,

where equality holds iff f and g are Gaussian, with common scale.

To prove this proposition, we need the following intermediate result; see Pain-
daveine [22] for an elementary proof, based on an idea developed by Gastwirth and
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Wolff [2].

Lemma 1. For all integer k ≥ 1 and all radial function f satisfying μk+1;f < ∞,
we have Dk(φ, f)Ck(φ, f) ≥ k2, where equality holds iff f is Gaussian.

Proof of Proposition 1. The proof is based on the decomposition

(
Dp(φ, f)Cq(φ, g) + Dq(φ, g)Cp(φ, f)

)2

= Ap,f
q,g + Bp,f

q,g ,

where
Ap,f

q,g := 4Dp(φ, f)Cp(φ, f)Dq(φ, g)Cq(φ, g)

and

Bp,f
q,g :=

(
Dp(φ, f)Cq(φ, g) − Dq(φ, g)Cp(φ, f)

)2

.

It directly follows from Lemma 1 that Ap,f
q,g ≥ 4p2q2, so that (3.2) entails

(3.3) AREp,f
q,g (φvdW /φN ) =

1
4p2q2

(Ap,f
q,g + Bp,f

q,g ) ≥ 1
4p2q2

Ap,f
q,g ≥ 1.

Let us now show that equality holds iff f and g are Gaussian, with the same vari-
ance. Equality in (3.3) indeed requires Ap,f

q,g = 4p2q2 and Bp,f
q,g = 0. From Lemma 1,

Ap,f
q,g = 4p2q2 implies that both f and g are Gaussian (f = φa and g = φb, say). Now,

since Dk(φ, φa) = a−1Dk(φ, φ) = a−1k and Ck(φ, φa) = aCk(φ, φ) = aDk(φ, φ) =
ak for all k, we have Bp,φa

q,φb
= p2q2((b/a) − (a/b))2, which is equal to zero iff a = b.

Consequently, equality holds iff f = g = φa, for some a > 0.

4. A Hodges-Lehmann result for multivariate independence

We now turn to the Wilcoxon test statistic

TW :=
9npq

(n + 1)4
‖ avei {R1i R2i U1i U′

2i} ‖
2
,

which is associated with the score functions K1(u) = K2(u) = u, u ∈ (0, 1). The
asymptotic relative efficiency of the corresponding Wilcoxon test φW with respect
to Wilks’ test φN , under the sequence of local alternatives (3.1), is given by

AREp,f
q,g (φW /φN ) =

9
4pq

(
Dp(I , f)Cq(I , g) + Dq(I , q)Cp(I , f)

)2

,

where we let

Ck(I , f) := E
[
U ϕf (F̃−1

k (U))
]

and Dk(I , f) := E
[
U F̃−1

k (U)
]
;

see Taskinen, Kankainen and Oja [31]. Some numerical values of these AREs, under
multivariate t- and normal distributions, are provided in Table 2. The uniformly
good asymptotic efficiency of the Wilcoxon test in Table 2 is not just an empirical
finding, as shown by the following result which provides the lower bound of these
AREs for any fixed values of the dimensions p, q of the marginals (some numerical
values of this lower bound are presented in Table 3).
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Table 2

AREs of the Wilcoxon rank score test φW for multivariate independence with respect to Wilks’
test φN , under standard multivariate Student (with 3, 4, 6, and 12 degrees of freedom)
and standard multinormal densities, for subvector dimensions p = 2 and q = 1, 2, 3, 4, 6

and 10, respectively

νp

q νq 3 4 6 12 ∞
1 3 1.305 1.227 1.193 1.193 1.222

4 1.239 1.147 1.099 1.085 1.098
6 1.208 1.104 1.044 1.018 1.018

12 1.204 1.086 1.015 0.978 0.969
∞ 1.219 1.087 1.006 0.959 0.940

2 3 1.305 1.237 1.211 1.219 1.257
4 1.237 1.152 1.111 1.102 1.121
6 1.211 1.111 1.055 1.033 1.037

12 1.219 1.102 1.033 0.997 0.989
∞ 1.257 1.121 1.037 0.989 0.970

3 3 1.274 1.213 1.193 1.206 1.248
4 1.203 1.125 1.089 1.084 1.106
6 1.179 1.084 1.032 1.013 1.020

12 1.192 1.079 1.013 0.980 0.973
∞ 1.245 1.110 1.027 0.979 0.960

4 3 1.248 1.192 1.175 1.191 1.235
4 1.174 1.101 1.068 1.066 1.090
6 1.149 1.059 1.011 0.993 1.002

12 1.165 1.056 0.992 0.961 0.955
∞ 1.228 1.095 1.013 0.966 0.947

6 3 1.211 1.161 1.150 1.168 1.215
4 1.134 1.067 1.038 1.039 1.066
6 1.105 1.022 0.978 0.963 0.974

12 1.122 1.019 0.959 0.930 0.927
∞ 1.198 1.068 0.988 0.943 0.924

10 3 1.173 1.129 1.121 1.144 1.193
4 1.090 1.029 1.005 1.009 1.038
6 1.056 0.979 0.940 0.929 0.941

12 1.069 0.973 0.918 0.892 0.891
∞ 1.158 1.033 0.955 0.911 0.893

Table 3

Some numerical values, for various values of the dimensions p and q of the subvectors, of the
Hodges-Lehmann lower bound for the asymptotic relative efficiency of the Wilcoxon rank

score test φW for multivariate independence with respect to Wilks’ test φN

p/q 1 2 3 4 6 10 ∞
1 0.856 0.884 0.867 0.850 0.826 0.797 0.694
2 0.913 0.895 0.878 0.853 0.823 0.717
3 0.878 0.861 0.836 0.807 0.703
4 0.845 0.820 0.792 0.689
6 0.797 0.769 0.669

10 0.742 0.646
∞ 0.563

Proposition 2. Let p, q ≥ 1 be two integers. Then, letting

ck := inf
{

x > 0
∣∣∣∣ (√

x J√
2k−1/2(x)

)′
= 0

}
, k ∈ N0,

where Jr denotes the first-kind Bessel function of order r, the lower bound for
the asymptotic relative efficiency of φW with respect to φN , for fixed subvector
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dimensions p, q, is

inf
f,g

AREp,f
q,g (φW /φN ) =

9
210pqc2

pc
2
q

(
2 c2

p + p − 1
)2 (

2 c2
q + q − 1

)2
,

where the infimum is taken over the collection of radial functions f, g for which
μp+1;f < ∞ and μq+1;g < ∞. The infimum is reached at

(f, g) ∈
{(

hp,σ(r), hq,σ(r)
)

:=
(
hp,1(σr), hq,1(σr)

)
, σ > 0

}
,

where hk,1 denotes “the” (hk,1 is defined up to a positive scalar factor) radial func-
tion associated with the radial cumulative distribution function

Hk,1(r) :=

√
r J√

2k−1/2 (r)
√

ck J√
2k−1/2(ck)

I[0<r≤ck] + I[r>ck].

To prove this proposition, we need the following lemma, which is established in
the proof of Proposition 7 of Hallin and Paindaveine [8].

Lemma 2. Let k ≥ 1 be a fixed integer. Then,

inf
f

{
Dk(I , f)Ck(I , f)

}
=

1
25c2

k

(
2 c2

k + k − 1
)2

,

where the infimum is taken over the collection of radial functions f for which
μk+1;f < ∞, and the infimum is reached at the radial functions f ∈ {hk,σ(r), σ >
0}. Moreover, letting ωk := (2 c2

k + k − 1)/(8ck), we have Dk(I , hk,ωk
) = 1.

Since we have Dk(I , fa) = a−1Dk(I , f) and Ck(I , fa) = aCk(I , f) for all k,
the quantity Dk(I , fa)Ck(I , fa) does not depend on a. This allows for identifying
a particular member hk,σk

of the radial function type {hk,σ(r), σ > 0} such that
Dk(I , hk,σk

) = 1. According to Lemma 2, σk = ωk.

Proof of Proposition 2. Proceeding as in the proof of Proposition 1, we consider
the decomposition

AREp,f
q,g (φW /φN ) = Ap,f

q,g + Bp,f
q,g ,

where
Ap,f

q,g :=
9
pq

Dp(I , f)Cp(I , f)Dq(I , g)Cq(I , g),

Bp,f
q,g :=

9
4pq

(
Dp(I , f)Cq(I , g) − Dq(I , g)Cp(I , f)

)2

.

Lemma 2 directly yields that, for all couple (f, g) of radial functions,

(4.1) AREp,f
q,g (φW /φN ) ≥ Ap,f

q,g ≥ 9
210pqc2

pc
2
q

(
2 c2

p + p − 1
)2 (

2 c2
q + q − 1

)2
.

We now show that the right-hand side in (4.1) actually coincides with the in-
fimum, by determining the (non-empty) collection of couples (f, g) achieving the
bound in (4.1). At the couple (f, g), the bound is achieved iff

Ap,f
q,g =

9
210pqc2

pc
2
q

(
2 c2

p + p − 1
)2 (

2 c2
q + q − 1

)2
, and(4.2)

Bp,f
q,g = 0.
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Lemma 2 shows that (4.2) holds iff

(f, g) ∈
{(

hp,a(r), hq,b(r)
)

:=
(
hp,1(ar), hq,1(br)

)
, a, b > 0

}
.

Now, using the fact that Dk(I , hk,1) = ωk for all k, we have

B
p,hp,a

q,hq,b
=

9
4pq

( b

a
Dp(I , hp,1)Cq(I , hq,1) −

a

b
Dq(I , hq,1)Cp(I , hp,1)

)2

=
9

4pq

( ωpb

a
Cq(I , hq,1) −

ωqa

b
Cp(I , hp,1)

)2

=
9

4pq

( ωpb

ωqa
Dq(I , hq,1)Cq(I , hq,1) −

ωqa

ωpb
Dp(I , hp,1)Cp(I , hp,1)

)2

= 0

iff (ωqa

ωpb

)2

=
Dq(I , hq,1)Cq(I , hq,1)
Dp(I , hp,1)Cp(I , hp,1)

=
c2
p(2 c2

q + q − 1)2

c2
q(2 c2

p + p − 1)2
=

(ωq

ωp

)2

,

that is, iff a = b.

Somewhat surprisingly, the main results of this paper are scale-dependent. Es-
sentially, the bounds in Propositions 1 and 2 are achieved at densities f and g with
common scale. This at first sight is puzzling. Indeed, all tests involved are (block-)
affine-invariant. This dependence on scale however is entirely due to the form of
the local Konijn alternatives (3.1) considered throughout. Appropriate rescaling
of M would take care of it. For the sake of coherence with the literature (see,
e.g., Gieser and Randles [3], Taskinen, Kankainen and Oja [30, 31] and Taskinen,
Oja and Randles [32]), however, we sticked to the traditional definition of Konijn
alternatives.

5. Final comments

Multivariate signed rank tests, based on affine-invariant concepts of signs and
ranks – Randles’ interdirections (Randles [28]); (pseudo)-Mahalanobis ranks (Hallin
and Paindaveine [7–11]; Hallin, Oja and Paindaveine [6]); Tyler’s angles (Hallin and
Paindaveine [9]); Oja-Paindaveine ranks (Oja and Paindaveine [21]) – recently have
attracted renewed attention to rank-based methods in the context of multivariate
analysis, a domain where the 1971 monograph by Puri and Sen has remained the
main reference for more than thirty years.

The specific problem of testing independence between elliptical random vectors
has been investigated in a series of papers by Taskinen, Kankainen and Oja [30, 31]
and Taskinen, Oja and Randles [32]. Simulations show that the performances of
the procedures proposed in these papers are quite good. This empirical finding
is confirmed here by an investigation of their asymptotic relative efficiencies with
respect to their traditional Gaussian counterpart, Wilks’ test of independence, based
on classical correlations. More specifically, we obtain, for the Wilcoxon and van der
Waerden versions of the Taskinen-Kankainen-Oja tests, analogues of the classical
Chernoff-Savage [1] and Hodges-Lehmann [15] results. The Chernoff-Savage result
of Proposition 1 in particular establishes the non-admissibility of Wilks’ procedure,
which is uniformly dominated, in the Pitman sense, by the van der Waerden version
of Taskinen, Kankainen and Oja [31].
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