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Abstract

In recent years, the skew-normal models introduced in Azzalini (1985) have enjoyed
an amazing success, although an important literature has reported that they exhibit, in
the vicinity of symmetry, singular Fisher information matrices and stationary points in
the profile log-likelihood function for skewness, with the usual unpleasant consequences
for inference. For general multivariate skew-symmetric and skew-elliptical models, the
open problem of determining which symmetric kernels lead to each such singularity has
been solved in Ley and Paindaveine (2009). In the present paper, we provide a simple
proof that, in generalized skew-elliptical models involving the same skewing scheme as in
the skew-normal distributions, Fisher information matrices, in the vicinity of symmetry,
are singular for Gaussian kernels only. Then we show that if the profile log-likelihood
function for skewness always has a point of inflection in the vicinity of symmetry, the
generalized skew-elliptical distribution considered is actually skew-(multi)normal. In ad-
dition, we show that the class of multivariate skew-t distributions (as defined in Azzalini
and Capitanio 2003), which was not covered by Ley and Paindaveine (2009), does not
suffer from singular Fisher information matrices in the vicinity of symmetry. Finally,
we briefly discuss the implications of our results on inference.

AMS 1980 subject classification : 62M15, 62G35.

Key words and phrases : Generalized skew-elliptical distributions, Profile likelihood, Singu-
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1 Introduction

Azzalini (1985) introduced the so-called skew-normal model, which embeds the univariate
normal distributions into a flexible parametric class of (possibly) skewed distributions. More
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formally, a random variable X is said to be skew-normal with location parameter µ ∈ R ,
scale parameter σ ∈ R

+
0 and skewness parameter λ ∈ R if it admits the pdf

x 7→ 2σ−1φ
(x − µ

σ

)

Φ
(

λ
(x − µ

σ

))

, x ∈ R, (1.1)

where φ and Φ respectively denote the probability density function (pdf) and cumulative
distribution function (cdf) of the standard normal distribution. An intensive study of these
distributions has revealed some nice stochastic properties, which led to numerous generaliza-
tions of that univariate model. To cite a few, Azzalini and Dalla Valle (1996) introduced the
multivariate skew-normal distribution by replacing the normal kernel φ with its k-variate
extension, Branco and Dey (2001) and Azzalini and Capitanio (2003) defined multivari-
ate skew-t distributions, while Azzalini and Capitanio (1999) and Branco and Dey (2001)
proposed skew-elliptical distributions based on elliptically symmetric kernels. Azzalini and
Capitanio (2003) also established a link between the distinct constructions of skew-elliptical
distributions, and extended the latter into a more general class of skewed distributions con-
taining all the pre-cited examples. This generalization is very much in the spirit of the
so-called generalized skew-elliptical distributions analyzed in Genton and Loperfido (2005),
associated with pdfs of the form

x 7→ 2|Σ|−1/2f(Σ−1/2(x − µ))Π(Σ−1/2(x − µ)), x ∈ R
k, (1.2)

where µ ∈ R
k is a location parameter, Σ is a scatter parameter belonging to the class Sk of

symmetric and positive definite k × k matrices (throughout, |A| stands for the determinant
of A, and A1/2, for A ∈ Sk, denotes the symmetric square-root of A, although any other
square-root could be used), f (the symmetric kernel) is a spherically symmetric pdf, and
where the mapping Π : R

k → [0, 1] satisfies Π(−x) = 1 − Π(x) ∀x ∈ R
k. The densities

in (1.2) in turn can be generalized by relaxing the spherical symmetry assumption on f into
a weaker central symmetry one (under which f(−x) = f(x) ∀x ∈ R

k); see Wang, Boyer and
Genton (2004). For further information about models of skewed distributions and related
topics, we refer the reader to the review paper Azzalini (2005).

Besides the quite appealing stochastic properties, the skew-normal model, as already
noticed in Azzalini (1985), suffers from two closely related inferential problems: at λ = 0,
corresponding to the symmetric situation, (i) the profile log-likelihood function for λ always
admits a stationary point, and consequently, (ii) the Fisher information matrix for the
three parameters in (1.1) is singular. These two unpleasant features are treated in, e.g.,
Pewsey (2000) or Azzalini and Genton (2008). Most authors show that, if a normal kernel
is used, in some specific class of skewed densities containing those of (1.1), the problems in
(i) and (ii) occur. However, from an inferential point of view, it is more important to derive
an “iff” result, stating the exact conditions under which such singularities happen. Some
“iff” results have been provided in parametric subclasses such as the skew-exponential one
(DiCiccio and Monti 2004) or skew-t one (Gómez et al. 2007, DiCiccio and Monti 2009), until
Ley and Paindaveine (2009) determined the collection of symmetric kernels bringing such
singularities in broad semiparametric classes of multivariate skew-symmetric distributions.

In this paper, we first provide a simple and direct proof that, in generalized skew-elliptical
models involving the same skewing scheme as in the skew-normal model, Fisher information
matrices, in the vicinity of symmetry, are singular for Gaussian kernels only (Section 2).
Then, after discussing the behavior of the first derivative of the profile log-likelihood func-
tion for skewness, we investigate the second derivative of that function; more precisely,
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we show that, if the profile log-likelihood function has a systematic point of inflection in
the vicinity of symmetry (“systematic” here meaning for any sample of any sample size),
then the generalized skew-elliptical distribution considered is actually skew-(multi)normal
(Section 3). Still within the class of generalized skew-elliptical distributions, we then turn
our attention towards the multivariate skew-t distributions as defined in Azzalini and Cap-
itanio (2003); these distributions do not belong to the class of densities considered in Ley
and Paindaveine (2009), but are the commonly used form of skew-t distributions in the liter-
ature. We show (Section 4) that the “iff” result from DiCiccio and Monti (2009) concerning
the aforementioned singularities actually extends from the univariate to the multivariate
setup. Finally, we briefly discuss the impact of our results on inference (Section 5).

2 On the singularity of Fisher information matrices

As mentioned in the Introduction, there exist many distinct generalizations of the skew-
normal distributions described in Azzalini (1985). We now focus on generalized skew-
elliptical distributions involving the same skewing scheme as in the skew-normal model.
More precisely, within the class of densities of type (1.2), we consider densities of the form

x 7→ fΠ
g;µ,Σ,λ(x) := 2|Σ|−1/2g(‖Σ−1/2(x − µ)‖)Π(λ′Σ−1/2(x − µ)), x ∈ R

k, (2.3)

where µ ∈ R
k is a location parameter, Σ ∈ Sk a scatter parameter, λ ∈ R

k a skewness
parameter, where the radial density g : R

+
0 → R

+ satisfies (a)
∫

Rk g(‖x‖) dx = 1 and (b)
∫

Rk ‖x‖2g(‖x‖) dx = k, and where the skewing function Π is described in Assumption (A)
below. Condition (b) allows to identify the elliptically symmetric part (obtained for λ = 0)
of (2.3); on one hand, it guarantees that Σ and g are identifiable, and on the other hand it is
so that the (multi)normal case is associated with the Gaussian kernel g(r) := ck exp(−r2/2),
where ck := (2π)−k/2 is the normalizing constant determined by Condition (a). The func-
tions g and Π further need to satisfy

Assumption (A). (i) The radial density g : R
+
0 → R

+ belongs to the collection G of
a.e. positive, continuously differentiable functions for which Conditions (a)-(b) above hold
and for which, letting ϕg := −g′/g,

∫

Rk ϕ2
g(‖x‖)g(‖x‖) dx and

∫

Rk ‖x‖2ϕ2
g(‖x‖)g(‖x‖) dx are

finite. (ii) The skewing function Π : R → [0, 1] is a continuously differentiable function that
satisfies Π(−x) = 1 − Π(x) for all x ∈ R, and Π′(0) 6= 0.

We adopt the following notation. Let vec Σ denote the k2-vector obtained by stacking
the columns of Σ on top of each other, and vech Σ be the k(k + 1)/2-subvector of vec Σ
where only upper diagonal entries in Σ are considered (in order to avoid heavy notations,
we will write ∇Σ instead of ∇vech Σ in what follows). Define Σ⊗2 := Σ⊗Σ, where ⊗ stands
for the usual Kronecker product, and let Iℓ and Kk be the ℓ-dimensional identity matrix
and the k2 × k2 commutation matrix, respectively. Finally, put Jk := (vec Ik)(vec Ik)

′ and
let Pk be the matrix such that P ′

k(vech A) = vec A for any k × k symmetric matrix A.

Under Assumption (A), the scores for µ, vech Σ and λ, in the vicinity of symmetry (that
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is, at λ = 0), are the quantities dg;µ(x), dg;Σ(x) and dg;λ(x), respectively, in

ℓg;µ,Σ,λ(x) :=







dg;µ(x)
dg;Σ(x)
dg;λ(x)







:=















ϕg(||Σ−1/2(x−µ)||)

||Σ−1/2(x−µ)||
Σ−1(x − µ)

1
2Pk(Σ

⊗2)−1/2vec

(

ϕg(||Σ−1/2(x−µ)||)

||Σ−1/2(x−µ)||
Σ−1/2(x − µ)(x − µ)′Σ−1/2 − Ik

)

2Π′(0)Σ−1/2(x − µ)















,

where the factor 2 in the λ-score follows from the fact that Π(0) = 1/2. The corresponding
Fisher information matrix is then given by Γg :=

∫

Rk ℓg;µ,Σ,λ(x)ℓ′g;µ,Σ,λ(x)fΠ
g;µ,Σ,0(x)dx, a

matrix that naturally partitions into

Γg =







Γg;µµ 0 Γg;µλ

0 Γg;ΣΣ 0
Γg;λµ 0 Γg;λλ






,

with

Γg;µµ :=
1

k
E[ϕ2

g(‖Z‖)]Σ−1, Γg;µλ := 2Π′(0)Σ−1/2 =: Γg;λµ, Γg;λλ :=
4

k
(Π′(0))2E[‖Z‖2]Ik,

and

Γg;ΣΣ :=
1

4
Pk(Σ⊗2)−1/2{(k(k + 2))−1E[‖Z‖2ϕ2

g(‖Z‖)](Ik2 + Kk + Jk) − Jk}(Σ
⊗2)−1/2P ′

k;

here, Z stands for a random vector with the same distribution as Σ−1/2(X − µ), where X
has pdf fΠ

g;µ,Σ,0. The zero blocks in Γg can easily be obtained by noticing that the score in
vech Σ is symmetric with respect to x − µ, while the scores in µ and λ are anti-symmetric
with respect to the same quantity.

The expression of Γg enables us to have

Theorem 2.1 Let Assumption (A) hold. Then, Γg is singular iff g is the Gaussian kernel
(i.e., g(r) = ck exp(−r2/2) for all r > 0).

We here propose the following simple and direct proof of this result.

Proof of Theorem 2.1. Since Γg;ΣΣ is invertible (see, e.g., Hallin and Paindav-
eine 2006), Γg is singular iff

Γsub
g :=

(

Γg;µµ Γg;µλ

Γg;λµ Γg;λλ

)

is singular. Now, since Γg;µµ = 1
kE[ϕ2

g(‖Z‖)]Σ−1 is invertible, we have that |Γsub
g | =

|Γg;µµ||Γg;λλ −Γg;λµΓ−1
g;µµΓg;µλ|. Hence, Γg is singular iff Γg;λλ −Γg;λµΓ−1

g;µµΓg;µλ = 4(Π′(0))2

(E[‖Z‖2]E[ϕ2
g(‖Z‖)] − k2)Ik/(kE[ϕ2

g(‖Z‖)]) is, which, under Assumption (A), is the case iff

E[‖Z‖2]E[ϕ2
g(‖Z‖)] = k2. (2.4)
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Now, by applying the Cauchy-Schwarz inequality and by integrating by parts, we obtain

√

E[‖Z‖2]E[ϕ2
g(‖Z‖)] ≥ E[‖Z‖ϕg(‖Z‖)]=

(

∫ ∞

0
rk−1g(r) dr

)−1(
∫ ∞

0
r ϕg(r)r

k−1 g(r) dr
)

= k.

Equation (2.4) indicates that the Cauchy-Schwarz inequality here is an equality, which
implies that there exists some real number η such that ϕg(r) = ηr for all r > 0. Solving
the latter differential equation yields g(r) = γ exp[−ηr2/2]. Since

∫

Rk g(‖x‖) dx = 1 and
∫

Rk ‖x‖2g(‖x‖) dx = k, we must have γ = ck and η = 1, which establishes the result. �

Theorem 2.1 states that, in the semiparametric class of generalized skew-elliptical den-
sities of type (2.3), only the skew-(multi)normal parametric submodel may suffer from the
inferential problems usually associated with singular Fisher information matrices. We refer
to Ley and Paindaveine (2009) for a discussion of such issues (see also Section 5 below), as
well as for possible extensions of Theorem 2.1 to the skew-symmetric setup. Here, we only
stress that the simple proof above can be straightforwardly adapted to the setup where Σ,
in the argument of the mapping Π in (2.3), is replaced with the identity matrix Ik (Genton
and Loperfido 2005 also consider generalized skew-elliptical distributions of this form).

3 On the profile log-likelihood function for skewness

For a given random sample X(n) := (X1, . . . ,Xn) from (2.3), we define the profile log-
likelihood function for the skewness parameter λ as

λ 7→ L̃Π
g;λ(X(n)) := sup

µ∈Rk, Σ∈Sk

LΠ
g;µ,Σ,λ(X(n)), λ ∈ R

k, (3.5)

where LΠ
g;µ,Σ,λ(X(n)) :=

∑n
i=1 log fΠ

g;µ,Σ,λ(Xi) is the standard log-likelihood function as-

sociated with X(n). This expression can be rewritten under the more tractable form
L̃Π

g;λ(X(n)) = LΠ
g;µ̂g(λ),Σ̂g(λ),λ

(X(n)), where µ̂g(λ) and Σ̂g(λ) stand for the MLEs of µ and Σ

at fixed λ. This equality implies that ∇λL̃Π
g;λ(X(n)) = ∇λLΠ

g;µ,Σ,λ(X(n))|(µ,Σ,λ)=(µ̂g(λ),Σ̂g(λ),λ)

(see Ley and Paindaveine 2009 for explicit calculations, or Barndorff-Nielsen and Cox 1994
for general results on profile log-likelihood functions). Consequently, a necessary and suffi-
cient condition for the profile log-likelihood function to always admit a stationary point at
λ = 0 is that

∇λL̃Π
g;λ(X(n))|λ=0 = 2Π′(0)(Σ̂g(0))

−1/2
n
∑

i=1

(Xi − µ̂g(0)) = 0

for any sample X(n). Since Σ̂g(0) ∈ Sk, hence is invertible, this means that µ̂g(0), the MLE
for the location parameter µ at λ = 0, must coincide, for any X(n), with X̄(n) := 1

n

∑n
i=1 Xi.

The result in Theorem 3.1 below—which is in line with the statement of Theorem 2.1—thus
directly follows from a well-known characterization property of (multi)normal distributions
which can be traced back to Gauss (see Azzalini and Genton 2007 for a recent account).

Theorem 3.1 Let Assumption (A) hold. Then, the profile log-likelihood function for skew-
ness in (3.5) admits, for any sample X(n) of size n ≥ 3, a stationary point at λ = 0 iff g is
the Gaussian kernel.
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Although Theorem 3.1 only considers the first derivative of the profile log-likelihood
function, it also shows that, in the class of generalized skew-elliptical densities of type (2.3),
only the skew-(multi)normal ones may exhibit a systematic saddle point at λ = 0 in the
profile log-likelihood function for skewness (since a saddle point is in particular a stationary
point). In contrast with this, we now investigate the conditions under which the profile
log-likelihood function for skewness has a systematic point of inflection at λ = 0, without
requiring anything on the first derivative (hence, in particular, without requiring that this
point of inflection is a saddle point).

To avoid any confusion, we will say that x0 ∈ R
k is a point of inflection for h : R

k → R

(of class C1) if there is no neighborhood of (x′
0, h(x0))

′ ∈ R
k+1 in which the graph Gh of h is

fully contained in one of the two (closed) halfspaces determined by the hyperplane tangent
to Gh at (x′

0, h(x0))
′. Defining Assumption (A′) as the reinforcement of Assumption (A)

obtained by further requiring that both g and Π are of class C2 (which clearly implies
that Π′′(0) = 0), we have the following result.

Theorem 3.2 Let Assumption (A′) hold. Then, if the profile log-likelihood function for
skewness in (3.5) admits a point of inflection at λ = 0 for any sample X(n), g is the
Gaussian kernel.

Proof of Theorem 3.2. First note that, under Assumption (A′), the profile log-
likelihood function for skewness is of class C2. Hence, if the latter has a systematic point
of inflection at λ = 0, there exists a non-zero k-vector v such that

v′
[

(∇λ∇
′
λ)L̃Π

g;λ(X(n))|λ=0

]

v = 0 (3.6)

for any sample X(n); throughout, we denote by (∇a∇
′
b)ha,b(.) the matrix whose entry (i, j)

is given by
∂2ha,b(.)
∂ai∂bj

. By using the main result in Patefield (1977), we can write

(∇λ∇
′
λ)L̃Π

g;λ(X(n)) =
[

(∇λ∇
′
λ)LΠ

g;α,λ(X(n))

−(∇λ∇
′
α)LΠ

g;α,λ(X(n))[(∇α∇
′
α)LΠ

g;α,λ(X(n))]−1(∇α∇
′
λ)LΠ

g;α,λ(X(n))
]

|(α,λ)=(α̂g(λ),λ),

where α = (µ′, (vech Σ)′)′ and α̂g(λ) stands for the MLE of α at fixed λ. By (3.6), we then
have

v′
{[

1
n(∇λ∇

′
λ)LΠ

g;α,λ(X(n)) (3.7)

− 1
n(∇λ∇

′
α)LΠ

g;α,λ(X(n))[ 1
n (∇α∇

′
α)LΠ

g;α,λ(X(n))]−1 1
n(∇α∇

′
λ)LΠ

g;α,λ(X(n))
]

|(α,λ)=(α̂g(0),0)

}

v = 0

for any sample X(n). Now, writing Mg(x) := (∇x∇
′
x) log g(‖x‖), direct computations show

that
(∇λ∇

′
µ)LΠ

g;µ,Σ,λ(X(n))|λ=0 = −2nΠ′(0)Σ−1/2,

(∇µ∇
′
µ)LΠ

g;µ,Σ,λ(X(n))|λ=0 =
n
∑

i=1

Σ−1/2Mg(Σ
−1/2(Xi − µ))Σ−1/2,

and

(∇λ∇
′
λ)LΠ

g;µ,Σ,λ(X(n))|λ=0 = −4(Π′(0))2Σ−1/2

[

n
∑

i=1

(Xi − µ)(Xi − µ)′
]

Σ−1/2,
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whereas it is easy to show (by using the expression for ∆̄n
ξ,f1

on page 2246 of Paindav-
eine 2008) that, for some mappings Ng;Σ and Pg;Σ satisfying E[Ng;Σ(X −µ)] = 0 and E[Pg;Σ

(X − µ)] = 0 if X admits the pdf fΠ
g;µ,Σ,0,

(∇µ∇
′
Σ)LΠ

g;µ,Σ,λ(X(n))|λ=0 =
n
∑

i=1

Ng;Σ(Xi − µ),

and

(∇λ∇
′
Σ)LΠ

g;µ,Σ,λ(X(n))|λ=0 =
n
∑

i=1

Pg;Σ(Xi − µ).

Since 1
n(∇µ∇

′
Σ)LΠ

g;µ,Σ,λ(X(n))|λ=0 and 1
n(∇λ∇

′
Σ)LΠ

g;µ,Σ,λ(X(n))|λ=0 converge to zero in prob-
ability as n → ∞, substituting in (3.7) and taking the limit in probability as n → ∞ yields

−4(Π′(0))2 v′
(

Σ−1/2E[(X − µ)(X − µ)′]Σ−1/2 + (E[Mg(Σ
−1/2(X − µ))])−1)v = 0.

Dividing by −4(Π′(0))2, letting, as before, Z stand for a random vector with the same
distribution as Σ−1/2(X − µ), where X has pdf fΠ

g;µ,Σ,0, and integrating by parts in the
second term, yields

v′
( 1

kE[‖Z‖2]Ik + (− 1
kE[ϕ2

g(‖Z‖)]Ik)−1)v =
E[‖Z‖2]E[ϕ2

g(‖Z‖)] − k2

kE[ϕ2
g(‖Z‖)]

‖v‖2 = 0.

Since v is a non-zero vector, we must have that E[‖Z‖2]E[ϕ2
g(‖Z‖)] = k2, which coincides

with (2.4). We therefore obtain, in the same way as in the proof of Theorem 2.1, that g
must be the Gaussian kernel, which concludes the proof. �

This result shows that, in the class of generalized skew-elliptical densities of type (2.3),
a systematic point of inflection (at λ = 0) again can happen at skew-(multi)normal den-
sities only. Similarly to the previous section, the theorem remains valid if Σ is replaced
with Ik in the argument of Π in (2.3). The proof is actually easier in this setup since
(∇λ∇

′
Σ)LΠ

g;µ,Σ,λ(X(n))|λ=0 is then exactly zero—and not only a oP (n) quantity, as in the
proof of Theorem 3.2.

Strengthening Theorem 3.2 into an “iff” result would require an investigation of higher-
order derivatives of the profile log-likelihood function for skewness. This has been achieved
for the univariate case in Chiogna (2005), where it is shown that the profile function, under
skew-normal distributions, always admits a point of inflection in the vicinity of symmetry.
Hence, the desired “iff” statement is formally established in the scalar case, and should
extend to the general multinormal setup. Finally, whereas Theorem 3.1 can be shown to hold
in broader multivariate skew-symmetric models (see Ley and Paindaveine 2009 for a precise
statement), Theorem 3.2 seems to be limited to generalized skew-elliptical distributions,
mainly due to the very subtle interplay, in the multivariate skew-symmetric setup, between
the nature of points of inflection and the rank of the corresponding Hessian matrices.

4 Investigating the case of multivariate skew-t distributions.

In this section, we study the possible singularity of Fisher information matrices in multivari-
ate skew-t models. It should be noted that the commonly adopted form of those distributions
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(namely the one from Azzalini and Capitanio 2003) is based on a skewing function that is
not of the form Π(λ′·) (see the pdf (4.8) below), which explains that the important case of
multivariate skew-t densities does not enter the framework of the previous sections and has
to be treated in this separate section.

For any ν > 0 and any positive integer k, consider the mapping

r 7→ gk,ν(r) =
Γ((ν + k)/2)

(πν)k/2Γ(ν/2)
(1 + r2/ν)−(ν+k)/2, r > 0,

which is such that x 7→ gk,ν(‖x‖), x ∈ R
k, is the pdf of the k-dimensional standard t

distribution with ν degrees of freedom. Also denote by y 7→ Tη(y), y ∈ R, the cdf of the
scalar t distribution with η degrees of freedom. Multivariate skew-t densities—as defined by
Azzalini and Capitanio (2003)—then have densities of the form

x 7→ fST
µ,Σ,λ,ν(x) := 2|Σ|−1/2gk,ν(||Σ

−1/2(x − µ)||) (4.8)

×Tν+k

(

λ′σ−1(x − µ)

(

ν + k

||Σ−1/2(x − µ)||2 + ν

)1/2
)

, x ∈ R
k,

where µ ∈ R
k is the location parameter, Σ ∈ Sk the scatter parameter, λ ∈ R

k the skewness
parameter, ν > 0 the tail weight parameter, and where σ is the k × k diagonal matrix with

diagonal entries σii = Σ
1/2
ii , i = 1, . . . , k. When ν → ∞, (4.8) becomes the density of a

k-dimensional skew-normal distribution.

Azzalini and Genton (2008) provided evidence that, for any finite value of ν, the univari-
ate skew-t distributions do not suffer, in the vicinity of symmetry, from a singular Fisher
information matrix—and hence not from a systematic stationary point in the profile log-
likelihood function for skewness. DiCiccio and Monti (2009) formally proved that statement.
As for the multivariate setup, Azzalini and Genton (2008) showed that those singularities in
the vicinity of symmetry also appear in multivariate skew-normal distributions, and conjec-
tured that, as in the univariate case, no member from the multivariate skew-t class should
suffer from those problems. We now prove that their conjecture actually holds.

For multivariate skew-t distributions with fixed ν value, the score for (µ′, (vech Σ)′, λ′)′,
in the vicinity of symmetry, is given by

ℓST
gk,ν ;µ,Σ,λ(x) :=







dST
gk,ν ;µ(x)

dST
gk,ν ;Σ(x)

dST
gk,ν ;λ(x)






=







dgk,ν ;µ(x)

dgk,ν ;Σ(x)

dST
gk,ν ;λ(x)






(4.9)

=















(1+k/ν)
(1+||Σ−1/2(x−µ)||2/ν)

Σ−1(x − µ)

1
2Pk(Σ

⊗2)−1/2vec
(

(1+k/ν)

(1+||Σ−1/2(x−µ)||2/ν)
Σ−1/2(x − µ)(x − µ)′Σ−1/2 − Ik

)

2 tν+k(0)σ
−1(x − µ)

(

1+k/ν

1+||Σ−1/2(x−µ)||2/ν

)1/2















,

where tν+k(0) stands for the derivative of y 7→ Tν+k(y) at 0; the exponent ST makes the
notation somewhat heavy, but actually stresses the fact that ℓgk,ν ;µ,Σ,λ(x) (that is, the score

associated with the g = gk,ν version of the ℓg;µ,Σ,λ(x) score from Section 2) and ℓST
gk,ν ;µ,Σ,λ(x)

do not coincide, due to the fact that both skewing mechanisms are of a different nature. As
suggested in (4.9), they differ only through the λ-part of the scores, though.
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Now, note that the new λ-score dST
gk,ν ;λ(x) remains an anti-symmetric function of x − µ.

Hence, the symmetry properties, still with respect to x − µ, of dST
gk,ν ;µ(x) = dgk,ν ;µ(x) and

dST
gk,ν ;Σ(x) = dgk,ν ;Σ(x) entail that the resulting Fisher information matrix takes the form

ΓST
gk,ν

=







Γgk,ν ;µµ 0 ΓST
gk,ν ;µλ

0 Γgk,ν ;ΣΣ 0

ΓST
gk,ν ;λµ 0 ΓST

gk,ν ;λλ






,

with the same quantities Γgk,ν ;µµ and Γgk,ν ;ΣΣ as in Section 2 (here evaluated at the radial

density gk,ν). Note that the finiteness of ΓST
gk,ν

requires that ν > 2, a condition that guaran-
tees that the parent elliptically symmetric t distribution has finite second-order moments;
see Assumption (A).

We can now state the following result.

Theorem 4.1 Fix ν ∈ (2,∞) and an arbitrary positive integer k. Then, at any parameter
value (µ′, (vech Σ)′, 0′)′ ∈ R

k × Sk × {0}, the Fisher information matrix associated with the
fixed-ν subclass of multivariate skew-t densities in (4.8), namely ΓST

gk,ν
, is non-singular.

Proof of Theorem 4.1. First note that, for ν > 2, the radial density gk,ν satisfies the
g-part of Assumption (A), which entails that (see Hallin and Paindaveine 2006) Γgk,ν ;µµ and

Γgk,ν ;ΣΣ are invertible. It is therefore sufficient to show that the (µ, λ)-submatrix of ΓST
gk,ν

is non-singular. Denoting by Z a k-variate random vector with the same distribution as
Σ−1/2(X − µ), where X admits the pdf fST

µ,Σ,0,ν , we easily obtain that

Γgk,ν ;µµ = (1 + k/ν)2Σ−1/2E

[

ZZ ′

(1 + ||Z||2/ν)2

]

Σ−1/2,

ΓST
gk,ν ;λλ = 4(tν+k(0))2(1 + k/ν)σ−1Σ1/2E

[

ZZ ′

(1 + ||Z||2/ν)

]

Σ1/2σ−1,

and

ΓST
gk,ν ;µλ = 2tν+k(0)(1 + k/ν)3/2Σ−1/2E

[

ZZ ′

(1 + ||Z||2/ν)3/2

]

Σ1/2σ−1 = (ΓST
gk,ν ;λµ)′.

Since Γgk,ν ;µµ is invertible, we have (as in the proof of Theorem 2.1) that the (µ, λ)-submatrix

of ΓST
gk,ν

is non-singular iff ΓST
gk,ν ;λλ.µ := ΓST

gk,ν ;λλ − ΓST
gk,ν ;λµΓ−1

gk,ν ;µµΓST
gk,ν ;µλ is non-singular.

Now, letting

Ak,ν := E

[

ZZ ′

(1 + ||Z||2/ν)

]

−E

[

ZZ ′

(1 + ||Z||2/ν)3/2

](

E

[

ZZ ′

(1 + ||Z||2/ν)2

])−1

E

[

ZZ ′

(1 + ||Z||2/ν)3/2

]

,

and

b
(r)
k,ν := E

[

Z2
1

(1 + ||Z||2/ν)r

]

,

simple algebra and the fact that Z has a spherically symmetric distribution yield

ΓST
gk,ν ;λλ.µ = 4(tν+k(0))

2(1 + k/ν)σ−1Σ1/2Ak,νΣ
1/2σ−1

= (4/b
(2)
k,ν)

(

b
(1)
k,νb

(2)
k,ν − (b

(3/2)
k,ν )2

)

(tν+k(0))
2(1 + k/ν)σ−1Σσ−1.

9



The Cauchy-Schwarz inequality and the fact that ‖Z‖ is an absolutely continuous random

variable entail that b
(1)
k,νb

(2)
k,ν − (b

(3/2)
k,ν )2 > 0. This allows to conclude since the invertibility of

σ and Σ then guarantees that ΓST
gk,ν ;λλ.µ is non-singular. �

Since, as ν → ∞, the pdf fST
µ,Σ,λ,ν(x) in (4.8) tends to the pdf of a skew-multinormal

density, the resulting Fisher information matrix at λ = 0 becomes singular. In this sense,
Theorem 4.1 requires the fixed value of ν to be finite.

Now, one might argue that, nice as it is, the non-singularity result of Theorem 4.1 is
obtained only for fixed values of ν, and that one should also investigate a possible singularity
of Fisher information matrices (still, in the vicinity of symmetry) in the class of multivariate
skew-t densities indexed by µ, Σ, λ, and ν. It is indeed unrealistic to assume that the tail
weight parameter ν is known in practice, so that ν should enter score functions and Fisher
information matrices when performing inference for such distributions. The rest of this
section therefore deals with the ν-unspecified case.

The parameter ν enters the score function ℓST
gk,ν ;µ,Σ,λ(x) through a further component

given by (in the vicinity of symmetry)

dST
gk,ν ;ν(x) := cv −

log(1 + ||Σ−1/2(x − µ)||2/ν)

2
+

(ν + k)

2ν2

||Σ−1/2(x − µ)||2

(1 + ||Σ−1/2(x − µ)||2/ν)
, (4.10)

where cv := d
dν log

(

Γ((ν+k)/2)
(πν)k/2Γ(ν/2)

)

, which gives rise to a Fisher information matrix of the

form

ΓST =













Γgk,ν ;µµ 0 ΓST
gk,ν ;µλ 0

0 Γgk,ν ;ΣΣ 0 ΓST
gk,ν ;Σν

ΓST
gk,ν ;λµ 0 ΓST

gk,ν ;λλ 0

0 ΓST
gk,ν ;νΣ 0 ΓST

gk,ν ;νν













;

again, the extra zero blocks in ΓST follow from the fact that the ν-score in (4.10) is symmetric
with respect to x − µ.

Theorem 4.2 Fix an arbitrary positive integer k. Then, at any parameter value
(µ′, (vech Σ)′, 0′, ν)′ ∈ R

k × Sk × {0} × (2,∞), the Fisher information matrix associated
with the class of multivariate skew-t densities in (4.8), namely ΓST, is non-singular.

Proof of Theorem 4.2. Clearly, it is sufficient to show that the (µ, λ)- and (Σ, ν)-
submatrices of ΓST are non-singular. Since the (µ, λ)-submatrix was shown to be non-
singular in the proof of Theorem 4.1, we may focus on the (Σ, ν)-submatrix. As already
stated in the proof of Theorem 4.1, Γgk,ν ;ΣΣ is invertible, so that the (Σ, ν)-submatrix is

non-singular iff ΓST
gk,ν ;νν.Σ := ΓST

gk,ν ;νν − ΓST
gk,ν ;νΣΓ−1

gk,ν ;ΣΣΓST
gk,ν ;Σν is non-singular, that is, iff the

latter is non-zero.

Consider the random variable Y := dST
gk,ν ;ν(X) − ΓST

gk,ν ;νΣΓ−1
gk,ν ;ΣΣdgk,ν ;Σ(X), where X

has pdf fST
µ,Σ,0,ν. Clearly, the expectation and variance of Y are equal to 0 and ΓST

gk,ν ;νν.Σ,

respectively. If ΓST
gk,ν ;νν.Σ = 0, we must therefore have that

dST
gk,ν ;ν(x) − ΓST

gk,ν ;νΣΓ−1
gk,ν ;ΣΣdgk,ν ;Σ(x) = 0 a.e. over R

k.

10



This, however, cannot hold, since substituting, in dgk,ν ;Σ(x) and dST
gk,ν ;ν(x), Σ−1/2(x − µ)

with sΣ−1/2(x − µ) (s ∈ R) and letting s go to infinity indeed reveals that dgk,ν ;Σ(x),

unlike dST
gk,ν ;ν(x), is a bounded function of s. Therefore, we must have that ΓST

gk,ν ;νν.Σ > 0,
which establishes the result. �

Theorems 4.1 and 4.2 prove that the conjecture of Azzalini and Genton (2008) is cor-
rect. Finally, note that the proof of Theorem 4.2 did not require an exact determination
of the Fisher information matrix ΓST, which is known to be difficult (see Azzalini and
Capitanio 2003).

5 Implications for inference.

We have shown in the previous sections that, for the class of generalized skew-elliptical
densities of type (2.3) and for the class of multivariate skew-t distributions, singular Fisher
information matrices and systematic stationary points in the profile log-likelihood function
for skewness, both in the vicinity of symmetry, only occur for skew-(multi)normal distri-
butions (here, we of course consider that the skew-normal distributions are embedded in
the class of skew-t distributions, that is, we allow the number of degrees of freedom to be
infinite in that class). We now provide a short overview of the implications of our findings
on inference.

Azzalini (1985) proposed an alternative parameterization, the so-called centred param-
eterization, in order to get rid of the singularities of the univariate skew-normal model.
Arellano-Valle and Azzalini (2008) adopted the same approach for the multivariate skew-
normal densities. Our results strongly alleviate the necessity of such a rather cumber-
some reparameterization for broad classes of skewed densities which do not contain the
skew-normal ones, which appears to be a welcomed feature (see Azzalini and Genton 2008,
Section 1.2). Moreover, for distributions other than the skew-normal, the more regular be-
havior of the profile log-likelihood function for skewness should remove estimation problems
encountered in the neighborhood of λ = 0. Non-singular Fisher information matrices also
allow for using the standard asymptotic theory of MLEs, hence avoid further mathematical
complications.

As for hypothesis testing, the singularities related to the skew-normal densities imply
that the Le Cam optimal tests for symmetry about an unspecified centre against skew-
normal alternatives coincide with the trivial test, that is, the test discarding the observations
and rejecting the null of symmetry at level α whenever an auxiliary Bernoulli variable with
parameter α takes value one. It can be shown that non-singular information matrices protect
from such “worst” Le Cam optimal tests for symmetry (see Ley and Paindaveine 2009 for
more details); our findings therefore encourage the construction of Le Cam optimal tests for
symmetry against non-Gaussian generalized skew-elliptical alternatives.

Further inferential aspects related to singular information matrices can be found in
Rotnitzky et al. (2000) or Bottai (2003).
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