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We consider the fundamental problem of estimating the location of a
d-variate probability measure under an Lp loss function. The naive estimator,
that minimizes the usual empirical Lp risk, has a known asymptotic behavior
but suffers from several deficiencies for p �= 2, the most important one being
the lack of equivariance under general affine transformations. In this work, we

introduce a collection of Lp location estimators μ̂
p,�
n that minimize the size

of suitable �-dimensional data-based simplices. For � = 1, these estimators
reduce to the naive ones, whereas, for � = d, they are equivariant under affine
transformations. Irrespective of �, these estimators reduce to the sample mean
for p = 2, whereas for p = 1, the estimators provide the well-known spatial
median and Oja median for � = 1 and � = d, respectively. Under very mild

assumptions, we derive an explicit Bahadur representation result for μ̂
p,�
n and

establish asymptotic normality. We prove that, quite remarkably, the asymp-
totic behavior of the estimators does not depend on � under spherical sym-
metry, so that the affine equivariance for � = d is achieved at no cost in terms
of efficiency. To allow for large sample size n and/or large dimension d, we
introduce a version of our estimators relying on incomplete U-statistics. Un-

der a centro-symmetry assumption, we also define companion tests φ
p,�
n for

the problem of testing the null hypothesis that the location μ of the under-
lying probability measure coincides with a given location μ0. For any p,
affine invariance is achieved for � = d. For any � and p, we derive explicit
expressions for the asymptotic power of these tests under contiguous local
alternatives, which reveals that asymptotic relative efficiencies with respect
to traditional parametric Gaussian procedures for hypothesis testing coincide
with those obtained for point estimation. We illustrate finite-sample relevance
of our asymptotic results through Monte Carlo exercises and also treat a real
data example.

1. Introduction. Both for univariate and multivariate probability measures, location
functionals are of high interest and most often are the first ones that are considered to describe
a distribution. For probability measures P over the real line, classical location functionals μP

are the Lp ones defined as

(1.1) μ
p
P := arg min

μ∈R
E

[|X − μ|p]
,

where X has distribution P (existence and uniqueness issues are left aside in this introduction
but they will be carefully discussed in the sequel). These are thus minimizing the risk associ-
ated with the Lp loss function Lp(θ,μ) = |θ − μ|p . The median and the mean are obtained
for p = 1 and p = 2, respectively. When a random sample from P is available, μ

p
P can be

estimated by μ̂
p
n := arg minμ∈R 1

n

∑n
i=1 |Xi − μ|p . If P admits the density (in this work, all
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densities will be with respect to the Lebesgue measure)

(1.2) x �→ cp

σ
exp

(
−1

2

∣∣∣∣x − μ

σ

∣∣∣∣p)
,

where μ ∈ R is a location parameter, σ > 0 is a scale parameter and cp is a normalizing
constant, then μ̂

p
n is the maximum likelihood estimator (MLE) for μ. Under the assumption

that P is symmetric about μ (in the sense that any Borel set B has the same P -probability
as its reflection about μ), then μ

p
P = μ for any p, which provides a framework where the

estimators μ̂
p
n can be compared in a sensible way; this is the case in particular when P

admits the density in (1.2).
For probability measures P over Rd , it is natural to generalize (1.1) into

(1.3) μ
p
P := arg min

μ∈Rd

E
[‖X − μ‖p]

,

where X has distribution P and ‖z‖ = √
z′z is the Euclidean norm of the d-vector z. For

p = 1 and p = 2, this provides the spatial (or geometric) median of P and the mean vector
E[X] of P , respectively; we refer to Brown (1983) or Möttönen, Nordhausen and Oja (2010)
for the spatial median, that has been much used recently in other contexts, too (see, e.g.,
Cardot, Cénac and Zitt (2013), Minsker (2015), and Cardot, Cénac and Godichon-Baggioni
(2017)). The asymptotic behavior of the corresponding estimator μ̂

p
n (that is still obtained

by replacing expectations with sample averages in (1.3)) has been investigated in Konen and
Paindaveine (2022). As natural as it is, the approach suffers from several deficiencies. First
and foremost, for p �= 2, the functional μ

p
P and its estimator μ̂

p
n are not affine-equivariant:

indeed, denoting as PA,b the distribution of AX + b when X has distribution P , it is not so
that μ

p
PA,b

= Aμ
p
P +b for any d ×d invertible matrix A and any d-vector b, and similarly, μ̂p

n

does not satisfy μ̂
p
n (AX1 + b, . . . ,AXn + b) = Aμ̂

p
n(X1, . . . ,Xn) + b for any such A and b.

Affine equivariance is a key property, both at the population level (where it sometimes even
defines what a multivariate location functional is; see, e.g., Definition 3.1 in Oja (2010)) and
at the sample level (where affine equivariance is often regarded as a fundamental requirement
for location estimators; see, among many others, Davies (1987), Donoho and Gasko (1992),
Lopuhaä (1999), Zuo (2003)). Another issue is that if P admits the elliptical extension of the
power-exponential density in (1.2), namely

(1.4) x �→ cp,d√
det�

exp
(
−1

2
‖x − μ‖p

�

)
,

where ‖x − μ‖� =
√

(x − μ)′�−1(x − μ) is the Mahalanobis distance between x and μ in

the metric associated with the symmetric positive definite matrix �, then μ̂
p
n is the MLE for μ

only in the spherical submodel obtained by imposing that � is isotropic, that is, proportional
to the d-dimensional identity matrix Id . In a nonspherical submodel associated with � = λV0
for some λ > 0 (with V0 a fixed matrix with trace d that is different from Id ), the estimator μ̂

p
n

not only fails to be the MLE for μ but it is not even asymptotically equivalent to this MLE,
which has very negative consequences in terms of asymptotic efficiency: the less isotropic
V0 is, the poorer the corresponding asymptotic performances of μ̂

p
n are (for p = 1, this was

shown in Niinimaa and Oja (1995) and Magyar and Tyler (2011)).
In this work, we will consider alternative multivariate extensions of the objective function

in (1.1), that are based on random simplices. Denote as Simpl(x1, . . . , x�, x�+1) the simplex
with vertices x1, . . . , x�, x�+1 ∈ R

d (that is, the convex hull of these � + 1 points in R
d ), and

recall that its �-measure (length for � = 1, area for � = 2, etc.) is given by

m�

(
Simpl(x1, . . . , x�, x�+1)

)
= 1

�!
√

det
(
(x1 − x�+1 . . . x� − x�+1)′(x1 − x�+1 . . . x� − x�+1)

)
.
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With this notation, we generalize (1.1) into

(1.5) μ
p,�
P := arg min

μ∈Rd

E
[
m

p
�

(
Simpl(X1, . . . ,X�,μ)

)]
,

where X1, . . . ,X� form a random sample from P ; here, p ≥ 1, which will ensure that the ob-
jective function above is convex in μ, and � ∈ {1, . . . , d}. Clearly, for � = 1, these functionals
reduce to those in (1.3), that fail to be affine-equivariant for p �= 2. In contrast, for � = d ,
affine equivariance is achieved. In the median case p = 1, the functional μ

p,d
P obtained for

� = d is the Oja median; see, for example, Oja (1983), Hettmansperger, Möttönen and Oja
(1997), or Ollila, Oja and Hettmansperger (2002). As we will show, for p = 2, we have that
μ

p,�
P concides with the mean vector of P , irrespective of �. These considerations extend to

the sample case, in which a random sample X1, . . . ,Xn from P allows us to consider the
estimator

(1.6) μ̂p,�
n := arg min

μ∈Rd

1( n
�

) ∑
1≤i1<···<i�≤n

m
p
�

(
Simpl(Xi1, . . . ,Xi�,μ)

)
(again, existence and uniqueness will be discussed later). For any fixed p and �, we will
study the asymptotic behavior of these estimators. More precisely, under very mild assump-
tions (that do not even require absolute continuity of P with respect to the Lebesgue mea-
sure), we will derive Bahadur representation results and prove asymptotic normality. When
observations are generated from a distribution that is spherically symmetric, our results will
reveal that, unexpectedly, the asymptotic behavior of μ̂

p,�
n does not depend on �. As a direct

corollary, when observations are randomly sampled from (1.4) with � = λId for some λ > 0,
the estimators μ̂

p,�
n , � = 2, . . . , d , inherit the asymptotic optimality properties of the MLE

μ̂
p,1
n . From affine equivariance, however, μ̂

p,d
n will enjoy the same optimality properties in

the general elliptical case where � is totally arbitrary, whereas, as mentioned above, non-
isotropic values of � will negatively impact the asymptotic performances of competitors that
are not affine-equivariant. Affine equivariance is achieved for � = d only, but we still consider
all possible � ∈ {1, . . . , d} in (1.5)–(1.6), not only because this offers a unified framework al-
lowing us to investigate the properties of μ̂

p,1
n and μ̂

p,d
n simultaneously, but also because

using a value of � that is slightly smaller than d may be advantageous on a computational
point of view while losing barely anything in terms of efficiency.

Besides point estimation, we will also consider the problem of testing the null hypothesis
that the underlying location μ of the probability measure P at hand is equal to a given value
μ0; to identify unambiguously μ, we will do so under the assumption that the distribution is
centro-symmetric about μ. In this framework, we define a family of companion tests φ

p,�
n to

the location estimators in (1.6). Parallel to the estimation problem, these tests, for p = 2 and
irrespective of �, reduce to the parametric Gaussian procedure for the considered problem,
here the classical Hotelling T 2 test. For p = 1, the proposed tests reduce to the spatial sign
test from Möttönen and Oja (1995) and to the affine-invariant Oja test from Hettmansperger,
Nyblom and Oja (1994) for � = 1 and � = d , respectively. For � = d , our tests are actually
affine-invariant irrespective of p. For any fixed � and p, we derive the asymptotic distribu-
tion of these tests both under the null hypothesis and under sequences of contiguous alter-
natives. We obtain explicit expressions for the corresponding asymptotic local powers in the
spherical case and, for � = d , also in the elliptical case. Our asymptotic results reveal that,
under sphericity, the asymptotic relative efficiencies of the proposed tests with respect to the
Hotelling test are the same as those the proposed estimators show relative to the sample mean
(for � = d , this extends to the elliptical case from affine invariance). This supports the claim
that these tests may be considered the companion tests to the estimators in (1.6).
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The outline of the paper is as follows. In Section 2, we focus on point estimation. In Sec-
tion 2.1, we study the structural properties (finiteness, convexity, coercivity) of the objective
functions in (1.5)–(1.6), and then discuss existence and unicity of the resulting location func-
tionals μ

p,�
P and estimators μ̂

p,�
n . In Section 2.2, we state the exact equivariance properties

of these objects and we show that, for p = 2, μ
p,�
P and μ̂

p,�
n reduce to the population mean

and sample mean irrespective of �. In Section 2.3, we study the asymptotic properties of the
estimators μ̂

p,�
n . In particular, we show that these estimators satisfy a Bahadur representa-

tion result and we provide a consistent estimator for the covariance matrix in the resulting
Gaussian asymptotic distribution. Since our estimators may be computationally demanding
for large sample sizes n and/or large dimensions d , we define in Section 2.4 more practical
versions of these estimators based on incomplete U-statistics. In Section 3, we turn to hypoth-
esis testing. The proposed tests are based on “(p, �)-scores”, associated with the gradient of
the simplex-based objective functions above. In Section 3.1, we introduce these scores and
present their main properties, whereas, in Section 3.2, we define the proposed tests and inves-
tigate their asymptotic behavior. In Section 4, we illustrate our results through Monte Carlo
exercises, both for point estimation (Section 4.1) and for hypothesis testing (Section 4.2), and
we also treat a real data example (Section 4.3). In Section 5, we provide some final comments.
All proofs are collected in the Supplementary Material Dürre and Paindaveine (2022).

For the sake of convenience, we introduce here some notation. For a symmetric posi-
tive definite d × d matrix �, we will denote as �1/2 the unique symmetric positive definite
matrix such that � = (�1/2)2, and we will write �−1/2 = (�1/2)−1. With this notation,
‖x − y‖� := ‖�−1/2(x − y)‖ is the Mahalanobis distance between the d-vectors x, y in
the metric associated with �. Throughout, expectations of the form EP [g(X1, . . . ,Xr)] as-
sume that the involved random vectors form a random sample from P . If the collection B of
values of (x1, . . . , xr) for which g(x1, . . . , xr) is undefined is nonempty (typically, because
(x1, . . . , xr) ∈ B leads to dividing by zero in g(x1, . . . , xr)), then EP [g(X1, . . . ,Xr)] tac-
itly stands for EP [g(X1, . . . ,Xr)I[(X1, . . . ,Xr) /∈ B]], where I[C] is the indicator function
associated with condition C.

2. Simplex-based Lp location functionals.

2.1. Definition, existence and uniqueness. Let P be a probability measure over Rd and
consider the objective function

(2.1) O
p,�
P (μ) := EP

[
m

p
�

(
Simpl(X1, . . . ,X�,μ)

)]
.

If observations x1, . . . , xn in R
d are available, then the corresponding sample objective func-

tion is

(2.2) Op,�
n (μ;x1, . . . , xn) := 1( n

�

) ∑
1≤i1<···<i�≤n

m
p
�

(
Simpl(xi1, . . . , xi�,μ)

)
(tacitly, we obviously assume throughout that n ≥ �). While the sample objective function
is always well defined for any μ ∈ R

d , this is not the case of the population version (2.1),
that requires suitable moment conditions. We have the following result (where we say that P

admits finite moments of order q(> 0) if and only if
∫
Rd ‖x‖q dP (x) exists and is finite).

THEOREM 2.1. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}. Let P be
a probability measure over Rd that admits finite moments of order p. Then, O

p,�
P (μ) is well

defined for any μ ∈ R
d .
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Both the population and sample objective functions above satisfy convexity and coercivity
properties that will play a key role in the sequel. Recall that a map g : Rd → R is said to be
coercive if and only if (g(μk)) → ∞ for any sequence (μk) in R

d such that (‖μk‖) → ∞.
We then have the following result.

THEOREM 2.2. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}. Let P be
a probability measure over Rd that admits finite moments of order p. Then:

(ia) the mapping μ �→ O
p,�
P (μ) is convex over Rd ;

(iia) if no (� − 1)-dimensional hyperplane of R
d has P -probability one, then μ �→

O
p,�
P (μ) is coercive.

Fix x1, . . . , xn in R
d . Then:

(ib) the mapping μ �→ O
p,�
n (μ;x1, . . . , xn) is convex over Rd ;

(iib) if x1, . . . , xn are not contained in an (� − 1)-dimensional hyperplane of Rd , then
μ �→ O

p,�
n (μ;x1, . . . , xn) is coercive.

As explained in the Introduction, suitable simplex-based Lp location functionals1 are ob-
tained by minimizing the objective functions above, which leads to considering

μ
p,�
P := arg min

μ∈Rd

O
p,�
P (μ) and μp,�

n (x1, . . . , xn) := arg min
μ∈Rd

Op,�
n (μ;x1, . . . , xn).

In principle, neither existence nor uniqueness is guaranteed. This calls for the following re-
sult, where it is made precise when and how μ

p,�
P and μ

p,�
n (x1, . . . , xn) are defined.

THEOREM 2.3. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}. Let P be
a probability measure over Rd that admits finite moments of order p. Then:

(ia) the set of minimizers of the map μ �→ O
p,�
P (μ) is nonempty and convex;

(iia) if no (� − 1)-dimensional hyperplane of Rd has P -probability one, then this set of
minimizer is also bounded, so that μ

p,�
P , which we then define as the barycentre of this set, is

a well-defined minimizer itself.

Fix x1, . . . , xn in R
d . Then:

(ib) the set of minimizers of the map μ �→ O
p,�
n (μ;x1, . . . , xn) is nonempty and convex;

(iib) if x1, . . . , xn are not contained in an (� − 1)-dimensional hyperplane of Rd , then
this set of minimizer is also bounded, so that μ

p,�
n (x1, . . . , xn), which we then define as the

barycentre of this set, is a well-defined minimizer itself.

This theorem shows that, both in the population and sample cases, a minimizer always
exists and that a unique representative of the set of minimizers, namely μ

p,�
P in the popula-

tion case or μ
p,�
n (x1, . . . , xn) in the sample one, can be identified under the extremely mild

assumption that the distribution P or the observations x1, . . . , xn do not fully concentrate in
an (� − 1)-dimensional hyperplane. If this assumption is not fulfilled, then it can be argued
that the problem is at most an (� − 1)-dimensional one (rather than a d-dimensional one),
hence should be solved by using simplices of dimension at most � − 1 in an appropriate
reparametrization of this supporting hyperplane.

1In the sequel, we often use the term functional in the sample case, too, which amounts to considering

μ
p,�
n (x1, . . . , xn) as a function of the empirical probability measure Pn associated with x1, . . . , xn. Incidentally,

we stress that μ
p,�
n (x1, . . . , xn) is not obtained by evaluating the population functional μ

p,�
P at Pn, which, actually

justifies that several theorems in this section explicitly discriminate between the population and sample cases.
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2.2. Equivariance properties. We start by considering equivariance properties of the
population functionals μ

p,�
P . In this end, fix an integer d ≥ 2, � ∈ {1, . . . , d} and a probability

measure P over R
d that admits finite moments of order p. For the sake of simplicity, we

further assume that no (� − 1)-dimensional hyperplane of Rd has P -probability one, so that
the population functional μ

p,�
P is well defined (without this assumption, one could still state

equivariance properties for the set of minimizers of the objective function μ �→ O
p,�
P (μ)). It

can be trivially checked that the functional μ
p,�
P is then equivariant under translations, under

homothetic transformations, and under orthogonal transformations in the following sense: for
any d-vector b, any λ > 0 and any d × d orthogonal matrix O ,

(2.3) μ
p,�
PO,λ,b

= λOμ
p,�
P + b,

where PO,λ,b denotes the distribution of λOX + b when X has distribution P . This extends
to the sample case where the equivariance relation reads μ

p,�
n (λOx1 + b, . . . , λOxn + b) =

λOμ
p,�
n (x1, . . . , xn) + b for any d-vectors x1, . . . , xn and for any O , λ, b as above.

As mentioned in the Introduction, however, it is desirable that multivariate location func-
tionals are also equivariant under general affine transformations. Since the volume of a full-
dimensional simplex transforms as

md

(
Simpl(Ax1 + b, . . . ,Axd + b,Aμ + b)

) = |detA|md

(
Simpl(x1, . . . , xd,μ)

)
for any d-vectors x1, . . . , xd,μ, b and any d ×d matrix A, the (� = d)-version of our location
functionals are affine equivariant, in the sense that for any invertible d × d matrix A and any
d-vector b,

(2.4) μ
p,�
PA,b

= Aμ
p,�
P + b,

where PA,b stands for the distribution of AX + b when X has distribution P . In the sample
case, this of course translates into μ

p,�
n (Ax1 + b, . . . ,Axn + b) = Aμ

p,�
n (x1, . . . , xn) + b for

any d-vectors x1, . . . , xn and for any A, b as above, which is the sample affine-equivariance
property defined in the Introduction.

Both in the population and sample cases, location functionals associated with lower-
dimensional simplices (i.e., � < d) fail to be affine-equivariant in general. A notable excep-
tion is the case p = 2, for which the corresponding location functionals are affine-equivariant
for any � ∈ {1, . . . , d}, as we now explain. In the univariate case d = 1, only � = 1 may be
considered and, as recalled in the Introduction, the objective functions

O
2,�
P =

∫
R

(x − μ)2 dP (x) and O2,�
n (μ;x1, . . . , xn) = 1

n

n∑
i=1

(xi − μ)2

are then uniquely minimized at the expectation of P and at the sample mean of x1, . . . , xn,
respectively. Remarkably, this extends to the multivariate case d > 1, irrespective of �. We
have the following result.

THEOREM 2.4. Fix an integer d ≥ 1 and � ∈ {1, . . . , d}.
(a) Let P be a probability measure over R

d that admits finite second-order moments.
Then,

μ
2,�
P =

∫
Rd

xdP (x)

is the unique minimizer of μ �→ O
2,�
P (μ).
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(b) Fix x1, . . . , xn in R
d . Then, the sample mean

μ2,�
n (x1, . . . , xn) = 1

n

n∑
i=1

xi

is the unique minimizer of μ �→ O2,�
n (μ;x1, . . . , xn).

Of course, this explains why, irrespective of �, the population and sample location func-
tionals associated with p = 2 are affine-equivariant. The proof of Theorem 2.4(b) is based on
the classical Cauchy–Binet formula stating that, if A is an � × d real matrix and B is a d × �

real matrix with � ≤ d , then

det(AB) = ∑
1≤j1<···<j�≤d

det
((

A′)
j1,...,j�

)
det(Bj1,...,j�

),

where Cj1,...,j�
is the matrix obtained by stacking the rows j1, . . . , j� of C on top of each

other. Interestingly, the proof of Theorem 2.4(a) relies on the following stochastic version of
the Cauchy–Binet formula, which is of independent interest.

PROPOSITION 2.1. Let P be a probability measure over R
d and F,G : Rd → R

� be
functions such that E[‖F(X)‖2] and E[‖G(X)‖2] exist and are finite, where X is a random
d-vector with distribution P . Then

(2.5) det
(
E

[
F(X)

(
G(X)

)′]) = 1

�!E
[
det

(
F(X1) . . . F (X�)

)
det

(
G(X1) . . .G(X�)

)]
,

where X1, . . . ,X� are independent copies of X.

2.3. Asymptotic properties. Assume now that a random sample X1, . . . ,Xn from P is
available. Obviously, a natural estimator of μ

p,�
P is then

μ̂p,�
n := μp,�

n (X1, . . . ,Xn).

To make sure that μ̂
p,�
n is well defined with probability one, we will assume throughout that

P is (� − 1)-smooth, in the sense that any (� − 1)-dimensional hyperplane has P -probability
zero. Under this assumption, it can indeed be shown that the probability that X1, . . . ,Xn, with
n > �, belong to an (�− 1)-dimensional hyperplane is zero (for the sake of completeness, we
prove this in Lemma S.1.3), so that, from Theorem 2.3(iib), μ̂

p,�
n is indeed well defined, with

probability one, as the barycentre of the set of minimizers of the map

μ �→ Ôp,�
n (μ) := Op,�

n (μ;X1, . . . ,Xn).

Our primary interest in this setup is to investigate the asymptotic behavior of μ̂
p,�
n . To describe

this asymptotic behavior, we need to introduce the following notation. If there is a unique
(� − 1)-dimensional hyperplane in R

d containing x1, . . . , x�, we will denote as �x1,...,x�
the

matrix of the orthogonal projection onto the ((d − � + 1)-dimensional) orthogonal comple-
ment to the vector space spanned by x1 − x�, . . . , x�−1 − x�; otherwise, we put �x1,...,x�

= 0.
Since this definition requires that � > 1, we simply let �x := Id for any x ∈ R

d . We also put
m0(Simpl(x)) := 1 for any x ∈R

d . We then have the following result.

THEOREM 2.5. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}, with
(p, �) �= (1, d). Let P be a probability measure over Rd that is (� − 1)-smooth and admits fi-
nite moments of order 2p. If p = 1, then assume that no �-dimensional hyperplane containing
μ

p,�
P has P -probability one. Finally, if 1 ≤ p < 2, assume further that

(2.6) EP

[
m

p
�−1(Simpl(X1, . . . ,X�))

‖�X1,...,X�
(X� − μ

p,�
P )‖2−p

]
< ∞.
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Then, with μ̂
p,�
n based on a random sample X1, . . . ,Xn from P ,

√
n
(
μ̂p,�

n − μ
p,�
P

) = H−1
P

1√
n

n∑
i=1

TP (Xi) + oP(1)(2.7)

→D Nd

(
0,H−1

P EP

[
TP (X1)T

′
P (X1)

]
H−1

P

)
(2.8)

as n diverges to infinity, where

TP (x) := p

�p−1 EP

[
m

p
�−1

(
Simpl(X1, . . . ,X�−1, x)

) �X1,...,X�−1,x(x − μ
p,�
P )

‖�X1,...,X�−1,x(x − μ
p,�
P )‖2−p

]
is such that EP [TP (X1)T

′
P (X1)] exists and is finite, and where

HP = p(p − 1)

�p
EP

[
m

p
�−1(Simpl(X1, . . . ,X�))

‖�(μ
p,�
P − X�)‖2−p

�(μ
p,�
P − X�)(μ

p,�
P − X�)

′�
‖�(μ

p,�
P − X�)‖2

]

+ p

�p
(2.9)

× EP

[
m

p
�−1(Simpl(X1, . . . ,X�))

‖�(μ
p,�
P − X�)‖2−p

(
� − �(μ

p,�
P − X�)(μ

p,�
P − X�)

′�
‖�(μ

p,�
P − X�)‖2

)]
exists, is finite, and is invertible (in (2.9), we let � := �X1,...,X�

to simplify the notation).

Before discussing this result and presenting some of its corollaries, we explain how the
result can be used to construct confidence zones for μ

p,�
P . Assuming that Ĉn is a weakly con-

sistent estimator of the covariance matrix CP := H−1
P EP [TP (X1)T

′
P (X1)]H−1

P in the asymp-

totic normal distribution of μ̂
p,�
n in (2.8), a confidence zone for μ̂

p,�
n at asymptotic confidence

level 1 − α(∈ (0,1)) is given by the hyper-ellipsoid

(2.10)
{
μ ∈R

d : n(
μ − μ̂p,�

n

)′
Ĉ−1

n

(
μ − μ̂p,�

n

) ≤ χ2
d,1−α

}
,

where χ2
d,1−α denotes the upper α-quantile of the chi-square distribution with d degrees of

freedom. To describe the required estimator Ĉn, we introduce the following notation. For
any positive integer k, we let Ik

n := {I = (i1, . . . , ik) ∈ N
k : 1 ≤ i1 < · · · < ik ≤ n}. For I ∈

I�
n, we will write mI := m�−1(Simpl(Xi1, . . . ,Xi�)) and �I := �Xi1 ,...,Xi�

. We then have the
following result.

THEOREM 2.6. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}, with
(p, �) �= (1, d). Let X1, . . . ,Xn be a random sample from a probability measure P over Rd

satisfying the assumptions in Theorem 2.5. For p = 1, reinforce the assumption that P admits
finite moments of order 2 into the assumption that it has finite moments of order 2 + η for
some η > 0, and for 1 ≤ p < 2, reinforce (2.6) into the assumption that

(2.11) EP

[
m

p
�−1(Simpl(X1, . . . ,X�))

‖�X1,...,X�
(X� − μ

p,�
P )‖2−p+δ

]
< ∞

for some δ > 0. Let γn,I := I[‖�I (μ̂
p,�
n − Xi1)‖ > cn] for p ∈ [1,2) and γn,I := 1 for p ≥ 2,

where cn is a positive real sequence such that cn → 0 and
√

ncn → ∞, and define

T̂n(x) := p

�p−1
( n
�−1

) ∑
I∈I�−1

n

m
p
�−1

(
Simpl(Xi1, . . . ,Xi�−1, x)

)

× �Xi1 ,...,Xi�−1 ,x(x − μ̂
p,�
n )

‖�Xi1 ,...,Xi�−1 ,x(x − μ̂
p,�
n )‖2−p

·
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Then, as n diverges to infinity, Ân := 1
n

∑n
i=1 T̂n(Xi)(T̂n(Xi))

′ and

Ĥn = p(p − 1)

�p
( n

�

) ∑
I∈I�

n

γn,I

m
p
�−1(Simpl(XI ))

‖�I (μ̂
p,�
n − Xi1)‖2−p

�I (μ̂
p,�
n − Xi1)(μ̂

p,�
n − Xi1)

′�I

‖�I (μ̂
p,�
n − Xi1)‖2

+ p

�p
( n

�

) ∑
I∈I�

n

γn,I

m
p
�−1(Simpl(XI ))

‖�I (μ̂
p,�
n − Xi1)‖2−p

×
(
�I − �I (μ̂

p,�
n − Xi1)(μ̂

p,�
n − Xi1)

′�I

‖�I (μ̂
p,�
n − Xi1)‖2

)

converge in probability to AP := EP [TP (X1)T
′
P (X1)] and HP , respectively, so that Ĉn :=

Ĥ−1
n ÂnĤ

−1
n is a weakly consistent estimator of CP = H−1

P EP [TP (X1)T
′
P (X1)]H−1

P .

This result shows that confidence zones for μ
p,�
P can be constructed under an extremely

slight reinforcement of the assumptions from Theorem 2.5: we will show in Lemma S.2.9
that, under the moment assumptions considered in this theorem, Assumption (2.11) indeed
only slightly reinforces (2.6). Also, the reinforcement in moment assumptions (which is in
any case very mild, since it replaces finite second-order moments with finite moments of
order 2+η for some η > 0) is imposed for p = 1 only, hence is not needed for the case p > 1
we primarily focus on in this work.

Under suitable symmetry assumptions on P , the population functionals μ
p,�
P coincide for

any p and �; for instance, if P is centro-symmetric about μ (in the sense that for any Borel
set B of Rd , B and its reflection about μ share the same P -probability), then the equivariance
relation (2.3) entails that μ

p,�
P = μ, irrespective of p and �. In such cases, the sample loca-

tion functionals μ̂
p,�
n all estimate the same quantity and it is desirable to compare them, for

example, in terms of efficiency. While Theorem 2.5 is a very general result, it does not make
such a comparison straightforward. This is an important motivation to derive the following
result, that provides the key quantities needed to perform this comparison under sphericity,
hence, for affine-equivariant estimators, also under ellipticity. We recall that the probabil-
ity measure P is spherically symmetric about the origin of Rd if and only if for any Borel
set B of Rd , OB and B share the same P -probability for any d × d orthogonal matrix O

(elliptically symmetric probability measures are then obtained by transforming spherically
symmetric probability measures in an affine way).

THEOREM 2.7. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}, with
(p, �) �= (1, d). Let P be a probability measure over Rd that admits finite moments of order
p, is spherically symmetric about the origin of Rd , and satisfies P [{0}] = 0. If 1 ≤ p < 2,
then assume further that (2.6) holds. Then, μ

p,�
P = 0,

TP (x) = p�(
d−�+p+1

2 )�(d
2 )

�p−1�(d−�+1
2 )�(

d+p
2 )

EP

[
m

p
�−1

(
Simpl(X1, . . . ,X�−1,0)

)] x

‖x‖2−p

and

HP = p(d + p − 2)�(
d−�+p+1

2 )�(d
2 )

d�p−1�(d−�+1
2 )�(

d+p
2 )

EP

[
m

p
�−1

(
Simpl(X1, . . . ,X�−1,0)

)]
EP

[‖X1‖p−2]
Id,

where � is the Euler Gamma function.
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The proof of this result is extremely long and involved, and it requires original results
from stochastic geometry. For spherical Gaussian distributions, an explicit expression of
HP (agreeing with the one in Theorem 2.7) can be obtained from the fact that HP is
actually the Hessian matrix of the map μ �→ O

p,�
P = EP [mp

� (Simpl(X1, . . . ,X�,μ))] at

μ
p,�
P = 0 (this is established in the proof of Theorem 2.5) and by using the distribution of

m�(Simpl(X1, . . . ,X�,μ)) in the standard normal case; see Theorem 1.1 in Paindaveine
(2022). Since this distribution remains unknown away from the spherical Gaussian case,
this strategy fails to provide an expression for HP under other spherical distributions, which
makes Theorem 2.7 important. In passing, we mention that the asymptotic distribution of
μ̂1,�, � ∈ {1, . . . , d − 1} was investigated in Paindaveine (2022). But despite the fact that it
focuses on the case p = 1, this earlier work excluded the key case � = d yielding affine-
equivariant estimators and, as far as sphericity is concerned, restricted to spherical Gaussian
distributions. The investigation for an arbitrary value of p in the present work is thus much
more extensive.

Now, using Theorem 2.7 in Theorem 2.5 and exploiting the equivariance properties from
the previous subsection, we obtain the following corollary.

COROLLARY 2.1. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}, with
(p, �) �= (1, d). Fix a d-vector μ and a symmetric positive definite d ×d matrix �. Let P0 be a
probability measure over Rd that admits finite moments of order 2p, is spherically symmetric
about the origin of Rd , and satisfies P0[{0}] = 0. If 1 ≤ p < 2, then assume further that (2.6)
holds for P0. Let P be the distribution of X = �1/2Z+μ, where Z has distribution P0. Then,
(i) for � ∈ {1, . . . , d − 1}, p �= 2 and � = σ 2Id with σ 2 > 0,

√
n
(
μ̂p,�

n − μ
) = √

n
(
μ̂p,�

n − μ
p,�
P

)
= d

(d + p − 2)EP [‖X1 − μ‖p−2
� ]√n

n∑
i=1

Xi − μ

‖Xi − μ‖2−p
�

+ oP(1)(2.12)

→D Nd

(
0,

dEP [‖X1 − μ‖2(p−1)
� ]

(d + p − 2)2(EP [‖X1 − μ‖p−2
� ])2

�

)
(2.13)

as n diverges to infinity; (ii) for � = d or p = 2, the same holds without any constraint on �.

Interestingly, this shows that, in spherical cases where � = σ 2Id , the asymptotic behavior
of μ̂

p,�
n does not depend on �. For the spatial location functionals associated with � = 1,

the results in (2.12)–(2.13) reduce to the ones recently obtained in Section 8 of Konen and
Paindaveine (2022). When the parent spherical distribution P0 is t with ν(> 2p) degrees
of freedom (i.e., has a density proportional to x �→ (1 + ‖x‖2/ν)−(d+ν)/2), the asymptotic
covariance matrix in (2.13) is

�(d+2
2 )�(

d+2p−2
2 )�(ν+2

2 )�(
ν−2p+2

2 )

�2(
d+p

2 )�2(
ν−p+2

2 )
�,

whereas when it is power-exponential with parameter η(> 0) degrees of freedom (i.e., has a
density proportional to x �→ exp(−‖x‖2η/2)), this covariance matrix is

2(1−η)/η�(
d+2η

2η
)�(

d+2p−2
2η

)

η�2(
d+p+2η−2

2η
)

�

(the Gaussian case is of course obtained with η = 1, or as ν → ∞). Under strict ellipticity,
that is when � is not proportional to Id , the asymptotic behavior of μ̂

p,�
n does depend on
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�, and in an adverse way for location functionals that are not affine-equivariant: as we will
show in Section 4, the asymptotic accuracy of μ̂

p,�
n with � ∈ {1, . . . , d − 1} is, under strict

ellipticity and for any fixed p, dominated by that of the affine-equivariant estimator μ̂
p,d
n —

unless, of course, p = 2 since μ̂2,�
n = X̄n irrespective of � (see Theorem 2.4). In contrast, the

affine-equivariant estimators μ̂
p,d
n show performances that are not negatively affected by the

possible nonisotropic value of �. This is also in line with the fact that it results from (2.12)
that, when observations are randomly sampled from (1.4), μ̂

p,d
n is asymptotically equivalent

to the fixed-� MLE for μ (since μ̂
p,d
n does not use the unknown fixed value of �, this

estimator is thus adaptive with respect to �).
Finally, we comment on robustness aspects. It directly follows from (2.12) that, in the

spherical case considered in Corollary 2.1, the influence function of μ
p,�
P at x is given by

IF
(
x;μp,�

P

) := lim
ε

>→0

μ
p,�
Px,ε

− μ
p,�
P

ε

= d‖x − μ‖p−1
�

(d + p − 2)EP [‖X1 − μ‖p−2
� ]

�1/2Uμ,�(x),

where Px,ε := (1 − ε)P + εδx involves the Dirac probability measure δx at x and where
Uμ,�(x) := �−1/2(x − μ)/‖x − μ‖� is a unit vector (from affine equivariance, this extends
to an arbitrary matrix � for � = d). This shows that a bounded influence function is obtained
for p = 1 only, and that the larger p is, the faster the norm of influence function increases to
infinity as ‖x‖ does. In this sense, the robustness of the proposed estimators decreases with
p. In particular, these estimators are more robust (resp., less robust) than the sample mean for
p < 2 (resp., for p > 2).

2.4. A computationally efficient version. Recalling the notation Ik
n introduced above

Theorem 2.6, the location estimator considered in the previous sections is

(2.14) μ̂p,�
n := arg min

μ∈Rd

1( n
�

) ∑
(i1,...,i�)∈I�

n

m
p
�

(
Simpl(Xi1, . . . ,Xi�,μ)

)
,

where the argmin identifies the barycentre of the set of minimizers. As we showed, this esti-
mator has many nice properties, particularly so for the case � = d where affine equivariance
is achieved. For large sample sizes n and/or large dimensions d , however, the resulting affine-
equivariant estimator is hard to compute since it is defined as the minimizer of an objective
function with O(nd) terms (more generally, for any fixed value of �, the objective function
has O(n�) terms, which is problematic unless � is very small). A natural way2 to improve on
this, for a generic value of �, relies on the concept of incomplete U-statistics (see, e.g., Blom
(1976) and Enqvist (1978)) and consists in rather considering

(2.15) μ̂
p,�
n,N := arg min

μ∈Rd

1

N

∑
(i1,...,i�)∈I�

n,N

m
p
�

(
Simpl(Xi1, . . . ,Xi�,μ)

)
,

where I�
n,N is a subset of I�

n that is obtained in one of the following ways:

• sampling without replacement: I�
n,N results from sampling N multi-indices (i1, . . . , i�)

without replacement from I�
n (N is then an integer between 1 and

( n
�

)
);

2Yet original way, as it has not been proposed, for example, for the Oja median obtained for p = 1 and � = d .
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• sampling with replacement: I�
n,N results from sampling N multi-indices (i1, . . . , i�) with

replacement from I�
n (N is then an integer between 1 and

( n
�

)
);

• Bernoulli sampling: each multi-index (i1, . . . , i�) from I�
n is included in I�

n,N (indepen-
dently of the other multi-indices) with probability pn = N/

( n
�

)
(here, N is a real number

that is strictly between 0 and
( n

�

)
, and the number of multi-indices in I�

n,N is random with
expectation N ).

By exploiting asymptotic results for incomplete U-statistics (namely, the asymptotic equiv-
alence results from Janson (1984) as well as a recent consistency result from Dürre and Pain-
daveine (2021)), one can establish the following result.

THEOREM 2.8. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}, with
(p, �) �= (1, d). Let N = Nn be a sequence such that N/n → ∞ as n diverges to infinity,
and denote as μ̂

p,�
n,N the estimator in (2.15) obtained from any of the three sampling schemes

above. Then, under the assumptions of Theorem 2.5,
√

n
(
μ̂

p,�
n,N − μ

p,�
P

) = √
n
(
μ̂p,�

n − μ
p,�
P

) + oP(1)

as n diverges to infinity.

This result shows that, as soon as N/n → ∞, the incomplete estimators μ̂
p,�
n,N show the

exact same asymptotic behavior as their complete antecedents μ̂
p,�
n . In particular, μ̂

p,�
n,N then

admits the Bahadur representation result in (2.7) and asymptotic normality result in (2.8).
Remarkably, these excellent asymptotic properties are achieved also by incomplete estima-
tors minimizing objective functions that involve only O(n1+δ) terms for any δ > 0 (or even
O(n logn)) rather than O(nd) terms, which has obvious computational advantages. Finite-
sample performances of these estimators will be explored in Section 4.

3. Hypothesis testing. Let P be a probability measure over Rd . To identify unambigu-
ously a location parameter μ, we will throughout assume that P is centro-symmetric about
μ (which is a common assumption in multivariate nonparametric statistics). Based on a ran-
dom sample X1, . . . ,Xn from P , we then consider the fundamental problem of testing the
null hypothesis H0 : μ = μ0 against the alternative hypothesis H1 : μ �= μ0, where μ0 is a
fixed d-vector. In this section, we propose and study tests based on scores associated with the
simplex-based Lp objective functions we considered above. We first introduce those scores.

3.1. Multivariate Lp scores. For any p ≥ 1, we will define a family of Lp score functions

S
p,�
P (x;μ), � ∈ {1, . . . , d}. For p = 1, these provide multivariate signs (involving x only

through its direction from μ), whereas, for p = 2, they are linear functions of x − μ. Let us
start with p = 1. In the multivariate case, the sign of x with respect to μ can be defined in
several ways. Among the most classical solutions, one can find the spatial signs

SSpatial(x;μ) = ∇xm1
(
Simpl(x,μ)

) = ∇x‖x − μ‖ = x − μ

‖x − μ‖;
see, for example Möttönen, Oja and Tienari (1997) or Oja (2010) (derivation with respect to
the parameter μ would be more natural to define a score function, yet is, in a location model,
essentially equivalent to derivation with respect to x, on which we will focus in the sequel).
Spatial signs behave well under orthogonal transformations but not under affine transforma-
tions, which was the motivation to introduce the affine-equivariant Oja signs

S
Oja
P (x;μ) = ∇xEP

[
md

(
Simpl(X1, . . . ,Xd−1, x,μ)

)]
,
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where X1, . . . ,Xd−1 form a random sample from P ; see, for example, Hettmansperger, Ny-
blom and Oja (1994), Oja (1999) or Ollila, Oja and Hettmansperger (2002). In the univariate
case d = 1, both concepts reduce to the usual sign of x with respect to μ, that is, to the sign
of x − μ. In view of what was done for point estimation in the previous section, it is natural
to consider the class of �-signs

S�
P (x;μ) = ∇xEP

[
m�

(
Simpl(X1, . . . ,X�−1, x,μ)

)]
and, more generally, their Lp extension

S
p,�
P (x;μ) = ∇xEP

[
m

p
�

(
Simpl(X1, . . . ,X�−1, x,μ)

)]
= 1

�p
∇xEP

[
m

p
�−1

(
Simpl(X1, . . . ,X�−1,μ)

)∥∥�(x − μ)
∥∥p]

(3.1)

= p

�p
EP

[
m

p
�−1

(
Simpl(X1, . . . ,X�−1,μ)

) �(x − μ)

‖�(x − μ)‖2−p

]
,(3.2)

where we applied Lemma S.1.1 and where � denotes the matrix of the orthogonal projection
onto the orthogonal complement to the vector space spanned by X1 − μ, . . . ,X�−1 − μ. To
avoid imposing the assumptions needed to differentiate under the expectation sign in (3.1),
we adopt (3.2) as a definition of Lp scores.

DEFINITION 3.1. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}. Let P

be a probability measure over Rd that admits finite moments of order p. Then, the population
(p, �)-score of x with respect to μ at P is defined as

S
p,�
P (x;μ) = p

�p
EP

[
m

p
�−1

(
Simpl(X1, . . . ,X�−1,μ)

) �(x − μ)

‖�(x − μ)‖2−p

]
(throughout, we let x/‖x‖ := 0 for x = 0). If a random sample X1, . . . ,Xn from P is avail-
able, then we define the sample (p, �)-score of x with respect to μ as

Sp,�
n (x;μ) = p

�p
( n
�−1

) ∑
1≤i1<···<i�−1≤n

m
p
�−1

(
Simpl(Xi1, . . . ,Xi�−1,μ)

)

× �i1,...,i�−1(x − μ)

‖�i1,...,i�−1(x − μ)‖2−p
,

where �i1,...,i�−1 denotes the matrix of the orthogonal projection onto the orthogonal comple-
ment to the vector space spanned by Xi1 − μ, . . . ,Xi�−1 − μ.

Of course, we expect that sample (p, �)-scores will allow one to reconstruct their popula-
tion versions. The following result is what will be needed in the sequel.

PROPOSITION 3.1. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}. Let
P be a probability measure over R

d that admits finite moments of order 2p and is centro-
symmetric about μ. Let X1, . . . ,Xn be a random sample from P . Then

EP

[∥∥∥∥∥1

n

n∑
i=1

(
Sp,�

n (Xi;μ) − S
p,�
P (Xi;μ)

)∥∥∥∥∥
2]

= O
(
n−2)

as n diverges to infinity.
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Note that, under the assumptions of Proposition 3.1,

(3.3) EP

[{
m

p
�−1

(
Simpl(X1, . . . ,X�−1,μ)

) (�1,...,�−1(X� − μ))r

‖�1,...,�−1(X� − μ)‖2−p

}2]
< ∞

for any r = 1, . . . , d (this follows by applying Lemma S.1.1, then Lemma S.1.2). Moreover,
by conditioning with respect to X1, . . . ,X�−1, the symmetry assumption on P yields

(3.4) EP

[
m

p
�−1

(
Simpl(X1, . . . ,X�−1,μ)

) �1,...,�−1(X� − μ)

‖�1,...,�−1(X� − μ)‖2−p

]
= 0.

Thus, jointly with Proposition 3.1, the multivariate central limit theorem entails that

(3.5) T p,�
n (μ) := 1√

n

n∑
i=1

Sp,�
n (Xi;μ) = 1√

n

n∑
i=1

S
p,�
P (Xi;μ) + oP(1)

D→Nd

(
0,V

p,�
P

)
,

with V
p,�
P := EP [(Sp,�

P (X1;μ))(S
p,�
P (X1;μ))′] (note that this matrix does not depend on μ,

which justifies the notation).
We end this section by showing that for � = d , the (p, �)-scores introduced above behave

well under affine transformations. More precisely, we have the following result.

PROPOSITION 3.2. Fix a real number p ≥ 1 and an integer d ≥ 2. Let X1, . . . ,Xn

be a random sample and x be a d-vector. Let A be an invertible d × d matrix. Then,
S

p,d
n,A(Ax;0) = |detA|p(A−1)′Sp,d

n (x;0), where S
p,d
n,A(·;0) denotes the (p, d)-score com-

puted from the transformed sample AX1, . . . ,AXn.

This result will entail that, for any p, the (p, d)-score tests we will define in the next
section will be affine-invariant. For � ≤ d − 1, the equivariance relation S

p,d
n,A(Ax;0) =

|detA|p(A−1)′Sp,d
n (x;0) in Proposition 3.2 above will only hold for rigid-body transfor-

mations fixing the origin, that is, for transformations described by matrices A of the form
A = λO , where λ is a positive real number and O is a d × d orthogonal matrix, which
will entail that the corresponding (p, �)-score tests will be invariant under rigid-body trans-
formations, but not under general affine transformations. Parallel to what we had for point
estimation, a notable exception is the case p = 2, for which the fact that

S2,�
n (x;0) =

(
2

�2
( n
�−1

) ∑
1≤i1<···<i�−1≤n

m2
�−1

(
Simpl(Xi1, . . . ,Xi�−1,0)

)
�i1,...,i�−1

)
x

=: B2,�
n x

(3.6)

will be sufficient to ensure affine invariance of the (2, �)-score tests for any �.

3.2. (p, �)-score tests. Without any loss of generality, we focus on the problem of testing
the null hypothesis H0 : μ = 0 against the alternative hypothesis H1 : μ �= 0 on the basis of a
random sample X1, . . . ,Xn from a probability measure P over Rd that is centro-symmetric
about μ (for H0 : μ = μ0 against H1 : μ �= μ0, one may base the test on Xi − μ0, i =
1, . . . , n). The (p, �)-score test we propose rejects the null hypothesis for large values of

Qp,�
n = (

T p,�
n

)′(
V p,�

n

)−1
T p,�

n ,

where T
p,�
n = T

p,�
n (0) (see (3.5) above) and

(3.7) V p,�
n := 1

n

n∑
i=1

{
Sp,�

n (Xi;0) − 1

n

n∑
j=1

Sp,�
n (Xj ;0)

}{
Sp,�

n (Xi;0) − 1

n

n∑
j=1

Sp,�
n (Xj ;0)

}′
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is the sample covariance matrix of S
p,�
n (Xi;0), i = 1, . . . , n. One may actually replace V

p,�
n

with any other weakly consistent estimator of V
p,�
P under the null hypothesis, such as Ṽ

p,�
n :=

1
n

∑n
i=1(S

p,�
n (Xi;0))(S

p,�
n (Xi;0))′ (in the proof of Theorem 3.1 below, we establish that both

V
p,�
n and Ṽ

p,�
n indeed converge in probability to V

p,�
P under the null hypothesis).

It readily follows from Proposition 3.2 that, for any p, the test statistic Q
p,d
n is affine-

invariant, in the sense that, with obvious notation, Q
p,d
n (AX1, . . . ,AXn) = Q

p,d
n (X1, . . . ,

Xn) for any invertible d × d matrix A. In contrast, for � ≤ d − 1, we only have the rigid-
body invariance property Q

p,�
n (λOX1, . . . , λOXn) = Q

p,�
n (X1, . . . ,Xn) for any positive real

number λ and orthogonal d × d matrix O . Again, the case p = 2 is an exception, since it
trivially follows from (3.6) that Q2,�

n , irrespective of �, is the Hotelling test statistic, which is
affine-invariant. It is worth noting that the (p, �)-score tests above will require finite moments
of order 2p. The case p = 2 is again an exception: thanks to the cancellation of the matrix
B2,�

n in (3.6) when computing Q2,�
n , finite moments of order 2 rather than 2p = 4 will actually

be sufficient, which is the standard assumption for Hotelling T 2’s test. A similar phenomenon
appears for point estimation: for p = 2, the asymptotic behavior for μ̂2,�

n = X̄n holds under

finite second-order moments only, whereas μ̂
p,�
n , with p �= 2, requires finite moments of order

2p (in line with this, all asymptotic results for the Oja median μ̂1,d
n in the literature require

finite moments of order 2p = 2).
The following result describes the asymptotic null distribution of Q

p,�
n .

THEOREM 3.1. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}. Let P be a
probability measure over Rd that admits finite moments of order 2p and is centro-symmetric
about μ = 0. Denote as Pn,0 the hypothesis under which the observations X1, . . . ,Xn form a
random sample from P . Then, under Pn,0,

Qp,�
n =

(
1√
n

n∑
i=1

S
p,�
P (Xi;0)

)′(
V

p,�
P

)−1

(
1√
n

n∑
i=1

S
p,�
P (Xi;0)

)
+ oP(1)

D→ χ2
d

as n diverges to infinity.

Thus, the resulting test φ
p,�
n rejects the null hypothesis H0 : μ = 0 at asymptotic level α

whenever Q
p,�
n > χ2

d,1−α (recall that χ2
d,1−α is the upper α-quantile of the chi-square dis-

tribution with d degrees of freedom). When based on Ṽ
p,�
n rather than on V

p,�
n , these tests

reduce to the spatial sign test from Möttönen and Oja (1995) for (p, �) = (1,1) and to the
Oja affine-invariant sign test from Hettmansperger, Nyblom and Oja (1994) (see also Oja
(1999)) for (p, �) = (1, d). For p = 2 and any � ∈ {1, . . . , d}, the proposed tests reduce to
the classical Hotelling T 2 test (see, e.g., Chapter 5 in Anderson (2003)). The following result
describes the asymptotic behavior of (p, �)-score tests under contiguous local alternatives.

THEOREM 3.2. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}. Let P be
a probability measure over R

d that admits finite moments of order 2p, is centro-symmetric
about μ = 0, and admits a density f whose square-root f 1/2 is weakly differentiable over Rd

with a square-integrable weak gradient ∇f 1/2. Fix τ ∈ R
d and denote as Pn,τ the hypothesis

under which the observations X1, . . . ,Xn are mutually independent and have the common
density x �→ f (x − n−1/2τ). Let

C
p,�
P :=

∫
Rd

S
p,�
P (x;0)

(
ϕf (x)

)′
f (x) dx, with ϕf (x) := −2∇f 1/2(x)

f 1/2(x)
·

Then, under Pn,τ , Q
p,�
n is asymptotically noncentral chi-square with d degrees of freedom

and noncentrality parameter δ = τ ′(Cp,�
P )′(V p,�

P )−1C
p,�
P τ .
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As for point estimation, the result above is very general but it does not allow for a direct
comparison between the various (p, �)-score tests. The next result makes such a comparison
possible in the spherical case and, for affine-invariant tests, also in the elliptical case.

COROLLARY 3.1. Fix a real number p ≥ 1, an integer d ≥ 2 and � ∈ {1, . . . , d}. Fix a
symmetric positive definite d × d matrix �, which, for � ≤ d − 1 and p �= 2, is assumed to be
of the form � = σ 2Id , with σ 2 > 0. Let P be a probability measure over Rd that admits finite
moments of order 2p and admits the density x �→ f (‖x‖�). Assume that f is weakly differ-
entiable over R+

0 with a weak derivative (f 1/2)′ such that
∫ ∞

0 {(f 1/2)′(r)}2rd−1 dr < ∞. Fix
a d-vector τ and denote as Pn,τ the hypothesis under which the observations X1, . . . ,Xn are
mutually independent and have the common density x �→ f (‖x − n−1/2τ‖�). Finally, put

(3.8) δ := (p + d − 2)2(EP [‖X1‖p−2
� ])2

dEP [‖X1‖2p−2
� ]

τ ′�−1τ

(for p < 2, this tacitly assumes that EP [‖X1‖p−2
� ] < ∞, that is,

∫ ∞
0 f (r)rp+d−3 dr < ∞).

Then, under Pn,τ , Q
p,�
n is asymptotically noncentral chi-square with d degrees of freedom

and noncentrality parameter δ.

In the spherical case � = σ 2Id , the asymptotic power of the (p, �)-score test under the
sequence of local alternatives Pn,τ is therefore given by

lim
n→∞Pn,τ

[
Qp,�

n > χ2
d,1−α

]
= 1 − Gd

(
χ2

d,1−α; (p + d − 2)2(EP [‖X1‖p−2
� ])2

dEP [‖X1‖2p−2
� ]

τ ′�−1τ

)
,

(3.9)

where Gd(·; δ) is the cumulative distribution function of the noncentral chi-square distribu-
tion with d degrees of freedom and noncentrality parameter δ. Note that, under sphericity,
these asymptotic local powers do not depend on � (which is in line with what we had for
point estimation in Section 2.3) and that, for p = 1 and p = 2, we have

δ = (d − 1)2(EP [‖X1‖−1])2

d
‖τ‖2 and δ = d

EP [‖X1‖2]‖τ‖2,

respectively, which is compatible with the “spatial” efficiencies obtained for (p, �) = (1,1)

and (p, �) = (2,1) in, for example, Möttönen, Oja and Tienari (1997), page 547. Still in the
spherical case, the asymptotic relative efficiency of the (p, �)-score test with respect to the
Hotelling test (that coincides with the (2, �)-score test for any �) is

(p + d − 2)2EP [‖X1‖2
�](EP [‖X1‖p−2

� ])2

d2EP [‖X1‖2p−2
� ]

(this is obtained as the ratio of the corresponding noncentrality parameters τ ) and, from affine
invariance, this extends to the elliptical case for � = d; see Table 1 for some numerical val-
ues. It should be noted that these asymptotic relative efficiencies coincide, in the spherical
case (or in the elliptical case for � = d), with those of μ̂

p,�
n with respect to X̄n (since the

covariance matrices in (2.13) to consider to obtain asymptotic relative efficiencies for point
estimation are proportional to each other, these asymptotic relative efficiencies are simply
obtained as the ratio of the corresponding proportionality factors). The fact that asymptotic
relative efficiencies match for point estimation and hypothesis testing supports the claim that
the (p, �)-score tests we introduced above are the companion tests to the estimators μ̂

p,�
n

introduced in Section 2. Obviously, explicit expressions of the asymptotic powers (or asymp-
totic relative efficiencies) under t distributions and power-exponential distributions can then
be obtained exactly as for point estimation; see the discussion below Corollary 2.1.
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TABLE 1
Asymptotic relative efficiencies of the (p, d)-score tests with respect to the Hotelling T 2 test under several

d-dimensional elliptical distributions, namely under d-dimensional t distributions with ν = 3,6,9,12 degrees of
freedom, d-dimensional Gaussian distributions, and d-dimensional power-exponential distributions with tail

parameter η = 2,3,4,6 (whenever these elliptical distributions are spherically symmetric, these AREs also are
those of the (p, �)-score tests for � = 1, . . . , d − 1, still with respect to the Hotelling test); “–” indicates that the

required moment assumptions are not satisfied

ν = 3 ν = 6 ν = 9 ν = 12 N η = 2 η = 3 η = 4 η = 6

d = 2 p = 1 2. 1.084 0.955 0.904 0.785 0.59 0.546 0.528 0.514
p = 1.25 2.007 1.162 1.043 0.996 0.887 0.712 0.67 0.652 0.638
p = 1.5 – 1.165 1.073 1.037 0.953 0.821 0.787 0.773 0.761
p = 3 – – 0.588 0.672 0.884 1.214 1.334 1.391 1.443
p = 4 – – 0.204 0.32 0.667 1.273 1.55 1.694 1.833

d = 3 p = 1 2.162 1.172 1.032 0.977 0.849 0.688 0.647 0.629 0.615
p = 1.25 2.079 1.203 1.08 1.032 0.919 0.78 0.743 0.727 0.714
p = 1.5 – 1.18 1.088 1.051 0.966 0.863 0.834 0.822 0.811
p = 3 – – 0.602 0.689 0.905 1.168 1.263 1.309 1.351
p = 4 – – 0.219 0.343 0.714 1.216 1.435 1.55 1.661

d = 4 p = 1 2.25 1.22 1.075 1.017 0.884 0.749 0.712 0.696 0.682
p = 1.25 2.12 1.227 1.102 1.052 0.937 0.822 0.79 0.776 0.764
p = 1.5 – 1.189 1.096 1.059 0.973 0.889 0.864 0.854 0.844
p = 3 – – 0.612 0.7 0.92 1.138 1.216 1.254 1.290
p = 4 – – 0.23 0.36 0.75 1.178 1.359 1.454 1.547

d = 6 p = 1 2.344 1.271 1.12 1.059 0.92 0.82 0.79 0.777 0.764
p = 1.25 2.164 1.253 1.125 1.074 0.956 0.872 0.847 0.836 0.825
p = 1.5 – 1.199 1.105 1.068 0.981 0.92 0.901 0.892 0.885
p = 3 – – 0.625 0.715 0.94 1.101 1.159 1.187 1.215
p = 4 – – 0.245 0.384 0.8 1.132 1.266 1.336 1.405

d = 10 p = 1 2.422 1.313 1.157 1.095 0.951 0.885 0.865 0.855 0.846
p = 1.25 2.202 1.274 1.144 1.093 0.973 0.919 0.901 0.893 0.885
p = 1.5 – 1.208 1.113 1.075 0.988 0.949 0.936 0.93 0.924
p = 3 – – 0.638 0.73 0.959 1.066 1.103 1.122 1.141
p = 4 – – 0.262 0.411 0.857 1.086 1.174 1.22 1.266

4. Monte Carlo exercises and a real data example. In this section, we explore by
simulations the finite-sample relevance of our asymptotic results, both for point estima-
tion (Section 4.1) and for hypothesis testing (Section 4.2), and we treat a real data exam-
ple (Section 4.3). Simulated data will be obtained from elliptical t distributions and power-
exponential distributions, that is, from distributions admitting density functions proportional
to

x �→ (
1 + ‖x − μ‖2

�/ν
)−(d+ν)/2 and x �→ exp

(
−1

2
‖x − μ‖2η

�

)
,

respectively. Of course, this allows us to consider Gaussian distributions, that are power-
exponential distributions with η = 1. We mostly focus on the trivariate case d = 3, but we
will also consider the ten-variate case d = 10 when exploring the finite-sample behavior of
the incomplete estimators introduced in Section 2.4.

4.1. Point estimation. Since all location estimators considered in this work are equivari-
ant under translations, there is no loss of generality to restrict to μ = 0. We then performed
a simulation in the spherical case and one in the elliptical case, where we used � = Id and
� = diag(1002,1,1), respectively (going from the spherical setup to the elliptical one thus
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corresponds to multiplying the first marginal by 100, a factor that is not an extreme one for a
change of measurement units). It should be noted that there is no loss of generality to restrict
to the uncorrelated case where � is diagonal, as all location estimators considered in this
work are equivariant under orthogonal transformations. For each value of � above, we gen-
erated M = 5000 independent random samples X1, . . . ,Xn of size n = 100 from the trivariate
t3 distribution, Gaussian distribution, and power-exponential distribution with η = 2. In each
sample, we evaluated the location estimators μ̂

p,�
n , for any combination of p ∈ {1,1.25,2,4}

and � ∈ {1,2,3} (since μ̂2,�
n = X̄n for any �, this provides 10 estimators). Figure 1 then

presents boxplots of the standardized mean square errors (MSEs)

(4.1)
∥∥μ̂p,�

n (m) − μ
p,�
P

∥∥2
� = ∥∥μ̂p,�

n (m) − 0
∥∥2
�, m = 1, . . . ,M,

where μ̂
p,�
n (m) denotes the value taken by μ̂

p,�
n in the mth replication.

FIG. 1. (Left) Boxplots of the standardized mean square errors of μ̂
p,�
n in (4.1) obtained from M = 5000 in-

dependent random samples of size n = 100 from several trivariate distributions with location μ = 0 and scatter
matrix � = Id (since μ̂

2,�
n = X̄n for any �, each panel shows only one boxplot for p = 2); the distributions con-

sidered are the t3 distribution (top), Gaussian distribution (middle), and power-exponential distribution with tail
parameter η = 2 (bottom). (Right) The corresponding results for � = diag(1002,1,1).
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Figure 1 fully supports our theoretical results and provides interesting further insight. In
the spherical case, the independence on � of the behavior of μ̂

p,�
n clearly materializes already

for the sample size considered. As expected, this independence does not survive departures
from sphericity, where estimators associated with � = 1 exhibit much larger MSEs. Interest-
ingly, estimators associated with � = 2 virtually show the same efficiency under ellipticity as
under sphericity. Yet there is no guarantee that this will still be the case for more extreme
departures from sphericity, whereas, from affine equivariance, estimators associated with
� = 3 will behave in the exact same way for any value of �. It remains that, for the ellip-
tical distribution considered in the present simulation, the estimators associated with � = 2,
that dominate affine-equivariant estimators on a computational point of view (clearly, the
larger �, the heavier the computational burden to evaluate μ̂

p,�
n ) compete equally with affine-

equivariant estimators in terms of MSEs. Of course, results also significantly depend on p.
As expected, the sample mean μ̂2,�

n and the estimators μ̂4,�
n dominate their competitors un-

der spherical Gaussian distributions and spherical power-exponential distributions with tail
parameter η = 2, respectively (from affine equivariance, this extends to elliptical distribu-
tions for � = 3); this is expected since our results entail that these estimators are asymptoti-
cally equivalent to the corresponding maximum likelihood estimators. As a rule, larger (resp.,
smaller) values of p provide more efficient estimators under light-tailed (resp., heavy-tailed)
distributions. Finally, since they do not meet the required moments assumptions at t3 distri-
butions, the estimators associated with p = 4 exhibit there much higher MSEs than the other
estimators (showing the boxplots for p = 4 would prevent comparing the other estimators).

It is natural to explore how well the asymptotic normality result from Theorem 2.5 mate-
rializes at the sample size considered. This result in particular entails that

√
n
(
μ̂p,�

n − μ
p,�
P

)
1

D→ N
(
0,

(
σ

p,�
P

)2)
,

where an explicit expression of σ
p,�
P in the spherical case can be obtained from Corol-

lary 2.1. To explore the quality of this asymptotic approximation, we restricted to the spher-
ical setups considered in the left panels of Figure 1 and computed, for each combina-
tion of p ∈ {1,1.25,4} and � ∈ {1,2,3} a kernel density estimate3 for the distribution of√

n(μ̂
p,�
n − μ

p,�
P )1/σ

p,�
P based on the M = 5000 values of the estimator at hand (we may

safely ignore p = 2, as this would just explore finite-sample relevance of the central limit
theorem). These kernel density estimates are plotted in the left panels of Figure 2, where
histograms are also provided for (p, �) = (1.25, d = 3). Clearly, the results are in an almost
perfect agreement with the standard normal density (which is plotted as a solid black curve
in each panel), except, obviously, for the case p = 4 under the t3 distributions which does not
satisfy the required moment assumptions. From affine equivariance, strictly the same agree-
ment holds in the elliptical case for � = d .

Finally, we turn our attention to the incomplete estimators introduced in Section 2.4. We
consider affine-equivariant estimation of location in dimension 10, that is, � = d = 10. For
sample size n = 100 as above, our estimators are then defined as minimizers of an objec-
tive function with

( n
d

) ≈ 17.3 × 1012 terms, making evaluations of our estimators too costly
to perform a Monte Carlo exercise. To explore the asymptotic behavior of incomplete esti-
mators, we generated M = 5000 independent random samples X1, . . . ,Xn of size n = 100
from the ten-variate t3 distribution, Gaussian distribution, and power-exponential distribu-
tion with η = 2, in each case with location μ = 0 and scatter � = Id . In each sample,
we evaluated the incomplete estimators μ̂

p,d
n,N , for any combination of p ∈ {1,1.25,4} and

3Kernel density estimates throughout are obtained from the R function density with default parameters.
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FIG. 2. (Left) Kernel density estimates of the density of
√

n(μ̂
p,�
n − μ

p,�
P )1/σ

p,�
P obtained from M = 5000

independent random samples of size n = 100 from several trivariate distributions with location μ = 0 and scatter
matrix � = Id ; the distributions considered are the t3 distribution (top), Gaussian distribution (middle), and
power-exponential distribution with tail parameter η = 2 (bottom). For each distribution, histograms are also

provided for the M = 5000 values of
√

n(μ̂
p,�
n − μ

p,�
P )1/σ

p,�
P associated with (p, �) = (1.25, d = 3). (Right) the

corresponding results for � = d = 10 and for the incomplete estimators μ̂
p,d
n,N in (2.15) based on sampling with

replacement with N = n5/2, N = n2 and N = n3/2; see Section 4.1 for details.

N ∈ {n3/2, n2, n5/2} (using sampling with replacement as a sampling scheme). These in-
complete estimators can be evaluated without any problem since they minimize objective
functions with N = n3/2 = 1000 terms, N = n2 = 10,000 terms, or N = n5/2 = 100,000
terms, which is a dramatic improvement over their “complete” antecedents above. The
right panels of Figure 2 shows the resulting kernel density estimates for the distribution of√

n(μ̂
p,�
n,N − μ

p,�
P )1/σ

p,�
P for each combination of p and N ; histograms are also provided for

(p,N) = (1.25, n5/2). Forgetting again about the case p = 4 under t3 distributions that does
not meet the required moment assumptions, the results show that the agreement with the stan-
dard normal distribution is very good (it is only for p = 4 that the largest value of N is really
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needed), which supports the asymptotic result in Theorem 2.8. Incomplete estimators thus
provide a practical way to evaluate the proposed estimators in higher dimensions (and/or for
larger sample sizes).

4.2. Hypothesis testing. As in Section 3, we focus again, without any loss of generality,
on the problem of testing the null hypothesis H0 : μ = 0 against the alternative hypothesis
H1 : μ �= 0. We performed one simulation in the spherical case and two in the elliptical case.
In the spherical case, we generated M = 5000 independent random samples X1, . . . ,Xn of
size n = 100 from the trivariate t3 distribution, Gaussian distribution, and power-exponential
distribution with η = 2, each time with � = Id and μs = n−1/2�1/2(0,0, s)′, for any s =
0,0.5,1,1.5, . . . ,5; the value s = 0 corresponds to the null hypothesis, whereas larger values
of s provide increasingly severe alternatives. The elliptical cases use the same setup but with
� = diag(1002,1002,1) and � = diag(1002,1,1) (the fact that nonnull values of μ deviate
from the null one in the third marginal makes it interesting to consider these two types of
elliptical structures). In each sample, we performed the test φ

p,�
n at asymptotic level α =

5% for any combination of p ∈ {1,1.25,2,4} and � ∈ {1,2,3} (since φ2,�
n is the classical

Hotelling T 2 test for any �, this provides 10 tests). Figure 3 plots the resulting rejection
frequencies as functions of s, as well as the corresponding asymptotic powers obtained in the
spherical case (and, for affine-invariant tests, in the elliptical cases) from Corollary 3.1; see
(3.9). As for point estimation above, where we reported MSEs that were standardized in �,
these rejection frequencies are also standardized through the role played by � in the nonnull
values μs .

The results from Figure 3 are in a perfect agreement with our asymptotic results, which
is remarkable in view of the relatively moderate sample size considered (n = 100):4 in the
spherical case, finite-sample power curves show a dependence on p but not on �, and they
virtually coincide with asymptotic power curves. The ranking of power curves is compatible
with the AREs from Table 1 and with what we had for point estimation, favouring large (resp.,
small) values of p under light (resp., heavy) tails. The tests associated with p = 4 show barely
any power under t3 distributions, as they do not satisfy the required moment assumptions
there. As for point estimation, independence on � does not hold away from the spherical
case, and only the affine-invariant tests associated with � = 3 maintain the same performance
under ellipticity as under sphericity, hence should be favoured over competing tests. Yet it is
interesting to see how both elliptical setups do differ: in particular, tests associated with � = 1
suffer more in the right panels of Figure 3 than in the middle panels, whereas the opposite
holds true for tests associated with � = 2.

4.3. A real-data example. To illustrate the proposed methods on real data, we consider
the data set LASERI (see the R package ICSNP), that contains the cardiovascular responses
to a passive head-up tilt for 223 individuals. Here, we focus on responses in the following
three haemodynamic variables: wave velocity (PWVT, in metres/second), cardiac output (CO,
in litres/minute), and systemic vascular resistance (SVRI, in dynes×seconds/centimetre).
For each of these variables, the data set offers four values per subject, namely (value 1:) the
average value in the 10th minute of rest before the tilt, (value 2:) the average value in the
2nd minute during the tilt, (value 3:) the average value in the 5th minute during the tilt, and
(value 4:) the average value in the 5th minute after the tilt. Several studies investigate whether
or not the haemodynamic system 5 minutes after the tilt has come back already to pre-tilt

4It is only for the classical Hotelling test under t3 distributions that some difference is observed, which is due
to the fact that these distributions are close to distributions with infinite second-order moments under which the
Hotelling test will collapse. This difference of course vanishes for larger sample sizes n.
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FIG. 3. (Left) As functions of s, rejection frequencies of the tests φ
p,�
n obtained from M = 5000 indepen-

dent random samples of size n = 100 from several trivariate distributions with scatter matrix � = Id and lo-

cation μ = μs = √
n�1/2(0,0, s)′ (since φ

2,�
n is the Hotelling T 2 test for any �, each panel shows only one

curve for p = 2); the distributions considered are the t3 distribution (top), Gaussian distribution (middle),
and power-exponential distribution with tail parameter η = 2 (bottom) (Center) The corresponding results for
� = diag(1002,1002,1). (Right) The corresponding results for � = diag(1002,1,1). In each panel, asymptotic
power curves under sphericity (and, for affine-invariant tests, under ellipticity) are also plotted.

levels, based on differences between values 1 and 4. Any reasonable test, however, rejects
the null hypothesis that the haemodynamic system is back to normal (see, e.g., Fischer et al.
(2020)), and we therefore rather focus on what happens during the tilt, based on differences
between values of 2 and 3. The variables of interest here are thus, PWVT2T3, COT2T3, and
SVRIT2T3, defined as the difference between the value at time 3 and at time 2 for each of
the three variables above.

We thus test the null hypothesis that the vector made of PWVT2T3, COT2T3, and
SVRIT2T3 has location zero. Since the data does not reveal clear departures from central
symmetry, we may apply our tests φ

p,�
n from Section 3, which we do for all combinations of
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FIG. 4. (Left) p-values of the tests φ
p,�
n , � = 1,2,3, as functions of p for the real data set considered in Sec-

tion 4.3, or more precisely for the subsample of subjects with a BMI smaller than 25. Blue curves (resp., orange
curves) are those obtained when millimetres are used instead of metres in the variable SVRIT2T3 (resp., when
Newtons are used instead of dynes in the variable PWVT2T3). (Right) The corresponding results for the subjects
with a BMI larger than or equal to 25.

p ∈ {1,1.1,1.2, . . . ,5} and � = 1,2,3. We actually do so separately on the 99 subjects show-
ing a body mass index (BMI) below 25 and on the 223 − 99 = 124 subjects with a BMI that
is at least 25. The corresponding p-values are plotted as functions of p in black in Figure 4,
with different line types to discriminate between the various values of �. Clearly, the null
hypothesis is almost always rejected for subjects with a large BMI, which indicates that these
subjects suffer a change in the considered haemodynamic variables during the tilt (it is only
for � = 1 and very small values of p = 1 that the null hypothesis is not rejected). The picture
is much different for subjects with a small BMI: for those, our tests, at nominal level α = 5%,
tend to reject the null hypothesis for most values of p below 2 and to not reject for values
above 2. A moment estimate of p, in the range p ∈ [1,∞), in the model with densities (1.4)
takes value 1 and 1.28 for subjects with small and large BMIs, respectively, which suggests
in particular that the suitable decision is to reject the null hypothesis for small BMIs, too. For
small BMIs, rejection for small values of p is clearer for � = 1 than for � ∈ {2,3}, hence in
particular, than for our affine-invariant tests obtained with � = 3. One should recall, however,
that the outcome of such tests is may be much affected by the choice of measurement units,
which is of course most undesirable. To illustrate this, we show the corresponding results
(i) when metres are replace with millimetres in PWV and, alternatively, (ii) when dynes are
replaced with Newtons in SVRI. As expected, such marginal scale changes have no impact
on our affine-invariant tests associated with � = 3, but it is seen that they may dramatically
change the p-values of the other tests, and especially of the tests associated with � = 1: in par-
ticular, for these tests, such scale changes among small BMIs basically always turn rejection
into nonrejection and vice-versa!

Of course, it is also natural to consider point estimation in this framework. As it is difficult
to provide informative static 3D plots, we encourage the reader to visit this link,5 where a dy-
namic plot is available and where it is possible to show/hide our affine-equivariant estimators
μ̂

p,3
n for various values of p as well as the corresponding confidence ellipsoids from (2.10),

in both cases separately for subjects with small or large BMIs.

5https://chart-studio.plotly.com/~alexanderduerre/14/#/

https://chart-studio.plotly.com/~alexanderduerre/14/#/
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5. Final comments. Both for point estimation and hypothesis testing, we proposed a
class of simplex-based inference procedures indexed by p ≥ 1 and � ∈ {1, . . . , d}, where p

refers to the Lp loss considered and � is the dimension of the simplices involved. As the
real data example above suggested, it would be natural to tackle the problem of selecting
suitable values of p and � in a given situation. As the title of the present paper hints, we
recommend choosing � = d as affine equivariance/invariance will entail that the resulting
procedures will show the same performance irrespective of the amount of ellipticity at hand
(and will also behave as expected under possible marginal changes in measurement units).
Whenever the sample size n and/or dimension d makes the computational burden too heavy,
our affine-equivariant incomplete estimators from Section 2.4 can be used and will show
the same asymptotic properties as their complete antecedents, which further strengthens our
recommendation to use � = d . In a generic framework, the choice of p, which is somehow
orthogonal to the choice of �, may be based on cross-validation, whereas in the specific
framework of power-exponential distributions, it is natural to substitute an estimator p̂ for p

in μ̂
p,�
n and φ

p,�
n . It is easy to check that μ and p are Fisher-orthogonal parameters in this

model, which strongly suggests adaptivity (that is, which suggests that the resulting inference
procedures enjoy the same asymptotic properties as the oracle ones based on the true value
of p). For hypothesis testing, a natural approach, that would be an alternative to conducting
an affine-invariant test based on a selected value of p, would be to consider the family of
affine-invariant tests indexed by p and to use as a p-value the minimal p-value within this
family. Turning this into a genuine testing procedure, however, would require a stochastic
process asymptotic investigation that is beyond the scope of the present work.

While we did not comment on algorithmic aspects in Section 4, it is worth mentioning that,
in the numerical experiments there, the location estimators μ̂

p,�
n and μ̂

p,�
n,N were evaluated by

relying on standard optimization routines in R (more precisely, we used the built-in function
nlm). While this successfully computed these estimators in a reasonable amount of time,
it would of course be desirable to design algorithms that are tailor made for the objective
functions considered in this work, and that would in particular exploit convexity of these
objective functions. Possibly, the efficient algorithms recently developed for the Oja median
(p = 1 and � = d) in Fischer et al. (2020) can be adapted to other values of p and �.

Finally, while our work focused on inference for multivariate location, other problems
of multivariate statistics may probably be tackled in an affine-equivariant way through the
simplex-based approach we considered. As suggested by an anonymous referee, the minimal
value of the location objective function is actually a natural measure of spread. In particular,
for p = 2 and � = 1, this measure of spread is the total variance, that is, the trace of the
covariance matrix. Beyond estimation of a scalar measure of spread, an interesting direction
for future research is the more intricate problem of estimating a d × d scatter matrix through
the simplex-based approach. This will be considered in future work.
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SUPPLEMENTARY MATERIAL

Supplement to “Affine-equivariant inference for multivariate location under Lp loss
functions” (DOI: 10.1214/22-AOS2199SUPP; .pdf). In this supplement, we prove all the
results of the present paper.

https://doi.org/10.1214/22-AOS2199SUPP
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