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4 Exponential Families

4.1 Definitions

Exponential families of distributions are parametric dominated families in which the logarithm

of probability densities take a simple bilinear form (bilinear in the parameter and in a statistic).

As a consequence of that special form, a number of statistical problems, in such families, are

well-posed, and can be solved. In particular, the results on point estimation developed in the

previous chapter straightforwardly apply. Many traditional families of distributions—binomial,

multinomial, Poisson, negative binomial, normal, gamma, chi-square, beta, Dirichlet, Wishart,

and many others—are exponential families. Note, however, that the uniform, logistic, Cauchy, or

Student (with fixed degrees of freedom) location-scale families are not exponential; the double-

exponential (or Laplace) family is exponential for scale at fixed location, but not for location at

fixed scale.

A statistical model (X ,A,P) (or the family P itself) is called exponential if P is a paramet-

ric family P =
{
Pθθθ : θθθ = (θ1, . . . , θK) ∈ Θ ⊆ RK

}
, dominated by some σ-finite measure µ, with

corresponding densities fθθθ :=
dPθθθ
dµ taking a value, at x ∈ X , of the form

fθθθ(x) = C(θθθ)h(x) exp

( K∑
k=1

θkTk(x)

)
, (4.1)

where T := (T1, . . . , TK) is a statistic with values in (RK ,BK) and where Θ is a subset of

Θ0 :=

{
w ∈ RK :

∫
X
h(x) exp

( K∑
k=1

wkTk(x)

)
dµ(x) <∞

}
. (4.2)

The statistic T is called a natural or privileged statistic2, θθθ a natural parameter, and Θ0 the natural

parameter space of the family.

1With slight modifications by Davy Paindaveine and Thomas Verdebout.
2It readily follows from the factorization criterion that this statistic T is sufficient, so that the terminology

“sufficient statistic” is often used; this is, however, slightly misleading, since any bijective transformation of T is
sufficient, but would not qualify as a “natural” or “privileged” statistic.
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Remark 1: The function h(x) plays no structural role, and is related to the choice of a domi-

nating measure µ. With the measure defined by

ν(B) :=

∫
B
h(x)dµ(x),

we have Pθθθ << ν << µ, and the densities with respect to this alternative dominating measure take

the form

dPθθθ

dν
=

dPθθθ

dµ

/ dν

dµ
= fθθθ(x)/h(x) = C(θθθ) exp

( K∑
k=1

θkTk(x)

)
.

This shows that the function h can thus be “absorbed into µ”.

Remark 2: The density fθθθ also can be written as

fθθθ = C(θθθ)h(x) exp(θθθ′T(x)) = C(θθθ)h(x) exp({A′θθθ}′{A−1T(x)}),

where A is an arbitrary invertible K ×K matrix: thus, θθθ and T are not uniquely identified.

Remark 3: The natural parameter space Θ0 is the largest subset of RK such that the exponential

can be normed into a probability density, and C(θθθ) is then the inverse of the integral in (4.2). That

natural parameter space is a convex subset of RK . Indeed, if θθθ′ and θθθ′′ belong to Θ0, then, for any

convex linear combination θθθ = αθθθ′ + (1− α)θθθ′′, α ∈ (0, 1), Hölder’s inequality yields

∫
h(x) exp

( K∑
k=1

{αθθθ′ + (1− α)θθθ′′}Tk(x)
)
dµ(x)

≤

{∫
h(x) exp

( K∑
k=1

θ′kTk(x)

)
dµ(x)

}α{∫
h(x) exp

( K∑
k=1

θ′′kTk(x)

)
dµ(x)

}1−α

<∞,

which shows that θθθ also belongs to the natural parameter space Θ0.

Remark 4: If P is an exponential family with natural parameter θθθ and privileged statistic T,

then the induced family PT is also exponential with natural parameter θθθ and privileged statistic T
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(here the identity statistic, since one observes a value t of T in the induced model), meaning that

fTθθθ (t) :=
dPT

θθθ

dµT
(t) = C(θθθ) exp

( K∑
k=1

θθθktk

)
, t ∈ RK

(here, we assumed that µ was chosen to absorb the factor h(x)).

Remark 5: Let X = (X1, . . . ,Xn), where Xi, i = 1, . . . , n, are identically and independently

distributed with exponential density

fθθθ(x) = C(θθθ)h(x) exp

( K∑
k=1

θkTk(x)

)
.

Then, X also has an exponential density, of the form

fXθθθ (x1, . . . ,xn) = (C(θθθ))n
( n∏

i=1

h(xi)

)
exp

( K∑
k=1

θk

{ n∑
i=1

Tk(xi)

})
,

which involves the same natural parameter θθθ as X1, and the privileged statistic
∑n

i=1T(Xi). We

refer to Section 4.4 for an important consequence of this fact.

Definition 1. We say that the exponential family P with densities fθθθ given in (4.1) has full

rank K if its parameter space Θ contains at least a hypercube with strictly positive Lebesgue measure

in (RK ,BK)—equivalently, if the interior of Θ is not void.

Two reasons may cause an exponential family with K-dimensional natural parameter to have

rank less than K:

– Θ is a linear manifold of RK : then, the parameter and the privileged statistic can be redefined

via linear transformations of the original ones. Being linear, those transformations do not

affect the bilinear nature of the exponential part of fθθθ, yielding a new form for the densities,

as an exponential family of full rank K ′ < K (see Example 6 below);

– Θ is a nonlinear manifold of RK : then the family is called a curved exponential family and

loses many of the appealing properties of (full rank) exponential families. That case will not

be considered here.
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4.2 Examples

As already mentioned, many common families of distributions are exponential families. We provide

some examples.

Example 1: the Bernoulli family. Bernoulli distributions over (R,B), parametrized by p ∈ (0, 1),

have densities with respect to the counting measure of {0, 1} given by

fp(x) = px(1− p)(1−x).

We have

fp(x) = exp[log fp(x)] = exp[x log p+ (1− x) log(1− p)]

= exp[log(1− p)] exp[x(log p− log(1− p))]

= (1− p) exp[x log(p/(1− p))].

This has the exponential form (4.1), with h(x) = 1, natural parameter θ = log(p/(1−p)), privileged
statistic T (x) = x, and C(θ) = 1− p = 1/(1 + exp(θ)).

Example 2: the Binomial family. For given n ∈ N0, Binomial distributions over (R,B),
parametrized by p ∈ (0, 1), have densities with respect to the counting measure of {0, 1, . . . , n}
given by

fp(x) =

(
n

x

)
px(1− p)n−x.

The same computation as above yields

fp(x) = exp[log(fp(x))] = (1− p)n
(
n

x

)
exp[x log(p/(1− p))],

from where it is clear that the binomial family is exponential, with (recall that n is a constant here,

not a parameter) h(x) =
(
n
x

)
, natural parameter θ = log(p/(1− p)), privileged statistic T (x) = x,

and C(θ) = (1− p)n = 1/(1 + exp(θ))n.
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Example 3: the Poisson family. Poisson distributions over (R,B), with parameter λ ∈ R+
0 , have

densities with respect to the counting measure of N given by

fλ(x) = exp(−λ)λ
x

x!
·

One readily obtains

fλ(x) = exp(−λ) 1
x!

exp(x log λ).

Hence, the Poisson family is exponential, with h(x) = 1/x!, natural parameter θ = log λ, privileged

statistic T (x) = x, and C(θ) = exp(−λ) = exp(− exp(θ)).

Example 4: the Gaussian family. Gaussian distributions on (R,B), parametrized by µ ∈ R and

σ2 ∈ R+
0 , have densities with respect to the Lebesgue measure

fµ,σ2(x) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
.

The canonical exponential family form (4.1) is easily obtained as

fµ,σ2(x) =
1

σ
√
2π

exp

(
−x

2 − 2µx+ µ2

2σ2

)
=

1

σ
√
2π

exp

(
− µ2

2σ2

)
exp

(
µ

σ2
x− 1

2σ2
x2
)
.

The Gaussian family is thus exponential, with h(x) = 1, natural parameter θθθ = ( µ
σ2 ,− 1

2σ2 )
′,

privileged statistic T(x) = (x, x2)′, and

C(θθθ) =
1

σ
√
2π

exp

(
− µ2

2σ2

)
=

√
−θ2
π

exp

(
θ21
4θ2

)
.

Example 5: the Lognormal family. Lognormal distributions, like the Gaussian ones, have den-

sities, parametrized by µ ∈ R and σ2 ∈ R+, of the form

fµ,σ2(x) =
1

xσ
√
2π

exp

(
−((log x)− µ)2

2σ2

)
, x ∈ R+

0 ,

with respect to the Lebesgue measure on (R+
0 ,B ∩ R+

0 ). One easily obtains

fµ,σ2(x) =
1

xσ
√
2π

exp

(
− µ2

2σ2

)
exp

(
µ

σ2
log x− 1

2σ2
(log x)2

)
;
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the Lognormal family is thus exponential, with h(x) = 1/x, natural parameter θθθ = ( µ
σ2 ,− 1

2σ2 )
′,

privileged statistic T(x) = (log x, (log x)2)′, and

C(θθθ) =
1

σ
√
2π

exp

(
− µ2

2σ2

)
=

√
−θ2
π

exp

(
θ21
4θ2

)
.

Example 6: the Multinomial family. For given exponent n ∈ N0, multinomial distributions

are parametrized by a probability vector p = (p1, . . . , pK)′ ∈ [0, 1]K such that
∑K

k=1 pk = 1. The

probability density, over (RK ,BK) and with respect to the counting measure of points x ∈ RK with

integer-valued coordinates x1, . . . , xK such that
∑K

k=1 xk = n, is

fp(x) =
n!

x1! . . . xK !
px1
1 . . . pxK

K =
n!

x1! . . . xK !
exp

( K∑
k=1

xk log pk

)
.

The multinomial family with exponent n and parameter p is thus also an exponential family, with

h(x) = n!/(x1! . . . xK !), natural parameter θθθ = (log p1, . . . , log pK)′, privileged statistic T(x) = x,

and C(θθθ) = 1. But, since
∑K

k=1 pk = 1, the parameter space of that family is a (K−1)-dimensional

linear manifold of RK , and the family does not have full rank K. Replacing pK with 1−
∑K−1

k=1 pk

and xK with n−
∑K−1

k=1 xk, the same densities rewrite

fp1...pK−1(x1, . . . , xK−1) =
n!

x1! . . . xK−1!(n−
∑K−1

k=1 xk)!

(
1−

K−1∑
k=1

pk

)n

× exp

(
x1 log

(
p1

1−
∑K−1

k=1 pk

)
+ . . .+ xK−1 log

(
pK−1

1−
∑K−1

k=1 pk

))
.

It follows that the multinomial family actually is exponential with full rank K − 1 instead of K,

h(x1, . . . , xK−1) =
n!

x1! . . . xK−1!(n−
∑K−1

k=1 xk)!
,

natural parameter θθθ =
(
log(p1/(1−

∑K−1
k=1 pk)), . . . , log(pK−1/(1−

∑K−1
k=1 pk))

)′
, privileged statistic

T(x) = (x1, . . . , xK−1)
′, and C(θθθ) =

(
1−

∑K−1
k=1 pk

)n
=
(
1 +

∑K−1
k=1 exp(θk)

)−n
.
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4.3 Sufficiency and completeness in exponential families

It readily follows from the factorization criterion that the privileged statistic T of an exponential

family is sufficient. The following proposition shows that, if the family has full rank, then T is also

minimal sufficient.

Proposition 1. If an exponential family P with privileged statistic T has full rank K, then T is

minimal sufficient.

Proof. If the model has full rank K, then Θ contains at least a (K + 1)-tuple
(
θθθ(0), θθθ(1), . . . , θθθ(K)

)
determining a hyperrectangle with positive volume, that is, such that

det


θ
(1)
1 − θ

(0)
1 θ

(2)
1 − θ

(0)
1 · · · θ

(K)
1 − θ

(0)
1

...
...

...

θ
(1)
K − θ

(0)
K θ

(2)
K − θ

(0)
K · · · θ

(K)
K − θ

(0)
K

 ̸= 0 . (4.3)

Consider the subfamily P0 = {Pθθθ(0) , . . . ,Pθθθ(K)}, and let us apply the method described in Chapter 2

for constructing minimal sufficient statistics. We know that it suffices to show that T is minimal

sufficient for P0 (it indeed follows from the Neyman-Fisher factorization criterion that T is sufficient

for P). Since Pθθθ(i) << Pθθθ(0) for i = 1, . . . ,K,

S :=

(
dPθθθ(1)

dPθθθ(0)
, . . . ,

dPθθθ(K)

dPθθθ(0)

)′

is a minimal sufficient statistic for P0. Consequently, the statistic S̃ := (S̃1, . . . , S̃K)′, with

S̃i := log

(
C(θθθ(0))

C(θθθ(i))

dPθθθ(i)

dPθθθ(0)

)
= log

(
C(θθθ(0))fθθθ(i)

C(θθθ(i))fθθθ(0)

)
=

K∑
k=1

(
θ
(i)
k − θ

(0)
k

)
Tk, i = 1, . . . ,K,

is also minimal sufficient for P0 (since it is a one-to-one function of S). Under matrix form, we

have

S̃ =


θ
(1)
1 − θ

(0)
1 · · · θ

(1)
K − θ

(0)
K

θ
(2)
1 − θ

(0)
1 · · · θ

(2)
K − θ

(0)
K

...
...

θ
(K)
1 − θ

(0)
1 · · · θ

(K)
K − θ

(0)
K

T,

which, in view of (4.3), shows that T is a one-to-one function of S̃. As a one-to-one function of a
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minimal sufficient statistic for P0, the privileged statistic is thus also minimal sufficient for P0.

Under the same conditions as in the previous result, T is also complete.

Proposition 2. If an exponential family P with privileged statistic T has full rank K, then T is

complete.

Proof. Let the function ℓ : T → R be such that Eθθθ[ℓ(T)] = 0 for any θθθ ∈ Θ. Working with the

dominating measure ν defined in Remark 1, this implies that

C(θθθ)

∫
T
ℓ(t) exp(θθθ′t)dνT(t) = C(θθθ)

∫
X
ℓ(T(x)) exp(θθθ′T(x))dν(x) = 0

for any θθθ ∈ Θ. Writing ℓ = ℓ+− ℓ−, where both ℓ+ and ℓ− take their values in R+ (as we did when

defining conditional expectations in Chapter 2), we thus have∫
T
ℓ+(t) exp(θθθ′t)dνT(t) =

∫
T
ℓ−(t) exp(θθθ′t)dνT(t) (4.4)

for any θθθ ∈ Θ. Fix θθθ0 in the interior of Θ, and put

C :=

∫
T
ℓ+(t) exp(θθθ′0t)dν

T(t) =

∫
T
ℓ−(t) exp(θθθ′0t)dν

T(t) (4.5)

Obviously, C ≥ 0. We consider two cases. (i) C = 0. Then, we have that ℓ+(t) = ℓ−(t) = 0, hence

also ℓ(t) = 0, for any t ∈ N with νT(T \N) = 0. Thus, ℓ(T(x)) = 0 for any x ∈ T−1(N). Clearly,

ν(X \T−1(N)) = ν(T−1(T \N)) = νT(T \N) = 0,

so that Pθθθ[X \T−1(N)] = 0 for any θθθ ∈ Θ. In other words, ℓ(T(X)) = 0 Pθθθ-a.s. for any θθθ ∈ Θ. (ii)

C > 0. Then, (4.5) implies that

f±(t) :=
1

C
ℓ±(t) exp(θθθ′0t)

are densities with respect to νT, whereas (4.4), which rewrites∫
T
exp((θθθ − θθθ0)

′t)f+(t)dνT(t) =

∫
T
exp((θθθ − θθθ0)

′t)f−(t)dνT(t) for any θθθ ∈ Θ,
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implies that these densities have moment-generating functions that coincide in a neighborhood of

the origin (recall that θθθ0 is an interior point to ΘΘΘ). Thus, ℓ+(t) = ℓ−(t) νT-almost everywhere,

hence ℓ(t) = 0 νT-almost everywhere. The same reasoning as in case (i) then still yields that

ℓ(T(X)) = 0 Pθθθ-a.s. for any θθθ ∈ Θ.

Provided that a minimal sufficient statistic exists, T, as a sufficient and complete statistic, is

also minimal sufficient, so that one might think that Proposition 1 is a corollary of Proposition 2. It

is not, though, since it was unclear before proving Proposition 1 that a minimal sufficient statistic

does exist.

4.4 Further properties

(A) Combined with Propositions 1–2, Remark 5 in Section 4.1 is extremely important. Indeed, it

implies that, if X1, . . . ,Xn are identically and independently distributed random vectors from an

exponential family with K-dimensional privileged statistic T(X), then the n-tuple (X1, . . . ,Xn) is

exponential, with K-dimensional privileged statistic
∑n

i=1T(Xi). The dimension of the sufficient

and complete statistic thus is K, irrespective of the sample size n. Under appropriate regularity

assumptions, it can be shown that exponential families are the only ones allowing for a sufficient

statistic with fixed dimension K irrespective of the (possibly arbitrarily large) sample of size n—a

result associated with the names of Darmois (1935), Koopman (1936) and Pitman (1937).

(B) In the rest of this chapter, we assume that the dominating measure was chosen to absorb the

factor h(x); see Remark 1. Assume then that ϕ : (X ,A) → (R,B) is such that

∫
ϕ(x) exp

( K∑
k=1

θkTk(x)

)
dµ(x)

exists and is finite for all θθθ ∈ Θ. Then,

(i) the mapping

θθθ 7→
∫
ϕ(x) exp

( K∑
k=1

θkTk(x)

)
dµ(x) (4.6)

is analytical at all θθθ in the interior of Θ0;

(ii) its derivatives (of all orders) with respect to θθθ can be computed by differentiating (4.6) under

the integral sign.
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(C) Moments of the privileged statistic. Consider the exponential family with densities

fθθθ(x) = C(θθθ) exp

( K∑
k=1

θkTk(x)

)

and let ψ(θθθ) := − logC(θθθ).

Proposition 3. For all θθθ in the interior of Θ0, all moments of T at Pθθθ exist and are finite. In

particular, denoting as ∇θθθ the gradient operator with respect to θθθ,

Eθθθ[T] = ∇θθθψ(θθθ) and Varθθθ[T] =
(
∂2θi,θjψ(θθθ)

)
= I(θθθ),

where

I(θθθ) := Eθθθ[∇θθθ log fθθθ(X) (∇θθθ log fθθθ(X))′]

is the Fisher information matrix for θθθ.

Proof. It follows from point (B) above that the moment-generating function of T is analytical;

hence, all moments of T exist and are finite. For the remaining points in the proposition, we

provide a direct derivation. Since
∫
X fθθθ(x)dµ(x) = 1, we have

∫
X
exp

( K∑
k=1

θkTk(x)

)
dµ(x) =

1

C(θθθ)
= exp(ψ(θθθ)).

In view of point (B) above, derivatives with respect to θi can be taken on both sides of that identity,

under the integral sign, yielding, for all i,

∫
X
Ti(x) exp

( K∑
k=1

θkTk(x)

)
dµ(x) = (∂θiψ(θθθ) exp(ψ(θθθ))) . (4.7)

Multiplying both sides with C(θθθ) = exp(−ψ(θθθ)), we get

Eθθθ[Ti] = ∂θiψ(θθθ) i = 1, . . . ,K.
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Differentiating both sides of (4.7) with respect to θj now yields

∫
X
Ti(x)Tj(x) exp

( K∑
k=1

θkTk(x)

)
dµ(x) =

{(
∂2θi,θjψ(θθθ)

)
+ (∂θθθiψ(θθθ))(∂θθθjψ(θθθ))

}
exp(ψ(θθθ)).

Then, multiplying both sides by C(θθθ) = exp(−ψ(θθθ)),

Eθθθ[TiTj ] = ∂2θi,θjψ(θθθ) + (∂θθθiψ(θθθ))(∂θθθjψ(θθθ))

= ∂2θi,θjψ(θθθ) + Eθθθ[Ti]Eθθθ[Tj ],

which yields

Covθθθ[Ti, Tj ] = ∂2θi,θjψ(θθθ).

Finally, since direct differentiation yields ∇θθθ log fθθθ(x) = −∇θθθψ(θθθ) +T(x) = T(x)− Eθθθ[T], we see

that the Fisher information matrix I(θθθ) exists and is finite, and that it coincides with Varθθθ[T], as

was to be shown.

It follows from Proposition 3 that T, with covariance matrix I(θθθ), moreover is an efficient

estimator3 of Eθθθ[T] = ∇θθθψ(θθθ), which (up to a linear transformation) is actually the only efficiently

estimable function of θθθ.

3Recall that an estimator S is efficient for Eθθθ[S] = ΥΥΥ(θθθ) = (Υ1(θθθ), . . . ,ΥK(θθθ))′ if its covariance matrix reaches the
Cramér-Rao bound (∂Υi/∂θj) (I(θθθ))

−1 (∂Υi/∂θj)
′; for ΥΥΥ(θθθ) = ∇θθθψ(θθθ), indeed, (∂Υi/∂θj) = (∂2

θi,θj
ψ(θθθ)) = I(θθθ).
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