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Abstract Spatial or geometric quantiles are the only multivariate quantiles coping
with both high-dimensional data and functional data, also in the framework of
multiple-output quantile regression. This work studies spatial quantiles in the finite-
dimensional case, where the spatial quantile µα,u(P) of the distribution P taking
values in Rd is a point in Rd indexed by an order α ∈ [0,1) and a direction u in the
unit sphere Sd−1 of Rd—or equivalently by a vector αu in the open unit ball of Rd .
Recently, [13] proved that (i) the extreme quantiles µα,u(P) obtained as α → 1 exit
all compact sets of Rd and that (ii) they do so in a direction converging to u. These
results help understanding the nature of these quantiles: the first result is particularly
striking as it holds even if P has a bounded support, whereas the second one clarifies
the delicate dependence of spatial quantiles on u. However, they were established
under assumptions imposing that P is non-atomic, so that it is unclear whether they
hold for empirical probability measures. We improve on this by proving these results
under much milder conditions, allowing for the sample case. This prevents using
gradient condition arguments, which makes the proofs very challenging. We also
weaken the well-known sufficient condition for uniqueness of finite-dimensional
spatial quantiles.
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1 Introduction

The problem of defining a satisfactory concept of multivariate quantiles in Rd is
a classical one and has generated a huge literature in nonparametric statistics; we
refer to [21] and the references therein. One of the most famous solutions is given
by the spatial or geometric quantiles introduced in [8], which are a particular case
of the multivariate M-quantiles from [1]; see also [16]. Spatial quantiles are defined
as follows.

Definition 1 Let P be a probability measure over Rd . Fix α ∈ [0,1) and u ∈ Sd−1,
where Sd−1 := {z ∈ Rd : ‖z‖2 = z′z = 1} is the unit sphere in Rd . We will say
that µα,u = µα,u(P) is a spatial quantile of order α in direction u for P if and only
if it minimizes the objective function

µ 7→ OP
α,u(µ) :=

∫
Rd

{
‖z − µ‖ − ‖z‖ − αu′µ

}
dP(z)

overRd (the second term in the integrand may look superfluous as it does not depend
on µ, but it actually allows avoiding any moment conditions on P).

Existence and uniqueness of µα,u will be discussed in the next section. It is easy
to check that, for d = 1, spatial quantiles reduce to the usual univariate quantiles.
The success of spatial quantiles is partly explained by their ability to cope with
high-dimensional data and even functional data; see, e.g., [3], [4], [5] and [6]. These
quantiles were also used with much success to conduct multiple-output quantile
regression, again also in the framework of functional data analysis; we refer to [7],
[9], and [10]. The present work, however, focuses on the finite-dimensional case.

In a slightly different perspective, spatial quantiles allow measuring the centrality
of any given location in Rd with respect to the probability measure P at hand: if the
location z in Rd coincides with the quantile µα,u , then a centrality measure for z is
given by its spatial depth 1 − α; see [11], [20] or [23]. This also leads to a spatial
concept of multivariate ranks; see, e.g., [22]. For recent results on spatial depth
and spatial ranks, we refer to [18, 19] and to the references therein. The deepest
point of P, equivalently its most central quantile, is the quantile µ0 := µ0,u obtained
for α = 0 (the dependence on u of course vanishes at α = 0). This is the celebrated
spatial median, which is one of the earliest robust location functionals; see, e.g., [2]
or [14]. For the other quantiles, the larger α is, the less central the quantiles µα,u are
in each direction u.

The focus of the present work is on the extreme spatial quantiles that are obtained
as α converges to one. Recently, Girard and Stupfler [13] derived striking results
on the behaviour of such extreme spatial quantiles; see also [12]. In particular, they
showed that, under some assumptions on P that do not require that P has a bounded
support, these quantiles exit all compact sets ofRd . Their results, however, require in
particular that P is non-atomic, hence remain silent about empirical distributions Pn

associated with a random sample of size n from P. Of course, consistency results will
imply that the behaviour of sample extreme quantiles will mimic the behaviour of
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the corresponding population quantiles as n diverges to infinity; yet for any fixed n,
even for large n, there is no guarantee that the results of [13] will apply. The goal
of the present work is therefore to establish some of these results on extreme spatial
quantiles under less stringent assumptions, that will allow for the sample case.
Beyond this, we will also weaken the well-known sufficient condition for uniqueness
of spatial quantiles. Our results are stated and discussed in Section 2, then are proved
in Section 3.

2 Results

We will say that P is concentrated on a line with direction u∗(∈ Sd−1) if and only
if there exists z0 ∈ R

d such that P[{z0 + λu∗ : λ ∈ R}] = 1. Of course, we will say
that P is concentrated on a line if and only if there exists u∗ ∈ Sd−1 such that P is
concentrated on a line with direction u∗. We then have the following existence and
uniqueness result.

Theorem 1 Let P be a probability measure over Rd . Fix α ∈ [0,1) and u ∈ Sd−1.
Then, (i) P admits a spatial quantile µα,u . (ii) If P is not concentrated on a line,
then µα,u is unique. (iii) If P is not concentrated on a line with direction u, then µα,u
is unique for any α > 0. (iv) If P is concentrated on a line with direction u, say, the
line L = {z0 + λu, λ ∈ R}, then any spatial quantile µα,u belongs to L; in this case,
any such quantile is of the form µα,u = z0 + `αu, where `α is a spatial quantile of
order α in direction 1 for Pz0 ,u , with Pz0 ,u the distribution of u′(Z − z0) when Z has
distribution P.

The existence result in Theorem 1(i) was established by [15], but, since this paper
is not easily accessible, we provide our own proof in Section 3. The uniqueness result
in Theorem 1(ii) is well-known and can be proved by generalizing to an arbitrary
quantile the proof for the median in [17]. The result in Theorem 1(iii) is original
and shows that the only case where uniqueness of µα,u , α > 0, may fail is the one
where P is concentrated on a line with the corresponding direction u. If P is indeed
of this form, then uniqueness may fail exactly as for univariate (spatial) quantiles;
for instance, if P is the uniform distribution on {(−2,0), (−1,0), (0,0), (1,0), (2,0)},
then any point of the form (z,0) with 1 ≤ z ≤ 2 is a spatial quantile of order α = .6
in direction u = (1,0) (recall that the indexing of the classical univariate quantiles
differs from the center-outward indexing used for spatial quantiles). Finally, note
that, in case (iii), the spatial quantile µα,u may belong to the line on which P is
concentrated (an example is given below the proof of Lemma 3).

Our main goal is to establish, under very mild conditions, two results that were
recently proved in [13] under the assumptions that P is non-atomic and is not
concentrated on a line. The first result states that, as α converges to one, spatial
quantiles with order α will exit all compact sets in Rd . Our extension of this result
is the following.
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Theorem 2 Let P be a probability measure over Rd . Let (αn) be a sequence in [0,1)
that converges to one and let (un) be a sequence in Sd−1. Assume that, for any
accumulation point u∗ of (un), P is not concentrated on a line with direction u∗ or∫

Rd
(‖z‖ + u′∗z) dP(z) = ∞. (1)

Then, ‖µαn ,un ‖ → ∞ as n→∞ for any sequence of quantiles (µαn ,un ).

Some comments are in order. First, the result does not require that spatial quantiles
are unique, which materializes in the fact that the result is stated "for any sequence
of quantiles". Second, the result allows for distributions that are concentrated on
a line, provided that the "moment-type" Condition (1) is satisfied. Clearly, it is
necessary that P has infinite first-order moments (hence, an unbounded support) for
this condition to be satisfied. It is not sufficient, though, as can be seen by considering
the limiting behaviour, as α → 1, of µα,u for a probability measure that would be
the distribution of the random vector Z = −|Λ|u, where Λ is Cauchy. Third, note
that the result applies as soon as P is not concentrated on (typically, a few) specific
lines, namely those with a direction given by an accumulation point of (un). For
instance, if un = u for any n, then the result applies in particular as soon as P is
not concentrated on a line with direction u. But this condition is not even necessary,
as the above Cauchy example shows: for instance, in the Cauchy example above,
‖µα,−u ‖ → ∞ as α → 1. Last but not least, Theorem 2 does not require that P is
non-atomic.

We illustrate this result on the basis of the following four examples, in which P =
Pn is the empirical measure associatedwith a sample z1, . . . , zn ∈ R2. In Example (a),
n = 4 and the zi’s were randomly drawn from the uniform distribution over [−2,2]2.
The zi’s in Example (b) are obtained by projecting those in Example (a) onto the
line {(λ,0) : λ ∈ R}, whereas those in Example (c) are zi = (cos θi, sin θi), i = 1,2,3,
with θi = 2πi/3, hence are the vertices of an equilateral triangle. Finally, the four zi’s
in Example (d) are the vertices (±2,±1) of a rectangle. These four settings were cho-
sen since they represent point patterns in general position, along a line, on the vertices
of a regular polygon, and on the vertices of a stretched regular polygon, respectively.
For each of these examples, Figure 1 shows the corresponding zi’s as well as, for four
different directions u (namely, u = (cos(π j/6), sin(π j/6)), j = 0,1,2,3), (linear inter-
polations of) the spatial quantiles µαm ,u , αm = .001, .002, . . . , .999. The results are
perfectly in line with Theorem 2. Note in particular that, in Example (b), in which P
is concentrated on the line with direction u∗ = (1,0), the spatial quantiles µα,u exit
all compact sets of R2 when u , (±)u∗, as anticipated by Theorem 2. This fails to
happen for u = u∗, which is the only case in Figure 1 for which our theoretical result
remains silent.

The second result from [13] we generalize essentially states that the extreme
spatial quantiles µα,u are eventually to be found in direction u, which gives a clear
interpretation to the direction u in which quantiles are considered (the directions
of non-extreme spatial quantiles do not allow for such a clear interpretation). Our
version of this result is the following.
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Fig. 1 For u = (cos(π j/6), sin(π j/6)), with j = 0 (red), 1 (blue), 2 (green) and 3 (purple), the
plots show (linear interpolations of) the spatial quantiles µαm ,u , αm = .001, .002, . . . , .999, in
each of the examples (a)–(d) described in Section 2. Dashed lines are showing the halflines with
corresponding directions u originating from the spatial median.

Theorem 3 Let P be a probability measure over Rd . Let (αn) be a sequence in [0,1)
that converges to one and let (un) be a sequence in Sd−1 that converges to u. Assume
that P is not concentrated on a line with direction u or that∫

Rd
(‖z‖ + u′z) dP(z) = ∞

Then, µαn ,un/‖µαn ,un ‖ → u as n→∞ for any sequence of quantiles (µαn ,un ).

The same comments made below Theorem 2 can be repeated here, but for the
fact that the sequence (un) here may only have one accumulation point, namely its
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limit u. Again, the result holds for atomic probability measures, which allows us
to illustrate the results in Examples (a)–(d) above. Clearly, Figure 1 reflects well
the conclusion of Theorem 3 in all cases, including those where the probability
measure P is concentrated on a line (again, the case associated with u = (1,0) in
Example (b) is the only one for which our result remains silent).

3 Proofs

The proof of Theorem 1 requires the following three lemmas.

Lemma 1 Let P be a probabilitymeasure overRd . Fixα ∈ [0,1) and u ∈ Sd−1. Then,
(i) µ 7→ OP

α,u(µ) is convex over Rd , that is, for µ0, µ1 ∈ R
d (µ0 , µ1) and t ∈ (0,1),

one has OP
α,u(µt ) ≤ (1− t)OP

α,u(µ0)+ tOP
α,u(µ1), where we let µt := (1− t)µ0 + tµ1.

(ii) With the same notation, if P is not concentrated on the line containing µ0 and µ1,
then OP

α,u(µt ) < (1 − t)OP
α,u(µ0) + tOP

α,u(µ1).

Proof of Lemma 1. Fix µ0, µ1 ∈ R
d and t ∈ (0,1). Then, with µt = (1−t)µ0+tµ1,

we readily have

‖z − µt ‖ − ‖z‖ − αu′µt
≤(1 − t){‖z − µ0‖ − ‖z‖ − αu′µ0} + t{‖z − µ1‖ − ‖z‖ − αu′µ1}.

(2)

Part (i) of the result is then obtained by integrating over Rd with respect to P. As for
Part (ii), it follows from the fact that the inequality in (2) is strict for any z that does
not belong to the line containing µ0 and µ1. �

Lemma 2 Let P be a probability measure over Rd . Fix α ∈ [0,1) and u ∈ Sd−1.
Then, P admits a spatial quantile µα,u .

Proof of Lemma 2. Write BR := {z ∈ Rd : ‖z‖ ≤ R} and fix λ > (1+α)/(1−α).
Pick R0 large enough so that P[BR0 ] ≥ λ/(λ + 1). Then,

OP
α,u(µ) =

∫
Rd

{
‖z − µ‖ − ‖z‖ − αu′µ

}
dP(z) = O1(µ) +O2(µ),

where we have

O1(µ) :=
∫
BR0

{
‖z − µ‖ − ‖z‖ − αu′µ

}
dP(z)

≥

∫
BR0

{
‖µ‖ − 2‖z‖ − α‖µ‖

}
dP(z)

≥
λ(1 − α)‖µ‖

λ + 1
− 2R0
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and

O2(µ) :=
∫
Rd\BR0

{
‖z − µ‖ − ‖z‖ − αu′µ

}
dP(z)

≥

∫
Rd\BR0

{
− ‖µ‖ − α‖µ‖

}
dP(z)

≥ −
(1 + α)‖µ‖
λ + 1

·

Therefore, for any µ, we have

OP
α,u(µ) ≥

λ(1 − α) − (1 + α)
λ + 1

‖µ‖ − 2R0 =: cλ,α‖µ‖ − 2R0,

where cλ,α is strictly positive. To conclude, pick R > 0 so that cλ,αR−2R0 > OP
α,u(0).

As a convex function, µ 7→ OP
α,u(µ) is continuous, hence admits a minimum, µ∗ say,

in the compact set K := {µ ∈ Rd : ‖µ‖ ≤ R}. Since any µ < K is such that

OP
α,u(µ) ≥ cλ,αR − 2R0 > OP

α,u(0) ≥ min
µ∈K

OP
α,u(µ),

we conclude that µ∗ also minimizes µ 7→ OP
α,u(µ) over Rd , which establishes the

result.
�

Lemma 3 Let P be a probability measure over Rd that is concentrated on a line, L
say, with direction u∗ ∈ Sd−1. Fix α ∈ (0,1) and u ∈ Sd−1 \ {±u∗}. Then, either µα,u
is unique and belongs to L, or there exists a quantile µα,u that does not belong to L.

Proof of Lemma 3. By Lemma 2, there exists at least a quantile µα,u . Trivially,
the same proof also shows that µ 7→ OP

α,u(µ) has aminimizer onL. Fix then µ∗(∈ L)
arbitrarily such that OP

α,u(µ∗) ≤ OP
α,u(µ) for any µ ∈ L.

Let Z be a random d-vector with distribution P. By assumption, Z = µ∗+Λu∗ for
some random variable Λ, with distribution PΛ say. For any v ∈ Sd−1 and any h > 0,
we then have

OP
α,u(µ∗ + hv) −OP

α,u(µ∗)

h
= −αu′v +

∫
Rd

‖z − (µ∗ + hv)‖ − ‖z − µ∗‖
h

dP(z)

= −αu′v +
∫
R

‖λu∗ − hv‖ − ‖λu∗‖
h

dPΛ(λ),

so that

OP
α,u(µ∗ + hv) −OP

α,u(µ∗)

h
−

{
PΛ[{0}] − sPu′∗v − αu′v

}
=

∫
R
`h(λ) dPΛ(λ),

where we let sP := E[Sign(Λ)] and
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`h(λ) :=
‖λu∗ − hv‖ − ‖λu∗‖

h
−

{
I[λ = 0] − Sign(λ)(u′∗v)I[λ , 0]

}
.

It is easy to check that, for any λ ∈ R, the limit of `h(λ) as h→ 0 fromabove exists and
is equal to zero. Moreover, by using the inequality |‖x‖ − ‖y‖| ≤ ‖x− y‖, it is readily
seen that the function λ 7→ |`h(λ)| is upper-bounded by the function λ 7→ 2 + |u′∗v |
that does not depend on h and is PΛ-integrable. Therefore, Lebesgue’s Dominated
Convergence Theorem entails that µ 7→ OP

α,u(µ) admits a directional derivative in
direction v at µ∗, and that this directional derivative is given by

∂OP
α,u

∂v
(µ∗) = PΛ[{0}] − v′(sPu∗ + αu). (3)

Now, using the fact that u∗ and u are linearly independent and that α > 0, one has

mα,u(µ∗) := min
v∈Sd−1

∂OP
α,u

∂v
(µ∗) = PΛ[{0}] − ‖sPu∗ + αu‖,

where theminimum is reached at v0 := (sPu∗+αu)/‖sPu∗+αu‖(, u∗) only.We then
consider two cases. (i) mα,u(µ∗) < 0: then, there exists h > 0 such that OP

α,u(µ∗ +
hv0) < OP

α,u(µ∗), in which case OP
α,u(µ∗ + hv0) < OP

α,u(µ) for any µ ∈ L, so that
any global minimizer of µ 7→ OP

α,u(µ) does not belong to L. (ii) mα,u(µ∗) ≥ 0:
then, any directional derivative in (3) associated with v ∈ Sd−1 \ {v0} is strictly
positive, so that, for any such v, one has OP

α,u(µ∗ + hv) > OP
α,u(µ∗) for any h

in an interval of the form (0, εv). Pick then, for a fixed v ∈ Sd−1 \ {v0} and the
corresponding interval (0, εv), an arbitrary h ∈ [εv,∞) and any hε ∈ (0, εv), and
write hε = (1 − λ) × 0 + λh, for λ := hε/h ∈ (0,1). The convexity of OP

α,u

(Lemma 1(i)) entails that

λ{OP
α,u(µ∗ + hv) −OP

α,u(µ∗)} ≥ OP
α,u(µ∗ + hεv) −OP

α,u(µ∗) > 0,

showing that actually OP
α,u(µ∗ + hv) > OP

α,u(µ∗) for any h > 0. Continuity of µ 7→
OP
α,u(µ) (which also follows from convexity) implies that f (h) := OP

α,u(µ∗ + hv0) ≥

f (0) for any h > 0 (would there exist h > 0 such that OP
α,u(µ∗ + hv0) −OP

α,u(µ∗) =

f (h) − f (0) < 0, then, from continuity, there would exist v ∈ Sd−1 \ {v0} such
thatOP

α,u(µ∗+hv)−OP
α,u(µ∗) < 0, a contradiction). It follows that µ∗minimizes µ 7→

OP
α,u(µ) overRd . If f (h) > f (0) for any h > 0, then thisminimizer is unique, whereas

if OP
α,u(µ∗ + h0v0) = f (h0) = f (0) = OP

α,u(µ∗) for some h0 > 0, then µ∗ + h0v0 < L

also minimizes µ 7→ OP
α,u(µ) over Rd . The result follows. �

In the framework of Lemma 3, it may indeed happen that µα,u is unique and be-
longs to L. For instance, if P is the uniform distribution over {(−1,0), (0,0), (1,0)} ⊂
R2, α ∈ (0, 1

3 ) and u = (0,1), then P is concentrated on the line L = {λu∗ : λ ∈ R},
with u∗ = (1,0), and µα,u = (0,0) ∈ L is the unique order-α quantile in direction u
for P (this can be checked by proceeding as in the proof of Lemma 3).

We can now prove Theorem 1.
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Proof of Theorem 1. (i) The result is an exact restatement of Lemma 2.
(ii) The proof is a straightforward extension of the one in [17]. By contradiction,

assume that there exist µ0 and µ1, with µ0 , µ1, such that OP
α,u(µ0) = OP

α,u(µ1) is
the minimum of µ 7→ OP

α,u(µ) over Rd . Since, by assumption, P is not concentrated
on the line containing µ0 and µ1, Lemma 1(ii) readily yields that, for any t ∈ (0,1),

OP
α,u((1 − t)µ0 + tµ1) < (1 − t)OP

α,u(µ0) + tOP
α,u(µ1) = OP

α,u(µ0),

which contradicts the fact that µ0 minimizes µ 7→ OP
α,u(µ).

(iii) As in the proof of Part (ii), assume by contradiction that µ 7→ OP
α,u(µ)

has at least two minimizers in Rd , now with α > 0. In view of Part (ii) of the
result, it is enough to consider the case where P would be concentrated on a line L
with direction u∗(, ±u). Lemma 3 thus applies and guarantees that there exists a
minimizer of µ 7→ OP

α,u(µ) that does not belong to L. Thus, it is possible to pick
minimizers µ0 and µ1 of µ 7→ OP

α,u(µ), with µ0 < L and µ0 , µ1. Clearly, P is not
concentrated on the line containing µ0 and µ1 (would it be the case, then P would be
the Dirac measure at the intersection, {µ} say, between L and the line containing µ0
and µ1, hence in particular would be concentrated on the line {µ + λu : λ ∈ R}
that has direction u, a contradiction). Therefore, Lemma 1(ii) again yields that, for
any t ∈ (0,1),

OP
α,u((1 − t)µ0 + tµ1) < (1 − t)OP

α,u(µ0) + tOP
α,u(µ1) = OP

α,u(µ0),

which contradicts the fact that µ0 minimizes µ 7→ OP
α,u(µ).

(iv) Assume that P is concentrated on L = {z0 + λu, λ ∈ R}. Fix µ < L. Let
us first show that µ is not a spatial quantile of order α in direction u for P. To do
so, write Z = µL + Λu, where µL is the orthogonal projection of µ onto L. Define
further w := (µL − µ)/c, with c := ‖µL − µ‖. Since u′w = 0, we then have

OP
α,u(µ + hw) −OP

α,u(µ)

h
= −αu′w +

∫
Rd

‖z − (µ + hw)‖ − ‖z − µ‖
h

dP(z)

=

∫
R

‖(µL + λu) − (µ + hw)‖ − ‖(µL + λu) − µ‖
h

dPΛ(λ)

=

∫
R

‖λu + cw − hw‖ − ‖λu + cw‖
h

dPΛ(λ).

This yields

OP
α,u(µ + hw) −OP

α,u(µ)

h
+

∫
R

w′(λu + cw)
‖λu + cw‖

dPΛ(λ) =
∫
R
gh(λ) dPΛ(λ),

where
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gh(λ) :=
‖λu + cw − hw‖ − ‖λu + cw‖

h
+
w′(λu + cw)
‖λu + cw‖

=
h2 − 2hw′(λu + cw)

h(‖λu + cw − hw‖ + ‖λu + cw‖)
+
w′(λu + cw)
‖λu + cw‖

·

Clearly, λ 7→ |gh(λ)| is, for h ∈ (0,1) say, upper-bounded by the function λ 7→
(1/‖λu + cw‖) + 3 that is PΛ-integrable and does not depend on h (integrability
follows from the fact that ‖λu + cw‖2 = λ2 + c2 ≥ c2). Moreover, gh(λ) → 0
as h → 0 for any λ. Lebesgue’s Dominated Convergence Theorem thus shows that
the directional derivative of OP

α,u at µ in direction w exists and is equal to

∂OP
α,u

∂w
(µ) = −

∫
R

w′(λu + cw)
‖λu + cw‖

dPΛ(λ) = −
∫
R

c
‖λu + cw‖

dPΛ(λ) < 0.

Therefore, µ is not a spatial quantile of order α in direction u for P.
Consequently, all spatial quantiles of order α in direction u for P belong to L.

These can be characterized as follows. Redefine the random variable Λ through Z =
z0 + Λu (in other words, Λ = u′(Z − z0)). Spatial quantiles are the minimizers
of µ 7→ OP

α,u(µ) over Rd , which (we just showed it) coincide with the minimizers
of the same mapping over L. These minimizers take the form z0 + `αu, where `α
minimizes

λ 7→ OP
α,u(z0 + λu) =

∫
Rd
{‖z − (z0 + λu)‖ − ‖z‖ − αu′(z0 + λu)} dP(z)

= −αu′z0 +

∫
R
{|t − λ | − ‖z0 + tu‖ − αλ} dPΛ(t),

or, equivalently, minimizes

λ 7→

∫
R
{|t − λ | − |t | − αλ} dPΛ(t)

(note that this last (objective) function, hence also the corresponding minimizers, do
not depend on u, which a posteriori justifies the notation `α). In other words, `α is a
spatial quantile of order α in direction 1 for PΛ. �

The proof of Theorem 2 requires both following preliminary results.

Lemma 4 Let P be a probability measure over Rd . Then, the function

(α,u, µ) 7→ OP
α,u(µ) =

∫
Rd

{
‖z − µ‖ − ‖z‖ − αu′µ

}
dP(z) (4)

is continuous over [0,1] × Sd−1 × Rd .

Proof of Lemma 4. Since
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|OP
α2 ,u2
(µ2) −OP

α1 ,u1
(µ1)|

≤

∫
Rd

��‖z − µ2‖ − ‖z − µ1‖ − (α2u′2µ2 − α1u′1µ1)
�� dP(z)

≤ ‖µ2 − µ1‖ + |α2u′2µ2 − α1u′1µ1 |

≤ ‖µ2‖|α2 − α1 | + ‖µ2‖‖u2 − u1‖ + (1 + α1)‖µ2 − µ1‖,

the function in (4) is Lipschitz over any bounded subset of [0,1] × Sd−1 × Rd . The
result follows. �

Lemma 5 Let P be a probability measure over Rd and fix u ∈ Sd−1. Assume that P
is not concentrated on a line with direction u or that∫

Rd
(‖z‖ + u′z) dP(z) = ∞. (5)

Then the function

µ 7→ OP
1,u(µ) :=

∫
Rd

{
‖z − µ‖ − ‖z‖ − u′µ

}
dP(z)

does not have a minimum in Rd .

Proof of Lemma 5. Since P and u are fixed, we will write g(µ) := OP
1,u(µ)

throughout the proof. Letting µn := nu (with n a positive integer), this allows us to
write

g(µn) =

∫
Rd

{
‖z − nu‖ − (‖z‖ + n)

}
dP(z)

= −2n
∫
Rd

‖z‖ + u′z
‖z − nu‖ + ‖z‖ + n

dP(z)

= g<(µn) + g≥(µn),

where we let

g<(µn) := −2n
∫
Rd

(‖z‖ + u′z)I[u′z < 0]
‖z − nu‖ + ‖z‖ + n

dP(z) (≤ 0)

and
g≥(µn) := −2n

∫
Rd

(‖z‖ + u′z)I[u′z ≥ 0]
‖z − nu‖ + ‖z‖ + n

dP(z) (≤ 0).

Now, note that if (5) holds, then∫
Rd
‖z‖I[u′z ≥ 0] dP(z) = ∞ or

∫
Rd
(‖z‖ + u′z)I[u′z < 0] dP(z) = ∞
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(or both integrals are infinite). This leads to consider three cases.

Case (A):
∫
Rd
‖z‖I[u′z ≥ 0] dP(z) = ∞. Of course, we have

−g≥(µn) ≥ 2n
∫
Rd

‖z‖I[u′z ≥ 0]
‖z − nu‖ + ‖z‖ + n

dP(z).

Since (‖z‖ + n)2 − ‖z − nu‖2 = 2n‖z‖ + 2nu′z ≥ 0, we also have

−g≥(µn) ≥

∫
Rd

n‖z‖I[u′z ≥ 0]
‖z‖ + n

dP(z) =:
∫
Rd

hn(z) dP(z). (6)

Since hn(z) ≤ hn+1(z) for any z and the pointwise limit of hn is the function h
defined by h(z) := ‖z‖I[u′z ≥ 0], the Monotone Convergence Theorem yields∫

Rd
hn(z) dP(z) →

∫
Rd

h(z) dP(z) = ∞,

which, jointly with (6), establishes that g≥(µn) → −∞. Since g(µn) ≤ g≥(µn), we
conclude that g(µn) → −∞, so that g does not have a minimum in Case (A).

Case (B):
∫
Rd
(‖z‖+u′z)I[u′z < 0] dP(z) = ∞. Using theMonotone Convergence

Theorem as in Case (A) readily provides that

−g<(µn) = 2n
∫
Rd

(‖z‖ + u′z)I[u′z < 0]
‖z − nu‖ + ‖z‖ + n

dP(z)

= 2
∫
Rd

(‖z‖ + u′z)I[u′z < 0]√
1
n2 ‖z‖2 + 1 + 2

n |u
′z | + 1

n ‖z‖ + 1
dP(z)

converges to ∫
Rd
(‖z‖ + u′z)I[u′z < 0] dP(z) = ∞

as n → ∞. Since g(µn) ≤ g<(µn), this yields g(µn) → −∞. It follows that g does
not have a minimum in Case (B).

Case (C):
∫
Rd
‖z‖I[u′z ≥ 0] dP(z) < ∞ and

∫
Rd
(‖z‖ + u′z)I[u′z < 0] dP(z) <

∞. Using the finiteness of the first and second integrals, Lebesgue’s Dominated
Convergence Theorem readily yields

g≥(µn) → −

∫
Rd
(‖z‖ + u′z)I[u′z ≥ 0] dP(z)

and
g<(µn) → −

∫
Rd
(‖z‖ + u′z)I[u′z < 0] dP(z),

respectively. Therefore,
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g(µn) = g<(µn) + g≥(µn) → −

∫
Rd
(‖z‖ + u′z) dP(z) =: iPu .

In Case (C), P is not concentrated on a line with direction u by assumption, which
implies that, for any µ ∈ Rd ,

g(µ) − iPu =
∫
Rd

{
‖z − µ‖ + u′(z − µ)

}
dP(z) > 0.

This shows that the function g does not have a minimum in Case (C) either. The
result is thus proved. �

Theorem 2 then follows from Lemmas 4–5 in the same way as Theorem 2.1(i)
in [13] (but for the fact that we are considering distributions that do not ensure
uniqueness of quantiles). We still report the proof for the sake of completeness.

Proof of Theorem 2. Ad absurdum, assume that there exists a sequence of
quantiles (µαn ,un ) such that ‖µαn ,un ‖ does not diverge to infinity. Then, (µαn ,un ,un)
has a subsequence that is bounded, hence from compactness, possesses a further
subsequence, (µαn`

,un`
,un` ) say, that converges in Rd × Sd−1, to (µ∞,u∞), say. By

construction, u∞ is an accumulation point of the sequence (un). For any `, we have

OP
αn`

,un`
(µαn`

,un`
) ≤ OP

αn`
,un`
(µ)

for any µ ∈ Rd . In view of Lemma 4, taking limits as ` →∞ then provides

OP
1,u∞ (µ∞) ≤ OP

1,u∞ (µ)

for any µ ∈ Rd . Since this contradicts Lemma 5, the result is proved. �

The proof of Theorem 3 requires the following lemma.

Lemma 6 Let P be a probability measure over Rd and fix m ∈ (0,2). Then,

tP(r) :=
∫
Rd

‖z‖√
(‖z‖ − r)2 + mr ‖z‖

dP(z) → 0

as r →∞.

Proof of Lemma 6. Fix δ > 0. For any r > 0, let Yr := ‖Z ‖/r , where Z is a
random d-vector with distribution P. Then, with h := mδ2/4,

tP(r) = E

[
‖Z ‖√

(‖Z ‖ − r)2 + mr ‖Z ‖

]
= E

[
Yr√

(Yr − 1)2 + mYr

]

= E

[
Yr I[Yr ≤ h]√
(Yr − 1)2 + mYr

]
+ E

[
Yr I[Yr > h]√
(Yr − 1)2 + mYr

]
.
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Since y/
√
(y − 1)2 + my ≤ 2/

√
m(4 − m) for any y ≥ 0, this provides

tP(r) ≤ E

[√
Yr I[Yr ≤ h]
√

m

]
+

2√
m(4 − m)

P[Yr > h]

≤
δ

2
+

2√
m(4 − m)

P[‖Z ‖ > rh] < δ,

for r large enough. �

Proof of Theorem 3. In this proof, we use the notation

Sin
u,c := Sd−1 ∩ {z ∈ Rd : u′z ≥ 1 − c}

and
Sout
u,c := Sd−1 ∩ {z ∈ Rd : u′z ≤ 1 − c}.

Ad absurdum, assume that there exists a sequence of quantiles (µαn ,un ) such that
(wn := µαn ,un/‖µαn ,un ‖) does not converge to u. Thus, there exists ε > 0 such that
wn ∈ S

out
u,ε for infinitely many n. Upon extraction of a subsequence, we may assume

that wn belongs to Sout
u,ε for any n. By assumption, we may, still upon extraction of

a subsequence, assume that un ∈ Sin
u,ε/2 for any n. Assume for a moment that there

exist R > 0 and η ∈ (0,1) such that

OP
α,v(rw) > OP

α,v(rv) (7)

for any α ∈ [η,1), r ≥ R, v ∈ Sin
u,ε/2 and w ∈ Sout

u,ε . Pick then n large enough to
have αn ≥ η and ‖µαn ,un ‖ ≥ R (existence follows from Theorem 2). By definition,
this implies that

OP
αn ,un

(‖µαn ,un ‖wn) = OP
αn ,un

(µαn ,un ) ≤ OP
αn ,un

(‖µαn ,un ‖un),

which contradicts (7).
Therefore, it is sufficient to prove (7). To do so, fix v ∈ Sin

u,ε/2, w ∈ S
out
u,ε

and η ∈ (0,1) (we show that (7) holds, actually, not just for some η ∈ (0,1) but for
any η ∈ (0,1)). Note that one has

√
2(1 − v′w) = ‖v−w‖ ≥ u′(v−w) = u′v−u′w ≥

(1 − ε/2) − (1 − ε) = ε/2 so that 2(1 − v′w) ≥ ε2/4, hence

v′w ≤ 1 −
ε2

8
·

Write then
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OP
α,v(rw) −OP

α,v(rv) =
∫
Rd

{
‖z − rw‖ − ‖z − rv‖ − α(rv′w − r)

}
dP(z)

= rα(1 − v′w) +
∫
Rd

‖z − rw‖2 − ‖z − rv‖2

‖z − rw‖ + ‖z − rv‖
dP(z)

≥
rηε2

8
+

∫
Rd

2r(v − w)′z
‖z − rv‖ + ‖z − rw‖

dP(z)

≥ r

[
ηε2

8
− 4

∫
Rd

‖z‖
‖z − rv‖ + ‖z − rw‖

dP(z)

]
.

Now, using the fact that ‖v + w‖2 = 2(1 + v′w) ≤ 2(2 − ε2/8), we obtain

{‖z − rv‖ + ‖z − rw‖}2 ≥ ‖z − rv‖2 + ‖z − rw‖2

= 2‖z‖2 + 2r2 − 2r(v + w)′z ≥ 2‖z‖2 + 2r2 − 2
√

2(2 − ε2/8)r ‖z‖

= 2{(‖z‖ − r)2 +
√

2(
√

2 −
√

2 − ε2/8)r ‖z‖} =: 2{(‖z‖ − r)2 + mεr ‖z‖},

which provides

OP
α,v(rw) −OP

α,v(rv) ≥ r

[
ηε2

8
− 2
√

2
∫
Rd

‖z‖√
(‖z‖ − r)2 + mεr ‖z‖

dP(z)

]
.

Since mε ∈ (0,2), Lemma 6 guarantees that there exists R > 0, not depending on the
choice of v,w, η and α, such that for any r ≥ R,OP

α,v(rw)−OP
α,v(rv) ≥ rηε2/16 > 0.

This proves (7), hence the result. �
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