Multimessenger particles: Ultra High Energy Cosmic Rays and Neutrinos

Ioana C. Mariş

Université Libre de Bruxelles thanks to Pierre Auger, Telescope Avray and IceCube collaborations

Interactions

21 December 2017, Brussels

IAP

Ultra High Energy Cosmic Rays and Neutrinos

Which are the sources?

How are accelerated?

New fundamental physics?

- UHECRs: Charged and deflected in magnetic fields, probe the nearby Universe at $10^{20} \, \text{eV}$
- Neutrinos: Straight path and no energy losses, probe the entire Universe

UHECRs with full sky coverage and complementary techniques

Combining the data from the two largest observatories.

Telescope Array

680 km²(507 scintillators), 36 telescopes

Fluorescence telescopes

Surface detectors

Pierre Auger Observatory

Fluorescence Telescopes

Surface detectors

3000 km^2 (1660 water Cherenkov detectors), 27 telescopes

Pierre Auger Observatory

Surface detectors

3000 km² (1660 water Cherenkov detectors), 27 telescopes

Indirect measurements of UHECRs via the air-showers

5

Indirect measurements of UHECRs via the air-showers

5

Energy spectrum

Combined energy spectrum

Combined energy spectrum

Comparison with Telescope Array

TA-Auger energy spectrum working group

Comparison with Telescope Array

TA-Auger energy spectrum working group

 \Rightarrow difference above 40 EeV (caused by different sky coverages?)

Looking at the same part of the sky

 \rightarrow slightly better agreement, but an energy dependent difference still present

Sensitivity to mass composition with FD and SD

 X_{max} : depth of the maximum of the air-shower development Δ_s : evolution of the signal with time, related to the risetime

time [25 ns]

Sensitivity to mass composition with FD and SD

Average X_{\max} with Fluorescence Detector

Average X_{\max} with Fluorescence Detector

Average X_{\max} with Fluorescence and Surface Detector

Average X_{\max} and X_{\max} -fluctuations

lines: simulations using post-LHC hadronic interaction models

Mass composition at sources

rigidity-dependent cutoff at source: $E_{\text{max}} = R_{\text{cut}} Z$, power law injection $E^{-\gamma}$

Source properties	4D with EGMF	4D no EGMF	1D no EGMF
γ	1.61	0.61	0.87
$\log_{10}(R_{\rm cut}/{\rm eV})$	18.88	18.48	18.62
f _H	3 %	11 %	0 %
f _{He}	2 %	14 %	0 %
f _N	74 %	68 %	88 %
f _{Si}	21 %	7 %	12 %
f _{Fe}	0 %	0 %	0 %

Suppression of the flux dominated by max. injection energy Very hard index of power law at injection Mainly primaries of the CNO and Si group injected, no Fe, very little p (spallation)

Searches for cosmogenic photons and neutrinos

Current limits start reaching the GZK expectations

Large-scale anisotropy

Harmonic analysis in right ascension $\boldsymbol{\alpha}$

Significant dipolar modulation (5.2 σ) above 8 EeV: (6.5^{+1.3}_{-0.9})% at (α, δ) = (100°, -24°)

- \rightarrow Expected if cosmic rays diffuse in Galaxy from sources distributed similar to near-by galaxies
- \rightarrow Strong indication for extragalactic origin

Hot/warm spots with combined data (about 3σ)

Naive superposition of the highest energy data!

AugerPrime

Telescope Array x 4

Water Cherenkov detectors with $4m^2$ scintillators

Enhance the sensitivity of the surface detectors

Increase the surface detector by a factor 4!

Mass composition with surface detectors (AugerPrime) and increased statistics

IceCube neutrino observatory

Full operation since 2011

Types of neutrino events

(resolvable above ~100

TeV deposited energy)

15% deposited energy resolution 10 degree angular resolution (above 100 TeV)

Astrophysical neutrinos

Point sources: clustering of astrophysical neutrinos?

No evidence of clustering in the directions of high-energy neutrinos

Point sources: clustering of astrophysical neutrinos?

Lowering the required energy still no significant clustering

Realtime alerts and transient sources

- Astrophysical Multimessenger Observatory Network (AMON) and Gamma-ray Coordination Network (GCN)
- Understand the Universe with photons, neutrinos, UHECRs and gravitational waves
- Principle: seen something interesting \rightarrow alert fast the community

Neutrinos and gamma rays

Supernova PS16cgx descovery triggered by a high energy neutrino

PAN-Starrs followed up IceCube HESE alert on 2016-04-27 and found a recent supernova at $z{=}0.3$

GEMINI: Optical spectroscopy

Neutrinos and UHECRs

Auger (231 events) TA (109 events) IceCube(58+ 49 events)

No significant correlation ($< 3\sigma$)

Multimessenger astronomy: GW, gamma rays and neutrinos

GW170817 about 40 Mpc away (NCG4993)

UHECRs and neutrinos: plans and future

Heading towards particle astronomy

- Important Belgian contribution in the multimessenger astrophysics (phenomenology and experimental)
- Ultra High Energy Cosmic Rays: towards mass composition and high statistics (AugerPrime, TA upgrade)
- Neutrinos: increase the statistics of high energy neutrinos (IceCube-Gen2)

APPEC:" To improve understanding of our Universe, APPEC identified as a very high priority those research infrastructures that exploit all confirmed high-energy messengers (cosmic particles that can provide vital insights into the Universe and how it functions). These messengers include gamma rays, neutrinos, cosmic rays and gravitational waves. "