Lecture Notes for STAT-F404

6 Hypothesis Testing: UMPU Tests

6.1 Unbiasedness and similarity

Let Hy and #H; characterize a testing problem in a parametric family indexed by 8 € © C R*.
Recall that a test ¢ is an a-level test if Eg[¢] < a for any € Hy. It is not unnatural to
require that a test rejects more often under H; than under Hy, which leads to the concept

of unbiasedness.

Definition 1. A test ¢ for Hy against H; is unbiased at level «v if (i) ¢ is an a-level test
and (i) Eg|p] > o for any 0 € H,;.

The unbiasedness principle then consists in restricting to tests that are unbiased at level a:
a test ¢* will be said to be uniformly most powerful unbiased (UMPU) at level a if (a) ¢* is
unbiased at level «, and (b) for any ¢ that is unbiased at level «, one has Eg[¢*] > Eg[¢] for
any 0 € H;.

Now, if the size/power function @ — Eg[¢] is continuous (as it is for any test in the

framework of exponential families), then a necessary condition for unbiasedness is similarity.

Definition 2. A test ¢ for Ho against Hy is similar at level « (or a-similar) if Egl¢] = «
for any 6 € H, where H := adh(Ho) Nadh(H,) is the boundary between Hy and H;.

Parallel as above, we say that a test ¢* is uniformly most powerful in the class of a-similar
tests if (a) ¢* is similar at level o, and (b) for any ¢ that is a-similar, one has Eg[¢*] > Eg[¢]
for any 6 € H;. As an exercise, the reader can prove that the following statement holds as
soon as 0 — Eg[¢] is continuous: if ¢* is uniformly most powerful in the class of a-similar
tests and if ¢* is an a-level test, then ¢* is UMPU at level a.



6.2 Two-sided testing problems in exponential families

Let (X, A, P ={Py: 0 € © C R}) be an exponential model indexed by a scalar parameter 0
(here, © is an interval of R, or R itself). Recall that, after appropriately choosing the o-finite

dominating measure y at hand, this implies that the corresponding densities take the form

fo(x) = C(0) exp(0T (z)),

and that, when X ~ Py, the distribution of 7" admits the density

fo (t) = C(0) exp(6t)

with respect to the induced dominating measure p?. In this framework, consider the two-
sided problem
H()ZQ:QU VS HI:G#QO,

where 0, is a fixed value in the interior of ©. Since a UMP test at level o cannot exist for
this problem (why?), we are after a UMPU test at level a.

Theorem 1. In the exponential model above, fixr o € (0,1) and 6y € int(O). Then, (i) there
erist V1.a, Vo.u € [0,1] and ty 4, t24 € R with t1 4 < to, such that the test defined by

1 if T(x) ¢ [t1.a:t2.0]
Yo if T(x)
(x)
(x)

X

X

t1
V2,0 ZfTw ZL'Z,oz
0 ZfT X) € (tLa,tQ’a)

satisfies Eg,[0L] = a and By, [05T| = aEg,[T]. (ii) The test ¢, is UMPU at level a for the
problem of testing Hy : 0 = 6y against Hy : 0 # 6.



We now give an interpretation for the constraint Egy,[¢T] = aEg,[T]. Note that we have

ot = [ o) (COepeT) ) duto
Cl

- Cég)) Eg[@] + Eg[oT], (6.1)

which, for ¢ = 1, yields Ey[T| = —C"(0)/C(#). Using this in (6.1) provides

d

@Eg[gb] = Ey[¢T] — Eg[¢]Ep[T] (= Covyla, T1).

The constraint Eg,[¢%T] = aEg,[T] in the theorem above may then be interpreted as

d

@Ee[d)?}]le:eo = 0.

In the exponential family considered (where the size/power function of any test is smooth),
the constraints Eg,[¢f] = a and Eg,[¢5T] = aFy,[T] thus clearly are necessary conditions

for the test ¢}, to be unbiased at level o. This will play a role in the proof of the theorem.

Proof. (i) Consider the induced model (7,8, PT = {P} : § € ©}), which, as recalled above,

is dominated by the induced measure pu”, leading to the corresponding densities f7 (t) =
C(0)exp(ft). In this induced model, fix 6, > 6, arbitrarily, and consider the problem of
testing Ho : 0 = Oy against H; : 0 = 0, in the class of tests ¢ = p(T) satisfying

/T S0 fL (1) du" (z) = Byl

=« (6.2)
and

/T P(OLFE (1) dpT (z) = Egy[T)



For this problem, consider

M = {<E90 [()0]7 E90 [QOT]) P a teSt}'

For any w in a neighborhood [a — &, a0 + €] of «, the UMP test, ¢ say, for Hy : 0 < 6
against Hy : 6 > 0y at level u provides (Eg,[¢)], Eg, [0 T]) = (u,ct), with ¢f > uEy, [T
(since LEqlolo=0, = EooliT] — uEg,[T] > 0; see the remark at the end of Section 5.3).
Similarly, for any u € [a — ¢, + €], the UMP test, ¢, say, for Hy : 0 > 6, against H; :
6 < 0y at level u provides (Eg, [, ], Eo [0, T]) = (u,c,), with ¢, < uEg,[T]. Jointly with
the convexity of M, this implies that («, aEy,[T]) is an interior point of M. Part (iv)
of the second version of the generalized Neyman-Pearson lemma thus implies that there

exist ki, k2 € R and a measurable function 7(-) such that the test ¢ defined by

L if f(t) > ko fy, (t) + kat f (t)
o(t) = q (1) if fg,(t) = ki fg () + kot f (2)
0 if fg; (t) < k’1fg; (t) + kfztfg; (t)

satisfies (6.2)-(6.3). Using the explicit expression of f; , this test rewrites

1 if exp((0; — 6p)t) > €1 + ot
p(t) =q 7(t) if exp((6y — 6o)t) = {1 + lot
0 if exp((&l — 90)t) < 61 + gzt,

where we let ¢; := k;C(6y)/C(60,), i = 1,2. Since we cannot have p(t) = 1 for any ¢ (this
would provide Eg,[p] = 1 # a, which would contradict (6.2)), nor either of

1 1ft>t0 1 1ft<t0
o(t) =14 v ift =t or o(t)y=<¢ ~ ift=tg

(this would provide £ Eg[¢]lo—g, = Eg,[¢T] — aEg,[T] > 0 or < 0, respectively, which would



contradict (6.3)), we must then have

1 ifté [ty to]
v ift =1

Yo ift =ty

0 ift € (ty, 1),

for some %1, t5 such that t; < t,. It follows that the test ¢ defined by

1 ifT
v if T
vo if T
0 ifT

x) ¢ [thtz]
X) =
)
)

X

— — —

X) € (tl, tz)

satisfies Eg,[¢] = a and Eg,[¢T] = aEy,[T], which establishes the result.

(ii) Let ¢ be the test described in Part (i) of the theorem. Fix 6; # 6, arbitrarily. Then,
it is possible (why?!) to find /1, /5 € R such that

1 if exp((01 — 00)T(x)) > €1 + 6T (x)
m if T(x
v if T(x

0 if exp

_ tl
=t,
(01— 00)T'(x)) < £y + 6:T(x).

/\\_/\_//\

L if fo, (T(x)) > k1 foo (T'(x)) + kaT (%) fo,(T(x))
*(x) — 2! if T(X) =
¢a(x) v if T(x)

0 if fo,(T'(x)) < F1fo,(T(x)) + k2T (x) foo (T'(%))

for some ky, ks € R. Part (ii) of the second version of the generalized Neyman-Pearson lemma

t
t

thus entails that ¢, is most powerful for the problem of testing Hy : § = 0, against H; : 0 = 6,

!"When answering this question, do not forget the case t1 o = t2 4



in the class of tests satisfying Eg,[¢] = a and Eg, [¢T] = aEy,[T]. Since ¢ does not depend
on 0y, it follows that ¢7 is uniformly most powerful for the problem of testing Hy : 6 = 0,
against Hy : 6 # 6y in the class of tests satisfying Eg, [¢p] = a and Egy, [¢T] = aEg,[T].
Recalling that any unbiased test at level & must satisfy these constraints, ¢}, is then UMPU
at level a for the problem of testing Hy : 6 = 0y against H; : § # 6, (unbiasedness of ¢ at
level « follows by comparing its power function to that of the trivial test defined by ¢(x) = «

for any x). O

If the distribution of 7" under Py, is symmetric (automatically about Eg,[T]), then it is
always possible to find 7, € [0, 1] and h, € RT such that the test ¢} defined by

1 T(x) & [Bg,[T] — hu, Bgy [T] + ol
¢ (x) = Yo if T(x) € {Eg[T] — ha, Egy [T] + ha} (6.4)
0 if T(X) € (Ego [T] — ha, Ego [T] + ha)

satisfies Eg,[¢%] = « (this can be checked by rewriting this test as

1 if [T(x) — Eg[T]| > ha
On(x) =3 Yo i |T(x) = Eg[T]| = haq
0 if |T(x) — Eg,[T]] < ha

and by proceeding as in the proof of Theorem 1(i) from the previous chapter). For this test,

note that we have

E90 [QSZT] = E90 [¢Z(T - Eeo [T])] + E90 [¢;]E90 [T]
= 0+ aFy,[T]
== OCEQO [T],
so that the second constraint is then automatically satisfied, which implies that this test is

UMPU at level a. A typical example is obtained when testing Ho : 1 = po against H; :
i # o at level a on the basis of X = (X7,..., X,,), where the X;’s are i.i.d. Gaussian with



unknown mean p and fixed variance of. If the distribution of 7" under Py, is not symmetric,

then both constraints need to be imposed (which, in practice, sometimes can only be achieved

numerically); an example is obtained when testing Hy : 0% = o2 against H; : 0?2 # o2 at

level a on the basis of X = (X,...,X,,), where the X;’s are i.i.d. Gaussian with fixed

mean (o and unknown variance o2

6.3 Problems in exponential families with nuisance parameters

Let (X, A,P = {P;.}) be an exponential model with densities (with respect to a o-finite

dominating measure u) of the form
fra(z) = C(1,X) exp(rT (z) + N'S(z)),
with 7 € R and XA € R®. In this framework, consider the one-sided problem
Hy = {PT,)\ T < 7'0} vs H, = {PT,A ST > 7'0} (6.5)

at level «, where 7y is a fixed value and A remains unspecified, hence plays the role of a

nuisance parameter. Using the notation from Section 6.1, we have
H = {Pﬂ,\ ST = TO},

which is an exponential subfamily indexed by A and with natural statistic S. For the corre-

sponding submodel, S is thus sufficient and complete.

Theorem 2. Fiz o € (0,1). Then, we have the following in the framework above: (i) there

erists a test of the form

1 ifT(x) > t(S(x))
$a(x) = ¢ Y(S(x) if T(x)=t(S(x))
0 ifT(x) < t(S(x))



satisfying
B X[¢Z|S] =a Pga-a.s. for any A (6.6)

(ii) This test is UMPU at level a for the testing problem (6.5).

A test that satisfies (6.6) is said to have Neyman a-structure with respect to S for the
testing problem (6.5). Note that a test has Neyman a-structure with respect to S if and
only if it is a-similar for the same problem (the necessary condition is trivial, whereas the
sufficient one follows from sufficiency and completeness of S in the H-submodel). A corollary
is that one may restrict to tests having Neyman a-structure with respect to S when looking
for a UMPU test at level o, which makes condition (6.6) natural.

As an exercise, one can apply Theorem 2 to show that, when X,..., X,, are i.i.d. Gaus-

sian with mean p and variance o2, then

¢* ( ) L if TLSQ/O'S > szz—l 11—«
X) = ’
0 if ns®/of < X2 11 g

where s = 15" (X; — X)? and x7_,,_, is the (1 — a)-quantile of the x2_, distribution,
is UMPU at level « for the problem of testing Hy : 0% < 02 against H; : 0% > 02, and that,

in the same model,

5 (x) = 1 if vn—1(X — 110)/8 > th 11«
) 0 iV —I(X — )5 < taoti-a,

where t,,_11_4 is the (1 — a)-quantile of the ¢,,_; distribution, is UMPU at level « for the
problem of testing Ho : 11 < o against Hq : 0 > po (the exercise is actually more complicated

for this second testing problem?).

In the same general exponential framework as in the beginning of this section, one may

also consider the two-sided problem

Hy, = {PT)\ LT = 7'0} vs H; = {PT’A ST F TO} (6.7)

2Do the change of variables X; ~» X; — o, which makes the null hypothesis become H, : u < 0, and use
the fact that X /s = X/(13, X2 — X?)1/2 is an increasing function of X for fixed >, X?.

8



at level o, where 7 is still a fixed value and X remains unspecified—which yields again H =

{P.x:7=m}. We have the following analog of Theorem 2.

Theorem 3. Fiz o € (0,1). Then, we have the following in the framework above: (i) there

exists a test of the form

satisfying both
E_ X[¢Z|S] =a Pya-a.s for any A

and

E, (6.TIS| = aE, /[64IS] Pra-a.s. for any X,

(i1) This test is UMPU at level v for the testing problem (6.7).

Coming back to the Gaussian model considered above, one may then show in particular
that the test defined by

¢*( ) _ 1 if \\/n — 1(X — /Lo)/S’ > tnfl’lf(a/g)
“ 0 if |\/n - 1(X - ,uo)/8| S tn—l,l—(a/2)

is UMPU at level « for the problem of testing Hg : it = o against Hy @ # po-



