Dark Portals ... to Dark Matter

mainly based on collaborations with S. Colucci, B. Fuks, F. Giacchino, A. Ibarra, M. Tytgat, J. Vandecasteele and S. Wild

Dark Portals

ELE DOG

Dark Matter as a WIMP

• WIMP relic abundance is driven by processes:

ъ

Dark Matter as a WIMP

• WIMP relic abundance is driven by processes:

 $\langle \sigma v \rangle \sim 3 \, 10^{-26} \, \mathrm{cm}^3 \mathrm{/s}$

→ target value for detection experiments looking for annihilation products

Introduction

Testing WIMPS: the "simple" picture

Testing WIMPS: the "simple" picture

[see also D. Dobur, S. Lowette and I. Mariş

talk]

-

Beyond the simple picture

ways to break $\langle \sigma v \rangle_{\text{fo}} \leftrightarrow \langle \sigma v \rangle_{\text{today}} \leftrightarrow \sigma_{\text{direct,coll}}$??

EL OQA

Beyond the simple picture

ways to break $\langle \sigma v \rangle_{\text{fo}} \leftrightarrow \langle \sigma v \rangle_{\text{today}} \leftrightarrow \sigma_{\text{direct,coll}}$??

• Depending on the DM properties (odd Z_2 assumed) and on the portal:

- velocity dependent annihilation
- richer DM sector with coannihilations [Griest & Seckel '90]
- annihilation near thresholds and resonances [Griest & Seckel '90]
- annihilation into light mediators

(Sommerfeld enhancement [Hisano '04, Cirelli '05], secluded DM [Pospelov '07])

Beyond the simple picture

ways to break $\langle \sigma v \rangle_{\text{fo}} \leftrightarrow \langle \sigma v \rangle_{\text{today}} \leftrightarrow \sigma_{\text{direct,coll}}$??

• Depending on the DM properties (odd Z_2 assumed) and on the portal:

- velocity dependent annihilation
- richer DM sector with coannihilations [Griest & Seckel '90]
- annihilation near thresholds and resonances [Griest & Seckel '90]
- annihilation into light mediators (Sommerfeld enhancement [Hisano '04, Cirelli '05], secluded DM [Pospelov '07])
- non WIMP, non "standard" Freeze-out or stability other than Z₂: FIMP (freeze-in, ...), SIMP, semi-annihilating DM, asymmetric dark matter, ALP, dark freeze-out, reannihilation, sterile neutrinos (non) resonantly [see next talk by M. Drewes], co-annihilation without chemical equilibrium...

Portals to Dark Matter

三日 のへの

イロト イポト イヨト イヨト

Portals to Dark Matter

- SM portals
 - H portal
 - SM gauge bosons portal

DM SM

Higgs coupled Minimal DM

[LLH, Tytgat, Tziveloglou, Zaldivar'17]

Dark Portals

ELE DOG

Portals to Dark Matter

- SM portals
 - H portal
 - SM gauge bosons portal

- Dark gauge bosons: Z', W'
- Dark scalars
- Dark Fermions

Simplified Models t-channel mediators: Scalar vs Fermion DM

ъ

Why t-channel mediators?

[Bergstrom'89, Flores et al'89 and also Bringmann '08+, Ciafaloni '11, Garny '11+] Majorana DM with $\mathcal{L} \supset y\phi^{\dagger}\chi f_R + h.c.$

Annihilation $\sigma v = a + bv^2$

- *a* term :s-wave chirally suppressed $\propto (m_f/m_\chi)^2$
- *b* terms :p-wave *v* suppression $\langle v^2 \rangle_{fo} \sim 0.2$ while $\langle v^2 \rangle_{GC} \sim 10^{-6}$

hopeless for indirect detection when $m_f/m_\chi \ll 1??$

Why t-channel mediators?

[Bergstrom'89, Flores et al'89 and also Bringmann '08+, Ciafaloni '11, Garny '11+] Majorana DM with $\mathcal{L} \supset y\phi^{\dagger}\chi f_R + h.c.$

Annihilation $\sigma v = a + bv^2$

- *a* term :s-wave chirally suppressed $\propto (m_f/m_\chi)^2$
- *b* terms :p-wave *v* suppression $\langle v^2 \rangle_{fo} \sim 0.2$ while $\langle v^2 \rangle_{GC} \sim 10^{-6}$

hopeless for indirect detection when $m_f/m_\chi \ll 1??$

Not hopeless! Can get significant signal from $\chi\chi \to V\bar{f}f!!$ The emmission of an extra vector V lifts the chiral suppression ... but suppressed by 3bdy & extra coupling

[Bergstrom '89+, Bringmann '08+, Ciafaloni '11, Garny '11+, Toma '13, Giacchino'13,...]

 $DM = Majorana \chi$ $\mathcal{L} \supset y\phi^{\dagger}\chi f_R + h.c.$

$$Z_{2}: \chi \to -\chi, \Phi \to -\Phi$$

$$\chi \xrightarrow{\phi} f r = \frac{M_{\phi}}{M_{\chi}}$$

$$\sigma v_{ff}|_{\chi} = rac{g_l^4}{48\pi} \, rac{v^2}{M_{\chi}^2} \, rac{1+r^4}{(1+r^2)^4}$$

p-wave suppressed ($\propto v^2$ for $m_f \rightarrow 0$)

[Bergstrom '89+, Bringmann '08+, Ciafaloni '11, Garny '11+, Toma '13, Giacchino'13,...]

 $DM = Majorana \chi$ $\mathcal{L} \supset y\phi^{\dagger}\chi f_R + h.c.$

$$Z_{2}: \chi \to -\chi, \Phi \to -\Phi$$

$$\chi \longrightarrow f$$

$$r = \frac{M_{\phi}}{M_{\chi}}$$

$$\sigma v_{ff}|_{\chi} = rac{g_l^4}{48\pi} \, rac{v^2}{M_{\chi}^2} \, rac{1+r^4}{(1+r^2)^4}$$

p-wave suppressed ($\propto v^2$ for $m_f \rightarrow 0$)

 $\mathbf{DM} = \operatorname{Real Scalar S} \\ \mathcal{L} \supset y \ S \ \overline{\psi} f_R + h.c. \ .$

$$Z_2 : S \rightarrow -S, \Psi \rightarrow -\Psi$$

[Bergstrom '89+, Bringmann '08+, Ciafaloni '11, Garny '11+, Toma '13, Giacchino'13,...]

 $DM = Majorana \chi$ $\mathcal{L} \supset y\phi^{\dagger}\chi f_R + h.c.$

$$Z_{2}: \chi \to -\chi, \Phi \to -\Phi$$

$$\chi \longrightarrow f$$

$$r = \frac{M_{\phi}}{M_{\chi}}$$

$$\sigma v_{ff}|_{\chi} = rac{g_l^4}{48\pi} \, rac{v^2}{M_{\chi}^2} \, rac{1+r^4}{(1+r^2)^4}$$

p-wave suppressed ($\propto v^2$ for $m_f \rightarrow 0$)

 $\mathbf{DM} = \mathbf{Real Scalar S}$ $\mathcal{L} \supset y \ S \ \bar{\psi} f_R + h.c. \ .$

$$Z_2 : S \to -S, \Psi \to -\Psi$$

$$\sigma v_{ff}|_{S} = \frac{y_{l}^{4}}{60\pi} \frac{v^{4}}{M_{S}^{2}} \frac{1}{(1+r^{2})^{4}}$$

d-wave suppressed ($\propto v^4$ for $m_f \rightarrow 0$)

[Bergstrom '89+, Bringmann '08+, Ciafaloni '11, Garny '11+, Toma '13, Giacchino'13,...]

 $DM = Majorana \chi$ $\mathcal{L} \supset y\phi^{\dagger}\chi f_R + h.c.$

$$Z_{2} : \chi \to -\chi, \Phi \to -\Phi$$

$$\mathbf{DM} = \mathbf{Real Scalar S}$$
$$\mathcal{L} \supset y \ S \ \bar{\psi} f_R + h.c. \ .$$

$$Z_2 : S \to -S, \Psi \to -\Psi$$

$$\sigma v_{ff}|_{S} = \frac{y_{l}^{4}}{60\pi} \frac{v^{4}}{M_{S}^{2}} \frac{1}{(1+r^{2})^{4}}$$

p-wave suppressed ($\propto v^2$ for $m_f \rightarrow 0$)

 $\sigma v_{ff}|_{\chi} = \frac{g_l^4}{48\pi} \frac{v^2}{M_{\odot}^2} \frac{1+r^4}{(1+r^2)^4}$

d-wave suppressed ($\propto v^4$ for $m_f \rightarrow 0$)

- At f.o. $\langle \sigma v \rangle_{\bar{f}f} |_S / \langle \sigma v \rangle_{\bar{f}f} |_{\chi} \lesssim 0.16 \rightsquigarrow$ larger Yukawas for S to match $\Omega_{\rm dm}$
- In addition, in general, higher order effects are more importants in the scalar case, ie $\sigma v_{V\bar{f}f}^{\chi} < \sigma v_{V\bar{f}f}^{S}$ and $\sigma v_{VV}^{\chi} < \sigma v_{VV}^{S}$, for M_{dm} , y fixed & $V = \gamma$, g

Coupling to light leptons: Significant gamma ray spectral features

[Giacchino, Lopez-Honorez, Tytgat'13& 14]

E SQA

Sharp spectral feature

 \rightsquigarrow " γ line"-like feature with Bremsstrahlung emission

Laura Lopez Honorez (FNRS@ULB & VUB)

Dark Portals

Enhanced radiative processes for Scalars

see [Giacchino, LLH & Tytgat '13 &'14] see also [Toma'13 & Ibarra'14]

イロト イポト イヨト イヨト

EL OQA

Enhanced radiative processes for Scalars

see [Giacchino, LLH & Tytgat '13 &'14] see also [Toma'13 & Ibarra'14]

Relative enhancement min ~ 50 of the Bremsstrahlung signal for scalar DM !! Radiative processes $\gamma\gamma$, γee always more relevant for Real Scalar DM

Laura Lopez Honorez (FNRS@ULB & VUB)

Dark Portals

December 21, 2017 11 / 20

《曰》《圖》《曰》《曰》 드님

Allowed $\langle \sigma v \rangle_{\gamma ll}$ for relic abundance

- when $\sigma v \propto y^4$ dominates \rightsquigarrow larger y for S (due to d-wave) \rightsquigarrow larger $\langle \sigma v \rangle_{\gamma ll}$ (modulo the r suppression).
- Majorana DM: $\langle \sigma v \rangle_{\gamma ll}^{\text{max}}$ well beyond current and future experimental limits, need extra boost [see also Bringmann'12,Bergstrom'12]
- Scalar DM: $\langle \sigma v \rangle_{\gamma ll}^{\text{max}}$ can be larger by up to 2 orders of magnitude

Coupling to light quarks: Complementarity: Direct, Indirect and Collider searches

[Giacchino, Ibarra, Lopez-Honorez, Tytgat, Wild'15]

Viable param. space for coupling to light quarks

 $\mathcal{L} \supset yS\bar{\psi}q_R + h.c.$

 $\psi \equiv$ colored fermion mediator \rightsquigarrow opportunities for LHC searches

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

Viable param. space for coupling to light quarks

 $\mathcal{L} \supset yS\bar{\psi}q_R + h.c.$

 $\psi \equiv$ colored fermion mediator \rightsquigarrow opportunities for LHC searches

 Ωh^2 through freeze-out (f.o.):

- σv_{VV} & $\sigma v_{V\bar{q}q}$ included and $\langle \sigma_{gg} \rangle$ and $\langle \sigma_{g\bar{q}q} \rangle$ important at f.o. (away from coann.)
- Sommerfeld corrections for mediator annihilation included
 → up to max 15% effect on Ωh²

December 21, 2017

14/20

Real scalar dark matter, coupling to u_R

Viable param. space for coupling to light quarks

 $\mathcal{L} \supset yS\bar{\psi}q_R + h.c.$

 $\psi \equiv$ colored fermion mediator \rightsquigarrow opportunities for LHC searches

 Ωh^2 through freeze-out (f.o.):

- $\sigma v_{VV} \& \sigma v_{V\bar{q}q}$ included and $\langle \sigma_{gg} \rangle$ and $\langle \sigma_{g\bar{q}q} \rangle$ important at f.o. (away from coann.)
- Sommerfeld corrections for mediator annihilation included
 → up to max 15% effect

on Ωh^2

Direct, indirect and collider searches

ъ

Direct, indirect and collider searches

Direct, indirect and collider searches

 $SS \rightarrow gg$ dominates at large $r = m_{\Psi}/m_D$ while $SS \rightarrow \bar{q}qg$ dominates at smaller r

E SQA

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Coupling to top quarks

[to be published: Colucci, Fuks, Giacchino, Lopez-Honorez, Tytgat, VandeCasteele'17 (or '18?)]

From light to heavy quarks

 $\mathcal{L} \supset yS\bar{\psi}t_R + h.c.$

 Ωh^2 through freeze-out (f.o.):

Real scalar dark matter, coupling to uR r-1 100 10⁰ 10 10⁻¹ -> 10-2 0.1 10⁻³ = 10-4 0.01 10¹ 10² 10³ 10⁴ m_S [GeV]

From light to heavy quarks

Ωh^2 through freeze-out (f.o.):

- $m_S < m_t$ allowed with $SS \rightarrow tt^*, SS \rightarrow VV$ BUT for small y: Botlzmann treatment breaks down.
- $\sigma v_{V\bar{a}a}$ has to be carrefully evaluated in the $m_t \neq 0$

[Colucci, Giacchino, Tytgat, VandeCasteele'17] contribs. for $m_S > 5 \text{TeV}$

 $m_{\Psi}/m_{S}-1$ 10 10⁰ 10-1 **y**_{coan} \geq 10⁻² 01 10-3 10-4 0.01 10² 10³ 104 m_S [GeV]

Real scalar dark matter, coupling to t_B

 $\mathcal{L} \supset yS\bar{\psi}t_R + h.c.$

From light to heavy quarks

 Ωh^2 through freeze-out (f.o.):

- *m_S* < *m_t* allowed with *SS* → *tt*^{*}, *SS* → *VV* BUT for small *y*: Botlzmann treatment breaks down.
- $\sigma v_{V\bar{q}q}$ has to be carrefully evaluated in the $m_t \neq 0$

[Colucci, Giacchino, Tytgat, VandeCasteele'17] contribs. for $m_S > 5$ TeV

 Larger r values allowed for *m_S* ~ *m_t* than for light quarks
 Real scalar dark matter, coupling to t_R

Introduction

Largely unconstrained parameter space

• Main probe: production of mediator at colliders

Introduction

Largely unconstrained parameter space

- Main probe: production of mediator at colliders
- Direct Detection: loop suppressed
- Indirect Detection: $\sigma v_{t\bar{t}g}^{full}$ below Fermi reach at $m_{DM} > 150 \text{ GeV}$
Introduction

Largely unconstrained parameter space

- Main probe: production of mediator at colliders
- Direct Detection: loop suppressed
- Indirect Detection: $\sigma v_{t\bar{t}g}^{full}$ below Fermi reach at $m_{DM} > 150 \text{ GeV}$

Real Scalar DM with t-channel fermionic mediator

 $\mathcal{L} \supset y \ S \ \overline{\Psi} f_R + h.c.$: simple SM extension with very rich phenomenology:

- Coupling to light fermions:
 - d-wave 2-body $\sigma v_{\bar{f}f}$ in the chiral limit
 - \rightsquigarrow pheno driven by $SS \rightarrow VV, V\bar{q}q$
 - Coupling to *l_R*: ⟨σν⟩_{γγ} & ⟨σν⟩_{γll}
 → significant spectral features relevant gamma ray searches
 - Coupling to $q_R:\langle \sigma_{gg}\rangle$ & $\langle \sigma_{g\bar{q}q}\rangle$ are (may be) the dominant contribution today (at f.o) and nice indirect/direct and collider searches complementarity.
- Coupling to *t_R*: largely unconstrained by direct searches/ indirect searches, best probe so far: collider searches

Thank you for your attention !!!

Laura Lopez Honorez (FNRS@ULB & VUB)

< □ > < 同 > < 回 > < 回 > < 回

ELE DOG

Laura Lopez Honorez (FNRS@ULB & VUB)

[stolen from Heisig talk'17]

 \rightarrow Relic density is set by the size of the conversion rate

Laura Lopez Honorez (FNRS@ULB & VUB)

Dark Portals

December 21, 2017 22 / 20

E SQA

[stolen from Heisig talk'17]

Laura Lopez Honorez (FNRS@ULB & VUB)

Dark Portals

December 21, 2017 22 / 20

Long lived particles in the Majornana scenario

[stolen from Heisig talk'17]

Laura Lopez Honorez (FNRS@ULB & VUB)

Dark Portals

ELE NOR

[stolen from Heisig talk'17]

[stolen from Heisig talk'17]

Allowed parameter space: top-partner model

[Garny, JH, Hufnagel, Lülf in preparation]

E SQA

[stolen from Heisig talk'17]

Allowed parameter space: top-partner model

[Garny, JH, Hufnagel, Lülf in preparation]

Laura Lopez Honorez (FNRS@ULB & VUB)

Dark Portals

December 21, 2017 22 / 20

ELE NOR

Flavour

flavour anomalies: deficit in R(K*)

$$H_{\mathrm{eff}} \ni \mathcal{O}_{b_L \mu_L} = rac{1}{\Lambda^2} (\bar{s}_L \gamma_lpha b_L) (\bar{\mu}_L \gamma^lpha \mu_L)$$

Model and low-energy effective theory. We introduce a Dirac fermionic DM particle S, a vectorlike heavy quark Ψ that carries SM color and hypercharge, and a

	SU(3)	$SU(2)_L$	$U(1)_y$	$\rm U(1)_{em}$	\mathbb{Z}_2
Ψ	3	1	2/3	2/3	$^{-1}$
S	1	1	0	0	$^{-1}$
ϕ	1	2	-1/2	(0, -1)	$^{-1}$

$$\tilde{\lambda}_i \bar{Q}_{i,a} \phi^a \Psi + \lambda_i \bar{S} \phi_a^* L_i^a + \lambda |H|^2 |\phi|^2$$

ELE DOG

Flavour

flavour anomalies: deficit in R(K*) [Cline '17]

$$H_{\text{eff}} \ni \mathcal{O}_{b_L \mu_L} = \frac{1}{\Lambda^2} (\bar{s}_L \gamma_\alpha b_L) (\bar{\mu}_L \gamma^\alpha \mu_L)$$

Figure 1. Diagrams leading to (a) $b \rightarrow s\mu\mu$, (b) $\tau \rightarrow 3\mu$, (c) $B_s \cdot \overline{B}_s$ mixing and (d) dark matter scattering on quarks.

$$\tilde{\lambda}_i \bar{Q}_{i,a} \phi^a \Psi + \lambda_i \bar{S} \phi_a^* L_i^a + \lambda |H|^2 |\phi|^2$$

Laura Lopez Honorez (FNRS@ULB & VUB)

ELE DOG

Flavour

Figure 3. The blue curves show the values of m_c and m_{+} that give the correct relic density. The red region is excluded by searches by the Fermi-LAT for DM annihilation in dwarf spheroidal galaxies [23] when the local dark matter density is rescaled by the calculated relic density, and in the grey region S can decay, preventing it from being the DM. The green excluded by an ATLAS slepton search [25]. For all points in this parameter space, λ_2 is set to the minimum value that allows for explanation of the flavor anomalies while avoiding B_n mixing constraints (see text for more details). The dotted

Figure 6. Shaded regions in the m_S - m_{Ψ} plane are excluded at 95% c.l. by ATLAS run 2 searches for one (blue) or two leptons (red), jets, and missing energy [30][31]. For each point, m_S and the couplings are set as described in text to satisfy flavor and DM relic density constraints.

ъ

Direct Detection searches

• effective DM coupling to q (scalar and twist-2 [Drees'93]) and g [Hisano'15] included

Direct Detection searches

- effective DM coupling to q (scalar and twist-2 [Drees'93]) and g [Hisano'15] included
- effective DM coupling to nucleons f_p ≠ f_n → max. isospin violation at r =2.6, (3.3) for q = u,(d)

 f_n/f_p for dark matter coupling to u_R f_n/f_p 1 f_n/f_p for coupling to u_B $f_n / f_p = 0$ $f_n / f_p = -0.7$ -1 $\frac{-2}{10^{-2}}$ 10 10^{-1} 50 r - 1

$$\sigma_p^{\text{eff}} = \sigma_p \cdot \frac{\sum_{i \in \text{isotopes}} \xi_i (Z + (A_i - Z) f_n / f_p)^2}{\sum_{i \in \text{isotopes}} \xi_i A_i^2 \equiv \dots \equiv \exists \exists \forall A_i \land A_i \land$$

Laura Lopez Honorez (FNRS@ULB & VUB)

Direct Detection searches

- effective DM coupling to q (scalar and twist-2 [Drees'93]) and g [Hisano'15] included
- effective DM coupling to nucleons $f_p \neq f_n \rightsquigarrow \max$. isospin violation at r = 2.6, (3.3) for q = u,(d)
- LUX probes $m_S \lesssim 200 300$ GeV + an island around $m_S \sim 2$ TeV
- At all masses, viable parameter space out of reach Direct DM searches.

Real scalar dark matter, coupling to uR

Projection of direct-detection constraints

Laura Lopez Honorez (FNRS@ULB & VUB)

Collider constraints

Production of colored mediator at the LHC $\rightsquigarrow n$ -jets+MET (n > 2) at r small: n > 2 enhance visibility for too soft $\psi \rightarrow uS$ jets at r large: n > 2 S/Bgd can be larger for n > 2

Collider constraints

Production of colored mediator at the LHC $\rightsquigarrow n$ -jets+MET (n > 2) at r small: n > 2 enhance visibility for too soft $\psi \rightarrow uS$ jets at r large: n > 2 S/Bgd can be larger for n > 2

 \rightsquigarrow Enhanced production σ including $y = y_{thermal}$

-

Constraints derived from ATLAS multijet analysis

 We use : ATLAS-CONF-2013-047 for 2-6 jets +MET at √s = 8 TeV L = 20.3fb⁻¹ → limits on the number of signal events S
 We recompute σ^{excl}(r, m_{DM}) evaluating efficiencies ε = N^{cut}/N^{events} using

Madgraph & CheckMATE

Coupling to u_R

• We get $\sigma(r, m_{DM}, y_{thermal})$ (tree-level) using calchep and compare to $\sigma^{excl}(r, m_{DM})$

 \sim Can exclude DM models up to \sim 1 TeV for the large $r - y_{thermal}$ region

Indirect detection constraints

- $\langle \sigma_{gg} \rangle + \langle \sigma_{g\bar{q}q} \rangle \equiv$ 95 - 100% σv_{tot} today $\rightsquigarrow \gamma$ & \bar{p} constraints
- rough estimation of Fermi dSphs bound on $\langle \sigma_{gg} \rangle$ & $\langle \sigma_{g\bar{q}q} \rangle$ using integrated specra for $E_{\gamma} = [0.5, 500]$ GeV
- Typically probe the *r* > 1.2 & *m_S* < 150 GeV
 → complement direct detection and collider searches at low DM mass

Cross-section relevant for gamma-ray line searches

Relic abundance relevant processes

Sharp gamma ray spectral features & Focus on Yukawa coupling to leptons

see [Giacchino, LLH & Tytgat '13 &'14] see also [Toma'13 & Ibarra'14]

EL OQO

Looking for smoking gun evidence for DM?

like e.g. sharp spectral features, such as lines, in the gamma ray spectrum:

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi) = \frac{1}{8\pi} \int_{\Delta\psi} \frac{d\Omega}{\Delta\psi} \int_{1.\text{o.s}} d\ell(\psi) \rho_{\chi}^{2}(\mathbf{r}) \times \left(\frac{\langle \sigma v \rangle_{\text{ann}}}{m_{\chi}^{2}} \sum_{f} B_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}} \right)$$

Particle physics input

EL OQA

Looking for smoking gun evidence for DM?

like e.g. sharp spectral features, such as lines, in the gamma ray spectrum:

ELE DOG

- 4 回 ト 4 三 ト

Looking for smoking gun evidence for DM?

like e.g. sharp spectral features, such as lines, in the gamma ray spectrum:

Sharp gamma ray spectral features

Sharp gamma ray spectral features

• From 3bdy process: Virtual Internal Bremsstrahlung

- peaked at $E_{\gamma} \sim M_{\rm dm}$ for $r \to 1$
- Identical for Scalar & Majonana [Barger'11]
- From loop process: gamma line

Rudaz '89, Bergstrom'89+, Bern'97& Bertone'09, Giacchino'14& Ibarra'14]

Scalar S and Majorana N DM with r=2.0

Enhanced $\langle \sigma v \rangle_{\gamma ll}$ and $\langle \sigma v \rangle_{\gamma \gamma}$ for Scalar DM

• at f.o. for Real Scalar DM: $\langle \sigma v \rangle_{\gamma ll} \sim \langle \sigma v \rangle_{ll}$

• in general, higher order effects are more important for scalar DM: $\langle \sigma v \rangle_{\gamma ll}^{\chi} < \langle \sigma v \rangle_{\gamma ll}^{S}$ and $\langle \sigma v \rangle_{\gamma \gamma}^{\chi} < \langle \sigma v \rangle_{\gamma \gamma}^{S}$

see [Toma'13,Giacchino'13, Giacchino'14& Iba	arra'14]		୬୯୯
Laura Lopez Honorez (FNRS@ULB & VUB)	Dark Portals	December 21, 2017	34 / 20

Viable param. space for coupling to e_R

Viable param. space for coupling to e_R

ъ

Allowed $\langle \sigma v \rangle_{\gamma ll}$ for relic abundance

• when $\sigma v \propto y^4$ dominates \rightsquigarrow larger y for S (due to d-wave) \rightsquigarrow larger $\langle \sigma v \rangle_{\gamma ll}$ (modulo the r suppression).

ъ

Allowed $\langle \sigma v \rangle_{\gamma ll}$ for relic abundance

- when $\sigma v \propto y^4$ dominates \rightsquigarrow larger y for S (due to d-wave) \rightsquigarrow larger $\langle \sigma v \rangle_{\gamma ll}$ (modulo the r suppression).
- Majorana DM: (σν)^{max}_{γll} well beyond current and future experimental limits, need extra boost [see also Bringmann'12,Bergstrom'12]
- Scalar DM: $\langle \sigma v \rangle_{\gamma ll}^{\text{max}}$ can be larger by up to 2 orders of magnitude

Collider constraints

Production of colored mediator at the LHC ~> MET+jets

ъ

Collider constraints

Production of colored mediator at the LHC ~> MET+jets

enhanced production σ

- for large $y = y_{thermal}$ with $\bar{u}u \to \bar{\psi}\psi$ & $uu \to \psi\psi$
- dominating $uu \rightarrow \psi \psi$ at large r(y) due to large u PDF in the p
- destructive *y*-*g*_s interference for $\bar{u}u \rightarrow \bar{\psi}\psi$
Constraints derived from ATLAS multijet analysis

Why Multijet (>2) analysis (ie consider extra jets from q or g in the initial state)

- for $m_{\psi} m_S < 50 100$ GeV, jets from $\psi \rightarrow uS$ too soft, additional jet necessary for visibility
- at large r, S/Bgd can be larger for *n* - *jets* + *MET* signal with n > 2

- We use :ATLAS-CONF-2013-047 for 2-6 jets +MET at $\sqrt{s} = 8$ TeV $\mathcal{L} = 20.3 fb^{-1} \rightsquigarrow$ Comparing to bgd expectation no significant excess observed \rightsquigarrow limits on the number of signal events *S*
- We recompute $\sigma_{95\%CM}^{excl}(r, m_{DM})$ evaluating $S_i = \sigma \epsilon_i \mathcal{L}$ or more precisely the efficiency ϵ_i that depends on the DM model generating events in Madgraph and apply cuts using CheckMATE
- We compare $\sigma^{excl}_{95\%CM}(r,m_{DM})$ to $\sigma(r,m_{DM},y_{thermal})$ using calchep

Worked example: Real Scalar DM and $E_{\gamma} \sim 130$ GeV signal

- Hint for γ-ray signal at E_γ ~ 130 GeV at the GC could correspond to
 - $M_{\rm dm} \sim 130 \ {\rm GeV} \ \gamma \gamma \ {\rm signal}$
 - $M_{\rm dm} \sim 150 \ {
 m GeV} \ \gamma \bar{f} f \ {
 m signal}$

[Bringmann et al'12]

• First $\gamma \bar{f} f$ analysis [Bringmann et al' 1203] concluded that thermally produced DM could not account for a signal involving $\sigma v \sim 6 \, 10^{-27} \text{cm}^3/\text{s}$

Worked example: Real Scalar DM and $E_{\gamma} \sim 130$ GeV signal

- Hint for γ -ray signal at $E_{\gamma} \sim 130$ GeV at the GC could correspond to
 - $M_{\rm dm} \sim 130 \,{\rm GeV} \,\gamma\gamma$ signal [Weniger'12]
 - $M_{\rm dm} \sim 150 \,{\rm GeV} \,\gamma \bar{f} f$ signal [Bringmann et al'12]
- First $\gamma \bar{f} f$ analysis [Bringmann et al'1203] concluded that thermally produced DM could not account for a signal involving $\sigma v \sim 6 \, 10^{-27} \text{cm}^3/\text{s}$

This is indeed the case for Majorana DM, but real scalar DM can do the job

[Toma'13, Giacchino, LLH & Tytgat '13]

Scalar DM Mc=150 GeV

Contributions to $\langle \sigma v \rangle_{\gamma\gamma}$

chi chi \rightarrow a a

JI NOC

< ロ > < 同 > < 回 > < 回 > < 回 > <

VIRTUAL INTERNAL BREMSSTRAHLUNG

$$DM \quad - \quad - \quad - \quad - \quad e \\ E \\ DM \quad - \quad - \quad - \quad - \quad \overline{e} \\ \overline{e}$$

$$\mathcal{M} \propto ((p_{DM} - p_{\bar{e}})^2 - M_E^2)^{-1} \sim (M_{DM}^2 - M_E^2 - 2M_{DM}E_{\bar{e}})^{-1}$$

POTENTIALLY **VERY LARGE** ENHANCEMENT IF $M_{DM} \sim M_E$

For $E_{\bar{e}} \sim 0$ corresponding to $E_{\gamma} \sim M_{DM}$

Bergstrom Phys.Lett. B 225 (1989), 372

Bergstrom, Bringmann & Edsjo JHEP 0801 (2008) 049

正面 ふめやえめ ふぼすふしゃ

[M. Tytgat - Scalars 13]

Laura Lopez Honorez (FNRS@ULB & VUB)

Dark Portals

December 21, 2017 43 / 20

500

Any (not very new) idea of how to break the links ... ?

Sure!!

We need to break $\langle \sigma v \rangle_{\text{fo}} \leftrightarrow \langle \sigma v \rangle_{\text{today}} \leftrightarrow \sigma_{\text{direct,coll}}$

- velocity dependent annihilation
- richer DM sector with coannihilations [Griest & Seckel '90]
- annihilation near thresholds and resonances [Griest & Seckel '90]
- annihilation into light mediators (Sommerfeld enhancement [Hisano '04, Cirelli '05], secluded DM [Pospelov '07])
- Non WIMPS: FIMP, asymmetric dark matter, axions

• ...

This is really the end

三日 のへの

イロト イポト イヨト イヨト