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By substituting an Lj, loss function for the L; loss function in the optimization problem defining quantiles, one
obtains Lp-quantiles that, as shown recently, dominate their classical Lj-counterparts in financial risk assessment.
In this work, we propose a concept of multivariate Lp-quantiles generalizing the spatial (L;-)quantiles introduced
by Probal Chaudhuri (J. Amer. Statist. Assoc. 91 (1996) 862—872). Rather than restricting to power loss functions,
we actually allow for a large class of convex loss functions p. We carefully study existence and uniqueness of
the resulting p-quantiles, both for a general probability measure over R4 and for a spherically symmetric one.
Interestingly, the results crucially depend on p and on the nature of the underlying probability measure. Building
on an investigation of the differentiability properties of the objective function defining p-quantiles, we introduce
a companion concept of spatial p-depth, that generalizes the classical spatial depth. We study extreme p-quantiles
and show in particular that extreme Lp-quantiles behave in fundamentally different ways for p <2 and p > 2. Fi-
nally, we establish Bahadur representation results for sample p-quantiles and derive their asymptotic distributions.
Throughout, we impose only very mild assumptions on the underlying probability measure, and in particular we
never assume absolute continuity with respect to the Lebesgue measure.

Keywords: Bahadur representation results; convex objective functions; M-estimation; multivariate quantiles;
spatial depth; spatial quantiles

1. Introduction

The concept of quantile, which is of paramount importance in statistics, has long been limited to prob-
ability measures over R. Defining a suitable quantile concept in R? is a problem that is intrinsically
difficult due to the lack of a canonical ordering in R?, d > 1. This has been an active research topic in
the last decades; see, among many others, Hallin, Paindaveine and Siman (2010), Hallin et al. (2021),
Serfling (2002), and the references therein. One of the most successful multivariate quantile concepts
is the concept of spatial (or geometric) quantiles from Chaudhuri (1996); for a probability measure P
over R?, the spatial quantile of order « in direction u is defined as the minimizer over R of the map

s Mo = [ 2=l =zl = '} dPG), n

with @ € [0,1) and u € 84 := {z € R? : ||z]|? := 2’z = 1}. The success of spatial quantiles is ex-
plained by several key distinctive properties, among which: spatial quantiles are easy to compute, even
for large d (Mukhopadhyay and Chatterjee (2011), Vardi and Zhang (2000)). The asymptotic behav-
ior of their sample version is rather standard (Chaudhuri (1996), Zhou and Serfling (2008)). They can
easily be extended into regression quantiles (Chakraborty (2003), Cheng and De Gooijer (2007)) or
turned into quantiles for functional data (Chakraborty and Chaudhuri (2014), Chowdhury and Chaud-
huri (2019), Serfling and Wijesuriya (2017)).

For d = 1, spatial quantiles, that minimize the L;-objective function in (1), reduce to the usual uni-
variate quantiles. In particular, the collection of intervals whose endpoints are the spatial quantiles of
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order « in direction # = —1 and u = 1 is a nested family of interquantile intervals, that all contain the
univariate median (which is obtained with a = 0, irrespective of the direction u). Similarly, expectiles,
an Ly-analog of quantiles introduced in Newey and Powell (1987), provide a nested family of centrality
intervals that all contain the mean of the distribution. Expectiles have met a big success, particularly
so in financial risk assessment, where they provide coherent risk measures; see, e.g., Daouia, Girard
and Stupfler (2018), Kuan, Yeh and Hsu (2009), Taylor (2008). Quantiles and expectiles belong to the
class of Lj,-quantiles (associated with L, loss functions, with p > 1), or, more generally, of M-quantiles
(associated with general convex loss functions); see Breckling and Chambers (1988), Chen (1996). Re-
cently, there has been a growing interest in such generalized quantiles, still with risk assessment as
one of the main applications; see, e.g., Daouia, Girard and Stupfler (2019), Gardes, Girard and Stupfler
(2020), or Usseglio-Carleve (2018).

The success of spatial quantiles in R? and the growing interest in Lp-quantiles in the univariate
case d = 1 suggest to define a spatial concept of L,-quantiles. For p = 2, this has actually recently
been done in Herrmann, Hofert and Mailhot (2018), but the resulting spatial expectiles remain less well
understood than their spatial L;-counterparts from Chaudhuri (1996). To the best of our knowledge, a
spatial Lj,-quantile concept, or, more generally, a spatial M-quantile concept has not been investigated
in the literature. In this work, we define such a general concept and we thoroughly study its properties.
We adopt the following definition.

Definition 1. Let p: R* — R* be a convex function and P be a probability measure over R?. Fix a €
[0,1) and u € S?~!. We say that ,uﬁ,u = yﬁu(P) is a spatial p-quantile of order « in direction u for P
if and only if it minimizes the objective function

we ME L (p) = / {HY ,(z— ) - HY ()} dP(z) 2)
R‘I

over RY, where we let

Hp 4(2) 1=p(||Z||)(1 +aﬁ)§z,o, 3)

with &, ;, :=1[z] # 22] (throughout, I[A] is the indicator function of A).

It might have been natural to write y, with v = au rather than ,uf,,u, to emphasize the indexation
of spatial p-quantiles on the unit ball, but we favour the notation pﬁsu that stresses the heterogenous
roles « and u will play in the sequel. The multivariate L,-quantiles we consider in this work are ob-
tained with p(¢) = t”, p > 1. Clearly, these reduce for p = 1 to the minimizers of (1), that is, to the spatial
quantiles from Chaudhuri (1996). If P has finite second-order moments, then our L,-quantiles reduce
for p = 2 to the expectiles introduced in Herrmann, Hofert and Mailhot (2018); as we will show, how-
ever, our formulation above only requires that P has finite first-order moments. Note that for & = 0, the
p-quantile uﬁu irrespective of u (the direction u# does not play any role for @ = 0), is an M-functional
of location, that, for p = 1 and p = 2, provides the celebrated spatial median (Brown (1983)) and the
mean vector of P, respectively. The p-quantiles from Definition 1 extend this M-functional of location
in the same way the spatial quantiles from Chaudhuri (1996) extend the spatial median: they are thus
M-quantiles, in the sense of Breckling and Chambers (1988) or Koltchinskii (1997) (it should be noted
that the only intersection between the M-quantiles in Definition 1 and those from Koltchinskii (1997)
are the spatial quantiles from Chaudhuri (1996)).

Above, the motivation to consider Lj-quantiles was linked to their relevance for risk assessment, and
there is no doubt that spatial L,,-quantiles are natural tools to define suitable risk measures in situations
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where multidimensional portfolios are considered. The main focus in this work, however, is on a careful
study of the probabilistic properties of these Lj,-quantiles and, more generally, of the corresponding
p-quantiles. Quite remarkably, many of these properties crucially depend on the loss function p. We
provide two examples. (i) Convexity of the objective function in (2) for any order a and direction u
is a key property for the study of p-quantiles and for their evaluation at empirical distributions, and
it may be expected that this convexity is inherited from the convexity of p. Our results, however, will
show that, in the class of L,-quantiles, this is the case if and only if p < 2. For p > 2, we will show
that convexity holds for @ < a), only, where, quite remarkably, @, is very close to one for any p but
does not depend on p monotonically. (ii) The spatial quantiles from Chaudhuri (1996) have recently
been criticised because they exit any compact set as @ — 1 even for a compactly supported probability
measure P; see Girard and Stupfler (2017). As our results will show, this behavior of extreme spatial
quantiles is shared by L,-quantiles with p < 2, but not by those with p > 2. While we discussed these
results here for L,-quantiles only, we will throughout study properties of p-quantiles for a virtually
arbitrary convex loss function p, which will allow us to consider, e.g., exponential loss functions or the
celebrated Huber loss functions.

The outline of the paper is as follows. In Section 2, we provide the assumptions under which the
objective function M% (1) in (2) is well-defined for any u, and we discuss existence of p-quantiles.
In Section 3, we obtain a necessary and sufficient condition for convexity of Mg)u(/vt), we characterize
the orders « for which convexity fails when this condition is not satisfied, and we exploit this to derive
uniqueness results for p-quantiles. In Section 4, we refine these convexity and uniqueness results in the
particular case for which the underlying probability measure is spherically symmetric. In Section 5,
we study first- and second-order differentiability of the objective function M% , (1), which will play
a key role in the subsequent sections. In Section 6, we exploit Robert Serfling’s DOQR paradigm to
define p-depth functions, p-outlyingness functions and p-rank functions associated with our p-quantile
functions. We also identify conditions under which p-quantile functions are homeomorphisms from
the open unit ball (quantiles are indexed by (a,u) € [0,1) x S4~! or, equivalently, by au in the open
unit ball of RY) to the whole Euclidean space R¢. This will play a major role when studying in Sec-
tion 7 the behavior of extreme p-quantiles. In Section 8, we derive Bahadur representation results for
sample p-quantiles and deduce their asymptotic distribution. Finally, we briefly discuss some perspec-
tives for future research in Section 9. Proofs are collected in the Supplementary Material (Konen and
Paindaveine (2022)).

2. Existence

Throughout, we assume that the loss function p belongs to the class C of functions from R* to R* that
are convex, piecewise twice continuously differentiable on (0,0), and satisfy p(¢) = 0 only for ¢ = 0.
Here, p is piecewise twice continuously differentiable on (0,00) means that either (i) there exist a non-
negative integer K and (0 =: #p <)t <1t <...<tg <Ig4] := o0 such that p is twice continuously
differentiable on each open interval (fx,fx+1), k = 0,...,K, or (ii) there exists a monotone strictly
increasing sequence (fy := 0,f1,1,,...) in R* diverging to infinity such that p is twice continuously
differentiable on each open interval (f,fx+1), kK € N. We let D, = (0,00) \ {t1,12,...,tx} in case (i)
and D, = (0,00) \ {t1,12,...} in case (ii). Examples of loss functions in C are the power loss func-
tions p(t) = tP, with p > 1, the exponential functions p(z) = exp(ct) — 1, with ¢ > 0, and the Huber
loss functions p(r) = (£2/2)I[0 < t < ¢] + c(t — (¢/2)I[t > ¢], with ¢ > 0. For the Huber loss functions,
D, =(0,00)\ {c}, whereas D,, = (0, 0) for power and exponential loss functions.
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For any p € C, we denote as 7)5 the class of probability measures P over R such that for any u € R?,
there exists ¢ > 0 for which

[ -z ul+ 0)ap) <o @

throughout, ¥_ and ¥, will denote the left- and right-derivative of p, respectively (convexity of p
ensures existence of these one-sided derivatives). For the power loss function p(f) = t?, with p > 1,
Pe Ps if and only if P has finite moments of order p — 1 (that is, E[|| Z||P~!] < co, where Z is a random

d-vector with distribution P). For p(t) =t, 7’5 thus collects all probability measures on R?, which is
also the case for Huber loss functions.

We then have the following existence result (see Section S.2 in Konen and Paindaveine (2022) for a
proof).

Theorem 2.1. Letpe Cand P € Ps. Fix a €[0,1] and u € S~ Then, (i) Mg’u(/,t) is well-defined for
any u € R9; (ii) if @ < 1, then P admits at least one p-quantile of order a in direction u.

The existence result in Theorem 2.1(ii) is obtained by establishing that, for any @ € [0,1) and u €
S1  the map u M{,)’u(/,t) is both coercive (in the sense that Mf,”u(,u) diverges to infinity as ||u||
does) and continuous over R?. We require that p € C in Theorem 2.1 to avoid introducing many differ-
ent collections of loss functions in the sequel, but inspection of the proof reveals that the result actually
holds without any differentiability assumption on p.

Theorem 2.1(ii) shows that, for p(t) = t, with p > 1, p-quantiles exist for any a € [0,1) and u € S9!
as soon as P has finite moments of order p — 1 (while subtracting Hf,”u(z) in the integrand of (2)
in principle has no impact on the corresponding quantile minimizers, not doing so would guarantee
existence of a minimizer only under the stronger condition of finite moments of order p). In particular,
taking p = 1 and p = 2, this shows that the quantiles from Chaudhuri (1996) always exist, whereas their
expectile analogs from Herrmann, Hofert and Mailhot (2018) only require that P has finite first-order
moments (as already mentionned, finite second-order moments are imposed in Herrmann, Hofert and
Mailhot (2018)). The quantiles associated with Huber loss functions also always exist for any @ € [0, 1)
and u € 841

In Section 7 below, we will study extreme p-quantiles, that is, the p-quantiles indexed by an order a
that is arbitrarily close to one. As we will see, the behavior of such quantiles crucially depends on the
existence of the boundary p-quantiles indexed by an order @ = 1 (the term “boundary” results from
the fact that Definition 1 imposes that @ € [0,1)). Our interest in such boundary quantiles explains
why we will be investigating the properties of the map Mg,u(p) also for @ = 1, as we already did in
Theorem 2.1(ii). At this stage, we stress that Theorem 2.1(ii) remains silent about the existence of such
boundary p-quantiles, the reason being that coercivity of u — Mg’u(,u) may fail for @ = 1. For p(t) =t
and d > 2, for instance, no such boundary quantiles exist when P is non-atomic and is not supported
on a line of R; see Girard and Stupfler (2017), Proposition 2.1.

We conclude this section with the following orthogonal- and translation-equivariance result, that will
be particularly relevant in Section 4 when considering the particular case for which P is spherically
symmetric (the proof readily follows from Definition 1).

Proposition 2.1. Let p € C and P € Plﬁl. Fix a €[0,1) and u € S4~'. Let O be a d x d orthogonal
matrix, b be a d-vector, and denote as Po p the distribution of OZ + b when Z has distribution P.
Then, if u is a p-quantile of P of order « in direction u, then O + b is a p-quantile of Po , of order «
in direction Ou.
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Spatial p-quantiles are not affine-equivariant, that is, they fail to be equivariant under general
affine transformations. However, they can be made affine-equivariant through a transformation-
retransformation approach; see, e.g., Serfling (2010) in the case of the Chaudhuri (1996) spatial quan-
tiles.

3. Convexity and uniqueness

The quantiles studied in this work are defined as minimizers of the map u +— M(‘;,u(,u) in (2). Convexity
of this map is a most desirable property, that is expected to play a key role when investigating unique-
ness of these quantiles and when evaluating them for empirical probability measures. In this section,
we therefore study under which conditions on the loss function p € C the map y +— M{j’u(u) is convex
for any P € 7’5 .

First note that convexity of Hggu trivially implies convexity of Mg,u, and that, if Hg,u is not convex,
then there exists P € PZ for which Mg,u fails to be convex (simply consider a Dirac probability mea-
sure). Therefore, we may focus on studying convexity of Hf;,u. Since any p € C clearly makes Hf;’u
convex for d = 1, we tacitly restrict throughout this section to the case d > 2. We start with the fol-
lowing przlillninary result showing that the larger @, the fewer the functions p making Hfiu convex for
any u € 847,

Lemma 3.1. For any a € [0, 1], denote as Cq the collection of functions p € C such that Hg’u is convex
for any u € S91. Then, we have the Jollowing: (i) Cy = C; (ii) if ay,az € [0,1] satisfy a; < ay, then
Cay € Cq-

This result suggests considering @, := max{a € [0,1] : p € C,}, the largest value of « for which p
makes Hg’u convex for any u € S! (it is trivial to prove that the maximum exists for any p € C).
Ideally, we would like to have that @, = 1, as this would ensure that Hg,u is convex for any «a € [0,1]
and u € S9! The following result provides a necessary and sufficient condition for a,=1.

Theorem 3.1. Let p € C. Then, irrespective of d > 2, ap =1 if and only if the map t — 12/ p(t) is
concave on (0,00).

As a corollary, the power loss function p(t) = t? makes H, ,, convex for any @ € [0,1) and any u €
S9! if and only if p € [1,2]. For p > 2, it is then of interest to determine the corresponding value
of a,(< 1). More generally, the following result allows one to determine a,, for any loss function p that
does not satisfy the necessary and sufficient condition in Theorem 3.1.

Theorem 3.2. Let p € C be such that the map t — t*/ p(t) is not concave on (0,00). Then, irrespective

ofd>2,
. q:(4p? — 4p; — q1)
ap, = inf 5 <1,
teDyy \ 4(pr — 1)*(q; + 1)

PO 2y (1)
T p) T () - pt)
where we let DY :={t € D, : (12/p(1))”" > 0} and where ' is the left-derivative of y_ (in this re-
sult, y_(t) and ' (t) are used only for t € D,, so that we could write y_(t) = p'(t) and ' (t) = p”' (1)
above).

with
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Figure 1. (Left:) For power loss functions p(t) = 7, plot of ,, (see (5)) and a,;ph (see (6)) (note that (5) shows

that ap — 1 as p — o0). (Right:) For the loss function p(t) = exp(¢) — 1, plot of the quantity, a,(¢) say, of which

the infimum is taken in Theorem 3.2; the blue line marks the resulting infimum a,, = .9939, whereas the orange
line stresses that a,s)p h_ 1 (see Section 4).

For p(r) = 1P with p > 2, one readily checks that Dg¥ = (0,00) and

_ | _r@p-5
=N ap- 2+ ©

Remarkably, @, in (5) exhibits a non-monotonic pattern in p: for p € [2,5], it decreases monotoni-
cally from one to its minimal value +/125/128 (slightly above .9882), then increases monotonically
to one again for p € [5,00); see the left panel of Figure 1. For p > 2, it is thus only for most ex-

treme quantile orders « that convexity fails. This is even more the case for the exponential loss func-
tion p(7) = exp(ct) — 1, for which Dg¥ = (3.0861/c,0) and a, = .9939. It can be shown that, if the

loss function p is such that 7 — p(t)/t is convex, then ¢, > +/2/3 ~ .8165 (for the sake of complete-
ness, we prove this in Konen and Paindaveine (2022); see Corollary S.3.1). Like the power loss func-
tions p(t) = tP, p € (1,2), the Huber loss functions provide a compromise between the L; and L, loss

functions, but since Theorem 3.2 entails that a,, = 0 for the Huber loss functions, power loss functions
clearly should be favoured in terms of convexity.

An important corollary of convexity is the following uniqueness result.

Theorem 3.3. Let p € C and P € Pg. Assume that there is no open interval in (0,00) on which y_

is constant or that P is not concentrated on a line. Then, for any a € [0,a,) U {0} and u € 841

(union with {0} is needed when a,, = 0), the map u+ Mf,”u(,u) is strictly convex on R, so that the
p-quantile yﬁu is unique.

This covers the well-known result stating that, for p(¢) =z, all p-quantiles are unique provided that P
is not supported on a line. Remarkably, Theorem 3.3 shows that this structural constraint on P is not
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needed for the p-quantiles associated with other power loss functions: under the corresponding moment
assumptions, all p-quantiles are unique for p(¢) = tP, with p € (1,2], whereas, for p > 2, all p-quantiles
with an order « that is below (5) are unique. Similarly, for exponential loss functions, p-quantiles are
unique for any order a < .9939.

4. The spherical case

In this section, we consider the special case for which P(e PZ ) is spherically symmetric about some
location uo(€ RY), in the sense that, for any d-Borel set B and any d x d orthogonal matrix O, the P-
probability of ug + OB does not depend on O. Since p-quantiles are translation-equivariant, we will
actually restrict, without any loss of generality, to the case uy = 0 (translation-equivariance here means
that if 4 is a p-quantile of P of order « in direction u, then, for any 4 € R?, i + h is a p-quantile of Py,
of order « in direction u, where Pj, is the distribution of Z + h when Z has distribution P).

Note that it follows from Proposition 2.1 that, if P is spherically symmetric about the origin of R¢ and
satisfies P[{0}] < 1, with d > 2 say, then any quantile contour {ig, : u € S¢~1}, with & € [0, a,)U{0},
is a hypersphere (uniqueness of these quantiles follows from Theorem 3.3 since P is then not supported
on a line). Proposition 2.1 then also implies that, for an arbitrary order @ € [0, 1) and any direction u €
891 the p-quantiles of P of order « in direction u form a set that is invariant under all rotations
fixing u. In particular, if ,u’a’u is unique, then it belongs to the line spanned by #, which is most natural.
For @ > a,, however, uniqueness is not guaranteed, so that it is unclear whether or not quantiles meet
this natural property in the spherical case. This motivates the following result.

Theorem 4.1. Let pe C and P € 7’5. Assume that P is spherically symmetric about the origin of R%.
Then, (i) for a = 0 and any u € S, the unique p-quantile yﬁu is the origin of R?; (ii) for a € (0,1)
and u € S, any p-quantile yf,’u belongs to the halfline {Au : A > 0}.

In case (ii), the origin of R? may be a p-quantile of order a > 0 in direction u. Actually, it can be
shown that (a) for p(¢) = ¢, the origin is a p-quantile of order @ > 0 in direction u if and only & < P[{0}].
Moreover, (b) provided that ¢, (0)P[{0}] + P[||Z]| € (0,00) \ D,] = 0 where Z has distribution P (a
condition that always holds for p(f) = tP with p > 1), the origin cannot be a p-quantile of order @ > 0
in direction u, so that all these quantiles then belong to {Au : A > 0} (for the sake of completeness, we
prove (a)—(b) in Konen and Paindaveine (2022); see Proposition S.4.1).

If P is spherically symmetric about the origin and satisfies P[{0}] < 1, Theorem 3.3 shows that p-
quantiles are unique for any « < a, (as mentioned above) but it remains silent on the case @ > a,.
Interestingly, we will be able to say more under sphericity, thanks to the fact that Theorem 4.1 entails
that uniqueness will hold if # — MY, (tu) is strictly convex over [0, c0) for all u € S?~!, which in turn
will hold if ¢ — Hg’,u(z — tu) is convex for any z € R and any u € S?~!. Accordingly, for any « € [0,1],
let C,S,Ph be the collection of functions p € C such that ¢ +— H(’;,u(z — tu) is convex for any z € R?
and u € S, Since Cgph =C and C;gh c Cf}fh for any @1 < @; (see the proof of Theorem 4.2 below),

we let @) M= max{a € [0,1]: p € CP"}, parallel to what we did for a, in Section 3. We have the
following result.

Theorem 4.2. Let pc C and P € SDZ. Assume that P is spherically symmetric about the origin of R?.
Then, for any « € [0, a;,ph) U {0} and u € S (again, union with {0} is needed when a:,p h_ 0), the
map t — MY ,(tu) is strictly convex on [0,00), and the p-quantile iy, ,, is unique.
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Note that, in the present spherical setup, this uniqueness result may only strengthen the one in Theo-
rem 3.3, since the fact that C, C Cf,ph for any @ € [0, 1] implies that a;,ph > a,. Of course, it is natural to
wonder under which conditions on p all p-quantiles are unique (a/;,Ph = 1) and, when these conditions
are not met, what are the orders « for which uniqueness is guaranteed (that is, what is then the value

of P h

» < 1). The following result provides a complete answer to these questions.

Theorem 4.3. Let p € C. Then, (i) a;ph =1 ifand only if 4p; + qr — p1qr < 6 for any t € D, where p;
and q; are as in Theorem 3.2; (ii) ifazph < 1, then, letting Z)/S)ph ={t €Dy :4p; +q: — prq: > 6}(<
D),

o =

P - lnts‘ph ﬂ[’r’qw

teD,

where
P 2(pq = p - 9’ epq —a(2p-3)/3
P 3(p - 123 - p)Nepg — 2P — 0)(\p.g — a2p — 3))>

involves cp, 4 = %(3 - 2p)(2pq — 8p + q) (if q makes B, 4 undefined in the expression above, then we
let Bp g =1im, g Bp ).

Parallel to @, in Theorems 3.1-3.2, a';ph does not depend on d(> 2). For the power loss func-

tions p(t) = tP with p > 1, it follows from Theorem 4.3 that

PA(p-23(bp—-(p-3)?) .
) ifpe
™ = \/ PGPy Dbp3p-Dn D) TP EE3)

1 otherwise,

(6)

with b, := (3(p - %)(% -p)) 1z For p € [1,2], the result is just a corollary of Theorem 3.1 since we then

have a;ph > ap = 1. For p > 3, (6) implies that all p-quantiles are uniquely defined under sphericity,
while there is no guarantee that this is the case in general (since a,, < 1 for such values of p). As shown

in Figure 1, the values of a;p " for p € (2,3) are remarkably close to one (the minimal value, achieved
at p ~ 2.429, is about .9987), which implies that, also for p € (2,3), essentially all p-quantiles are
uniquely defined under sphericity. For the exponential loss functions p(¢) = exp(ct) — 1, all p-quantiles
are also unique under sphericity (azph = 1), while “only” quantiles of order a < @, =.9939 are guaran-
teed to be unique in general.

5. Differentiability of the objective function

For any a < a,, the p-quantiles ,u(p,’u are minimizers of the convex objective function y — Mf,"u(,u).
If this objective function is smooth, then p-quantiles are characterized by the first-order condi-
tion VMg,u(yf,’u) = 0. Such a gradient condition will actually play a key role when deriving further
properties of p-quantiles in the next sections. This provides a strong motivation to study smoothness of
the map u — Mg’ « (). We start with the following result.
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Proposition 5.1. Let pe C and P € SDZ. Fix a €[0,1] and u € 8. Let Z be a random d-vector with
distribution P and write Z,, :== Z — y, for any u € R4 Then, for any p € R% and v € R4 \ {0}, the
directional derivative

aMgu( )= 1 Mg,u(:u"'tv)_M(/;,u(,u)
t

exists and is given by

(00 = O =LY - 'B| 27 1 - ZZ')gz
1Zl 1,112 )

E| {y-(1Zu DI Zy > O] + ¢ (12 DIV Zye <0]}(1 « ”)

NEAATATR

where 14 is the d X d identity matrix and &;, -, is as in Definition 1.

The objective function thus admits directional derivatives in all directions (hence, is continuous
over R?), but it is not necessarily differentiable. For instance, the classical spatial quantiles obtained

with p(t) =t provide
(e
au ’
=z )%

so that Mg’u fails to be differentiable at atoms of P. Clearly, it follows from Theorem 5.1 that a neces-
sary condition for this objective function to be differentiable at u is . (0)P[{u}] = 0. The next result
provides a necessary and sufficient condition and gives an expression for the corresponding gradient.

MP
aau

(1) = (vll = au’v)P[{u}] +v'E

Theorem 5.1. Let p € C and P € PX. Fix a € [0,1] and u € SV, Then, (i) u— M~ (1) is differ-
d a,u

entiable at po(€ RY) if and only if y(0)P[{uo}] + P[|Z — pol| € (0,00) \ D,] =0, in which case the
corresponding gradient is

§Z/1

VME . (p0) = v(ko) = aT (o), with v(u) := [W (l /1”)”2 T

and

- P(”Zu”)( ZZ’) }
T(“)"E“ 1201\ ) T ”)uz Bk

where Z,, := Z — p is based on a random d-vector Z with distribution P. (ii) If y+(0)P[{u}] + P[||Z -
Hll € (0,00) \ Dy] =0 for any u in an open set N, then p+— Mg’u(/,t) is continuously differentiable
on N.

It follows from this result that, in contrast with p(¢) = ¢, the power loss functions p(t) = t¥ with p > 1
make the objective function Ma « (continuously) differentiable even in the atomic case. The corre-
sponding quantiles uﬁ u are thus the solutions of the first-order equations VMy, £ () =0, which rewrite

’

7,2
B ||z,,||P-1(1d (- 1)—’3)% u
12

Z,
—pE|[11Z,17~!
1zl

ny
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In particular, spatial expectiles (p = 2) of order « in direction u are the unique (Theorem 3.3) solutions
of

2~ FIZ]) = aE[uz - un(ld L Z o n) ,,)]u

I1Z = ull?

This is compatible with the fact that the corresponding “median” (that is, the quantile of order @ = 0,
in an arbitrary direction u) is the mean vector E[Z].

We turn to second-order differentiability, which will be relevant when studying the asymptotic be-
havior of sample p-quantiles in Section 8.

Theorem 5.2. Let pe C and P € 7’5. Fix @ €[0,1], u € S, and py € RY. Assume that P[||Z — || €
[0,00)\ Dy] =0 for any p in an open neighbourhood of g (hence, in particular, that P is non-atomic
in this neighbourhood). Let further one of the following assumptions hold:

(A) y_ is concave on (0,00) and

/ ¢—(||Z—Mo||)dp(z)<oo;
R\ (o} 2= oll

(A”) Y is convex on (0,00), ¥(0) = 0, and there exists r > 0 such that

[ v = ol + 1 ap) <oo

(recall that ' is the left-derivative of yr_).
Then, for any v € R? \ {0},

m VM([t),u(,uO + tv) - VMg,u(ﬂO)
t

li = V2ME u(ko)v,
150
where the Hessian matrix VZM(’;’M(,u) is given by

VzMﬁ,u(#) = (aiang,u(/‘))i,jzl ..... d

- | (v iz - 2D 2D (1 ) B

a Z,
1Z,|l [1Z,012 1Zll ) 12,1125

1 Zu 11 Zge 1) = o1 Z,e 1)
1Z, 17

pU1Z) s
> | fa - 2
1Zl 1Zl

X{(Hau'z,,)( - z,,z;,) 7,7, +azﬂu'+z;,u}fz
1 Z,|l 1Z,.112 1Z,. 12 1Z,l H

(as in the previous results, Z,, := Z — u, where Z is a random d-vector with distribution P).

)é:Z,u +

While they may seem complex at first, the assumptions of Theorem 5.2 turn out to be simple (and
very weak) when considering specific loss functions p. For instance, for p(t) = t? with p > 1, they
only require that P € PZ is non-atomic in a neighborhood of y and is such that E[||Z — uol|P~2] < 0
when Z has distribution P. Note that this last assumption, that cannot be avoided since this expectation
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is involved in the Hessian matrix VzMg,u(y), is superfluous for p > 2. Under the assumptions of The-
orems 3.3 and 5.2, this Hessian matrix is positive definite for any & € [0,a,) U {0} and any u € Sa-1,
since this will be needed in the sequel, we prove it in Konen and Paindaveine (2022) (see Lemma S.8.2).

6. A p-version of Robert Serfling’s DOQR paradigm

In a series of papers, Robert Serfling introduced the DOQOR paradigm, that presents Depth, Outly-
ingness, Quantile and Rank functions as interrelated, yet distinct, objects of interest for multivariate
nonparametric statistics; see, e.g., Serfling (2010, 2019), Serfling and Zuo (2010) and the references
therein. While this paradigm in principle applies to any multivariate quantile concept, the primary fo-
cus when considering this paradigm in the aforementioned papers was on spatial quantiles. This makes
it natural to study the paradigm for the generalized spatial quantiles considered in this work, which
leads to introducing p-depth, p-outlyingness, p-quantile and p-rank functions. As we will see later,
some of these functions play a key role to understand the nature of extreme p-quantiles.

We start by formally defining p-quantile functions. Restricting to the interesting case for which «, >
0, Theorems 2.1 and 3.3 imply that p-quantiles exist and are unique for any @ € [0,a,) and u € S,
which allows us to adopt the following definition.

Definition 2. Let pe C and P € P’fl . Assume that there is no open interval in (0,c0) on which ¥_ is

constant or that P is not concentrated on a line. Write Bfl ={zeR%:||z|]| < r}. Then, the p-quantile
function of P is the map Q = Q' : ng — R4 that is defined through Q(au) = i, ,,.

In dimension d = 1 and p(t) = ¢, this provides the (centered-outward version of the) usual quantile
function. This standard quantile function, that is defined on Bll = (—1,1), may of course fail to be
continuous (it is discontinuous for empirical probability measures). The multivariate case d > 2 is
different.

Proposition 6.1. Let p € C and P € PY, with d > 2. Assume that there is no open interval in (0, o)
on which _ is constant or that P is not concentrated on a line. Then, the quantile function Q = Q’;, :
ng — R? is continuous.

Following Serfling (2010), we associate with the p-quantile function Q corresponding concepts of
rank function R, depth function D and outlyingness function O. We start with the rank function.

Definition 3. Let p € C and assume that P € Pg is not a Dirac probability measure. Then, the rank

function of P is the map R = R’;J :R? — R? defined through R(u) = (T(11))~"v(u), where the d x d
matrix 7(u) and the d-vector v(u) were introduced in Theorem 5.1.

In the setup of this definition, T(y) is positive definite, hence invertible, for any u € R? (for the
sake of completeness, we prove this in Konen and Paindaveine (2022); see Lemma S.6.1). The natural
assumptions under which to study the rank function are those of Theorem 5.1 complemented by con-
ditions ensuring uniqueness of p-quantiles (which provides the assumptions in Theorem 6.1 below).
Under these assumptions, u +— Mg,u( 1) is continuously differentiable on R?, with gradient

VMG (1) = T(W)(R(w) = au),

so that u = po,, = Q(au) (for @ < @) if and only if R(u) = au (recall that, under the assumptions
considered, quantiles of order « € [0,a,) in direction u € S9! are indeed uniquely determined by
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the gradient condition VMg,u(,u) = 0). This provides a clear interpretation of the rank function as the
inverse map of the quantile function. We have the following result.

Theorem 6.1. Let pe C and P € Ps. Assume that there is no open interval in (0,00) on which y_ is
constant or that P is not concentrated on a line. Assume further that Y, (0)P[{u}]+ P[||Z — u|| € (0,00)\
D,] =0 forany pe R9. Write Zp= Q’;,(B(‘fp ). Then, Q = Q";, : Bffp — Zp is a homeomorphism, with

: 0 . d e 0
inverse R, 1z, Zy— Baﬁ (the restriction of Rp to Z).

If 1 — 12/ p(t) is concave on (0, c0), then we are in the important particular case ap =1 (Theorem 3.1),
for which the quantile function Q is defined on the open unit ball 8¢ = B;’. We then have the following
result.

Theorem 6.2. Let p € C be such that t — t>/p(t) is concave on (0,00). Assume that P € P'j is not

concentrated on a line and that Y, (0)P[{u}] + P[||Z — ul| € (0,00) \ D,] =0 for any p € RY. Then,
Zp = Q’;(Bd) =R, so that Q = Q’;, : 84 - RY is a homeomorphism, with inverse R = R'; ‘R4 —
B4,

This result shows in particular that for any power loss function p(z) = P with p € [1,2], any non-
atomic probability measure that is not concentrated on a line provides p-quantiles that span the whole
Euclidean space R¢ (the non-atomicity condition is actually needed for p = 1 only), whereas the re-
sult remains silent for the case p > 2. This will have important implications when studying extreme
quantiles in Section 7.

Let us turn to depth and outlyingness functions. Clearly, central or “deep” quantiles are indexed by
a small order « € [0,1), whereas exterior or “outlying” ones are rather indexed by a large order a. A
natural outlyingness measure for u € R is then the order « of the quantile Hau for which u = g u,
that is, the oultlyingness of yu is ||R(u)||. Any decreasing function of this outlyingness measure is then
a natural depth measure. We adopt the following definition.

Definition 4. Let pe C and P € Pg . Then, (i) the outlyingness function of P is the map O = 0‘;,
from R to [0, 1] defined through O(u) = min(||R()]|, 1), where R = R‘; is the rank function of P. (ii)
The depth function of P is the map D = D‘;, from R4 to [0, 1] defined through D(u) = 1 — O(p).

The deepest location, the only one that receives the maximal depth value one, is the p-median ,ug "

of P (the direction u plays no role for & = 0). For any direction u € S?~!, depth decreases along the
quantile curves { ,uﬁ,u :a €[0,a,)} originating from the p-median. For p(f) = ¢, this depth reduces to
the celebrated spatial depth; see, e.g., Vardi and Zhang (2000). The depth that are associated with our
p-quantiles extend this classical depth; in particular, an “expectile spatial depth”, whose deepest point
is the mean vector of P, is obtained for p(r) = r%. For any depth function, the depth regions collecting
locations with depth exceeding a given threshold are of interest. The depth regions

RO =Ry, ={ueR!: Dp(u) > a}

are nested “centrality regions”; see, e.g., Mosler (2002) and the references therein. The corresponding
depth contours, i.e. the boundaries dR%, of these depth regions, collect the p-quantiles associated with
a fixed order a.

For each combination of « € {.25,.50,.75} and p € {1,1.5,2,4}, we plot in Figure 2 the depth con-
tours of order @, based on p(t) = tP, for the empirical probability measure P,, of six random samples of



1924 D. Konen and D. Paindaveine

size n = 200 (these were obtained from a uniform grid of 50 directions on the unit circle S9-1 and each
quantile was evaluated through the descent method involving the backtracking line search in Section 9.2
of Boyd and Vandenberghe, 2004; R code is available on request). These samples were generated from
(i) the bivariate standard normal distribution, (ii)—(iii) the standard ¢-distributions with v =4 and v = 1
degrees of freedom, (iv) the centered bivariate normal distribution with covariance matrix

21
>=()
(v) the bivariate distribution whose marginals are independent exponential distributions with mean
one, (vi) the standard skew-¢ distribution with 4 degrees of freedom and slant vector @ = (10, 10); see
Azzalini (2014). Figure 2 shows that larger values of p provide contours that are more concentrated
about the corresponding median; the only exception is the Cauchy distribution, for which these large-p
contours are the most spread ones due to their lack of robustness with respect to extreme observations.
As expected, the various medians differ when the underlying distribution is skewed, as it is the case

in (v)—(vi).

7. Extreme quantiles

Recently, Girard and Stupfler (2015, 2017) studied the spatial quantiles from Chaudhuri (1996) with
a focus on extreme quantiles, that is, those associated with an order « that is close to one. In partic-
ular, Girard and Stupfler (2017) derived striking results on extreme quantiles showing that (i) spatial
quantiles exit any compact set as @ — 1 and that (ii) they do so in a direction that eventually coincides
with the direction u# in which quantiles are computed. Surprisingly, this typically also happens when
the underlying distribution P is compactly supported. As shown in Paindaveine and Virta (2021), the
result even holds under atomic probability measures P, so that this unexpected behavior also shows in
the sample case (provided that not all observations lie on a line of RY).

Of course, it is natural to ask whether or not this behavior of extreme quantiles shows for other p-
quantiles. We tackle this question in the present section. Our first result is the following.

Theorem 7.1. Let p € C be such that t — t*/p(t) is concave on (0,c0). Assume that P € Ps is not
concentrated on a line and that y(0)P[{u}] + P[||Z — u|| € (0,00) \ D,] =0 for any u € RY. Let (ay)
be a sequence in [0,1) that converges to one and (u,) be a sequence in S¥~'. Then, (i) || 1t
(ii) if u, — u, then yﬁn’un/ﬂlugmun || = u.

ot || = 007

This result shows that all p-quantiles for which a, = 1, hence in particular those associated
with p(t) = tP for p € (1,2], will show the behavior of the extreme quantiles from Chaudhuri (1996)
described above. Note that for p € (1,2], we have ¢,(0) = 0 and D,, = (0,00), so that Theorem 7.1
does not require that P is non-atomic, hence also allows for empirical distributions. We illustrate this
in Figure 3 for P = P,, the empirical distribution of a random sample of size n = 10 drawn from the
bivariate standard normal distribution. For p(t) = tP, with p € {1,1.5,2,2.25,3,4}, the figure shows the
p-quantiles ,uﬁ,u, for @ €[0,1) and u = (cos(n£/6),sin(x€/6)), with £ = 0,1,2,3. Clearly, for the values
of p that are covered by Theorem 7.1, namely p = 1,1.5,2, quantiles exit any compact set and do so
eventually in the corresponding direction u. In contrast, the figure suggests that, for p > 2, the Eu-
clidean norm of extreme p-quantiles remains bounded. This is indeed the case, as the following result
shows.
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Figure 2. For p(t) = tP with p = 1,1.5,2,4, p-depth contours of order @ = .25,.50,.75 for random samples of
size n = 200 drawn from six bivariate distributions; see Section 6 for details.
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Figure 3. For the loss functions p(r) = P with p = 1,1.5,2,2.25,3,4, the plots show the p-quantiles yg’ u
for @ € [0,1) and u = (cos(n£/6),sin(nf/6)), with £ = 0, 1,2,3; the underlying probability measure P is the empiri-
cal distribution P, associated with a random sample of size n = 10 from the bivariate standard normal distribution.
Dashed lines are showing the halflines with the corresponding directions u originating from the median ,u‘g w



Multivariate p-quantiles 1927

Theorem 7.2. Let p € C such that p(t)/t* — o as t — co. Assume that P € SDZ (a) is not concentrated
on a line of R? and (b) satisfies fRd p(|1z]]) dP(z) < oo (if p(t)/ 13 is bounded away from 0 as t — oo, then

Condition (b) is superfluous). Then, there exists a bounded set S € R? such that, for any a € [0,1) and
u € 841 all p-quantiles of order a in direction u belong to S (moreover, D(u) = 0 for any u € R%\ S).

Under the conditions of this result, all p-quantiles of order « in direction u# may fail to be unique
for @ € (a,, 1), which is the reason why Theorem 7.2 states that all p-quantiles of order « in direction u
belong to S. The result implies that for p(t) = t” with p > 3, extreme p-quantiles are bounded as
soon as P € PZ is not concentrated on a line and that, for p(¢) = P with p € (2,3), the same holds
provided that P further has finite moments of order p rather than finite moments of order p — 1 only
(we conjecture that this stronger moment assumption for p € (2,3) is actually superfluous, but we were
not able to avoid this assumption when proving Theorem 7.2). Note that Theorem 7.2 confirms in
particular that, in Figure 3, the p-quantiles associated with p > 2 form a bounded set.

As mentioned in Section 2, p-quantiles in principle are not defined for @ = 1, but of course Defi-
nition 1 may still be adopted to define possible quantiles of order @ = 1. We then have the following
existence result.

Proposition 7.1. Let the assumptions of Theorem 7.2 hold. Then, for any u € S~ there exists a
quantile ,u’l) w

In contrast, it directly follows from Theorem 6.2 that, under the assumptions of Theorem 7.1, there is
no u € S4~! for which a quantile ,uf , exists (this result is already known for p(7) = 7; see Proposition 2.1
in Girard and Stupfler, 2017). |

The following corollary of Theorem 7.2 extends in some sense the continuity of the quantile function
(Proposition 6.1) to the framework where quantiles of order @ = 1 exist.

Corollary 7.1. Let the assumptions of Theorem 7.2 hold. Let (&) be a sequence in [0,1) that con-
verges to a € [0,1] and (u,) be a sequence in S~ that converges to u(e S="). Fix an arbitrary
sequence (,ugn,un) of p-quantiles. Then, (i) any converging subsequence of (uﬁn’un) converges to a
p-quantile yﬁu (ii) if,uf,,u is unique, then yﬁn’un — ,uﬁ,u.

These results confirm that the quantile functions—hence also the rank, depth and outlyingness
functions—associated with the loss functions p covered by Theorem 7.1 and Theorem 7.2 are very
different in nature. In particular, in the framework of Theorem 7.2, the depth of u will be exactly
zero if ||u|| is large enough. Some recent research efforts in the statistical depth literature aimed at
defining depth functions—or at modifying existing depth functions—that do not show this “vanishing
property”; see, e.g., Francisci, Nieto-Reyes and Agostinelli (2019) and the many references therein.
This vanishing property is indeed undesirable in some inferential applications, such as, e.g., supervised
classification based on the max-depth approach; see Francisci, Nieto-Reyes and Agostinelli (2019),
Ghosh and Chaudhuri (2005), and Li, Cuesta-Albertos and Liu (2012). Quite nicely, the p-depths asso-
ciated with loss functions p compatible with Theorem 7.1 will not exhibit this vanishing property. Yet,
as in Girard and Stupfler (2017), some might find it shocking that the corresponding p-quantiles span
the whole Euclidean space even when P is compactly supported. This can be avoided by adopting a
loss function p meeting the conditions of Theorem 7.2. As a conclusion, while Theorems 7.1-7.2 dis-
criminate between two fundamentally different classes of DOQR functions, none of these two worlds
is “the good one” and the choice of p, hence the choice among both worlds, should be performed based
on the inferential problem at hand.
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8. Asymptotics for point estimation

We now consider estimation of the p-quantiles 1, ,, = o ,,(P) based on a random sample Zi,...,Z,
from P. As usual, the natural estimator is obtained by replacing P with the corresponding empirical
probability measure. In this section, we study the asymptotic properties of the resulting sample p-
quantiles. We start with the following consistency result.

Theorem 8.1. Fix p € C and assume that there is no open interval in (0,00) on which y_ is constant or
that P € Pg is not concentrated on a line. Denote as Py, the empirical probability measure associated

with a random sample of size n from P. Fix a € [0,a,) U {0}, u € 891 and write ﬁf),’u = 1ty u(Pp).
Then,

flau = Mo

almost surely as n — oo,

The sample spatial median, that is, the median obtained with the loss function p(7) = ¢, satisfies
a classical asymptotic normality result (see, e.g., Mottonen, Nordhausen and Oja (2010)), which, as
usual, allows one to perform hypothesis testing or to build confidence zones for the population spatial
median. This is an important advantage over competing multivariate medians, that exhibit so compli-
cated asymptotic distributions that it is not possible to base inference on them (this is in particular the
case for the celebrated Tukey median; see Massé (2002)). Quite nicely, all sample p-quantiles enjoy

a standard asymptotic normality result, relying on a neat Bahadur representation result (that typically
may itself have further applications, such as the derivation of LIL results). We have the following result.

Theorem 8.2. Let pe C and P € SDZ. Assume that there is no open interval in (0,00) on which y_ is
constant or that P is not concentrated on a line. Fix o € [0,a,) U {0} and u € S91. Assume that

[, v 0= ol ap(o) <o

and that P[||Z — || € [0,00)\ D] = 0 for any p in an open neighborhood of,uﬁ,u (hence, in particular,
that P is non-atomic in this neighborhood). Let further one of the following assumptions hold:

(A) ¥_ is concave on (0,c0) and

/ ) tﬁ—(llz—#ﬁ,ull)dp(z)<oo;
Rd\{ﬂfr,u} ||Z_/’1K()t,u||

(A”) y_ is convex on (0,00), ¥ (0) = 0, and there exists r > 0 such that

/ U (12— 1l + 1) dP(2) < o0
]Rd

(recall that ! is the left-derivative of y_).

Let ,ﬁﬁ,u = pf,,u(Pn), where Py, is the empirical probability measure associated with a random sam-
ple Zy,...,Z, of size n from P. Then,

. IR
Vil = o) = =A™ D VHE ((Zi - 1 (N Zi = e ull € D] + 0p(1)
i=1

B Na(0.V)
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as n — oo, where we let V:= A'BA™!, with A := VzMg’u(,u‘;’u) and B := E((VHY (Z1 — i)
(VHe (Z1 = Ho )TN Z1 = o ]l € Dp]l.

We stress that this result requires very mild assumptions only. In particular, for the power loss func-
tions p(f) = tP with p > 2, it only requires that P is non-atomic in a neighborhood of s, ,, and admits
finite moments of order 2(p — 1) (for the median obtained with p = 2, namely the mean, this is the usual
finite second-order moment assumption, and the result only restate the usual multivariate central limit
theorem, but for the mild local non-atomicity assumption). For p € [1,2), Theorem 8.2 further requires
that E[||Z — ,u WP 2] exists and is finite (note that, for the spatial median (p = 1), Méttonen, Nord-
hausen and Oja (2010) derives the result under assumptions that are more stringent, since it is imposed
there that E[||Z — ,uo’u ||7"] exists and is finite for any r € [0,2). Invertibility of A is always guaranteed;
see Lemma S.8.2 in Konen and Paindaveine (2022).

To illustrate the result, we focus on p-medians (@ = 0) under sphericity. If P is spherically symmetric
about the origin of R?, then all p-medians u'g,u are equal to each other (they coincide with the origin

of R?; see Theorem 4.1), which makes it valid to compare the asymptotic variances of sample p-
medians. We consider the power loss functions p(7) = P with p > 1, for which

VHS L (O(VHE () Lx € Dy) = P20 D 22

lIx I|2

and
VZHL W (0)[x € Dp] = ||x[1P Z{Pld +plp - )” Hz}fxo,

see Lemma S.5.1 in Konen and Paindaveine (2022). If P is spherically symmetric about the origin
of R?, then || Z|| and Z/||Z|| are mutually independent, with Z/||Z|| uniformly distributed over S9!,
which yields

pld+p-2)

2
B:%E[||Z||2(”‘l)]ld and A =5

E[I1ZIIP~¢z.011
Thus, the asymptotic covariance matrix V is given by

dE[||Z|I*P~"]
(d+p-27EllZ]IP~ 2])2

V=A"'BAT = =:v,(P)ly. )
For p = 1, this reduces to the asymptotic covariance matrix of the spatial median (see Mottonen, Nord-
hausen and Oja (2010)), whereas, for p = 2, this provides the asymptotic covariance matrix V =E[ZZ’]
of the sample mean. Let us consider various spherical distributions. If P = P! is the d-variate ¢-
distribution with v degrees of freedom, then ||Z||?/d is Fisher—Snedecor with d and v degrees of
freedom, which yields

d+2p-2 -2p+2

D(LE2) (S22 (2) M (=222
d —p+2
[2(S2)r2(XL*2)

®)

vp(P)) =

for v > 2(p — 1), whereas if P = P} is the d-variate power-exponential distribution with tail parame-
ter (> 0), then

20T
vp(PS) = T ©)
T4
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Figure 4. (Left:) For p € {1,1.5,2,4}, plots of v +— v, (PL) for v =3,5,7,...,21, where v, (P}) (see (8)) is the factor
characterizing the asymptotic covariance matrix, at the bivariate ¢-distribution with v degrees of freedom, of the
sample p-median based on p(f) = tP. Dotted lines are estimates of v), (P) computed from M = 10,000 random
samples of size n = 200. For p = 4, the dashed line provides the same result for random samples of size n = 1,000.
(Right:) Still for p € {1,1.5,2,4}, plots of n > vp(Py) for n.=8,1.2,1.6,...,4, where vp(Py) (see (9)) is the
factor characterizing the asymptotic covariance matrix, at the bivariate power-exponential distribution with tail
parameter 7, of the sample p-median based on p(¢) = tP. Dotted lines are estimates of vp(P,eI) computed from
M = 10,000 random samples of size n = 200; see Section 8§ for details.

the power-exponential distribution with tail parameter 7 refers to the distribution admitting the density
2 f7(2) 1= cay exp(—||z||?7/2) with respect to the Lebesgue measure over R? (ca,;; is a normal-
izing constant). The asymptotic variance at the standard d-variate normal distribution is obtained by
taking v — oo in (8) or, alternatively, by taking 7 =1 in (9).

The factors v, (P},) and vp(Py), that completely characterize the asymptotic covariance matrix of
the sample p-median associated with p(¢) = t” under the corresponding distributions, are plotted in
Figure 4. For heavy tails, the medians associated with a small value of p dominate their competitors,
whereas the opposite happens for light tails (lighter-than-normal tails are obtained for n > 1 in the
power-exponential case). Note that the sample p-median associated with p(z) = tP is the maximum
likelihood estimator of the symmetry center in the location family generated by power-exponential dis-
tributions with parameter n = p/2, which explains that large values of p (p > 2) will behave well under
lighter-than-normal tails. All in all, the median associated with p = 1.5 seems to provide a nice balance
between the spatial median and sample mean associated with p = 1 and p = 2, respectively. While these
considerations are specific to the spherical case, the efficiency of p-medians in the elliptical case could
be studied following the analysis in Magyar and Tyler (2011), where the focus was exclusively on the
spatial median (p = 1).

To check correctness of Theorem 8.2, we performed a Monte-Carlo study involving the bivariate
(d = 2) t-distributions with v degrees of freedom with v € {3,5,7,...,21}, and the bivariate power-
exponential distributions with parameter n € {.8,1.2,1.6,...,4}. For each of these distributions, we
generated M = 10,000 random samples of size n = 200 and evaluated the p-medians ﬁg”u = ﬁ‘g’u(m)
associated with p(t) = tP for p € {1,1.5,2,4} in each sample m = 1,..., M. In Figure 4, we report the
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quantities

>

M
1 . . . PN
=37 20 0= ) 0 0= 6,
m=1
with
| M
/‘_[g,u = M Z ﬁ'g,u(m)
m=1
These quantities estimate the upper-left entry in the corresponding asymptotic covariance matrix V,
namely the corresponding factor v, (P) in (7). Clearly, the results are in perfect agreement with Theo-
rem 8.2. It is only for p = 4 and ¢-distributions that some deviation from the asymptotic theory is seen,
but this deviation vanishes for larger sample sizes (for p = 4 and z-distributions, Figure 4 also provides
the results for sample size n = 1,000).
Obviously, using Theorem 8.2 to conduct inference based on p-quantiles (i.e., performing hypothesis

testing or building confidence zones) requires estimating consistently the corresponding asymptotic
covariance matrix V. A natural estimator is of course V,, = A, B, A;!, with

A

1< R R
Ani= = ) VPHG (Zi = o UIZi = flg.ull € D)
i=1

and
1 n
Bn = Z Z(VHg,u(Zi - ﬁ/@i,u))(VHg,u(Zi - laa,u)),l[[”Zi - ﬁg,u” € Dp]
i=1

One may proceed as in Haberman (1989) to establish that V,, converges in probability to V as the sample
size n diverges to infinity.

9. Perspectives for future research

In this paper, we investigated the properties of the spatial p-quantiles in Definition 1. While this ar-
guably settles the probabilistic study of these quantiles in the setup considered, our work naturally calls
for an extension to more general setups and for applications of these quantiles. As mentioned in the
introduction, the spatial quantiles from Chaudhuri (1996) are flexible objects that can cope with more
exotic types of data, such as functional data. This is associated with the fact that these quantiles are
defined as minimizers of an objective function (see (1)) that involves norms and inner products only,
hence that also makes sense in Hilbert spaces. This, however, is also the case for the objective function
defining p-quantiles in (2), so that it would be natural to investigate the properties of p-quantiles for
random variables taking values in Hilbert spaces and to compare their properties with those of the
classical spatial quantiles; we refer to Cardot, Cénac and Godichon-Baggioni (2017), Cardot, Cénac
and Zitt (2013) and Chakraborty and Chaudhuri (2014) for results on the spatial median and spatial
quantiles in infinite-dimensional spaces.

Another direction for future research is related to inferential applications. As already mentioned in
the introduction, the spatial quantiles from Chaudhuri (1996) and the companion spatial depth have
been much used in a quantile regression framework (Chakraborty (2003), Cheng and De Gooijer
(2007), Chowdhury and Chaudhuri (2019)), and it would be of interest to consider p-quantiles in this
setup. In particular, this would provide a spatial concept of multiple-output expectile regression, which
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would be quite natural since expectiles were originally introduced, in Newey and Powell (1987), as
an Lp-alternative to the traditional L;-concept of quantile regression (Koenker and Bassett (1978)).
Another natural venue for application of p-quantiles and p-depth is supervised classification. In the
last decade, supervised classification based on depth, where a new observation is classified into the
population with respect to which it is deepest, has met much success in the literature; see, e.g., Li,
Cuesta-Albertos and Liu (2012), Pokotylo, Mozharovskyi and Dyckerhoff (2019), and the references
therein. In this framework, L,-depths provide natural tools to implement this max-depth approach
where p might be chosen through cross-validation. Such applications, or the application of p-quantiles
in risk assessment, deserve a full-fledged paper, hence are left for future work.
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