
ISMIP — HOM

ICE SHEET MODEL INTERCOMPARISON PROJECT

Benchmark experiments for numerical

Higher-Order ice-sheet Models

Frank PATTYN1

Laboratoire de Glaciologie

Université Libre de Bruxelles

Belgium

Tony PAYNE2

School of Geographical Sciences

University of Bristol

England

February 28, 2006

1Laboratoire de Glaciologie, Département des Sciences de la Terre et de l’Environnement

(DSTE), Université Libre de Bruxelles, Av. F. Roosevelt 50, B-1050 Brussels, Belgium (email:

fpattyn@ulb.ac.be)
2Centre for Polar Observation and Modelling, School of Geographical Sciences, University

of Bristol, Bristol B88 1SS, England (email: a.j.payne@bristol.ac.uk)



1

Contents

1 Introduction 2

2 General model setup 4

2.1 Model physics, parameters and constants . . . . . . . . . . . . . . . . . 4

2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Model domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Experiments 10

3.1 Experiment A: ice flow over a bumpy bed . . . . . . . . . . . . . . . . . 10

3.2 Experiment B: ice flow over a rippled bed . . . . . . . . . . . . . . . . . 14

3.3 Experiment C: Ice stream flow I . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Experiment D: ice stream flow II . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Experiment E: long profile of Haut Glacier d’Arolla . . . . . . . . . . . . 19

3.6 Experiment F: prognostic experiment for a linearly viscous medium . . . 21

4 Model output 25

4.1 Experiment A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Experiment B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Experiment C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Experiment D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Experiment E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Experiment F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7 Output and file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



2

1 Introduction

The tests proposed below were defined and partly discussed during the International

Symposium on Physical and Mechanical Processes in Ice in relation to Glacier and

Ice-sheet Modelling, held in Chamonix Mont-Blanc, France, 26–30 August 2002 and

during a first coordination meeting, held in Brussels, Belgium, June 3 and 4, 2003.

The purpose of these tests is to fix benchmarks for future modelling attempts and to

detect eventual weaknesses in numerical approaches of higher-order models. The

experiments may be somewhat restrictive and may not be appropriate for all kinds of

models.

During former model intercomparison exercises (EISMINT 1 and 2), a number of bench-

marks were proposed for ice sheet models as well as for ice shelf models. The bulk of

these ice-sheet models were based on the so-called shallow-ice approximation (SIA).

In this exercise we will focus on so-called higher-order models, i.e. models that incor-

porate further mechanical effects, principally longitudinal stress gradients, or the full

Stokes system. With longitudinal stresses we basically mean all stress components

apart from the two horizontal plane shear components (Hindmarsh, 2004).

We tried to make the experiments accessible for many types of models, i.e. flowline

models, vertically integrated planform models, as well as full three-dimensional models.

The experiments are valid for both finite difference (FD) and finite element (FE) models.

Furthermore, the grid type (regular or not) is unimportant.

With exception of experiment F, all experiments are diagnostic, i.e. time evolution is not

considered. This means that for a given geometry of the ice mass, a Glen-type flow

law, and given appropriate boundary conditions, the stress and velocity field can be

calculated. Experiment F considers time-dependent response (the experiment is run

until the free surface and velocity field reach a steady state) for a constant viscosity

(linear flow law). For this experiment analytical solutions exists that are developed by

Gudmundsson (2003).

All thermomechanical effects are neglected and an isotherm ice mass is considered.

Experiments include ideal geometry tests as well as a real case experiment on Haut

Glacier d’Arolla. The experiments are designed for the following types of higher-order

models:

3D models: HHVF and HHVC, i.e. 2 horizontal dimensions and one vertical dimen-

sion. F = FULL (first, second-order, or solution of the full Stokes equations); C =

CHANNEL (only solution for horizontal velocity vx in the direction of the ice flow

x). For C-type models, the stress field should include both vertical shear τxz as



3

well as longitudinal stresses τxx and their gradients. F-type models also include

τyz, τyy and τxy (higher-order models). All stress gradients are included in the full

Stokes models.

2D planform models: HHF, i.e. 2 horizontal dimensions but integrated over the ver-

tical. These models are basically ice-shelf models, but should be extended with

a friction coefficient so that ice-stream flow can be simulated as well (so-called

shelfy-stream model, e.g. MacAyeal, 1993).

2D flowline models: HVF and HVC, i.e. one horizontal dimension (in the direction

of the ice flow) and one vertical dimension. The stress field should include both

vertical shear τxz as well as longitudinal stresses τxx. The models considered are

flowline models (HVF) which eventually include a parameterization of the width

of the flowline, or channel models (HVC).

The diagnostic experiments are divided into three groups. Experiments A–B are based

on ice-sheet flow and focus on the ice flow over a bumpy and rippled bed on varying

spatial scales; experiments C–D focus on ice stream flow, with a varying basal friction;

experiment E is an application to the Haut Glacier d’Arolla geometry; experiment F

is the time-dependent response of the ice flow over a Gaussian bump with a linear

flow law. Table I lists the type of models that can participate in each of the model

experiments.

Experiment Model type

A HHVF, HHVC

B HHVF, HHVC, HVF, HVC

C HHVF, HHVC, HHF

D HHVF, HHVC, HHF, HVF, HVC

E HVF, HVC, HHVF, HHVC

F HHVF, HHVC

Table I: Model type versus experiment.
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2 General model setup

2.1 Model physics, parameters and constants

A higher-order model is any type of ice sheet or glacier model that incorporates further

mechanical effects, principally longitudinal stress gradients. With longitudinal stresses

we basically mean all stress components apart from the two horizontal plane shear

components (Hindmarsh, 2004). Such models are based on conservation laws of mass

and momentum, i.e.

∇ � �v � 0 � (1)

ρ
d
�
v

dt
� ∇ � σ � ρ

�
g � (2)

where ρ is the ice density,
�
g gravitational acceleration,

�
v the velocity vector, and � σ � the

stress tensor. Values for parameters and constants are given in Table II. Generally,

acceleration terms in (2) are neglected and gravitational acceleration is considered

only important in the vertical direction, so that the linear momentum becomes

∂σxx

∂x
� ∂σxy

∂y
� ∂σxz

∂z
� 0 � (3)

∂σyx

∂x
� ∂σyy

∂y
� ∂σyz

∂z
� 0 � (4)

∂σzx

∂x
� ∂σzy

∂y
� ∂σzz

∂z
� ρg � (5)

Solving (3) – (5) leads to the full Stokes solution. In higher-order models some simpli-

fications are made to the above system of equations. All models that take part in the

intercomparison should use Glen’s flow law, which relates strain rates to stresses by

ε̇i j
� Aτn � 1

e τi j (6)

where ε̇i j is the strain rate component, A the flow parameter, τe the effective stress

(or the second invariant of the stress tensor), and τi j the deviatoric stress component.

Written in terms of effective viscosity η this gives

τi j
� 2ηε̇i j � η � 1

2
A � 1 	 n ε̇ 
 1 � n ��	 n

e (7)
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where ε̇e is the effective strain (or the second invariant of the strain-rate tensor). In

some models the flow parameter A is defined by its inverse B � A � 1 	 n. Since only

isotherm experiments are considered, the value for A is taken constant for the whole

ice mass.

Symbol Constant Value Units

A Ice-flow parameter 10 � 16 Pa � n a � 1

ρ Ice density 910 kg m � 3

g Gravitational constant 9.81 m s � 2

n Exponent in Glen’s flow law 3

Seconds per year 31 556 926 s a � 1

Table II: Constants for the numerical model.

2.1.1 Isotropic and hydrostatic pressure

Basic output for the model experiments is the velocity field, at the surface and at the

base, the latter only for experiments C and D. Another model output is the difference

between the isotropic and hydrostatic pressure at the bed, defined by

∆p � pI � pH
� 1

3

�
σxx

� σyy
� σzz ��� pH (8)

The deviatoric normal stress is then defined as the full normal stress minus the isotropic

pressure, or more general: τi j
� σi j � pI δi j, where δi j is the Kronecker delta (δi j

� 1 if

i � j, and δi j
� 0 if i �� j). The hydrostatic pressure is defined as pH

� σxx
� σyy

� σzz
�

� ρgH. For the shallow-ice approximation, the isotropic pressure at the bed equals the

hydrostatic pressure, or pI
� pH , so that ∆p = 0.

2.1.2 Basal drag, β2 and basal shear stress

The friction coefficient β2 is used to introduce basal sliding in the model. By definition,

zero friction at the base means that the sum of all stress components equals zero, i.e.

the basal surface is stress free. Such conditions exist at the base of an ice shelf where

the ocean water does not exert significant friction. The stress-free condition also holds

at the surface of the ice mass (contact with air). On the contrary, when ice is frozen to

the bedrock, friction becomes infinitely large and hence no sliding occurs. The friction

parameter is related to the basal drag τb (sum of all basal resistance at the base) and

the basal velocity by
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τb
� vbβ2 (9)

where vb is the basal velocity. β2 (Pa a m � 1) is a scalar quantity and always positive

(MacAyeal, 1993).

The basal shear stress components (τxz
�
zb � , τyz

�
zb � ) must be calculated as well and

form part of the output of the model results. They are also defined by

τxz
�
zb � � 2η

�
zb � ε̇xz

�
zb � � η

�
zb �

�
∂vx

�
zb �

∂z
� ∂vz

�
zb �

∂x � (10)

τyz
�
zb � � 2η

�
zb � ε̇yz

�
zb � � η

�
zb �

�
∂vy

�
zb �

∂z
� ∂vz

�
zb �

∂y � (11)

2.2 Boundary conditions

The theoretical experiments are designed in such a way that variations in bed topogra-

phy or basal friction coefficient are periodic, so that periodic boundary conditions to the

velocity field apply (for implementing periodic boundary conditions, see section 2.3.1).

For experiments A–B, ice is considered frozen to the bed, which implies that v
�
zb � =

0, zb denoting the bed. Therefore, the friction coefficient β2 is infinite everywhere on

the domain (or at least very large). For experiments C–D, the friction coefficient β2

is predefined, which will control the amount of basal sliding. Experiment E does not

involve periodic boundary conditions, but is an application to an existing glacier geom-

etry. Experiment F considers ice frozen to the bedrock and applies periodic boundary

conditions.

2.2.1 Kinematic boundary conditions to the vertical velocity field

Kinematic boundary conditions apply to the vertical velocity field vz. Since the bedrock

is kept fixed in time and basal melting is neglected, the vertical velocity at the base of

the ice mass is defined by

vz
�
zb � � vx

�
zb � ∂zb

∂x
�

vy
�
zb � ∂zb

∂y
(12)

where zb is the bedrock elevation (lower boundary of the ice mass). Since the vertical

velocity field must obey the incompressibility condition (1), and the surface accumula-

tion/ablation is zero (M
�
s � = 0), the vertical velocity at the surface contains the local

imbalance as well and becomes a model output.
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2.3 Model domain

The model domain is square. The minimum number of grid points is not predefined.

It is advised that people use a discretization scheme for which they think that the best

possible results are obtained. Since this might be model dependent, we allow everyone

to choose the number of grid points in the horizontal as well as in the vertical direction.

The basic parameter for the experiments is the length scale of the domain L, that

applies to both horizontal directions. Experiments A–D are carried out for L = 160, 80,

40, 20, 10 and 5 km, respectively. A scaled horizontal distance is introduced for output,

varying between 0 and 1,

x̂ � x
L

ŷ � y
L

(13)

Finite element models may use any type of discretization scheme (a regular grid is not

necessary), as long as the model domain length L is respected and periodic boundary

conditions are implemented.

2.3.1 Periodic boundary conditions

Periodic boundary conditions are achieved by surrounding the simulation domain with

an infinite number of copies of itself in the horizontal. To make this point clear, con-

sider a finite difference grid, where the relation between the length scale and the grid

resolution is given by

L � �
Nx � 2 � � ∆x or ∆x � L

Nx � 2
(14)

Note that the last gridpoint Nx does not coincide with L. By doing so, velocities at the

grid boundaries are defined by

v1 � j � k
� vNy � 1 � j � k

vNy � j � k
� v2 � j � k

vi � 1 � k
� vi � Nx � 1 � k

vi � Nx � k
� vi � 2 � k

for i � 1 � Ny, j � 1 � Nx and k � 1 � Nz, where Nx, Ny, and Nz are the number of

grid points in the x, y and z direction, respectively, and where v is any of the velocity
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components
�
vx � vy � vz � . Defining the finite difference grid that way, x̂ and ŷ are related

to the grid nodes as

x̂ j
� j � 1

Nx � 2
ŷi

� i � 1
Ny � 2

(15)

for i � 1 � Ny, j � 1 � Nx. Applying periodic boundary conditions is far from complicated

and does not demand a lot of coding. Since any higher-order solution demands itera-

tions, it is possible to add the periodic boundary conditions within one of these iterative

loops. For the examples showed here on a finite difference grid, periodic boundary

conditions were simply coded as follows (within the main iteration for the determination

of the horizontal velocity field):

���������
	���
�����	���������
������ ��!
�������#"$	%��
&"'��	�(*)*+�,��-
."*��� ��!

/10 +12435�76839�:683;"16<	 /10 +12435�7683=�������?>@�:683;"16�


0�0 +12435�76839�:683;"16<	 0�0 +12435�7683=�������?>@�:683;"16�


/10 +12435�7683=��������683;"16�	 /10 +12435�7683#A�683;"16�


0�0 +12435�7683=��������683;"16�	 0�0 +12435�7683#A�683;"16�

B

B
�������5CD	���
ECF��	���������
GC���� ��!

�������#"$	%��
&"'��	�(*)*+�,��-
."*��� ��!

/10 +12439�:683#C�683;"16<	 /10 +1243=�������H>$�:683#C�683;"16�


0�0 +12439�:683#C�683;"16<	 0�0 +1243=�������H>$�:683#C�683;"16�


/10 +1243=��������683#C�683;"16�	 /10 +1243#A�683#C�683;"16�


0�0 +1243=��������683#C�683;"16�	 0�0 +1243#A�683#C�683;"16�

B

B

Nevertheless, we are aware that for certain people such coding exercise might be

difficult. We therefore propose the following alternative: make the domain much larger,

for instance 3 I L by 3 I L, set the lateral boundary conditions as v = 0, calculate the

velocity field with the higher-order model and cut out the central part for display. Make

sure that the central part of the model domain is not influenced by the choice of these

lateral boundary conditions. If you think it is, enlarge the domain. The major drawback

of such a setup is the higher computational cost and possible occurrence of numerical

instabilities near the imposed boundaries.
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All experiments described below were tested with a HHVF and a HVF model (Pattyn,

2002; Pattyn, 2003). The examples shown here are based on a grid of 41 by 41 grid

points in both horizontal directions x and y, and 41 vertical layers in z. Horizontal grid-

size for the shown experiment L = 80 is ∆x = 2051.282051 m. These results should be

regarded as illustrations, as the discretization scheme is not considered to be optimal.
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3 Experiments

3.1 Experiment A: ice flow over a bumpy bed

3.1.1 Type of models

HHVF and HHVC

3.1.2 Description of the experiment

Figure 1: Coordinate system for experiments A–D.

Consider a parallel-sided slab of ice with a mean ice thickness H = 1000 m lying on a

sloping bed with a mean slope α = 0.5 � 1. This slope is maximum in x and zero in y. The

basal topography is then defined as a series of sinusoidal bumps with an amplitude of

500 m (Figure 1). The surface elevation is defined as

zs
�
x � y � � � x � tanα (16)

where α = 0.5 � . The basal topography is then given by

1180
�

= π
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zb
�
x � y � � zs

�
x � y ��� 1000

�
500 sin

�
ωx � � sin

�
ωy � (17)

where x � L and L = 160, 80, 40, 20, 10 and 5 km, respectively. The basal bumps have

a frequency of ω � 2π
�
L. The bed topography and ice thickness are shown in Figure 2.

The resulting surface velocity and stress fields are shown in Figures 3, 4 and 5.
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Figure 2: Ice thickness and basal topography for experiment A with L = 80 km.
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Figure 3: Surface vx and vy velocity field for experiment A, obtained with a HHVF model for L =

80 km.
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Figure 4: Vertical velocity at the surface vz � zs � and difference between the isotropic and hy-

drostatic pressure at the bed ∆p for experiment A, obtained with a HHVF model for L = 80

km.
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Figure 5: Basal shear stresses τxz � zb � and τyz � zb � for experiment A, obtained with a HHVF

model for L = 80 km.
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3.2 Experiment B: ice flow over a rippled bed

3.2.1 Type of models

HHVF, HHVC, HVF and HVC

3.2.2 Description of the experiment

The only difference with experiment A is that the basal topography does not vary with y,

so that the experiment is suitable for 2D flowline models as well. The basal topography

is thus formed by a series of ripples with an amplitude of 500 m.

zs
�
x � y � � � x � tanα (18)

zb
�
x � y � � zs

�
x � y ��� 1000

�
500 sin

�
ωx � (19)

where x � L and L = 160, 80, 40, 20, 10 and 5 km, respectively. The basal bumps have

a frequency of ω � 2π
�
L. Since the geometry of the experiment is designed for both

HHV and HV models, the domain width is not important for HHV models (flowband).

Flowline models do not consider any width variations along the flow line.



15

3.3 Experiment C: Ice stream flow I

3.3.1 Type of models

HHVF, HHVC and HHF

3.3.2 Description of the experiment

The experiment is similar to experiment A, albeit that the bedrock topography is flat, so

that ice thickness remains constant for the whole domain (H = 1000 m).

zs
�
x � y � � � x � tanα (20)

zb
�
x � y � � zs

�
x � y ��� 1000 (21)

where x � L and L = 160, 80, 40, 20, 10 and 5 km, respectively. Note that α takes a

different value compared to the previous experiments, i.e. α = 0.1 � ! The basal friction

coefficient is prescribed as

β2 � x � y � � 1000
�

1000 sin
�
ωx � � sin

�
ωy � (22)

The β2-field is shown in Figure 6. The basal friction bumps have a frequency of ω �
2π

�
L. A preview of the associated velocity and stress fields are shown in Figures 7, 8

and 9.
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Figure 6: Basal friction coefficient β2 for experiment C with L = 80 km.
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Figure 7 : Surface vx and vy velocity field for experiment C, obtained with a HHVF model for L

= 80 km.
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Figure 8: Vertical velocity at the surface vz � zs � and difference between the isotropic and hy-

drostatic pressure at the bed ∆p for experiment C, obtained with a HHVF model for L = 80

km.
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model for L = 80 km.
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3.4 Experiment D: ice stream flow II

3.4.1 Type of models

HHVF, HHVC, HHF, HVF and HVC

3.4.2 Description of the experiment

The only difference with experiment C is that the basal friction coefficient does not vary

with y, so that the experiment is suitable for 2D flowline models as well. The basal

friction field is thus formed by a series of ripples defined as

β2 � x � y � � 1000
�

1000 sin
�
ωx � (23)

where the basal friction bumps have a frequency of ω � 2π
�
L. Since the geometry

of the experiment is designed for both HHV and HV models, the domain width is not

important for HHV models (flowband). Flowline models do not consider any width

variations along the flow line.
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3.5 Experiment E: long profile of Haut Glacier d’Arolla

3.5.1 Type of models

HVF and HVC

3.5.2 Description of the experiment

Experiment E is a diagnostic experiment along the central flowline of a temperate

glacier in the European Alps (Haut Glacier d’Arolla). The basic experiment and ge-

ometry is described in Blatter and others (1998) and Pattyn (2002).

Input for the model is formed by the longitudinal surface and bedrock profiles of Haut

Glacier d’Arolla, Switzerland (Figure 10A). The longitudinal profile of this glacier has a

very simple geometry, hence the resulting stress field is not influenced by geometrical

perturbations such as the presence of a steep ice fall. In a first experiment, a zero

basal velocity is considered (β2 � ∞), and the width of the drainage basin, is kept equal

to 1 along the whole flowline domain, so that HVC and HVF models should give similar

results. The flow-law rate factor A is taken constant over the whole model domain, and

equals A = 10 � 16 Pa � n a � 1. Upstream and downstream boundary conditions imply a

zero ice thickness and zero ice velocity. The horizontal grid resolution is taken as ∆x �
100 m.

A second experiment considers a narrow zone of zero traction, similar to the experi-

ment described in Blatter and others (1998):

β2 � 0 for 2200 � x � 2500m

β2 � � ∞ otherwise

The zero traction zone therefore extends over four grid points, i.e. from i � 23 to i � 26.

The input ‘arolla100.dat’ file consist of four columns with x [m] in the first, zs [m] in the

second, zb in the third column, and the value 0 or 1 in the fourth, where 1 denotes the

zone of zero basal friction. The number of grid points totals 51.
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Figure 10: (a) Longitudinal profile of Haut Glacier d’Arolla, taken from Blatter and others (1998)

(solid line); (b) the difference between the basal drag and the driving stress τb � τd (solid line)

versus the vertically-integrated longitudinal stress gradient 2 ∂
∂x � Hτxx � (dotted line); (c) basal

drag τb (solid line), basal shear stress τxz � zb � (dotted line) and driving stress τd (dashed line).

The horizontal model resolution is 20 m (taken from Pattyn, 2002).
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3.6 Experiment F: prognostic experiment for a linearly viscous

medium

3.6.1 Type of models

HHVF and HHVC

3.6.2 Description of the experiment

Figure 11: Coordinate system for experiment F.

Experiment F is a prognostic experiment for which the free surface is allowed to relax

until a steady state is reached for a zero surface mass balance:

lim
t � ∞

∂H
∂t

� lim
t � ∞

��
� ∇

zs�
zb

�
vdz �� � lim

t � ∞ � � ∇
� �
vH ��� � 0 � (24)

where
�
v is the horizontal velocity vector (m a � 1) and H is the ice thickness (m). Con-

sider a parallel-sided slab of ice lying on a sloping bed (Figure 1) with a mean slope α
= 3.0 � . The slope is zero in the y direction and maximal in the x direction. Basic model

setup differs from the setup in experiments A and C by:

1. A slab of ice with mean ice thickness H 
 0 � = 1000 m is considered, resting on

a sloping bed with a mean slope of α = 3.0 � . This slope is maximum in x and

zero in y. The bedrock plane is parallel to the surface plane and perturbed by a

Gaussian bump. Initial bedrock B 
 0 � and unperturbed surface S 
 0 � elevation are

thus governed by
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S 
 0 � � x � y � � 0 (25)

B 
 0 � � x � y � � � H 
 0 � �
a0

�
exp � � � x2 �

y2 �
σ2 � � (26)

where σ � 10000 � 10H 
 0 � and where x � y (m) is the distance to the center of the

domain that has the coordinates (0, 0). The basal perturbation has a maximum

height of one tenth of the mean ice thickness, i.e. a0
� 100 � 0 � 1H 
 0 � (Figure 12).

2. The domain size L is at least 100 H 
 0 � in x and y. The horizontal coordinates for

output are scaled against σ by

x̂ � x

H 
 0 � ŷ � y

H 
 0 � (27)

3. Periodic boundary conditions can be applied as is the case in experiment A, but

this is not at all necessary when the domain is taken large enough

4. n = 1 in (6), so that the effective viscosity in (7) reads η � 1
2A and is a constant.

5. The unperturbed velocity field at the surface is defined by

U 
 0 � � AH 
 0 � τ 
 0 �
b

� ρgA � H 
 0 � � 2
sinα (28)

where τ 
 0 �
b

� ρgH 
 0 � sinα is the unperturbed basal shear stress, and A = 2.140373

I 10 � 7 Pa � 1 a � 1, so that U 
 0 � = 100 m a � 1.

6. Experiments are carried out for different values for slip ratios c, that determine the

relation between the basal velocity and basal drag. As seen in 2.1.2, the basal

velocity is written in terms of a basal friction coefficient β2, or

Ub
� τb

β2 (29)

Following the scalings given by Gudmundsson (2003), the basal friction coeffi-

cient is related to the slip ratio c by:

β2 ��� cAH 
 0 ��� � 1
(30)

Experiments are run for slip ratios c = 0 and 1. It is easily demonstrated that

U 
 0 �
b

� cU 
 0 � .



23

Table III lists the main constants used for experiment F. Using these settings, the model

should run until a steady state of the free surface is reached. The output is the surface

velocity field (all three components) and the relaxed surface elevation. Figures 13 and

14 show the steady state surface elevation and surface velocity fields for the experiment

with c = 0.

Symbol Constant Value Units

A Ice-flow parameter 2.140373 I 10 � 7 Pa � 1 a � 1

n Flow law exponent 1

α Mean surface slope 3 �

a0 Amplitude Gaussian bump 100 m

σ Width Gaussian bump 10000 m

Table III: Constants for the model setup according to experiment F.
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Figure 12: Bed topography for experiment F.
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25

4 Model output

Output is produced for all gridpoints in the horizontal plane that were used in the model

calculation for the domain lying between 0 and L (or between 0 and 1 for the scaled

coordinates) in both horizontal directions. All variables are taken either at the surface

zs or at the bottom zb.

4.1 Experiment A

For experiment A, the following output must be produced for each grid point of the

modeled domain. The number of lines will depend on the grid resolution used. The

total number of columns equals 8:

x̂ ŷ vx
�
zs � vy

�
zs � vz

�
zs � τxz

�
zb � τyz

�
zb � ∆p

where units are m a � 1 for velocity and kPa for stress and pressure.

4.2 Experiment B

For experiment B, the following output must be produced for each grid point of the

modeled domain along the flowline (for flowline models) or along the central line in y

for 3D models. The number of lines will depend on the grid resolution used. The total

number of columns equals 5:

x̂ vx
�
zs � vz

�
zs � τxz

�
zb � ∆p

where units are m a � 1 for velocity and kPa for stress and pressure.

4.3 Experiment C

For experiment C, the following output must be produced for each grid point of the

modeled domain. The number of lines will depend on the grid resolution used. The

total number of columns equals 10:

x̂ ŷ vx
�
zs � vy

�
zs � vz

�
zs � vx

�
zb � vy

�
zb � τxz

�
zb � τyz

�
zb � ∆p

where units are m a � 1 for velocity and kPa for stress and pressure.
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4.4 Experiment D

For experiment D, the following output must be produced for each grid point of the

modeled domain along the flowline (for flowline models) or along the central line in y

for 3D models. The number of lines will depend on the grid resolution used. The total

number of columns equals 6:

x̂ vx
�
zs � vz

�
zs � vx

�
zb � τxz

�
zb � ∆p

where units are m a � 1 for velocity and kPa for stress and pressure.

4.5 Experiment E

For experiment E, the following output must be produced for each grid point of the

modeled domain along the flowline. The number of lines equals 51. The total number

of columns equals 5:

x̂ vx
�
zs � vz

�
zs � τxz

�
zb � ∆p

where units are m a � 1 for velocity and kPa for stress and pressure.

4.6 Experiment F

For experiment F, the following output must be produced for each grid point of the

surface of the modeled domain. The number of lines will depend on the grid resolution

used. The total number of columns equals 6:

x̂ ŷ zs vx vy vz

Please note that these variables refer to the perturbed steady state solution.

4.7 Output and file format

Output should be written in a (by preference tabulated) ASCII text file. The file name

should look as follows:

NNNMELLL � txt

where
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NNN = three letter code of your name (first character of first name followed by the

two first characters of your last name, e.g. ‘fpa’ for Frank Pattyn or ‘tpa’ for Tony

Payne)

M = model number, equals 1 if you submit results of only one model or type of model.

E = Experiment number: a, b, c, d, or e

LLL = three numbers denoting the length L (km) of the domain, i.e. 160, 080, 040, 020,

010, or 005. For experiment E, this becomes 000 for the standard non-sliding

experiment and 001 for the experiment with the zone of zero basal traction. For

experiment F, this denotes the slip ratio, i.e. 000 or 001.

It is advised to refrain from the use of capital characters in the name of the experiment

files. For example, the file named fpa1c016.txt contains the results of experiment C for

a length scale L = 16 km with model number 1 of Frank Pattyn. The file must contain

10 columns.

A separate pdf file or word document with the name NNNmodel.pdf or NNNmodel.doc

(e.g. fpamodel.pdf) should contain a detailed description of the used model(s), clearly

indicating which model corresponds to which model number. Please give ample infor-

mation and references on the type of model and the stress components involved.
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