Lecture Notes for STAT-F404, author: Marc Hallin'

5 Hypothesis Testing: UMP Tests

5.1 The decision problem

Consider the statistical model (X, .A,P), where P is partitioned into P = Hy & H;, along
with the decision space D = {RH,, RHo} = {1,0}; here, RHy and RH, (equivalently, 1 and
0) respectively stand for “reject Hy” and “do not reject Hy”. Consider also the loss function
defined by

1 ifPeHandd=0
Lp<d):{ i 1 an

0 otherwise.

The cost of not rejecting Hy when Hj is false (the so-called Type II error) thus is one, while
rejecting Hy when Hy is true (Type I error) has cost zero.

A randomized decision rule—a collection, indexed by x € X, of conditional (on X=x)
distributions over the two points “0” (RH,) and “1” (RH,)—is entirely described by the X-
measurable probability mass it puts on “1” (RH,), that is, an X-measurable statistic, ¢(X),

say, with values in [0, 1]. The set of all possible randomized decision rules is thus
T :={¢: ¢(x) a statistic with values in ([0, 1], Bjo,1))}, By == BNI0,1],

with the interpretation that, in case the randomized decision rule ¢ is adopted, conditional
on X = x, decision “1” (RHy) will be taken with probability ¢(x). If x is observed and
¢(x) = 1/2, then the statistician thus can flip a fair coin in order to decide between RH,
and RHy; if ¢(x) = 1/6, then she/he can roll a dice, etc. Of course, if ¢(x) = 1 or 0, then

she/he will reject or not reject without randomization.

'With slight modifications by Davy Paindaveine and Thomas Verdebout.
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A specific terminology is associated with this decision problem:

— Hy is called the null hypothesis, H, the alternative hypothesis; together, they charac-

terize a testing problem.

— A decision rule ¢ (a statistic with values in [0,1]) is called a (randomized) test. If ¢
is such that P[¢(X) € {0,1}] = 1 for any P € P, it is called a nonrandomized or pure
test.

— The unconditional probability under P that a given test ¢ eventually leads to the

rejection of Hy is
Eelo] = [ 6(o)dP(e):
X
this quantity is called the size of ¢ when P € Hj, the power of ¢ when P € H;.

— The risk (the expected loss) associated with a test ¢ is

. {1—Ep[¢] if P € H,
RP: .
0 if P e H

(under P € Hy, that risk is the probability of ¢ committing Type II error and is called
the Type II risk). That risk R?, is to be minimized uniformly in P € H;. Equivalently,
the power of ¢, Ep[¢], P € Hy, is to be maximized uniformly in P € H;.

Clearly, if the power is to be maximized with respect to ¢ € T, without placing any
restriction on ¢, then the trivial test ¢(x) = 1 P-almost surely, which rejects Hy irrespective
of the observed value x of X, qualifies as the uniformly most powerful test, hence the solution

of the testing problem. Such a trivial solution is ruled out by the following principle.

The Neyman principle. Fix some o € (0,1), and restrict to the class C, of a-level

tests, i.e., of the tests ¢ satisfying the level constraint
Ep[¢] < a for all P € H,. (5.1)

A test ¢* is said to be uniformly most powerful (UMP) within a class C of tests if
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(a) ¢* € C, and
(b) for all ¢ € C and all P € Hy, Ep[¢*] > Ep[d].

That principle, often complemented by some further ones, will be considered throughout
the chapters on hypothesis testing. A test ¢* which is uniformly most powerful within the
class C, = {¢ : Ep[¢] < « for all P € Hy} of a-level tests is called uniformly most powerful

at level o, or a-level uniformly most powerful.

5.2 The Neyman-Pearson Lemma
5.2.1 Testing a simple null against a simple alternative

A hypothesis H (null or alternative) is called simple if it contains a single element. Else,
it is called composite. The simplest of all hypothesis testing problems is that of testing a
simple null Hy = {Po} against a simple alternative Hy = {P1}. The problem then consists
in maximizing E;[¢] := Ep, [¢] = [ ¢(x)dP1(x) under the level constraint Eq[¢] := Ep,[¢] =
[ ¢(x)dPy(x) < a. Maxinnzmg such an 1ntegral under an integral constraint is a standard
variational problem. Its solution, along with some properties, is summarized in the following
remark, known as the Neyman-Pearson Fundamental Lemma.

Note that Py and P; are dominated by the sum u := Py + Py; it will be convenient to
use the corresponding densities

dP dP
fg = —0 and fl = —1

du du
Also, instead of “uniformly most powerful” (UMP), in this context, we simply say “most
powerful” (MP); “uniformly” here indeed means “uniformly in P € H;”, which in the present
case is superfluous, as H; is simple.

Before stating the Neyman-Pearson Lemma, let us define a Neyman test with constant k



(for the simple Hy against the simple H;) as a test of the form

1 if fl(X) > k}fo(X)
¢(x) = q v(x) if fi(x)=kfo(x)
0 if fl (X) < kfo(X),

where k € R* := R* U {00} and x — 7(x) takes values in [0, 1].

The Neyman-Pearson Lemma generally consists of the following fourfold statement.

Lemma 1 (Neyman-Pearson Lemma). Consider the statistical model (X, A, P), with P :=
{Po, P1}, the null hypothesis Hy := {Py}, and the alternative H, := {P1}. Fiz a € (0,1).
Then, we have the following:

(1) There exist k € RT and v € [0, 1] such that the test

L if fi(x) > kfo(x)
Go(X) =< v if fi(x) = kfo(x)
0 if fi(x) < kfo(x)

satisfies Eglok] = « (size constraint).
(ii) The test ¢f, is most powerful at level a.

(11i) Conversely, if ¢ is such that Eg|¢] < a and E1[¢] = Eq[¢}], then (¢f (x)—¢'(x))(f1(x) #
kfo(x)) =0 p-a.e., or equivalently, (¢%(x) — ¢'(x))I[f1(x) # kfo(x)] = 0 p-a.e. (if an

a-level test ¢ is as powerful as ¢, then it is also a Neyman test with constant k).

(iv) Eq[pf] > a.

Proof. (i) Let Fy(z) := Po[f1(X) < zfo(X)] for any z. Noting that z — Fy(z) is a cumulative

distribution function, define

Fo(k) — (1 —«a)
k:=inf{z: Fo(z) >1—a} and ~= Fo(k) — Fo(k —0)
0 if Fy(k) = Fo(k —0),

if Fy(k) > Fy(k —0)



where Fy(k — 0) denotes the limit of Fy(z) when z converges to k from below. Then,

Eo[#n] = Polfi(X) > kfo(X)] +7Po[f1(X) = kfo(X)] + 0 x Po[f1(X) < kfo(X)]

Fy(k) — (1 —a)
Fo(k) — Fo(k —0)

=1 Fy(k) + (Fo(k) — Fo(k — 0)) = a.

Remark 1: Note that if F, ! is well-defined at 1 — «, then Fy(k) =1 — a and v = 0: ¢
is a pure test involving no randomization. If not, Fy(k—0) < 1—a < Fy(k), and 0 < v < 1.
In case v < 1, ¢}, is a randomized test (in case v = 1, again, no randomization is involved,
but the critical region is of the form {x : fi(x) > kfo(x)}).

(ii) For any ¢ satisfying Eq[¢] < «, consider the integral (with respect to u = Pg + Py)

/X(cﬁZ(X) — 0(x))(f1(x) = K fo(x))dp(x)- (5.2)

The integrand in (5.2) is nonnegative for all x: indeed,

— either fi(x) — kfo(x) < 0; then ¢} (x) — ¢(x) = —¢(x) < 0, and the integrand is
nonnegative;

— or fi(x) — kfo(x) > 0; then ¢! (x) — ¢p(x) = 1 — ¢(x) > 0, and the integrand again is
nonnegative;

— or fi(x) — kfo(x) =0, and the integrand is zero, hence in particular nonnegative.

It follows that the integral itself is nonnegative. Developing that integral yields

0 < Ey[¢r] — Ei[o] — k(Eo[¢] — Eo[¢])
= Ei[¢] — Ei[¢] — k(a — Eo[¢]), (5.3)

hence (since k& > 0 and Ey[¢] < «)

Ei[og] — Ei[¢] = k(o — Eo[g]) = 0,

as was to be shown.



(iii) Assume that ¢ satisfies Eg[¢] < a and is as powerful as ¢’. Then, (5.3) yields

0 < Eq[¢n] — Ea[¢] = k(o — Eo[9]) = —k(ar — Eo[¢]) <0, (5.4)

so that the integral (5.2) is zero. As an integral with nonnegative integrand, however, (5.2)
only can take value 0 if that integrand is p-almost everywhere zero, which establishes the
result (that is, ¢! and ¢ coincide p-almost everywhere, except possibly in the possible ran-
domization part where f;(x) = kfo(x)).

(iv) Clearly, the trivial test defined by ¢o(x) = « for any x has level a. Since ¢}, is most
powerful at level «, we must then have E;[¢7] > Ei[¢po] = a. Now, assume that E;[¢%] = a.
Then,

p({x s fi(x) # kfo(x)})
= p({x: fi(x) # kfo(x), 95(%) = do(x)}) + p({z - fi(x) # kfo(x), ¢o(x) # ¢o(x)})
= T1 + T2 = 0

(Ty is zero because ¢y(x) = a(€ (0,1)) cannot be equal to ¢} (x) when fi(x) # kfo(x),
whereas T3 is zero from Part (iii) of the lemma). Thus, fi(x) = kfo(x) p-almost every-
where. Since [, fo(x)du(x) = [, fi(x)du(x) = 1, we then have that fi(x) = fo(x) p-almost
everywhere, which implies that Py = Py, a contradiction. This completes the proof of the

lemma. O

Remark 2: It follows from the proof of the Neyman-Pearson Lemma that

(a) any test of the form

S = { L if fi(x) > kfo(x) (55)

0 if fi(x) < kfo(x)
for some k > 0 (no specification in case fi(x) = kfo(x)) is most powerful, at level Eo[¢],
for {Po} against {P1};



(b) for any test of the form (5.5), there exists a test of the form

L if fi(x) > kfo(x)
¢(x)=19 v if fi(x) = kfo(x)
0 if fi(x) < kfo(x),

with v € [0,1], such that Eo[¢'] = Eo[¢] and Eq[¢'] = E1[¢)];

(c) unless Py = Pq, any test of the form (5.5) with Eg|¢] < 1 is such that Ei[¢] > Eo[¢].

The intuitive interpretation of the optimality property of test of the Neyman type
is essentially the following: with Pg-probability one, f1(X) > kfo(X) is equivalent to
fiX)/fo(X) > k, where fi(x)/fo(x), the likelihood ratio, can be interpreted as an “ex-
change rate” between size and power, between type I risk (the Pg-probability of rejecting)
and power (the Py-probability of rejecting). The optimal test ¢7 in part (ii) of the Lemma
thus consists in spending “a total amount «” of type I risk on those points x where the

“exchange rate” is most favorable.

5.2.2 The power diagram

If two tests ¢’ and ¢” are such that Eg[¢'] = Eg[¢”] and E;[¢'] = E1[¢"], they are perfectly
equivalent from a decision-theoretic point of view: same size, same power. Therefore, we may
identify all tests ¢ having (for a given testing problem, of the form Hy = {Pq}, H; = {P1})
the same size Eq[¢] and the same power E; [¢] with the point (Eg[¢], E1[¢]) in the unit square.
The set

M = {(Eo[¢], E1[0]) : ¢ is a test}

is called the power diagram (for Py and Py). It has the following typical form.



Eafo] N Eilg) -

A

Eo [¢] Q Eo [¢]

The lefthand panel corresponds to the particular case where Py and P; are absolutely
continuous with respect to each other, whereas the righthand panel is the general case. As

for the quantities oy and Sy,

— 01 = Pi[fo(X) = 0] is the maximal power of a test with size zero (achieved by
o(x) =1[fo(x) = 0]), whereas

= Po[f1(X) > 0] is the minimal size of a test with power one (achieved by

) (
¢(x) = I[f1(x) > 0]).

Less importantly, oy = Po[f1(X) = 0] is then the maximal size of a test with power zero
(achieved by ¢(x) = [[f1(x) = 0]) and (1 — 1) = Py[fo(X) > 0] is then the minimal power of
a test with size one (achieved by ¢(x) = I[fo(x) > 0]). Whenever Py and P; are absolutely

continuous with respect to each other, ay = 81 = 0.
The following proposition provides some elementary properties of power diagrams.
Proposition. (i) The main diagonal of the unit square, representing the tests of the

form ¢o = a p-almost everywhere (a € [0,1)), is in M;

(ii) M is symmetric with respect to (3,3);



(iii) M is convez;
(iv) the “upper boundary” of M represents the Neyman-Pearson Lemma tests;
(v) M is closed, hence compact.

Except for part (v), all statements in this proposition are quite elementary; proofs are
left to the reader.

5.3 Families with monotone likelihood ratios

Testing a simple null against a simple alternative is of theoretical rather than practical
interest. The simplest problems (for a one-parameter family {Py : § € ©}, where © is an

interval of R—possibly, R itself) that are of practical relevance are of the form
HOI{PQIQSQ()} Vs le{P919>eg},

which is often simply written as Hy : 0 < 6y vs Hy : 0 > 6. Such hypotheses are called
one-sided. They only make sense, of course, for fy € int(©)—an assumption which is tacitly
made throughout this section. Of course, the opposite problem, with Hy : 6 > 6, and
H, : 0 < 0, is equally interesting, but essentially equivalent.

A family P = {Py : 6 € O} is said to have monotone likelihood ratio in the (real-valued)
statistic T if (i) it is dominated by some o-finite measure p and (ii) there exist versions of

the densities fy := C% such that, for any # < @', the ratio

for(x)
fo(x)

is a nondecreasing function of 7'(x).

Example 1: Binomial Bin(n, p) families, with densities (over R, with respect to the count-

ing measure of the set {0,1,...,n})



indexed by 0 = p € [0, 1], have monotone likelihood ratio with respect to 7'(z) = x.

Example 2: Poisson families, with densities (over R™ for a sample of size n, with respect

to the counting measure of N™)

/\Z?:1xi
T X = (T1,...,%p)
i=1 Li:
n

indexed by A € Ry, have monotone likelihood ratio with respect to T'(x) = > i | ;.

falx) = e

Example 3: More generally, one-parameter exponential families, with densities (indexed
by 6 € ©)
fo(x) = C(0)h(x) exp(0T'(x))

is a monotone likelihood ratio family with respect to the natural statistic T'(x).

As we shall see, the conclusions of the Neyman-Pearson Lemma almost directly extend to
one-sided testing problems in families with monotone likelihood ratios—a fact we summarize
in the following theorem (Karlin and Rubin, 1956).

Theorem 1. Let P = {Py: 0 € ©} be a family with monotone likelihood ratio with respect
to T(x). Fiz a € (0,1) and 6y € int(O). Then, (i) There exist t, € R and v, € [0, 1] such
that the test

1 if T(x) > t,
¢Z(X) = e Zf T(X) =t,
0 ifT(x) <ty

has size o under Py,, that is, satisfies Eq,[0%] = . (i1) The size/power function 6 — Eg[¢f]
is strictly monotone increasing. (iii) The test ¢ is uniformly most powerful in the class of

a-level tests for the problem of testing Hy : 0 < 6y against Hy : 6 > 6.

Proof. (i) The proof of this part is very similar to the proof of the first part of the Neyman-
Pearson fundamental lemma. Let t — F (t) := Po[T(X) < ] be the cumulative distribution
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function of 1" under Py,. Then, with

FI(t) = (1 - a)
to:=inf{z: Fy (t) > 1—a} and 7, =< Fy(ta) — F4(ta —0)
0 if Fyl (ta) = Fj (ta —0),

if FY (o) > F{ (to — 0)

we have

Ego[da] = Poy[T(X) > ta] +7aPa[T(X) = ta] +0 X P, [T(X) < 1]

F(to) — (1 - a)
Fi(ta) — Ff (ta — 0)

= 1—Fj(ta) + (Fy,(ta) — Fg (ta — 0)) = a.
(i) Fix @’ < #” in ©. In view of the monotone likelihood property, we have that 7'(x) is
larger than, equal to, or smaller than ¢, if and only if fy(x)/fe(x) is larger than, equal to,

or smaller than some k = k(¢',60",t,). Thus, the test ¢} rewrites

L if for(x) > kfe(x)
Go(X) =4 Yo if for(x) = kfo(x) (5.6)
0 if for(x) <k fo(x).

This is the Neyman-Pearson test for Hy : 6 = ¢’ against Hy : 6 = 6" at level Ey[¢*]. From
Part (iv) of the Neyman-Pearson lemma, we thus have that Eg»[¢%] > Eg/[¢%].

(iii) It directly follows from (i)—(ii) that ¢ is an a-level test for the problem of testing
Hy : 0 < 0y against Hy : 0 > 6. Let then ¢ be an arbitrary a-level test for this problem.
Fix 6; > 6, arbitrarily. Since ¢ is an a-level test for the problem of testing Hy : 6 = 6
against Hy : @ = 6, and since ¢}, is the Neyman-Pearson test for this problem at level v (this
is seen by proceeding as in (ii) with ¢’ = 6y and 6" = 0;), we must have Eg, [¢%] > Ey,[¢].
This establishes the result. O

The result shows in particular that the size/power function 6 — Eg[¢}] is strictly mono-
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tone increasing. In exponential families, it can actually be shown that

d
—E *
d@ 9[¢a] >0

at any 6 such that 0 < Eg[¢%] < 1 (a proof is available on request), which will actually play

an important role in the next chapter.

5.4 A generalized Neyman-Pearson Lemma

Consider next the problem of testing the composite null hypothesis Hy = {P1,...,P,}
against the simple alternative Hy = {P,,,1}. Writing p:=P; 4+ ...+ P41, let

Ji=

, 1=1,...,m+1,
and define the corresponding power diagram as

Mi1 = {(E1[¢], ..., Ent1][d]) : ¢ is a test}

(each point y in M,, 1 represents a class of tests which are all equivalent from the point
of view of size and power, therefore essentially the same from a decisional point of view).
The power diagram M,, ;1 enjoys all elementary properties of Ms: convexity, compactness,
symmetry, etc. Note that the projection of M,, 1 onto the space of its first m components
is nothing else but M,,.

A test of the form

Lif fr(x) > D00 kifi(x)
o(x) = v(x) if frn(x) =220 kifi(x)
0 if fna(x) < 22005, kifi(x),

where ki, ..., k,, are real numbers (not necessarily positive) is called a generalized Neyman
test. The following result extends (in a somewhat weaker form, though) the fundamental

Neyman-Pearson Lemma to the present context.
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Proposition 1 (The generalized Neyman-Pearson Lemma — 1st version). (i) Forallc =
(€1, yCm) € My, there exists a test mazimizing E,,,1[¢] under the size constraints
Ei[¢p] = ¢ fori=1,...,m.

(i1) If ¢* satisfies E;[¢] = ¢;, i =1,...,m, with c € M,, and is of the generalized Neyman

type, then it mazimizes E,,.1[¢] under the constraints E;[¢] = ¢; fori=1,...,m.

(11i) If, moreover, the Neyman test ¢* in (ii) is such that k; > 0 for i =1,...,m, then it

also mazimizes B, 1[¢] under the level constraints E;[¢] < ¢; fori=1,...,m.

(iv) if ¢ = (c1,...,¢m) is an interior point of M,,, then there exists a Neyman test such
that E;[¢] = ¢; fori=1,...,m (it follows from (ii) that this test automatically maxi-

mizes B, 1[¢] under the constraints E;[¢] = ¢; fori=1,...,m).

Proof. (i) Denote by D the “vertical” straight line through c. The tests satisfying the
constraints E;[¢] = ¢;, for i = 1,...,m, are those represented by D N M,,,;. Due to
convexity, D N M,,,1 is a (“vertical”) segment [B~, BT], with B := (cy,...,cn,b%) and
bt > b~. Any test represented by BT (a nonempty class) achieves the desired maximization,

and the maximal value is bt.

(ii) Let ¢ satisty E;[¢] = ¢;. The integrand in

[ @) = 60600 (fnea 0 Zkfz ) diaeo) 5.7

is nonnegative; hence the integral also is. Thus,
66 = 660 )0 = 3k [ (6760 = 610 dn(x)

= Zki(ci — Ei[¢]) =0,

which reads E,,11[¢*] > E,11[¢] (note, however, that this does not tell us anything about

the existence of such a ¢*, nor about the values of k;, ¢ = 1,...,m; on this point, we refer
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to Part (iv) of the proposition).

(iii) Let ¢ satisfy E;[¢] < ¢, i = 1,...,m. Since k; > 0, i = 1,...,m, nonnegativity
of (5.7) now yields

/X(QS*(X) — ¢(x)) frnr1(x) du(x) > Zkz /(¢*(X) — ¢(x)) fi(x) du(x)
= Zkz(cz — Ei[¢]) > 0,

which provides again E,,1[¢*] > E,.11[¢] (that conclusion is invalid as soon as one at least

of the k;’s is negative).

(iv) Convexity of M,, ;1 and the Separating Hyperplane Theorem imply the existence
of a hyperplane H such that B™ (defined in Part (i) of the result) belongs to H and M,, 4
lies entirely on one side of H. The point ¢ belongs to the interior of M,,, so that B~ #
BT. It clearly follows that B~ € M, lies “below” BT, so that M,,,; also entirely lies
“below” H. The equation of H is (the general equation of a hyperplane through a point B*

with coordinates (ci, ..., ¢y, b07))

Z kityi + kma1Yme1 = Z kici + kmaab™, y € R
i=1

i=1
where the coefficients k; are defined up to a multiplicative constant. We have kp,.1 # 0.
Indeed, k41 = 0 would imply that the vertical line through [B~, Bf] belongs to H, which
is not compatible with M,,,; being “below” H unless B~ = B¥; this, however, is ruled out

by the assumption that ¢ is an interior point of M,,. Since k41 # 0, we may, without any

loss of generality, assume l;‘m_i_l — 1. Putting k; = —k;, we then have that

Ym+1 — Z ki = bt — Z kic; if and only if y “on” H

i=1 i=1

Ym+1 — Z ki < bt — Z kic; if and only if y “below” H.

=1 i=1
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Since M, is entirely below H, any test ¢ provides

Emi1[d] — Z kiEi[¢] < Bpngalo™] — Z kB[],

=1

where ¢T is a test represented by BT. This rewrites

[ 069 (fax Z/ffz x) < [ 0860 (funlx Zkfz) (%)

where the k;’s, as the coefficients of the separating hyperplane H, are fixed. Hence, ¢ is a

maximizer, over all possible tests, of the integral

[ 06 (i tx Zkfl)

That maximum, for ¢ ranging over the set of all possible tests, is clearly

| (a0 Zkfz )

where (2)* = max(z,0) is the positive part of a number z, and this maximum can only be

achieved if ¢* is, p-almost everywhere, of the form

Lif fr(x) > D00 kifi(x)
¢"(x) =9 Y(x) if frnra(x) =200, Kifi(x)
0 if ferl(X) < 221 szz<x)a

that is, if it is a Neyman test with constants k;, t = 1,...,m. O]

Two important remarks are in order.

Remark 1: The proof of Proposition 1 can actually be extended easily to cover the fol-

lowing slightly more general version of the result, that will be useful in the next chapter.
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Proposition 2 (The generalized Neyman-Pearson Lemma — 2nd version). Let gy, ..., gmi1

(X, A) = (R, B) be measurable functions that are p-integrable, and consider

{</¢ x)g1(x) diu(x /¢ %) gm () dps(x )>:¢atest}_

In this framework, calling “a generalized Neyman test” a test of the form

1 if Im+1 (X) > 271 igi(x)
¢(X) = Y(X) i Gmir(x) = Z;nl kigi(x)
0 if gmra(x) < D00 kigi(x),

where ky, ..., k,, are real numbers, we have the following:

(i) For all ¢ = (cq,...,¢pn) € My, there exists a test mazimizing [, ¢(X)gm+1(X) dpu(x)

under the size constraints [, ¢(x)g;(x) du(x) = ¢; fori=1,...,m.

(i) If ¢* satisfies [, d(x)gi(x)dpu(x) = ¢;, i = 1,...,m, with ¢ € M,, and is of the gen-
eralized Neyman type, then it mazimizes [, ¢(X)gm+1(x) du(x) under the constraints
[ o( Ydu(x) =¢; fori=1,...,m.

(i1i) If, moreover, the Neyman test ¢* in (ii) is such that k; > 0 for i = 1,...,m, then
it also mazimizes [, ¢(X)gm1(x) du(x) under the constraints [, ¢(x)g:(x) du(x) < ¢
fori=1,....m

() if c = (c1,...,¢m) is an interior point of M,,, then there exists a Neyman test such
that [, ¢(x)gi(x) du(x) = ¢; fori =1,...,m (it follows from (ii) that this test automat-
ically mazimizes [, ¢(X)gms1(x) dp(x) under the constraints [, ¢(x)g;(x) du(x) = ¢
fori=1,...,m).

Of course, the first version of the generalized Neyman-Pearson lemma is recovered when g;

is taken as a density function f; for any i =1,...,m.

Remark 2: In the “favorable” cases described by Proposition 1(iii), the optimal test is of
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the form

) =1 i frupr(x) > k(fj 50

where k := Y"1 k; is the sum of the nonnegative coefficients k;’s. Since k;/k > 0 for i =
L,...,mand >" (k;/k) = 1, this test is a Neyman test (in the sense of the fundamental

lemma) for a mixture density of the form

against { f,,.1}. This remark is exploited in the next section.

5.5 Least favorable distributions

5.5.1 Mixtures

The generalized Neyman-Pearson Lemma tells us that, in the “favorable cases”, most pow-
erful tests of a composite null hypothesis Hy = {fi,..., fi} against H; = {f,,+1}, under a

level condition Ey,[¢] < o for i = 1,...,m, exist and are of the form

1 if fm+1(X) > Z:Zl klfl(x>
¢ (x) = v if frpa(x) = D0 kifi(x)
0 if fm+1(X) < ZZZI szz(x)7

with k; > 0 for i =1,...,m and v determined by Ey,[¢] < a fori=1,...,m. By “favorable

cases”, we mean that such a test exists. Letting k := > | k;, this test rewrites as

L fron (%) > k(201 7 fi(x)
¢"(x) = 7 if fur (%) = k(X2 B fi(x))
0 i frua(x) < k(0L R fi(x),

which is the Neyman-Pearson test for the simple hypothesis {d_1", % fi} against the simple

m

alternative { f,+1} under a-level constraint. This density > ;", % f; (one easily checks that
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it is a density) is a mizture of fi,..., fim, with mizing probabilities T, k];”

for a composite null hypothesis Hy, this suggests looking at mixtures of the densities in Hj.

5.5.2 Least Favorable Mixtures

Consider the problem of testing Hy = {fg : 0 € O} against H; = {g}, where fp and g are
densities, with respect to some o-finite measure p, over (X, .A), and © C R¥ is equipped
with the Borel o-field Bk N ©. Let A denote a probability measure over (6,8 N ©). Then,
hy :x = hy(x) = [g fo(x)dA(x) is still a probability density with respect to p over (X, A)—
a mizture of the densities fa, 0 co.

For any A, denote by Hy := {h,} the simple hypothesis under which the observation has
density hy. Consider the Neyman-Pearson a-level test ¢, of H) against H;, and write ) :=

E,[¢,] for its power under H;. We adopt the following definition.

Definition 1. The mizing measure ALy, or the corresponding mizture density hy, ., are called

least favorable if my . < m\ for any probability measure \ over ©.
We then have the following result.

Proposition 3. Let A\ be such that Eg[¢y,] < a for all @ € ©. Then, (i) the test ¢y, is

most powerful, at level o, for Hy against Hy; (i) the density hy, is least favorable.

Proof. (i) By assumption, ¢,, is an a-level for Hy against H;. Let then ¢ be an arbitrary
a-level test for the same problem, that is, Eg[¢] < « for all @ € ©. Then, Fubini’s Theorem
yields that

Ep,, [¢] /¢ x) iy (X)dp(x /¢ (/@fo(x)d)\o(é?))du(x) (5.8)
-/ / 5(3) fo () g (B)dp(x) / ( | o) fat)dntx >)dAo<0> /e Fol¢]dA(6) < a

so that ¢ is an a-level test for Hy, = {hy,} against H; = {g}. Since ¢,, is the most powerful
test at level a for the latter problem, we must then have Eg[¢y,] > E;[¢].

18



(ii) Fix an arbitrary mixture distribution A. Proceeding as in (5.8), we have

En, [0x] = / Do () hr(x)dpu(x / Do (x ( /@ fe(X)d)\(a)>dM(X)
~ [ [ orbonan@ine = [ ([ ottt ine) = [ Elonline) <a

Thus, ¢,, satisfies the level constraint under H) and, therefore, is at most as powerful as ¢y:
E; (o] < Egl¢a]. This shows that my, < my for any A, so that h), is least favorable. O
5.5.3 Application 1: one-sided tests in one-parameter exponential families

In the one-parameter family of exponential densities

fo(x) = C(0) exp(0T (x))

(densities are with respect to some dominating measure p, and € € ©, where © is an interval
of R), consider the one-sided testing problem Hj : § < y versus the alternative Hy : 6 > 6.
Uniformly most powerful tests at level a have been obtained for that problem in Section 5.3.

As we now show, they also follow from a least-favorable approach.

Proposition 4. The test

1 ifT(x) > t,
O(X) =94 T fT(x) =t
0 if T(x) < tq,

where 7, and t, are determined by the size condition Eg,[¢*] = «, is uniformly most powerful,
at level o, for Hy : 0 < 0y against Hy : 0 > 0.

Proof. Fix 6, > 0, arbitrarily and consider the problem of testing H, : 0 < 6y against H; :
0 = 0;. We show that, for this problem, fy, (the degenerate mixture associated with
A({6p}) = 1) is least favorable. The Neyman-Pearson test for {fs,} against {f, } has the
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form

1 if C(6y) exp(0,T(x)) >
O(x) =4 7 if C(01) exp(iT(x)) =
0 if C(6) exp(1T(x)) < kaC(0y) exp(6yT(x)),

exp
exp

with k, and 7, determined by Eg [¢] = o. Equivalently,

1 if exp((6h — 00)T(x)) > ko C (6o
O(x) = Yo if exp((01 — 60)T(x)) = kaC(6)/C(61)
0 if exp((01 — 60)T'(x)) < kaC(00)/C(01),

N
~
Q
—~
)
iy
~—

or again
1 if T(x) >ty = (0; — 0p) 1 log(k,C(6y)/C(0:))
P(x) =14 Yo HT(X)=t4:= (01 — b)) log(kaC()/C(61))
0 if T(X) < ta = (91 — 60)_1 10g<kac(90)/0(01))7

where t, and v, are determined by Egy, [¢] = . Hence, ¢ coincides with the test ¢ from
Theorem 1(i) (irrespective of ;).

Now, for any ¢ < 6y, note that ¢ is also the Neyman-Pearson Lemma test for {Py }
against {Pg,} at level Ey[¢%], so that the Neyman-Pearson lemma implies that Eq[¢%] <
Eq, [¢%] = . It follows from Proposition 3(ii) that the degenerate mixture at {6y} is indeed
least favorable and from Proposition 3(i) that ¢ is uniformly most powerful, at level a,
for Hoy : 6 < 0y against Hy : 6 = 6. Since 0, (> 6p) was fixed arbitrarily, we conclude that the

same test is also uniformly most powerful, at level «, for Hg : 0 < 6y against Hy : 6 > 6,. O

A particular case of an exponential family with one parameter is the Bernoulli family.
Let Xi,...,X, beii.d. Bin(1, p) random variables, with p € (0,1), and consider the problem
of testing

Hy:p<py against H;:p> po.
The Bernoulli family is an exponential family with natural parameter § = log(ﬁ) and
privileged statistic Y ; X;. Note that

log (L) §10g< Po ) i and only if p < po,
1—p L —po
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so that the testing problem considered is of the form
Hy:0<#6, against H;:60 > 0.

The test

1A S >t
¢Z(X) = Yo if Z?:l Ty = tg
0 if Z?:l T; < tq,

with ¢, and 7, fixed by the condition E,[¢%] = «, is then uniformly most powerful at level a.

5.5.4 Application 2: the sign test

Let X = (X7,...,X,) collect n independently and identically distributed observations of X,
with density f € F, where F is the family of all probability densities with respect to the
Lebesgue measure over (R, B). Consider, for given py € (0, 1), the testing problem

Hy : T (o) 2 o
H1 F Z(pg) < Zo,

where z is some given real number, and ;) is the quantile of order py of X. Writing p :=
PIX <z = ffgo f(z)du(x), the same testing problem takes the form

Hy:p <po
Hy:p>po.

Denote as M = M(X) :=#{i=1,...,n: X; <z} the number of observations that are
not larger than xg: clearly, M ~ Bin(n,p). The test

1 if M(x) > mg
Puien(X) =8 7o if M(x) = my (5.9)
0 if M(x) < mg,
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where m,, and v, are determined by E,;[¢um] = @, is called a sign test (here, we write E,,

for the expectation of an M-measurable variable under M ~ Bin(n, pg)).
Proposition 5. The sign test (5.9) is uniformly most powerful for Hy against Hy at level a.

Proof. Any f € F can be characterized as a triple (p, f*, f7), where p := [ f(z)du(z) €
(0,1), fH(x) = f(x)I[x > x0]/(1 — p) is the conditional density of X ~ f, conditional on
X > xg, and f~(x):= f(z)l[x < x0]/p is the conditional density of X ~ f, conditional on
X < xg. The null hypothesis and the alternative then take the forms

Ho={(p,ff"):p<po, f-€F, ffreF'}
and
Ho={(p, [ f")p>po, fTeF, ffeF},
respectively, where F~ (resp., F1) is the set of all possible conditional densities f* (resp.,

f7). The joint density under (p, f*, f7) of X = (X1,..., X,,) at x = (21,...,2,) € R"is
P =) (@) (@) @) - ()
where m = M(x) =#{i=1,...,n:2; <xo} and i1,...,%m, J1,- - -, Jn_m are such that
Tigyoo oy Tipy S Xg < Xjyyenn s Tjp 0

Now, fix a distribution (p1, fi, f;") in H; (hence, p; > pg): intuitively, the “closest”
distribution in Hy could well be (po, fi, fi). Let us show that indeed (py, f{, fi7) is the
least favorable mixture (against the fixed alternative {(py, f; , fi)}). To this end, we first
construct the Neyman-Pearson test for {(po, f; , fi)} against {(p1, f; , fi)}. Recalling that
m = M (x), this test is
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where kq and 7, are determined by E(, - f;L)[gb*] = « (note that this expectation does not
depend on f; nor on f; since the distribution of M under (po, fi, f;") is the Bin(n,po)
distribution). Clearly, since p; > po, this test takes the simpler form

1 if M(x) > myg
¢'(x) =4 Yo H M(x)=mq
0 if M(x) < ma,

where m,, and 7, still are determined by E(po’ £ [¢*] = . This test ¢* thus coincides with
the previously described sign test ¢g,,. Now, in order to use the least favorable argument,
it only remains to show that Eg, ;- r+[¢*] < o for any p < po, f~ € F~ and f* € F'. But
this follows from the fact that Eg, ;- ;+)[¢*] does not depend on (f~, f*) and is increasing
in p—one way to show this is to note that ¢* is actually the uniformly most powerful test
for {p < po} against {p > po} in the (exponential) Bernoulli model under which I[X; <
xo), . - ., [[X,, < x¢] are independently and identically distributed Bin(1, p) random variables
(see Section 5.5.3). O
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