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Abstract

Very general concepts of scatter, extending the traditional notion of covariance ma-
trices, have become classical tools in robust multivariate analysis. In many problems of
practical importance (principal components, canonical correlation, testing for spheric-
ity), only homogeneous functions of the scatter matrix are of interest. In line with this
fact, scatter functionals often are only defined up to a positive scalar factor, yielding
a family of scatter matrices rather than a uniquely defined one. In such families, it is
natural to single out one representative by imposing a normalization constraint: this
normalized scatter is called a shape matrix. In the particular case of elliptical families,
this constraint in turn induces a concept of scale; along with a location center and a
standardized radial density, the shape and scale parameters entirely characterize an
elliptical density. In this paper, we show that one and only normalization has the
additional properties that (i) the resulting Fisher information matrices for shape and
scale, in locally asymptotically normal (LAN) elliptical families, are block-diagonal,
and that (ii) the semiparametric elliptical families indexed by location, shape, and
completely unspecified radial densities are adaptive. This particular normalization,
which imposes that the determinant of the shape matrix be equal to one, therefore
can be considered canonical.

Key words and phrases: Elliptic densities; Scatter matrix; Shape matrix; Local asymptotic nor-

mality; Semiparametric efficiency; Adaptivity

1 Introduction.

The multivariate concepts of location and scatter, extending to the multivariate context
the traditional concepts of location and scale are generally characterized via their behavior
under affine transformations of the observation space. More precisely, denoting by X

a k-variate random vector with probability distribution PX, consider a couple (θθθ,ΣΣΣ) of
functionals defined over {PAX+b :A an invertible k × k real matrix,b ∈ R

k} mapping PX

onto
(

θθθX, ΣΣΣX
)

∈ R
k × Sk, where Sk denotes the set of symmetric positive definite real

k × k matrices—throughout, k ≥ 2. This couple is called a location-scatter functional iff

(

θθθAX+b, ΣΣΣAX+b
)

=
(

AθθθX + b, AΣΣΣX
A

′) (1)

for any invertible k × k matrix A and any b ∈ R
k. The traditional example of such a

couple of course is the mean and the covariance matrix, but many other solutions exist,
and the problem of defining robust counterparts to means and covariances has generated
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a huge literature which we do not attempt to review here—see Maronna et al. (2006) or
Zuo (2006) for recent surveys.

In many problems in multivariate analysis, it is sufficient to know—or to estimate—
normalized versions of scatter matrices to be able to perform the analysis (see below).
In line with this fact, scatter matrices often are only defined up to a positive factor—
see, for instance, Tyler (1983, 1987). In such families of scatter matrices, it is natural
to pick out one representative by imposing a normalization constraint. More specifically,
let S : Sk → R

+
0 be a 1-homogeneous function—i.e., satisfying S(λΣΣΣ) = λS(ΣΣΣ) for all

λ > 0—and define VS
k := {V ∈ Sk : S(V) = 1}: the elements of VS

k are called shape
matrices, and V

X
S := ΣΣΣX/S(ΣΣΣX) is called the shape matrix of X; the latter clearly is a

0-homogeneous (in the sequel, we simply write homogeneous) function of ΣΣΣX, in the sense
that all scatter matrices λΣΣΣX, λ > 0 yield the same shape matrix.

The choice of S is arbitrary and, to some extent, inessential (see the comments below).
Classical choices include

(i) S(ΣΣΣ) = Σ11 (Hallin and Paindaveine (2006a), Hallin et al. (2006), Hettmansperger
and Randles (2002), and Randles (2000)),

(ii) S(ΣΣΣ) = (trΣΣΣ)/k (Dümbgen (1998), Ollila et al. (2004), and Tyler (1987)), and

(iii) S(ΣΣΣ) = |ΣΣΣ|1/k (Dümbgen and Tyler (2005), Hallin and Paindaveine (2008a), Salibian-
Barrera et al. (2006), Taskinen et al. (2006), and Tatsuoka and Tyler (2000)).

Now consider the particular case of a k-variate elliptical random vector X, that is,
letting d(x, θθθ;ΣΣΣ) := ((x − θθθ)′ ΣΣΣ−1(x − θθθ))1/2 and denoting by |M| the determinant of the
square matrix M, assume that PX admits the density

x 7→ ck,f1

|ΣΣΣ|1/2
f1(d(x, θθθ;ΣΣΣ)), (2)

where θθθ, the center of symmetry, is a k-dimensional real vector, ΣΣΣ belongs to Sk, and f1 :
R

+
0 −→ R

+
0 , the standardized radial density is such that µk−1,f1

< ∞, with µℓ,f1
:=

∫ ∞
0 rℓf1(r) dr (ck,f1

is a normalization factor). To ensure identifiability of ΣΣΣ and ck,f1
× f1

without imposing any moment conditions, the pdf of d(X, θθθ;ΣΣΣ) under (2) (that is, r 7→
f̃1k (r) := (µk−1,f1

)−1rk−1f1 (r) I[r>0]) is assumed to have median one.
Under this elliptical setting, the only solutions of (1) are the couples (θθθ, λΣΣΣ), with

arbitrary λ > 0. It follows that the shape VS = ΣΣΣ/S(ΣΣΣ) is uniquely defined for any
1-homogeneous function S, and that σS := (S(ΣΣΣ))1/2, as the median of d(X, θθθ;VS), has
the interpretation of a scale parameter. This allows for rewriting (2) as

x 7→ ck,f1

σk
S |VS |1/2

f1

(

1

σS
d(x, θθθ;VS)

)

=:
ck,f

|VS |1/2
f (d(x, θθθ;VS)) . (3)

This latter density is indexed by θθθ, VS , and the (non-standardized) radial density f .
Under finite second-order moments, of course, ΣΣΣ reduces to a multiple of Cov[X], and
hence VS = Cov[X]/S(Cov[X]).

Whatever the choice of S, the shape matrix VS is a parameter of primary interest in
a number of standard problems in multivariate analysis. Principal component analysis
(PCA), canonical correlation analysis (CCA), and the problem of testing for sphericity,
among others, only depend on shape—rather than on scatter or covariance matrices; see,
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for instance, Croux and Haesbroeck (2000), Hallin and Paindaveine (2006a), and Taskinen
et al. (2006). Inference on shape is thus an essential issue in the domain.

The choice of S so far is still arbitrary. The objective of this paper is to show that
decision-theoretic arguments, involving the structure of Fisher information and semipara-
metric efficiency, strongly suggest adopting the determinant-based normalization S(ΣΣΣ) =
|ΣΣΣ|1/k. This particular choice indeed is the only one for which

(a) the Fisher information matrices for scale and shape, in locally asymptotically normal
(LAN) elliptical families, are block-diagonal, and

(b) the semiparametric elliptical families indexed by location θθθ, shape VS , and com-
pletely unspecified radial densities f (see (3)) are adaptive; this adaptivity result is
much stronger than the one established in Bickel (1982) (see Section 2 for a discus-
sion).

These two properties considerably simplify the structure of information, and in principle
allow for parametrically efficient inference for shape, under unspecified (θθθ, f) (equivalently,
unspecified (θθθ, σS , f1)). The determinant-based concepts of shape and scale therefore can
be considered canonical.

The paper is organized as follows. In Section 2, we list and discuss the assumptions
that are needed in the sequel, and state, for an arbitrary normalization S, the local and
asympotic normality (LAN) property of elliptical families. Section 3 states the main
result of the paper and discusses some of its implications. Finally, the proofs are given in
Section 4.

2 Assumptions, notation, and local asymptotic normality.

The following notation will be used. For any k × k matrix A, let vecA be the k2-vector
resulting from stacking the columns of A on top of each other. If A moreover is symmetric,
write vech A := (A11, (ve

◦

chA)′)′ for the (K + 1)-vector (throughout, K = k(k + 1)/2− 1)
obtained by stacking the upper-triangular elements of A = (Aij): ve

◦

ch A thus stands
for vech A deprived of its first component A11. On the scale functional S we make the
following assumption.

Assumption (A1). The scale functional S : Sk → R
+
0 (i) is 1-homogeneous (see

Section 1), (ii) is differentiable, with ∂S
∂Σ11

(ΣΣΣ) 6= 0 for all ΣΣΣ ∈ Sk, and (iii) satisfies
S(Ik) = 1, where Ik denotes the k-dimensional identity matrix.

Clearly, one can also look at ΣΣΣ 7→ S(ΣΣΣ) as a function of vechΣΣΣ: with a slight abuse of
notation, we indifferently write S(ΣΣΣ) or S(vechΣΣΣ) in the sequel, and denote by ∇S(vechΣΣΣ)
the gradient gradvechΣΣΣS(vechΣΣΣ). Under Assumption (A1), (VS)11, for any VS ∈ VS

k , can
be recovered from (ve

◦

chVS). Also note that the special role of Σ11 in Assumption (A1)
could have been played by any other entry of ΣΣΣ. Assuming that some other component of
∇S is non-zero would allow, for instance, for dealing with scale functionals such as S(ΣΣΣ) =
Σ22 or S(ΣΣΣ) = (

∏k
i=2 Σii)

1/(k−1)—with appropriate redefinition of the ve
◦

ch operator. As
the extension of our results to such cases is trivial, we stick to Assumption (A1) in the
sequel.

Denote by Pn
θθθ,ΣΣΣ,f1

or equivalently (for any given S) Pn
θθθ,σ2

S ,VS ,f1

the distribution of an i.i.d.

n-tuple (X1, . . . ,Xn) with density (2) or (3). For given S satisfying Assumption (A1), the
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scatter parameter ΣΣΣ (in vector form, vechΣΣΣ) decomposes into scale and shape parameters
through ΣΣΣ = σ2

SVS , where σ2
S := S(ΣΣΣ) and VS := ΣΣΣ/S(ΣΣΣ) ∈ VS

k . In vector form, dropping
(VS)11, the new parameter is thus ϑϑϑS := (θθθ′, σ2

S , (ve
◦

chVS)′)′ ∈ ΘΘΘS(:= R
k ×R

+
0 × ve

◦

chVS
k ).

Theorem 2.1 below states that, under mild regularity conditions on f1, the families of
distributions Pn

S;f1
:= {Pn

ϑϑϑS ,f1
: ϑϑϑS ∈ ΘΘΘS} are locally asymptotically normal (LAN; see Le

Cam 1986). This theorem extends to an arbitrary scale functional S the result obtained
for S(ΣΣΣ) = Σ11 in Hallin and Paindaveine (2006a), where minimal assumptions are given;
here, for the sake of simplicity, we rather provide the following sufficient one.

Assumption (A2). The standardized radial density f1 belongs to the collection F
of absolutely continuous functions, with a.e.-derivative ḟ1, and, letting ϕf1

:= −ḟ1/f1,
the quantities Ik(f1) :=

∫ ∞
0 (ϕf1

(r))2f̃1k(r) dr and Jk(f1) :=
∫ ∞
0 r2(ϕf1

(r))2f̃1k(r) dr are
finite.

The finiteness of the radial Fisher informations for location Ik(f1) and scale/shape Jk(f1)
does not imply any moment conditions. Hence, Assumption (A2) is extremely mild
and turns out to be satisfied at Gaussian densities as well as at all Student and power-
exponential densities (see Hallin and Paindaveine 2006a).

The following notation is needed in the statement of LAN. Denoting by eℓ the ℓth
vector of the canonical basis of R

k, let Kk :=
∑k

i,j=1(eie
′
j)⊗ (eje

′
i) be the k2 × k2 commu-

tation matrix, and put Jk := (vec Ik)(vec Ik)
′. Write also A

⊗2 for the Kronecker product
A ⊗ A. Finally, for any ΣΣΣ ∈ Sk and S satisfying (A1), let M

ΣΣΣ
S := M

ΣΣΣ
S,k be the K × k2

matrix such that (MΣΣΣ
S )′(ve

◦

ch v) = vec v for any symmetric k × k matrix v satisfying
(∇S(vechΣΣΣ))′(vech v) = 0. Note that (∇S(vechΣΣΣ))′(vech v) = 0 holds for S(ΣΣΣ) = Σ11,
S(ΣΣΣ) = (trΣΣΣ)/k, and S(ΣΣΣ) = |ΣΣΣ|1/k, iff (v)11 = 0, trv = 0, and tr (ΣΣΣ−1

v) = 0, respec-
tively.

Theorem 2.1 Under Assumptions (A1) and (A2), the family Pn
S;f1

= {Pn
ϑϑϑS ,f1

: ϑϑϑS ∈ ΘΘΘS}
is LAN. More precisely, for any ϑϑϑS = (θθθ′, σ2

S , (ve
◦

chVS)′)′ and any bounded sequence τττn ∈
R

k+K+1, we have that (i) under Pn
ϑϑϑS ,f1

,

log
(

dPn
ϑϑϑS+n−1/2τττn,f1

/dPn
ϑϑϑS ,f1

)

= τττ ′
n∆∆∆

n
ϑϑϑS ,f1

− 1

2
τττ ′

nΓΓΓϑϑϑS ,f1
τττn + oP (1),

where, letting di := d(Xi, θθθ;VS) and Ui := V
−1/2
S (Xi − θθθ)/di (throughout, V

1/2
S is taken

symmetric), ∆∆∆n
ϑϑϑS ,f1

:=((∆∆∆n
ϑϑϑS ,f1;1)

′,∆n
ϑϑϑS ,f1;2

, (∆∆∆n
ϑϑϑS ,f1;3)

′)′, with

∆∆∆n
ϑϑϑS ,f1;1 :=

1

σS
√

n

n
∑

i=1

ϕf1

(

di

σS

)

V
−1/2
S Ui,

∆n
ϑϑϑS ,f1;2 :=

1

2σ2
S

√
n

n
∑

i=1

(

ϕf1

(

di

σS

)

di

σS
− k

)

, (4)

and

∆∆∆n
ϑϑϑS ,f1;3 :=

1

2
√

n
M

VS
S

(

V
⊗2
S

)−1/2
n

∑

i=1

vec

(

ϕf1

(

di

σS

)

di

σS
UiU

′
i − Ik

)

, (5)

and that (ii) the central sequence ∆∆∆n
ϑϑϑS ,f1

, still under Pn
ϑϑϑS ,f1

, is asymptotically normal with
mean zero and covariance matrix

ΓΓΓϑϑϑS ,f1
:=







ΓΓΓϑϑϑS ,f1;11 0 0

0 ΓϑϑϑS ,f1;22 ΓΓΓ′
ϑϑϑS ,f1;32

0 ΓΓΓϑϑϑS ,f1;32 ΓΓΓϑϑϑS ,f1;33






, (6)
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with

ΓΓΓϑϑϑS ,f1;11 :=
Ik(f1)

kσ2
S

V
−1
S ,

ΓϑϑϑS ,f1;22 :=
Jk(f1) − k2

4σ4
S

, ΓΓΓϑϑϑS ,f1;32 :=
Jk(f1) − k2

4kσ2
S

M
VS
S (vec V

−1
S ),

and

ΓΓΓϑϑϑS ,f1;33 :=
1

4
M

VS
S

(

V
⊗2
S

)−1/2
[ Jk(f1)

k(k + 2)
(Ik2 + Kk + Jk) − Jk

]

(

V
⊗2
S

)−1/2
(MVS

S )′. (7)

The block-diagonal structure of the information matrix (6) implies that the non-
specification of the location centre θθθ does not affect optimal parametric performances
when estimating VS and/or σ2

S , or when performing tests about the same; more precisely,
when estimating VS for instance, the optimal asymptotic covariance matrix that can be
achieved (at Pn

θθθ,σ2

S ,VS ,f1

) by an estimator of VS is the same in Pn
S;σ2

S ,f1

:= {Pn
θθθ,σ2

S ,VS ,f1

:

θθθ ∈ R
k,VS ∈ VS

k } as in Pn
S;θθθ,σ2

S ,f1

:= {Pn
θθθ,σ2

S ,VS ,f1

: VS ∈ VS
k }, where θθθ is specified, and is

actually given by (ΓΓΓϑϑϑS ,f1;33)
−1. Since the latter does only depend on VS and f1, so does

this optimal performance.
On the contrary, the non-zero covariance between the scale and shape parts of the

central sequences implies that, when estimating VS , the non-specification of σ2
S affects

the optimal parametric performance at f1. The latter actually is given by the f1-efficient
Fisher information for shape

ΓΓΓ⋆
ϑϑϑS ,f1;33 := ΓΓΓϑϑϑS ,f1;33 −ΓΓΓϑϑϑS ,f1;32Γ

−1
ϑϑϑS ,f1;22

ΓΓΓ′
ϑϑϑS ,f1;32

=
Jk(f1)

4k(k + 2)
M

VS
S

(

V
⊗2
S

)−1/2
[

Ik2 + Kk − 2

k
Jk

]

(

V
⊗2
S

)−1/2
(MVS

S )′, (8)

that is, the asymptotic covariance matrix, under Pn
ϑϑϑS ,f1

, of the f1-efficient central sequence
for shape

∆∆∆⋆n
ϑϑϑS ,f1;3 := ∆∆∆n

ϑϑϑS ,f1;3 −ΓΓΓϑϑϑS ,f1;32Γ
−1
ϑϑϑS ,f1;22

∆n
ϑϑϑS ,f1;2 (9)

=
1

2
√

n
M

VS
S

(

V
⊗2
S

)−1/2
n

∑

i=1

ϕf1

(

di

σS

)

di

σS
vec

(

UiU
′
i −

1

k
Ik

)

;

as explained in a general parametric setup in, e.g, Section 2.4 of Bickel et al. (1993) locally
optimal inference on shape—under unspecified σ2

S—should be based on ∆∆∆⋆n
ϑϑϑS ,f1;3.

Note that, unlike the original central sequence for shape in (5), ∆∆∆⋆n
ϑϑϑS ,f1;3 remains

centered under any Pn
ϑϑϑS ,g1

, g1 6= f1. Actually, letting Kf1
(u) = ϕf1

(F̃−1
1k (u)) × F̃−1

1k (u)

(u ∈ (0, 1)), where F̃1k stands for the cdf associated with the pdf f̃1k, and denoting by
Ri = Ri(θθθ,VS) the rank of di = d(Xi, θθθ;VS) among d1, . . . , dn, a trivial extension of the
proof of Lemma 4.1 in Hallin and Paindaveine (2006a) (which is restricted to S(ΣΣΣ) = Σ11)
yields that, under Pn

ϑϑϑS ,f1
, as n → ∞,

∆∆∆⋆n
ϑϑϑS ,f1;3 =

1

2
√

n
M

VS
S

(

V
⊗2
S

)−1/2
n

∑

i=1

Kf1

(

Ri

n + 1

)

vec

(

UiU
′
i −

1

k
Ik

)

+ oP (1),

5



which shows that ∆∆∆⋆n
ϑϑϑS ,f1;3 admits an asymptotically equivalent version based on the ranks Ri

and the multivariate signs Ui. This asymptotic equivalence, along with the invariance
properties of the families Pn

S;ϑϑϑS
= {Pn

ϑϑϑS ,g1
: g1 ∈ F} (see, for S(ΣΣΣ) = Σ11, Section 4.1 in

Hallin and Paindaveine 2006a) and a general result by Hallin and Werker (2003), shows
that the (semiparametrically) optimal performance (at Pn

ϑϑϑS ,f1
), when performing inference

on shape in Pn
S = {Pn

ϑϑϑS ,g1
: ϑϑϑS ∈ ΘΘΘS , g1 ∈ F} concides with the optimal performance

achievable in the parametric model Pn
S;f1

= {Pn
ϑϑϑS ,f1

: ϑϑϑS ∈ ΘΘΘS} (as characterized by the
efficient information matrix ΓΓΓ⋆

ϑϑϑS ,f1;33 in (8)). This confirms the adaptivity result first ob-
tained in Example 4 of Bickel (1982), where it is shown that the non-specification of f1

has no cost when estimating the inverse shape matrix V
−1 := ΣΣΣ−1/(trΣΣΣ−1); note that

although this adaptivity result restricts to what is called there a “most general” nor-
malization (the one based on the trace), its proof actually holds for an arbitrary scale
functional S.

Summing up, when estimating the shape VS in Pn
S = {Pn

ϑϑϑS ,g1
: ϑϑϑS ∈ ΘΘΘS , g1 ∈ F}, the

non-specification of σ2
S alone is responsible for a loss of efficiency (as already mentioned, the

non-specification of θθθ does not play any role). This property—call it Bickel adaptivity—
actually holds for an arbitrary scale functional S. In this paper, we consider a stronger
adaptivity concept—full adaptivity, say—under which θθθ, σ2

S and f1 (rather than f1 alone)
lie in the nuisance space of the semiparametric model. The next section shows that full
adaptivity holds for one and only one scale functional S, which therefore can be considered
canonical.

3 A canonical definition of shape.

We are now ready to state the main result of the paper, which shows that there exists a
unique scale functional S (thus a unique definition of the shape VS) for which the non-
specification of σ2

S does not cause any loss of efficiency when performing inference on VS

(the loss of efficiency, for any fixed S, is studied in Hallin and Paindaveine 2006b, both
for point estimation and hypothesis testing), hence, for which inference on VS in Pn

S and
Pn

S;σ2

S
,f1

(equivalently, Pn
S;θθθ,σ2

S
,f1

) yields the same optimal performance.

Theorem 3.1 Let Assumptions (A1) and (A2) hold. Then ΓΓΓϑϑϑS ,f1;32 = 0 for all ϑϑϑS ∈ ΘΘΘS

iff S = Sd, where Sd(ΣΣΣ) := |ΣΣΣ|1/k.

The decomposition of scatter into scale and shape through the functional Sd is thus
the only one that guarantees (a) mutual (asymptotic) orthogonality of the scale and shape
parts of the central sequence (hence, independence in the asymptotic multinormal distri-
bution), and, consequently, (b) full adaptivity (see above) in the estimation of shape. This
finding strongly pleads in favor of the determinant-based definition of shape which, with
its block-diagonal information matrix, is also more convenient from the point of view of
statistical inference.

For this canonical parametrization, the shape parts of the central sequence and Fisher
information matrix take the simple form

∆∆∆n
ϑϑϑS ,f1;3 =

1

2
√

n
M

VS
S

(

V
⊗2
S

)−1/2
n

∑

i=1

ϕf1

(

di

σS

)

di

σS
vec

(

UiU
′
i

)

= ∆∆∆⋆n
ϑϑϑS ,f1;3,
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and

ΓΓΓϑϑϑS ,f1;33 =
Jk(f1)

4k(k + 2)
M

VS
S [Ik2 + Kk]

(

V
⊗2
S

)−1
(MVS

S )′ = ΓΓΓ⋆
ϑϑϑS ,f1;33 (10)

(note indeed that the proof of Theorem 3.1 shows that, for the canonical parametriza-

tion, M
VS
S (vec V

−1
S ) = 0 for all VS ∈ VS

k , which entails that M
VS
S

(

V
⊗2
S

)−1/2
Jk = 0).

Theorem 3.1 shows that the determinant-based definition of scale/shape is the only one
for which parametric and semiparametric efficiency bounds do coincide (hence, no other
choice of S is such that ∆∆∆⋆n

ϑϑϑS ,f1;3 and ∆∆∆n
ϑϑϑS ,f1;3 are equal up to oP (1) terms). Also note that,

since Jk(f1) = k(k +2) at the multinormal, the canonical parametrization of shape is also
the only one for which the information matrix for shape (either in its original or efficient
version) in (10) is at any f1 proportional to the parametric information matrix (7) at the
multinormal.

We end this section by stressing that the canonical definition of scale/shape is not
only relevant for problems involving scale or shape alone, but also for problems on scatter
matrices. As an illustration, consider the two-sample problem for covariance matrices (in
the rest of this section, we assume that every distribution has finite second-order moments).
More precisely, assume that the n := n1 + n2 observations Xij, j = 1, . . . , ni, i = 1, 2 are
mutually independent random vectors admitting the pdf in (2) with location θθθi, scatter ΣΣΣi,
and standardized radial density f1i; here, we rather standardize f1i, i = 1, 2 in such a way
that ΣΣΣi is the population covariance matrix of Xij. In this setup, we consider the problem
of testing the null hypothesis H0 : ΣΣΣ1 = ΣΣΣ2 of covariance homogeneity.

For any scale functional S satisfying Assumption (A1), the null H0 can be rewritten as

H0 = Hscale
0 ∩Hshape

0 , where Hscale
0 : S(ΣΣΣ1) = S(ΣΣΣ2) (resp., Hshape

0 : ΣΣΣ1/S(ΣΣΣ1) = ΣΣΣ2/S(ΣΣΣ2))
is the hypothesis of scale (resp., shape) homogeneity. Deviations from the null H0 can

result from a violation of Hscale
0 , of Hshape

0 , or of both Hscale
0 and Hshape

0 . Standard tests
(such as the Gaussian LRT; see, e.g., Bilodeau and Brenner 1999, page 121) do not take
into account the decomposition of covariance matrices into scale and shape, hence do not
provide any insight into the reasons why a possible rejection occurs.

On the contrary, if covariance matrices are decomposed into scale and shape, Le Cam’s
methodology naturally leads to test statistics of the form Q = Qscale +Qshape, where, irre-
spective of the choice of S, Qscale and Qshape are (under the null) asymptotically indepen-
dent chi-square random variables (with 1 and K degrees of freedom, respectively), whose

p-values provide an evaluation of the respective deviations from Hscale
0 and Hshape

0 in an
eventual rejection of H0, hence an interesting insight into the reasons why rejection occurs.
It is crucial, however, to note that the canonical definition of scale/shape in Theorem 3.1
is the only one for which Qscale and Qshape are locally and asymptotically (parametrically)
optimal test statistics for H0 against scale and shape subalternatives, respectively. We refer
to Hallin and Paindaveine (2008a,b) for more details.

4 Proofs.

In this final section, we prove Theorems 2.1 and 3.1.
For any S satisfying Assumption (A1), consider the mapping V S

11 : ve
◦

chSk → R defined
by S((V S

11(ve
◦

chV), (ve
◦

chV)′)′) = 1, the existence of which—locally around any VS ∈ VS
k —

is guaranteed by Assumption (A1) and the implicit function Theorem. We then start with
the following lemma.
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Lemma 4.1 Let Assumption (A1) hold and fix VS ∈ VS
k . Let also Pk be the (K +1)× k2

matrix such that P
′
k(vech v) = vecv for any symmetric k × k matrix v. Then, M

VS
S =

(∇V S
11(ve

◦

chVS)
.

.

. IK)Pk.

Proof of Lemma 4.1. Differentiating (at ve
◦

chVS) both sides of S((V S
11(ve

◦

chV),
(ve

◦

chV)′)′) = 1 with respect to ve
◦

chV, we obtain

∇V S
11(ve

◦

chVS) = −∇2S(vech VS)

∇1S(vech VS)
, (11)

where ∇S(vech VS) = (∇1S(vech VS), (∇2S(vech VS))′)′ ∈ R × R
K . Now, M

VS
S is such

that (MVS
S )′(ve

◦

chv) = (vecv) for any symmetric k × k matrix v = (vij) satisfying
(∇S(vech VS))′(vech v) = (∇1S(vech VS)) × v11 + (∇2S(vech VS))′(ve

◦

ch v) = 0, that is,
any symmetric v satisfying (∇V S

11(ve
◦

chVS))′(ve
◦

ch v) = v11 (see (11)). The result follows

since, for any such v, one also has ((∇V S
11(ve

◦

chVS)
.
.
. IK)Pk)′(ve

◦

ch v) = P
′
k(v11, (ve

◦

ch v)′)′ =
P

′
k(vech v) = vecv. �

Proof of Theorem 2.1. As shown in the proof of Proposition 2.1 in Hallin and
Paindaveine (2006a), the family Pn

f1
:= {Pn

ξξξ,f1
= Pn

θθθ,ΣΣΣ,f1
: ξξξ = (θθθ′, (vechΣΣΣ)′)′ ∈ ΞΞΞ :=

R
k×(vech Sk)}, under Assumption (A2), is LAN. Now, for any scale functional S satisfying

Assumption (A1), consider the function hS : ΘΘΘS → ΞΞΞ that maps ϑϑϑS onto the corresponding
value of ξξξ, namely onto ξξξ = hS(ϑϑϑS) = (θθθ′, σ2

S (vech VS)′)′ = (θθθ′, σ2
SV S

11(ve
◦

chVS), σ2
S (ve

◦

chVS)′)′.
Since hS is a diffeomorphism, Pn

S;f1
= {Pn

ϑϑϑS ,f1
: ϑϑϑS ∈ ΘΘΘS} is also LAN, and the correspond-

ing central sequence is given by

∆∆∆n
ϑϑϑS ,f1

=
(

DhS(ϑϑϑS)
)′

∆̄∆∆
n
h(ϑϑϑS),f1

, (12)

where

DhS(ϑϑϑS) =







Ik 0 0

0 V S
11(ve

◦

chVS) σ2
S (∇V S

11(ve
◦

chVS))′

0 ve
◦

chVS σ2
S IK







is the Jacobian matrix of hS at ϑϑϑS and where, letting di(ξξξ) = d(Xi, θθθ;ΣΣΣ) and Ui(ξξξ) =
ΣΣΣ−1/2(Xi − θθθ)/di(ξξξ) (where ΣΣΣ1/2 denotes the symmetric root of ΣΣΣ),

∆̄∆∆
n
ξξξ,f1

:=







1√
n

∑n
i=1 ϕf1

(

di(ξξξ)
)

ΣΣΣ−1/2
Ui(ξξξ)

1
2
√

n
Pk

(

ΣΣΣ⊗2
)−1/2

∑n
i=1 vec

(

ϕf1

(

di(ξξξ)
)

di(ξξξ)Ui(ξξξ)U
′
i(ξξξ) − Ik

)







is the central sequence in the LAN family Pn
f1

= {Pn
ξξξ,f1

: ξξξ ∈ ΞΞΞ} (see the proof of Proposi-
tion 2.1 in Hallin and Paindaveine 2006a). The result then readily follows from (12), since
(i) the scale part ∆∆∆n

ϑϑϑS ,f1;2 of ∆∆∆n
ϑϑϑS ,f1

can be written as in (4) by noting that (vech VS)′Pk
(

V
⊗2
S

)−1/2
vec v = (trv) for any k × k symmetric matrix v, and since (ii) the shape part

∆∆∆n
ϑϑϑS ,f1;3 of ∆∆∆n

ϑϑϑS ,f1
can be directly put under the form (5) by using Lemma 4.1. �

Now, for any ΣΣΣ ∈ Sk and S satisfying Assumption (A1), define C
ΣΣΣ
S := C

ΣΣΣ
S,k as the

upper-triangular k × k matrix such that vech C
ΣΣΣ
S := ∇S(vechΣΣΣ), and let D

ΣΣΣ
S := (CΣΣΣ

S +
(CΣΣΣ

S )′)/2. Clearly, (vec D
ΣΣΣ
S )′(vec v) = (vech C

ΣΣΣ
S )′(vech v) for any symmetric k×k matrix v.

The matrix M
ΣΣΣ
S is then such that (MΣΣΣ

S )′(ve
◦

ch v) = (vec v) for any symmetric k × k

8



matrix v satisfying (vec D
ΣΣΣ
S )′(vec v) = 0 (equivalently, satisfying tr (DΣΣΣ

Sv) = 0). For
S(ΣΣΣ) = Σ11, S(ΣΣΣ) = (trΣΣΣ)/k, and S(ΣΣΣ) = |ΣΣΣ|1/k, one has D

ΣΣΣ
S = e1e

′
1, D

ΣΣΣ
S = 1

k Ik, and

D
ΣΣΣ
S = 1

k |ΣΣΣ|1/kΣΣΣ−1, respectively. The following result states some important properties of
M

ΣΣΣ
S and D

ΣΣΣ
S , which are needed in the proof of Theorem 3.1.

Lemma 4.2 Let Assumption (A1) hold and fix ΣΣΣ ∈ Sk. Then, (i) D
ΣΣΣ
S = D

λΣΣΣ
S for all

λ > 0; (ii) S(ΣΣΣ) = tr (DΣΣΣ
S ΣΣΣ); (iii) letting ΣΣΣλ := (1 − λ)Ik + λΣΣΣ, S(ΣΣΣ) = exp

[ ∫ 1
0 tr ((ΣΣΣ −

Ik)D
ΣΣΣλ
S /S(ΣΣΣλ)) dλ

]

; (iv) M
ΣΣΣ
S has (maximal) rank K; (v) denoting by ker A the null space

of a matrix A, (ker M
ΣΣΣ
S ) ∩ (vec Sk) = {λ(vec D

ΣΣΣ
S ) : λ > 0}.

Proof of Lemma 4.2. (i) The claim readily follows from the definition of D
ΣΣΣ
S and

the 1-homogeneity of S, which implies that the gradient of S is constant along half
lines of the form {λΣΣΣ : λ > 0}. (ii) By taking derivatives at λ = 1 of both sides of
the equality λS(vechΣΣΣ) = S(λ (vechΣΣΣ)), one obtains that S(ΣΣΣ) = (vech C

ΣΣΣ
S )′(vechΣΣΣ) =

(vec D
ΣΣΣ
S )′(vecΣΣΣ) = tr (DΣΣΣ

S ΣΣΣ). (iii) The result follows by integrating between 0 and

1 the mapping λ 7→ dlog S(ΣΣΣλ)/dλ = (vech (ΣΣΣ − Ik))
′(vech C

ΣΣΣλ
S )/S(ΣΣΣλ) = (vec (ΣΣΣ −

Ik))
′(vec D

ΣΣΣλ
S )/S(ΣΣΣλ) = tr ((ΣΣΣ−Ik)D

ΣΣΣλ
S /S(ΣΣΣλ)). (iv) It is clear from the definition of M

ΣΣΣ
S

that (MΣΣΣ
S )′ maps the canonical basis of R

K into a collection of linearly independent vec-

tors in R
k2

. Hence, rank(MΣΣΣ
S ) = K. (v) It follows from the definition of M

ΣΣΣ
S that, for any

symmetric k × k matrix v satisfying (vec D
ΣΣΣ
S )′(vec v) = 0, (vec D

ΣΣΣ
S )′(MΣΣΣ

S )′(ve
◦

ch v) = 0.
Since Assumption (A1) guarantees that (DΣΣΣ

S )11 = ∂S
∂Σ11

(ΣΣΣ) 6= 0 for all ΣΣΣ ∈ Sk, this en-

tails that M
ΣΣΣ
S (vec D

ΣΣΣ
S ) = 0. Now, the proof of (iv) shows that the restriction (L, say) to

(vec Sk) of the linear mapping from R
k2

to R
K with matrix M

ΣΣΣ
S has rank K. Hence, the

null space of L has dimension 1, which establishes the result. �

We are now able to prove Theorem 3.1.

Proof of Theorem 3.1. Assume that ΓΓΓϑϑϑS ,f1;32 = 0 for all ϑϑϑS ∈ ΘΘΘS . Since Assump-
tion (A2) guarantees that Jk(f1) > k2 (see Hallin and Paindaveine 2006a), we must
have that M

VS
S (vec V

−1
S ) = 0 for all VS ∈ VS

k . Lemma 4.2(v) shows that, for all

VS ∈ VS
k , there exists some λ(VS) 6= 0 such that V

−1
S = λ(VS)DVS

S . Lemma 4.2(ii)
then yields that 1 = S(VS) = tr ((λ(VS))−1

Ik) = (λ(VS))−1k, so that λ(VS) = k for all

VS ∈ VS
k . Hence, Lemma 4.2(i) entails that, for any ΣΣΣ ∈ Sk, D

ΣΣΣ
S/S(ΣΣΣ) = D

ΣΣΣ/S(ΣΣΣ)
S /S(ΣΣΣ) =

1
k (ΣΣΣ/S(ΣΣΣ))−1/S(ΣΣΣ) = 1

kΣΣΣ−1. Since we also have that D
ΣΣΣ
Sd

/Sd(ΣΣΣ) = 1
kΣΣΣ−1 (see the para-

graph below the proof of Theorem 2.1), Lemma 4.2(iii) yields that S(ΣΣΣ) = Sd(ΣΣΣ) for any
ΣΣΣ ∈ Sk, which establishes the result. �
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