
Numéro spécial en l’honneur des 80 ans de Denis Bosq / Special issue in honour of Denis Bosq’s 80th birthday

Autoregression Depth
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Abstract: We introduce a concept of autoregression depth that provides a ro-
bust ordering of autoregression parameter values according to their adequacy
with respect to the underlying process. We derive a uniform strong consistency
result for the corresponding sample autoregressive depth, which allows us to
prove that the sample deepest parameter value is strongly consistent for its
population version. Our depth concept finds applications in both point estima-
tion and hypothesis testing: regarding point estimation, the deepest parameter
value provides a robust estimator of the parameter of autoregressive processes,
which we show to be strongly consistent by complementing the aforementioned
consistency results with a Fisher-consistency result. Regarding hypothesis test-
ing, the depth of the zero parameter value yields a natural test statistic to test
for randomness. We investigate the AR(1) case in some details. Our results are
illustrated with Monte Carlo exercises.

1. Introduction

Statistical depth is a device that allows measuring centrality of a d-vector z with
respect to a probability measure P over Rd. Many such depths are available in
the literature; see [13]. Arguably, the most famous depth is the halfspace depth
introduced in [10], that is defined as

HD(z, P ) := inf
u∈Sd−1

P [u′(Z − z) ≥ 0],

where Z denotes a random d-vector with distribution P and Sd−1 := {z ∈ Rd :
‖z‖2 = z′z = 1} is the unit sphere of Rd. Like any other depth, halfspace depth
provides a center-outward ordering of the points in Rd: if HD(z1, P ) > HD(z2, P ),
then z1 is more central than z2 with respect to P . This ordering is with respect
to the central region MP := {z ∈ Rd : HD(z, P ) = supy∈Rd HD(y, P )}, which is
non-empty (see, e.g., [9]). If a unique center is needed, then it is traditional to
use the Tukey median, that is defined as the barycentre of MP and extends to the
multivariate case the univariate concept of median. Like any other halfspace depth
region Rα(P ) := {z ∈ Rd : HD(z, P ) ≥ α}, the most central region is a convex
subset of Rd, so that the Tukey median has itself maximal depth, hence constitutes
a valid representative of MP .
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Sample versions of halfspace depth and Tukey median are readily obtained by
plugging Pn, the empirical probability measure associated with a sample of observa-
tions Z1, . . . , Zn, into the definitions above. [9] established the upper semicontinuity
of the halfspace depth function and the compactness of the depth regions Rα(P ),
α > 0. Jointly with the uniform strong consistency of the sample halfspace depth
function ([3]), this allows showing that the sample Tukey median is strongly consis-
tent for its population counterpart.

Depth notions have been extended to parametric settings other than location.
[6] extended statistical depth to virtually any parametric setting by defining the
tangent depth D(θ, P ) of a d-dimensional parameter θ with respect to P ∈ P, for P
a parametric set of distributions with index set Θ. This depth notion quantifies the
appropriateness of θ (as a parameter for P ) by considering

D( · , P ) : Θ→ R+ : θ 7→ D(θ, P ) = inf
u∈Sd−1

P [u′∇θFθ(Z) ≥ 0],

where Fθ(z) measures (lack of) fit of the parameter value θ for observation z. For
example, if θ is a location parameter, then setting Fθ(z) = h(‖z−θ‖), with h : R+ →
R+ smooth and monotone increasing, provides the halfspace depth HD(θ, P ). Simi-
larly, in the regression context where z = (x, y) involves a d-dimensional covariate x
and a scalar response y, taking Fθ(z) = h(|y − θ′x|), with h as above, yields the
concept of regression depth from [8]. Tangent depth therefore provides a turnkey
notion of depth in any parametric space (by using the generic choice of measure of
fit Fθ(z) = − logLθ(z), for Lθ(z) the likelihood of z under parameter value θ).

Few general results about tangent depth are available, however, as the behaviour
of the obtained depth depends crucially on the geometry of the parameter space
and on the chosen measure of fit. Consequently, the properties of each paramet-
ric depth function need to be explored on a case by case basis. [7], for example,
studied (a modification of) the tangent depth for shape parameters in multivariate
distributions.

The present contribution introduces and studies a concept of autoregression depth.
The concept, which is of a tangent depth nature, provides means for comparing the
relevance of two such parameter values and, in the context of autoregressive pro-
cesses, a robust estimate of the autoregressive parameter. The proposed autoregres-
sion depth also allows conducting hypothesis testing, in particular in the framework
of testing for randomness, where it provides (generalized) runs tests of randomness.

The outline of the paper is as follows. Section 2 defines the concept and es-
tablishes its Fisher-consistency in autoregressive models. Section 3 introduces the
corresponding sample depth function and proves its uniform strong consistency. Sec-
tion 4 further explores the concept in the particular case of AR(1) models, provides
Bahadur representation results for the depth-based estimator of the parameter and
a test for randomness in that setting. Finally, some final comments close the paper.
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2. Autoregression depth

Let {Yt : t ∈ Z} be an autoregressive process of order at most p, satisfying

(2.1) Yt =

p∑
j=1

φjYt−j + εt

for any integer t, where the εt’s are mutually independent and admit the common
density f . Here, we consider any parameter value φ = (φ1, . . . , φp) ∈ Rp, hence also
those providing non-causal autoregressive processes or autoregressive processes with
an order that is strictly smaller than p. Throughout, the density f will be assumed
to belong to the collection F of densities having a unique median at zero (i.e., such
that the corresponding cumulative distribution F takes value 1/2 at zero only). Our
goal in this section is to introduce a concept of autoregression depth that will allow
us to measure how well an autoregressive model of this form fits a given stationary
process.

To this end, consider a stationary process {Zt : t ∈ Z} on the measure space
(Ω,F , P ), which may or may not be an autoregressive process. For any φ ∈ Rp, we
define the autoregressive depth of φ with respect to P as

ARDp(φ, P ) := inf
u∈Sp−1

P [u′∇φF (Zt, Zt−1, . . . , Zt−p, φ) ≥ 0],

where F (Zt, Zt−1, . . . , Zt−p, φ) = h(|Zt −
∑p

j=1 φjZt−j |) involves an arbitrary func-

tion h : R+ → R+ that is differentiable, monotone strictly increasing and is such
that h(0) = 0. A direct computation shows that, irrespective of the function h
adopted,

ARDp(φ, P ) = inf
u∈Sp−1

P [εt(φ)u′Zt−1 ≥ 0],

where we let εt(φ) := Zt −
∑p

j=1 φjZt−j and Zt−1 := (Zt−1, . . . , Zt−p)
′. The larger

the autoregressive depth of φ with respect to P , the better the corresponding au-
toregressive process fits the underlying stationary process.

Autoregression depth is Fisher-consistent in the sense that, if the underlying pro-
cess {Zt : t ∈ Z} is a stationary autoregressive process of order at most p, with
parameter φ0 = (φ01, . . . , φ0p) say, then the autoregression depth is uniquely maxi-
mized at φ = φ0. Fisher-consistency thus also holds under over-identification, that
is, when the order, q say, of the underlying autoregressive process is smaller than p.
More precisely, we have the following result.

Theorem 2.1. Let {Zt : t ∈ Z} be a causal (hence, stationary) autoregressive
process of order q with autoregressive parameter φ̃0 = (φ̃01, . . . , φ̃0q) and innovation
density f ∈ F . Then, letting φ0 = (φ̃′0, 0, . . . , 0)′ ∈ Rp,

ARDp(φ, P ) ≤ ARDp(φ0, P ) =
1

2

for any φ ∈ Rp, and the equality holds if and only if φ = φ0.
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The proof requires the following preliminary result.

Lemma 2.1. Let {Zt : t ∈ Z} be a causal autoregressive process of order q with
autoregressive parameter φ̃0 = (φ̃01, . . . , φ̃0q) and innovation density f ∈ F . Then,
P [u′Zt−1 = 0] = 0 for any u ∈ Rp \ {0}.

Proof. Fix u ∈ Rp \ {0} and let r := min{j = 1, . . . , p : uj 6= 0}. Then P [u′Zt−1 =
0] = P [Zt−r = −

∑p
j=r+1 vjZt−j ], where we let vj = uj/ur and where a sum over an

empty collection of indices is defined as zero. Conditioning with respect to Ft−r−1 :=
σ(Zt−r−1, Zt−r−2, . . .) readily yields

P [u′Zt−1 = 0] = P [εt−r = −
∑p

j=r+1vjZt−j −
∑q

j=1φ̃0jZt−r−j ]

= E[P [εt−r = −
∑p

j=r+1vjZt−j −
∑q

j=1φ̃0jZt−r−j |Ft−r−1]] = 0,

since the distribution of εt−r conditional on Ft−r−1, which coincides with the un-
conditional distribution of εt−r, admits a density.

We can now prove Theorem 2.1.

Proof. Lemma 2.1 ensures that P [u′Zt−1 = 0] = 0 for any u ∈ Sp−1. Therefore,
causality implies that

P [εt(φ0)u
′Zt−1 ≥ 0] = P [εt(φ0) ≤ 0]P [u′Zt−1 < 0] + P [εt(φ0) ≥ 0]P [u′Zt−1 > 0]

=
1

2
P [u′Zt−1 < 0] +

1

2
P [u′Zt−1 > 0] =

1

2

for any u ∈ Sp−1, so that ARDp(φ0, P ) = 1/2.

Now, fix φ ∈ Rp \ {φ0}. Pick then u0 := (φ − φ0)/‖φ − φ0‖ =: (φ − φ0)/λ0
and write εt(φ) = εt(φ0) + (φ0 − φ)′Zt−1 = εt(φ0) − λ0u′0Zt−1. We consider three
situations.

(i) In the case P [u′0Zt−1 < 0] > 0 and P [u′0Zt−1 > 0] > 0, it holds

P [εt(φ)u′0Zt−1 ≥ 0] = P [(εt(φ0)− λ0u′0Zt−1)u′0Zt−1 ≥ 0]

= P [(εt(φ0)− λ0u′0Zt−1)u′0Zt−1 ≥ 0|u′0Zt−1 < 0]P [u′0Zt−1 < 0]

+P [(εt(φ0)− λ0u′0Zt−1)u′0Zt−1 ≥ 0|u′0Zt−1 > 0]P [u′0Zt−1 > 0]

= P [εt(φ0)− λ0u′0Zt−1 ≤ 0|u′0Zt−1 < 0]P [u′0Zt−1 < 0]

+P [εt(φ0)− λ0u′0Zt−1 ≥ 0|u′0Zt−1 > 0]P [u′0Zt−1 > 0].(2.2)
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Note that P [εt(φ0)− λ0u′0Zt−1 ≤ 0|u′0Zt−1 < 0]

=
1

P [u′0Zt−1 < 0]

∫ 0

−∞
P [εt(φ0)− λ0u′0Zt−1 ≤ 0|u′0Zt−1 = s]fu

′
0Zt−1(s) ds

=
1

P [u′0Zt−1 < 0]

∫ 0

−∞
P [εt ≤ λ0s|u′0Zt−1 = s]fu

′
0Zt−1(s) ds <

1

2

and, similarly, P [εt(φ0)− λ0u′0Zt−1 ≥ 0|u′0Zt−1 > 0]

=
1

P [u′0Zt−1 > 0]

∫ ∞
0

P [εt(φ0)− λ0u′0Zt−1 ≥ 0|u′0Zt−1 = s]fu
′
0Zt−1(s) ds

=
1

P [u′0Zt−1 > 0]

∫ ∞
0

P [εt ≥ λ0s|u′0Zt−1 = s]fu
′
0Zt−1(s) ds <

1

2
,

so that (2.2) yields

ARDp(φ, P ) ≤ P [εt(φ)u′0Zt−1 ≥ 0] <
1

2
P [u′0Zt−1 > 0] +

1

2
P [u′0Zt−1 < 0] =

1

2
·

(ii) In the case P [u′0Zt−1 < 0] > 0 and P [u′0Zt−1 > 0] = 0, Lemma 2.1 implies
that P [u′0Zt−1 < 0] = 1, so that

ARDp(φ, P ) ≤ P [εt(φ)u′0Zt−1 ≥ 0] = P [(εt(φ0)− λ0u′0Zt−1)u′0Zt−1 ≥ 0]

= P [εt(φ0)− λ0u′0Zt−1 ≤ 0]

=

∫ 0

−∞
P [εt − λ0s ≤ 0|u′0Zt−1 = s]fu

′
0Zt−1(s) ds

<
1

2
·

(iii) In the case P [u′0Zt−1 < 0] = 0 and P [u′0Zt−1 > 0] > 0, Lemma 2.1 im-
plies that P [u′0Zt−1 > 0] = 1, and the same argument as in case (ii) shows
that ARDp(φ, P ) < 1/2.

Thus, ARDp(φ, P ) < 1/2 for any φ ∈ Rp \ {φ0}, which establishes the result.

We finish this section by showing that the function φ 7→ ARDp(φ, P ) is upper
semicontinuous. To do so, first note that, for any fixed u, P 7→ P [εt(φ)u′Zt−1 ≥ 0]
is upper semicontinuous for weak convergence. As a consequence, by continuity of
the function φ 7→ εt(φ)u′Zt−1, the mapping φ 7→ P [εt(φ)u′Zt−1 ≥ 0] is also upper
semicontinuous at each P . The result follows since φ 7→ ARDp(φ, P ) is then the
infimum of a collection of upper semicontinuous functions.
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3. Sample autoregression depth

If an observed series Z1, . . . , Zn is available, then the sample autoregressive depth
of φ(∈ Rp) with respect to this series can be defined as

ARDp(φ, Pn) := inf
u∈Sp−1

1

n− p

n∑
t=p+1

I[εt(φ)u′Zt−1 ≥ 0],

still with εt(φ) = Zt −
∑p

j=1 φjZt−j and Zt−1 = (Zt−1, . . . , Zt−p)
′. Under mild

ergodicity conditions on the underlying process, this sample autoregression depth
is a strongly consistent estimator of its population analog. Recall that a station-
ary process Xt on the measure space (Ω,F , P ) is ergodic if, denoting Zs,t :=
(Zs, Zs+1, . . . , Zt)

′, for any k ≥ 1 and any A,B ∈ Fk (the usual product sigma-
field on Ωk),

lim
n→∞

1

n

n−1∑
t=0

P [Z1,k ∈ A,Zt+1,t+k ∈ B] = P [Z1,k ∈ A]P [Z1,k ∈ B].

The condition above (see [1] for more details) is trivially verified for autoregressive
processes. We then have the following result.

Theorem 3.1. Let {Zt : t ∈ Z} be a stationary ergodic process on the measure
space (Ω,F , P ). Denote as ARDp(φ, Pn) the sample autoregression depth of φ(∈ Rp)
associated with a realization of length n from this process. Then,

sup
φ∈Rp

|ARDp(φ, Pn)−ARDp(φ, P )| → 0

almost surely as n diverges to infinity.

Proof. Consider the stationary process {Vt := Wt ⊗ Wt : t ∈ Z}, where we let
Wt := (Zt, Zt−1, . . . , Zt−p)

′. With this notation,

ARDp(φ, Pn) = inf
u∈Sp−1

1

n− p

n∑
t=p+1

I[Vt ∈ Hφ,u]

and
ARDp(φ, P ) = inf

u∈Sp−1
P[Vt ∈ Hφ,u],

where Hφ,u belongs to the collection H of all closed halfspaces of R(p+1)2 . Now,
fix φ ∈ Rp and ε > 0. If ARDp(φ, Pn) ≤ ARDp(φ, P ), then there exists uε ∈ Sp−1
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such that (n− p)−1
∑n

t=p+1 I[Vt ∈ Hφ,uε ] ≤ ARDp(φ, Pn) + ε. Therefore,

|ARDp(φ, Pn)−ARDp(φ, P )|I[ARDp(φ, Pn) ≤ ARDp(φ, P )]

≤ P[Vt ∈ Hφ,uε ]−
1

n− p

n∑
t=p+1

I[Vt ∈ Hφ,uε ] + ε

≤ sup
H∈H

∣∣∣∣P[Vt ∈ H]− 1

n− p

n∑
t=p+1

I[Vt ∈ H]

∣∣∣∣+ ε.

Since this holds for any ε > 0, we obtain

|ARDp(φ, Pn)−ARDp(φ, P )|I[ARDp(φ, Pn) ≤ ARDp(φ, P )]

≤ sup
H∈H

∣∣∣∣P[Vt ∈ H]− 1

n− p

n∑
t=p+1

I[Vt ∈ H]

∣∣∣∣.(3.1)

Working similarly, the inequality still holds after replacing I[ARDp(φ, Pn) ≤ ARDp(φ, P )]
with I[ARDp(φ, Pn) > ARDp(φ, P )] in (3.1). Adding up both inequalities then yields

|ARDp(φ, Pn)−ARDp(φ, P )| ≤ 2 sup
H∈H

∣∣∣∣P[Vt ∈ H]− 1

n− p

n∑
t=p+1

I[Vt ∈ H]

∣∣∣∣,
hence

(3.2) sup
φ∈Rp

|ARDp(φ, Pn)−ARDp(φ, P )| ≤ 2 sup
H∈H

∣∣∣∣P[Vt ∈ H]− 1

n− p

n∑
t=p+1

I[Vt ∈ H]

∣∣∣∣,
SinceH is a Vapnik–Chervonenkis class (see, e.g., page 152 of [11]), the result follows
directly from the Glivenko-Cantelli results for ergodic sequences; see [1].

The following result, that shows that the sample deepest parameter value is
strongly consistent for its population analog, is then a rather direct corollary.

Theorem 3.2. Let {Zt : t ∈ Z} be a stationary ergodic process on the measure
space (Ω,F , P ). Assume that ARDp(φ, P ) admits a unique maximizer φ. Denote as
ARDp(φ, Pn) the sample autoregression depth of φ(∈ Rp) associated with a realization

of length n from this process and let φ̂n be an arbitrary maximizer of ARDp(φ, Pn).

Then, φ̂n → φ almost surely as n diverges to infinity.

Proof. In view of the upper semicontinuity of φ 7→ ARDp(φ, P ) and of the uniform
consistency result in Theorem 3.1, the result readily follows from Theorem 2.12(ii)
and Lemma 14.3 in Kosorok (2008).

We close this section with the following illustration of Theorem 3.2 in the frame-
work of AR(p) models (note that Theorem 2.1 guarantees that the unique maxi-
mization assumption in Theorem 3.2 is always met when the underlying process is
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AR(p), so that Theorem 3.2 applies for such processes). We generated n = 1,000
observations from four AR processes after an initial burn-in period of 2,000 obser-
vations starting from Z−1 = Z0 = 0. The autoregression parameter φ was taken as
either φ = φa = (0, 0)′ or φ = φb = (0.25,−0.375)′, while the innovation density
was taken either standard Gaussian or Cauchy. Figure 1 displays the sample depth
values ARDp(φ, Pn) for each of the four resulting series. Clearly, the proximity be-

tween the true parameter value φ and estimated parameter value φ̂n supports the
consistency result of Theorem 3.2 in all four cases.

4. The AR(1) particular case

We assume, as in the previous section, that we observe Z1, . . . , Zn, but we restrict
now to autoregressive depth of order p = 1. For any φ, we then have

(4.1) ARD1(φ, Pn) :=
1

n− 1
min

( n∑
t=2

I[εt(φ)Zt−1 ≥ 0],
n∑
t=2

I[εt(φ)Zt−1 ≤ 0]

)
,

which, since Zt−1 is different from zero with probability one (Lemma 2.1), almost
surely rewrites

ARD1(φ, Pn) =
1

n− 1
min

( n∑
t=2

I[Zt/Zt−1 ≥ φ],

n∑
t=2

I[Zt/Zt−1 ≤ φ]

)
.

The sample deepest parameter φ is then a median of Z2/Z1, . . . , Zn/Zn−1. If a unique
representative is needed, then, in the same spirit as what is done for the Tukey me-
dian, the barycentre, φ̂n say, of the set of medians can be used. If the underlying
process is an AR(1) process with parameter φ, then φ̂n is a natural estimator for φ,
which we expect to have nice robustness properties. This is confirmed by the follow-
ing result (for a proof, we refer to [2], where this estimator was first considered).

Theorem 4.1. Denote as Ḟ the collection of densities F that are bounded, are
positive at 0, satisfy a Lipschitz condition at 0, and admit finite moments of order 1+
δ for some δ > 0. Assume that {Zt : t ∈ Z} is an autoregressive process of order p = 1
with autoregressive parameter φ ∈ (−1, 1) and an innovation density f ∈ Ḟ . Then,
as n→∞,

(4.2)
√
n(φ̂n − φ) =

1

2f(0)E[|Zt|]
√
n

n∑
t=2

Sign(εt)Sign(Zt−1) + oP(1),

where Sign(x) stands for the sign of x, so that
√
n(φ̂n−φ) is asymptotically normal

with mean zero and variance 1/{4f2(0)E2[|Zt|]}.

As usual, the Bahadur representation result in (4.2) readily implies that the in-
fluence function of φ̂n at (zt−1, zt)

′ is given by

1

2f(0)E[|Zt|]
Sign(zt − φzt−1)Sign(zt−1).
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Figure 1. Heat plots of the sample depth values ARD2(φ, Pn) for finite realizations of length n =
1,000 from four AR processes. These processes involve parameter values φ = φa = (0, 0)′ (top) or
φ = φb = (0.25,−0.375)′ (bottom), and an innovation density that is standard Gaussian (left) or
Cauchy (right). All panels display the true parameter value φ (white disk) and the sample deepest
parameter value φ̂n (black diamond); see Section 3 for details.

The boundedness of this influence function in both zt−1 and zt confirms the robust-
ness of the depth-based estimator φ̂n. For the sake of comparison, recall that the
classical least-squares estimator φ̂LSn and the LAD estimator φ̂LAD

n , which are defined
as

φ̂LSn := arg min
φ∈(−1,1)

n∑
t=2

(Zt − φZt−1)2 and φ̂LAD
n := arg min

φ∈(−1,1)

n∑
t=2

|Zt − φZt−1|.
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If E[εt] = 0 and E[ε2t ] <∞, then the least-squares estimator satisfies

(4.3)
√
n(φ̂LSn − φ) =

1− φ2

E[ε2t ]
√
n

n∑
t=2

εtZt−1 + oP(1)

whereas, if f ∈ Ḟ , E[εt] = 0 and E[|ε|2+δ] < ∞ for some δ > 0, then the LAD
estimator satisfies

(4.4)
√
n(φ̂LAD

n − φ) =
1− φ2

2f(0)E[ε2t ]
√
n

n∑
t=2

Sign(εt)Zt−1 + oP(1),

so that the corresponding influence functions are unbounded both in zt−1 and zt
for φ̂LSn and unbounded in zt for φ̂LAD

n (we refer to [2] for proofs of the Bahadur
representation results in (4.3)–(4.4)).

While this settles the case for robustness, efficiency is of course also of primary in-
terest. Obviously, (4.3)–(4.4) ensures that, under the assumptions stated there, φ̂LSn
is asymptotically normal with mean zero and variance 1−φ2, while φ̂LAD

n is asymp-
totically normal with mean zero and variance (1−φ2)/(4f2(0)E[ε2t ]). Figure 2 plots
the resulting MSEs for each of the three estimators considered, more precisely the
limiting values of E[{

√
n(φ̂− φ)}2], for φ = 0.6 and for t innovations with ν degrees

of freedom, ν = 1, 1.2, . . . , 12. The figure also reports Monte Carlo estimates of the
same MSEs evaluated from M = 100,000 independent samples of length n = 400
(obtained after an initial burn-in period of 1,000 observations starting from Z0 = 0).
The same figure further provides the empirical MSEs obtained when 20 observations,
chosen randomly among the n = 400 observations used in each replication, are mul-
tiplied by a factor 10. Clearly, without contamination, the depth-based estimator
competes well with the LS and LAD ones for heavy tails only, but it outperforms
its competitors with contamination.

Turning to hypothesis testing, depth-based tests can be defined for any null hy-
pothesis of the form H0 : φ = φ0, where φ0 ∈ (−1, 1) is fixed. Typically, such a test
will reject the null hypothesis when the value of ARDp(φ0, Pn) (see (4.1)) is too small,
since this will indicate that the AR(1) with parameter φ0 does not provide a suitable
fit for the observed series. In the important particular case of testing for randomness
(that is obtained with φ0 = 0), the test statistic rewrites (with probability one)

ARDp(φ, Pn) =
1

n− 1
min

( n∑
t=2

I[ZtZt−1 > 0],
n∑
t=2

I[ZtZt−1 < 0]

)

=
1

n− 1
min

(
n−Rn, Rn − 1

)
,

where Rn is the number of runs in the series Sign(Z1), . . . ,Sign(Zn), where a run is a
maximal sequence of consecutive equal signs. Consequently, the depth-based test of
randomness coincides, in the AR(1) case, with the classical runs test of randomness;
see [5] and the references therein.
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Figure 2. (Left:) For the depth-based, LS and LAD estimators, plots of the corresponding limiting
values of E[{

√
n(φ̂ − φ)}2] (dashed lines) when the underlying AR(1) process is based on φ = 0.6

and t innovations with ν = 1, 1.2, . . . , 12 degrees of freedom. Finite-sample versions of these MSEs,
obtained from M = 100,000 independent realizations of length n = 400, are also provided (solid
lines); see Section 4 for details. (Right:) The corresponding finite-sample MSEs when obtained from
contaminated samples where 20 randomly selected observations out of the 400 used in each replication
are multiplied by a factor 10.
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5. Final comments

In this paper, we introduced a concept of autoregression depth and derived various
consistency results. A Bahadur representation for the estimator φ̂n of the deepest
parameter value was also provided in the AR(1) case. In the general AR(p) case, it
seems much more challenging to investigate the asymptotic behavior of this estima-
tor. While we considered depth-based tests for randomness in the AR(1) case only,
it is clear how to define them in the general AR(p) case, too: such tests would sim-
ply reject the null hypothesis of randomness for small values of Tn = ARDp(0, Pn).
The resulting tests are of a generalized runs nature; see, e.g., [4] or [12] (the latter
providing simplicial-based runs tests in the case p = 2). Exact rejection rules, how-
ever, are beyond the scope of the present paper since, contrary to the case p = 1,
T is not distribution-free under the null hypothesis for p ≥ 2, even with symmetric
innovation densities.
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