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Abstract

This technical appendix contains proofs for the asymptotic properties of
quasi-maximum likelihood (QML) estimators for vector autoregressive moving
average (VARMA) models in the case where the coefficients depend on time
instead of being constant. We refer to the main theorems of the paper “Asymp-
totic properties of QML estimators for VARMA models with time-dependent
coefficients, Part 17 (Alj, Ley and Mélard, 2015b) and of another paper in
preparation “Asymptotic properties of QML estimators for VARMA models
with time-dependent coefficients, Part 2”7 (Alj, Azrak and Mélard, 2015a). In
the latter paper, the coefficients depend on time but also on the number of
observations.
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1 Notations

In the proofs below, we frequently use the following notations:

e det(.): the determinant of a matrix.

e (.)7!: the inverse of a matrix.

(). the transpose of a matrix.

e vec(.): the vec-operator, written as vec transforms matrix into a vector, by
stacking all the columns of this matrix one underneath the other.

e ®: the Kronecker product.

e tr(.): the trace of a square matrix and is defined to be the sum of the elements
on the main diagonal (the diagonal from the upper left to the lower right).

e ||.|[;: the Schur or Frobenius norm.
e [,,: identity matrix of order m.

e O(+): of order +.

e |.|: the absolute value.

This is the technical appendix to two papers Alj, Ley and Mélard (2015b) and Alj,
Azrak and Mélard (2015a). Both papers will be referred to as ”the main paper”. The
notations are essentially the samel] The superscript ™ can be omitted for Alj, Ley
and Mélard (2015b).

We have a model depending on a m-dimensional vector of parameters of interest
for the r-dimensional variable z{™ ¢ = 1,...,n. 6° is the true value of f. Denote Ft(f%
the sigma-algebra generated by {a:é”) : s < t—1}. In the context of the two papers
Ft(") is as a matter of fact generated by {e; : s < t}, which do not depend on n, so
that Ft(”) can ne written F;. Denote the conditional expectation and the residual by

= By (sV/FN), o) =l — 2y (1.1)

-1

Denote £ (6) = ¢ (0)S¢™7 (6) the residual covariance matrix, where the elements

of the covariance matrix X are nuisance parameters and gf")(Q) is a 7 X r matrix. For
= 0°, we suppose
e (0°) = gV, (1.2)

1The main difference is that a superscript (™ is added to many symbols for the case of the second
paper, Alj, Azrak and Mélard (2015a), n being the series length.



where gt( " = gt (90) and the ¢, are independent random Varlables with mean 0 and

covariance matrix ¥. We will also denote S\ = 2™ (%) = ¢2¢™7, not to be
confused with ¥. Note that

1= < g™ 12120 e, (1.3)

using Lemma B.4] below
The model for x; () can be written

7" )+ Z%k ein)k (1.4)
We can also write .
(0) = D i (0.0°)9 e (1.5)
k=0
Denoting
a n) 0 t—1
et ( Z%zk (6, 90 gt kEt ks (1.6)
0%e n)
aetag Zwtwk (6,6%) gt kEt k> (1.7)
83et .
90,00,00, ael 2::%”“ (6,6)9,"kc1-+. (1.8)

for i, 5,0 = 1,...,m, where the coefficients are defined in the main paper. We will use
these coefficients for § = 6° and they will be denoted respectively by

W= (00), ) = el (0°,6°), 00, = Ui (0°,6°), Ui = i (6°,6%).  (1.9)

Because of (L.2)),
P =1 and ) = 0 for k > 0. (1.10)

2 Completion of the proof of Theorem 3.1

Remark 2.1 In the proof of Theorem 3.1 of the main paper we proceed like in Azrak
and Mélard (2006). The idea is to check the four assumptions of Theorem 2.1.

Lemma 2.1 Under the assumptions of Theorem 8.1, Assumption Hsq of Theorem
2.1-2.2 is true.

Proof. We have to show that E90(8a§”)(9)/69i) <Cy,i=1,...,m, where
M@ = log {det (2§">(9))} +eMT 011 (9)el™ (). (2.1)

Its first derivative is given in Lemma [4.4l Then, the proof is a direct application of
Lemma FTTI O



Lemma 2.2 Under the assumptions of Theorem 3.1, Assumption Hso of Theorem
2.1-2.2 is true.

Proof. We have to show that there is a constant C5 such that

P*oi" (0)
96,00,

9%a"™ (6)

Ego
‘ 80,00,

— E, JF || <o (2.2)

Note that by using Lemma 5] we have

2

EgO /thl

06,00, 6,00,

Pa(0) _ . [aQaE’”(e)

(n)—1 (n)
rs azt (9) aet (9) (n)T (n)—1 t
2 (et (0) o0, 5, +2 (e, (0)% (9)—%%

9 (eng(@)@Zﬁ")_l(@) 3€§n)(9)> N (egm(e)aﬁin)_l(@)egn)w))

— Eyo

00; 00, 00,00,
2
525 (6)
—tr [ W) =L 5,7 =1,...,m. 2.
I'( t ( ) aelaej ) 2W) ) , M ( 3)
Then, the result is a direct consequence of Lemma .12 [

Lemma 2.3 The expression after the limit on the left hand side of Assumption Hs 4
in Theorem 2.1 is bounded by

5 { Py (6) }
— 00,0000, oo
Proof. By using the mean value theorem we can write, for 7,57 =1, ...,m,

" 901" (6) " 920y (6) e o = 2Pl (0)
{ 96,00, a 96,00, = 2 (i =) Zaeiaejael
t=1 0=6* 0=00 t=1 9=

t=1 =1 il

1
— , for ¢,5,l=1,....m.
n

95;;)** being a point on the line joining 6* and 6°, with ||§* — 0°|| < A. Taking care

that A will tend to 0, we have

s ({Zer@| o) _
90;00; 90,00, B
t=1 =0+ 0=60

(nA)™




&3al”
= (nA) Z o — o)) { 00,00 89l} (s

l

15l

53 (n
Zae 20, aal o
1 {Z %E”)(e)}
n — (901(96]89; 9:9(")**

ijl
1 Bay™ (
< =
—n {28980 861}

by continuity when [|§* — 6°|| — 0. O

IN

(nA) " — 6

IN

Remark 2.2 This proof is identical to a part of the proof of Theorem 2 in Azrak and
Mélard (2006, p. 323).

Lemma 2.4 The expression 83a§n)(9)/{80i89j891}, i,j,l = 1,...,m, which arises in
Lemma 2.3 can be written

o (0) + 5 (0) + Wi (0) + w5 (0) + v (6), (2.4)

where

q)(n)(e) - 322§n)—1(9) 82£")(Q) . 8Z§n)—1(9) 82215”)(9)
t 90,00, 06, 90 90;00,

oxM = (6) 925 (6) -1, 35 (0)
“r( g on0s ) T U\E Oggaaas ) 20

Bx(6) o
6,006,086, (), (2:6)

oy (0) = &M(0)

s 19) 9e™ () axM1() 02 (9)

VRO = 2O g 2" O
2o T OTA ) gy D)
2T, 9)32‘29 ae,(9> aeé";j(e) 42T (0)(92?;;(@) 8;2’25)
+2e,” (0)8289 aefm aeg;lge)’ =0

b}



b6 = 2 2 )T (0)0e”(6) | e (6) 05" () e (6)
2t 00, 00; 00, 00, 09, a0,

| 0”7 (6) 95"'(6) 9ei” (0) }

2.
00); 00, 06, (28)

and

2T (0) 1, 06 (0)  9eT(0) 1, 0% (6)
\P(n) - 9 t Z(n) 1 t t E(n) 10 t
e (9) { w06, > D7ag T 7as > O 500

(n)T 2,(n)
N de;" (0) EE")_l(Q)a e (0) } . (2.9)

00, 00,00,

Proof. The proof of (2.4))-(2.9) is direct. O

3 Technical Lemmas

Lemma 3.1 Let x = {x;} represent an 1 xm vector of m variables. For any invertible
matriz A(x) and continuously differentiable at every x, we have

dlog {det (A(z))} 4, (OA(2)
. =tr <A (x) o ),

i=1,...,m, and the first derivative of A~ (x) is

DA @) L DAE)
o, =—A"(x) o, A7 ().
Fori,7=1,...,m, the second derivative is
PA(x) o Ly, (OPAx) L, \O0A(x) o (O0A(z)
Ordr; —4 (x)ﬁxi&rjA (z) + A7 (@) oz, A (@) Oz, A (@)
4, (O0A(x)  _, [0A(x) ,_
1 1 1
+A7 (x) o, A7 (2) o, A7 ().

For the proof, see Harville (1997, pp. 305-309).

Lemma 3.2 For all real numbers ay,as,...,a,, n a strictly positive integer, and for
all integer powers p > 1 we have

n p n
S| <o Sl
=1 =1

See Steele (2004, p. 36).



Lemma 3.3
a) For any column vector a we have

vec(a®) = vec(a) = a.

b) The basic connection between the vec operator and the Kronecker product is
vec(ab’) = b® a,
for any two column vectors a and b.
c¢) The basic connection between the trace and the vec operator is

tr(BA) = tr(AB) = vec(A")T vec(B).

d) Let A, B, C and D be four matrices such that AC and BD ezxist.
(A® B)(C ® D) = (AC) ® (BD),
and the transpose of a Kronecker product is

(A B = A" @ B,

e) Let A, B and C' be three matrices such that the matriz product ABC' is defined.
Then,
vec(ABC) = (CT @ A) vec(B).

f) Let A, B, C and D be four matrices such that the matriz product ABCD is
defined and square. Then,

tr(ABCD) = vec(AT)' (DT @ B) vec(O).

g) Let A and B be respectively m x n and p x ¢ matrices, then B A= K, ,(A®
B)K,, ,, where e.g. K, , is an ng X nqg commutation matriz, which is an orthog-
onal matriz such that for any n x ¢ matriz C we have K, ,vec(C) = vec(CT),
and noting that Ky, = K1 = I, and that K, (K, = I,.

These propositions are well known [see, e.g., Magnus and Neudecker (2007, pp. 32-36
and pp. 54-55)].

Lemma 3.4 For any two real matrices A and B such that the product AT B exists,
we have

tr*(ATB) < tr(ATA) tr(BTB),



and it is equivalent to
tr(A"B) < [|Allp 1Bl

with equality if and only if one of the matrices A and B is a multiple of the other. In
addition we have

|ATB||, < Az 1Bz,
and also
[vec(A)llr = Al -

Finally, using the definition of K, 4 in Lemmal33 g), || Kngllp = /11q and [|[A® B||, =
1Al 1Bl -

See Magnus and Neudecker (2007, p. 228) and Seber (2008, p. 235).

4 Key Lemmas

Lemma 4.1 We have for any symmetric v X r matriz )

oe(0) 0T (0)

00; B 00; Qet (9)7 t=1..m (41)

and, fori,j=1,...,m,

) 9ei™ (0
<%GWWM %Umg):a (12)

N 82 (n) 0
E (eg >T(9)Qa‘;f—aé)/Ft_1) — 0. (4.3)
(A

Furthermore

e (0) _0el™ (6) 9e™ T (0) _0el™ (6)
E : Q— F | =+ Q— : 4.4
"( 0 a6, [P 06 a6 (4.4)

The proof will be given in Appendix (.11

Lemma 4.2 Let €, be a sequence of independent random vectors with zero mean,
covariance matriz > and finite fourth-order moments. Then, for ¢ # 0,

E (vec(ee, ) vec(ee ))T) = T ® I,
E (vec(etetTff) Vec(et_getT)T) = K, (2®Y%),

8



where the r? x 1?2 matrix K, , is the commutation matriz that was defined in Lemma

[33 Let
ke =" E (vec(ee] ) vec(ee))) = E ((er€]) ® (esef ) (4.7)

which depends on t, in general. If the € are all Gaussian, then k; does not depend on
t and

ke = Kk =" vec(X) vec(X) + (L2 + K., )(Z @ X). (4.8)

The proof will be given in Appendix [5.21

Remark 4.1 The following lemma will be used several times in rather different con-
texts so we use more general notations than needed: 8(61)65")(9) can denote eﬁ")(e)

for ¢ = 0, a first-order derivative 8etn)(0)/89i if ¢ = 1, a second-order derivative
02e™(0)/(00,00;) if ¢ = 2, or even a third- order derivative 9*¢{™ (9)/(960,00,00,) if
qg=3,44l=1,...,m. In [@3) below, wt (0 0°) will denote the coefficients

", 90) in (L), for q =0, the coefficients ¥ (6,6°) in (LB), for ¢ = 1, the coef-
ficients wmk(e 90) in (L), for q =2, the coefficients 1/1mlk(6’,«90) in (LY), for g = 3.

Note also that v\2"(0,6°) = 0 for ¢ = 1,2,3, according to (LB)-(LR). See Remark
[4.9 for hints on applications of that lemma.

Lemma 4.3 Let 0'9 denote a q-th order derivative with respect to some component
of 0, St(n)(Q) be a square symmetric matriz, let q1, qa, q3, q1, and d be positive integers,
vy and vy be integers. Let

Zwtk (6,6%) 9™ €0, (4.9)

where the ¥9(0,60°) and g are matriz coefficients and the ¢ are independent
random vectors with zero mean, covariance matriz ¥ and finite fourth-order moments

as in Lemma[{.9. We denote @D(n @ — (n)(q) (6°,6°). Then

1 n)T 2 n)T n)(q1 n)(q2
Eq |06 (0)5"(0)0) e((6)| = Ztr{m W )

(4.10)
where S = S§”)(90), and, with 6 =0 or 1,

Eo [ B {0 e (057 (0)05 ef" (0) = 3y (05l (0)S" (0)9 e (0)) [ Froan }

By {o el Sfﬁidw)a@‘* el00(0) = 3y (0l (0)SI0)0 e 0u(0)) [ Frovr }]

(4.11)



t—1
S e e o
k=max(v1,v2,0)
t—1 t—1
T n
DY MR K (S e )My (4.13)
k1,ko=max(v1,v2,0)
t—1 t—1
T n R
> Mg (S e D) My (4.14)
k1,ke=max(v1,v2,0)

t—1

N T n s
+(1-9) Z Mgl b (vee D) (vee D)4 DT MG

k1=max(v1,0) ks=max(v2,—d)

(4.15)

where we have the r* x 1 vector
(n)(q',q") _ ()T (n)(d)T g(n) g _(n)

Mtfk’g”q - Vec(gt—k/ wt+f?€/+fs wa_f k//+fgt_ku), (416)
with ¢',¢" = q, G2, q3, 1, and k', k" = k, ky, ko, and the r? X r* matriz

=k~ {K,(2R%) + (2@ %)+ (vecX)(vec ¥)T}. (4.17)

In the special case where g = qa =q3 =q =0, d =0, and v; = v, =0, (E12)-(EI5)
mplify t
simphify to M WO.0T T (n)(0,0)
Mi00 {r: — (vecX)(vec X)" } M0 (4.18)
where Mt(orgéo’o) = Vec(g§ T Sf )gt( )).

The proof will be given in Appendix 5.3

Remark 4.2 We will use the first part of this Lemma in Lemmas[{.7, [4.§ and [{.23.
We will use the second part of this Lemma in Lemmas[{.7, [4.9, [4- 11}, [{-13, [{- 13, [{-16,
418, and[{-20. Lemmal[]. 7] will be used to deliver upper bounds for general ¢;’s when
d =0 and v1 = vy = v, and will no longer be discussed here. For the first part of
the present Lemma, we use ¢1 = g2 = 1 and also ¢ = ¢ = 2 in Lemma [{.§ In
general we have ¢ = q3 = 1 and qo = q4 = 1 and the component of 6 involved in
the derivative will be denoted respectively 0; and 0; except in Lemmas[{.13, [{.16], and
[£-20. In Lemma[{.13, ¢1 = g2 = q3 = g1+ = 0 and no derivative of e;(8) is involved. In
Lemma .16, ¢ = g3 =0 and go = q1 = 1,2 or 3. In Lemma [{.20 where ¢; = q3 = 2
and ¢ = q4 = 1 and the component of 0 involved in the derivative will be denoted
0;,0; for the former, and 0;, for the latter. In all cases except Lemma[{.9, we have
d=0. In Lemmal[{.9, we use vy =1 and vy = 1 —d. In Lemmas[{.10], [{.18, and[{.20
we have an arbitrary v > 0 and d = 0 so vy = vy = v, and the summations start at v.

Otherwise 1y = vy =1, in Lemmasm (mdm orvy =1, =0, in Lemmam In
Lemmas [{.9, [{-13, and [{-20, S = YXMW1 in Lemma [J-1§ it is 05 2™ (0 and
in Lemma [{.16], it is either E(”) Y(0) or a first- or second-order derivative of it. In

10



Lemmal[{.15, it is a third derivative of X~ 1(9), whereas in Lemmas@ and[{.11), it
is I, and in Lemma[{.23, it is a product Kt )Kt(+3“, where KtZ is defined in (4.39).
In Lemmas [{.11] and .13, 6 = 0 and in the other cases we have 6 = 1 so that the
term (LIH) cancels.

Lemma 4.4 Let agn)(G) as defined in Assumption Hoq of the main paper. Then

o (n) 2 e
O‘BQK ) _ a{™ (0) + oS (0) + a7 (0), (4.19)
where
. _ z(n)
a™(9) = tr (z&“ 1(9)85—9@> : (4.20)
n)i n ae(n) 0
A0) = 22 (4:21)
n)i n az(n)*l 9 n
0 = o) P Do) (4.22)
We have for all t that {aat”)(e)/aei, F.},i=1,...,m, is such that
g, (224 JF,_ | =0 (4.23)
0 a0, t-1 | =0. ~
The proof will be given in Appendix [5.41
Lemma 4.5 We have for all t that
P (0) _ p (P (0) o, ), (4.24)
96,00, 80,00, 't '
1,7 =1,...,m, is such that
oy () oy ()
Ly <W — FEy 0, 36’ /Ft 1 /Ft 1 (4-25)
Furthermore
8™ (6) e (0) w1, . 0™ (6)
E|—='"Z/F_ | = 22t —2x 1 gH—
( 96,00, [Ei a0; (6) 0,
N NI axi™(6)
tr [ SO T ) = L (4.2
R RO e O e D

11



The proof will be given in Appendix (5.5l

Lemma 4.6 Under the assumptions of Theorem 3.1 of the main paper,

Ew ({e£">T<0>e£”><0>}4) < miMy. (1.27)
Furthermore
Ego (e§”>T(e)e§”>(9))2 <m?MY?, and |Ep (e§">T(9)e§"> (e)) | < rmg |2 (4.28)
The proof will be given in Appendix (.6l
Lemma 4.7 With the notations of Lemma [{.3 for d = 0, 1 = g3, ¢2 = qu, and

vy = vy = v > 1 under the assumptions of Theorem 3.1, denoting P(v) a polynomial
in v such that P(1) = 1, and assuming that

|| < NPwe, =12, (4.29)
k=v
t—1
‘wt(;j)(%) < N'P)d"Y, i=1,2, (4.30)
k=v
1St < m, (4.31)

for all t, then [@IQ)) is bounded from above by
mam(N{Ny) Y 2] (4.32)
and ([EIT)) is bounded from above by
m2m?> {Mg(N{’N;’)l/QP(y)é”—l + (r 42 — 6) N/ Ny P? ()b ||2||§} . (4.33)
In the case where ¢ = o = q3 = q4 = 0 and vy = v, = 0, (@I is bounded by
mim? Ms. (4.34)

The proof will be given in Appendix (.71

Lemma 4.8 Under the assumptions of Theorem 3.1 and 1,5 =1,...,m:

aetn)T<0) aegn)<0)
0 < .
Ee( 00, 00, <m Ny [[2] (4.35)
82€(n)T(9) (926(n)<(9)
FEyo t t < AN .
' ( o600, oe,08, || =mNel¥le (4.36)

12



The proof will be given in Appendix (.8

Lemma 4.9 We have

0" (0) ()1 0™ (0) DL (0) oy 1 DelDyl0)
COV90< 891- Et (0) 80] s aei Et—i-d (9) 86]‘

t—1
T'= n
= ZMt(Ok)Ii =t kMt(dk)k
k=1
—1

7,T n)i
+ Z Z tOk]k 7"7‘ E ® E)Mt(dk)l‘]j’u‘g

ki—1 ka—1
=1 -1
)3T n
+ Z Z Mt()k]kzl @ E)Mtdkgkl (4.37)
k1=1ko=1

fori,jg=1,...m, with k', k" =k, kq, ks,

(n)ij n) 1 (n)
Mtfk’k” Vec(gt k'¢t+fzk'+f t+f ¢t+fg k9t k”)

The proof will be given in Appendix [5.91

Lemma 4.10 We have

B (aaﬁ’“w) 2a"(6) | F) s <aa§"><9> aaﬁ’“(@)) _

90, 00, 06, 00,
9et™T(0) del (9) e (0) -1, .. 0™ (6)
= 4= Hylg 5 — Ep | 2y (g)
[ { aej t ( ) 0 00 0 aej t < ) 892

de; " ( "
| a@.} ( )Kt‘*

aet ( (n)
2 K™, 4.
with
) _ (-1 _(n) (T o ()T ox" ! (0)
Ky :Et Gt E( )<gt & gy )Vec N — (4-39)
00,
9=60
and
E(?) =E (e @€). (4.40)

The proof of this Lemma will be given in Appendix (.10l
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Lemma 4.11 Under the assumptions of Theorem 3.1 of the main paper, the assump-
tion Ho1 of the main paper is satisfied, which means that there exists a positive con-
stant Cy such that for all t

4

901" (0)

Ego a6,

< Cl.

The proof of this Lemma will be given in Appendix .11l

Lemma 4.12 Let us consider

;" (6)

9%ai"™ (6)
96,00,

B\ =590,

— Ly JFi1

9

as defined in the left hand side of (2Z2)). Then, under the assumptions of Theorem
3.1 of the main paper, that expression is bounded by Cy = maX(C’él), C’f), 02(3)) where
V. C? and O are given by (543), (5-74) and (543) respectively.

The proof of this Lemma will be given in Appendix 5121

Lemma 4.13 Under the assumptions of Theorem 3.1 of the main paper, the assump-
tions i and i1 of Lemma A.1 of the main paper are satisfied for Zt(g-) defined by

Zn = wzmu(@)ae?‘)(f)) . aegnﬁ(%(n)1(9)aegn>(0)
tig aez t 80] o 0 —891 t 80] ,

(4.41)

ij=1,...,m.

The proof of this Lemma will be given in Appendix B.13l

Lemma 4.14 Let @g?(@) defined by (2.3). Then under the assumptions Hs3-Hss of
the main paper, we have ®1(09) < &y with &y = K2 K1? +2K,* K} + m)* K.

The proof of this Lemma will be given in Appendix .14l
Lemma 4.15 Let ®\(0) defined by (Z0). Defining
7" = 03 (6°) — E®3)(6), (4.42)

under the assumptions Hs3-Hss of the main paper, there exists a constant Cs such
that B(Z™?) < C;.

The proof of this Lemma will be given in Appendix E.15l

14



Lemma 4.16 Using the notation a<q>e§")(9) introduced in ([A3) in Lemma [{.3 and
(L5), we consider W™ defined by

WO — (T O)S8 009" 0)  — E [T (0)S7(0)09 e (0)] , (4.43)

0=60

where St(n)(Q) 15 a square symmetric matriz. Then we have

-1

OTH n)(0
E{EW"/F,_ )%} = Z GOz, MO
k=v
t—1
n OT n)(0
+ Z ZMtkﬁé‘” K, (S @ S) M
ki=

t—1 t—
n)(q0)T n)(0
oY Z Mg (2 © £) My, (4.44)

ki=v ko=v
where M and MU are defined by
n)(0 n)T | (n T n)(q0 n)T ;(n T o(n n n
Mg = vee(g by Si 0o g ) Myt = vee(g " v " S g g; ),
where ¢',¢" = q,0, and k', k" =k, ki, ko.
The proof of this Lemma will be given in Appendix B.16l

Lemma 4.17 We consider W'™'? defined in (4-43). Then, under the assumptions
Hs3-Hs 5 of the main paper, {Wt(n)(Q), F,} satisfies the two conditions 1 and i of Def-
inition A.1 and the assumptions of Lemma A.2 in the main paper.

The proof of this Lemma will be given in Appendix .17

Lemma 4.18 We consider Xt(n)ilj defined by

xmi _ (0400510 0O
' 0; 90, ;). .,

et (0) 954" (0) 9™ (0)
00 00, 0, |’

(4.45)

then we have

nzl lzT,— n)il
E{BE(X\"™ |F,_,)*} = ZMtk; B My

t—1 t—1
n lzT n)ilj
+ Z Z Mtkz)]g T’" E ® E)Mt(kl)kzj
ki=v ko=v
t—1 t—1
n)jliT n)ilj
+ Z Z Mt(k2)1g1 (Z ® Z)Mt(kz)k1]7 (446)

ki=v ko=v
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where Mt,?;] is defined by

Mt(k,)k_//] — vec (gt( )k./ t’Lk‘)’ {a—gl} wt]k” t k//) (447)
0=00

with k' k" =k, kq, k.
The proof will be given in Appendix .18

Lemma 4.19 We consider Xt(n)ilj defined in [{43). Then, under the assumptions
Hs33-Hs 5 of the main paper, {Xt(n)zlj, F,} satisfies the two conditions i and ii of Defi-
nition A.1 and the assumptions of Lemma A.2 in the main paper.

The proof of this Lemma will be given in Appendix 519l

Lemma 4.20 We consider Yt(n)iﬂ defined by

’ 9% (0) del™ (6) R () del™(6)
(n)ijl t (n)—1 t . . t t
Y a ( 80,00, B O =50 W), . Eo 80,00, (6) a6, |’
(4.48)

then we have

n)ijl nlzT»—« n)ij,l
E{EY "' F_)?%} = Z M) s My

IR} T n)ij,l
+ Z Z Mg Ko (S @ D)M

ki=v ko=v

—1 -1
n)l,igT n)ij,l
+ Z Z tk: k ! E®E)Mt(k2)kj1 ; (4.49)
k1=v ko=v

with Mtl? ,i]l and Mt(l?)li” are defined by

(n)ig,l n)T n)T (n)lij ()T ()T w(n)—1 ,(n) (n)
Mtk’k’j’ = vec (gt % wtz]k" %W'Qt k:”) 7Mtk’k”j = vec (gt—k’ Vg 2 wtijk”gt—k”> )
(4.50)
with k' K" =k, ki, ks.
The proof will be given in Appendix [5.20]

Lemma 4.21 We consider Y,V defined in (4-48). Then, under the assumptions
Hs5-Hs 5 of the main paper, {Yt(")”l, F}} satisfies the two conditions i and i1 of Defi-
nition A.1 and the assumptions of Lemma A.2 in the main paper.

The proof of this Lemma will be given in Appendix (.21l
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Lemma 4.22 Under the assumptions of Theorem 5.1 of the main paper, the two
assumptions i and i of Lemma A.1 of the main paper are satisfied for Ztg-) defined by

- ael™T (9) 9el™T (9)
g _ [Joe 9) — B | ) | K 451
tij <{ aej 0° 89] te ( o )
0=09

i,j =1,...,m, where Kt(in) is defined by (£.39).
The proof of this Lemma will be given in Appendix (.22

5 Proof of Lemmas

For the proofs, we will use simplified notations for the partial derivatives, like 0;
instead of 9/06; and 0;; instead of 9%/06,;00;. To simplify the notations, all suerscripts
(") are omitted in the proofs. Anyway, in the assumptions of the main paper Alj et
al. (2015a) which involve upper bounds, these upper bounds are uniform in n so that
mentioning n is superfluous.

5.1 Proof of Lemma [4.1]

i. (@J) holds because the left hand side of the equality is a scalar and the matrix
() is symmetric.

ii. We can show (4.2]) by using the definition (LII), noting that z; does not depend
on 6 and that 0;2,/,—1(0) € Fi_:

By e/ (0)20ie:(0)/ Fir) = By (e7 (0)Q0{we — 21y0-1(0)}/ Fia)
= —Ey (] (0)Q0idy1(0)/Fi 1)
= —Ey (e} (0)/F—1) Qdit—1(6) = 0.
The proof is similar for (3]
ili. For (4.4) we have like in the proof of (4.2))
E@ (@e?(e)ﬂajet(@)/ﬂ_l) = Eg (8{1} — it/t,l(G)}TQaj{xt — :%t/t,l(e)}/Ft_l)
= By (0iitf)-1(0)Q0;00-1(0) ) Fi-1)

8$t/t 1(0 )Qaj:&t/t,l(e)
= 8’£et (Q)Q(?jet(ﬁ) O

5.2 Proof of Lemma

The parts (£5) and ([£6) of the lemma are a special case of the following results: if X
and Y are independent random vectors, of respective dimensions n and ¢, with vector
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mean 0 and respective covariance matrices Xy and Yy, then

E (vec(XY")vec(XY")T) = (Zy ® Zy),
E (vec(YXT)vec(XYT)T) = K,,4(Zy ® Zx).

We prove the first assertion by using Lemma b) and d)
vec(XY ) vec(XY ) = Yo X)(YT @ XT) = (YY) @ (XXT),
hence the expectation is ¥y ® Y y. Similarly, using also Lemma 3.3 g) and d),

vec(YXD)vec(XYH)T = (XoY)YTeXT)
= K.Y @X)(Y"®Xx")
= Ko (YY")® (XX7),

hence its expectation is K, ,(3y ® Xx). Finally (£.8) is a consequence of Kollo and
von Rosen (2005, p. 207). O

5.3 Proof of Lemma

For the first part, the left hand side of ([AI0) is a scalar, so it is equal to its trace.
Replacing the derivatives using ({.9) leads to

O™ el (0)5:(0)05" e 1a(0)
t—1 t+d—1
= Z Z tr{€zlklgtjlklwt(gi)T(67HO)SI‘/( )¢t+dk2(‘9790)9t+d7k2€t+dsz}
k1=0 ko=0
t—1 t+d—1

= Z Z tr{g;" k1¢tQ1)T(0 6°)S:(6 )¢t+dk2( )9t+d—k2€t+d—k2€tTfk1}7 (5.1)

k1=0 ko=0

by using Lemma [3.3] ¢) so taking the expectation for § = 6° leaves a simple sum with
ko — d = ky since the ¢ are independent. Because E(eel ) = 3, for all ¢, this leads to
(E.10).

For the second part, for the first factor of ({.I1]), we have

AN el (8)5,(6)05) e, (6) — S Eg[0S™ T (6)S1(8)05™ ey (6))] (5.2)
t—1 t—1
Z Z € klgt k1 fgi)T(Q 90)5 (9) E,Z?(@,@O)gt_@et_b (5.3)
k1=0 ko=0
t—1 t—1
— B, {Z Zet e 0 >T<e,e°>st<e>w§z;)<e,e°>gtkgem}.
0 ko=

We apply the expectation with respect to F,_,, to (5.2)), which consists in replacing
the lower summation indices from 0 to max(vq,0). Taking the trace, and using Lemma
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c) , the first term (53] becomes

t—1 t—1
SN {0,008 00 0,000 kr-kat s, |
k1,ke=max(v1,0)
t—1 t—1 T T
= ZZ {VeC (gt k1w§gi (9790)8’5(‘9)7?152?(9’eo)gp]@) } VeC(EtkaEtT_kl)
k1,ke=max(v1,0)
t—1 t—1 T T
= 23 {vee (ol 0,008 000,60 901 ) | veclerruel )

k1,ke=max(v1,0)

(5.4)
Similarly, since
t+d—1
3§q)et+d(9) = Z ng—)d,k(ga00>gt+d—k€t+d—k7 (5.5)
k=0
the second factor of (AIT]) includes
0y el a(0)S14a(0)0" e1..a(6)
t+d—1t+d—1
= Z Z tr{€t+d kggt+d k3¢t+d k3(‘9 6°)Si1a(6 )w§i4d k4<9780>gt+d—k45t+d—k4}
k:g 0 k4 0
= Z Z tr{e k4€t ks Jt— k3¢t+dk3+d(9>90)5t+d( )¢t+dk4+d(9790)9t—k4}
kg_fdk4_fd
=T Y el vee (97 1 a0, 0°) Set O3 a0, 6911 )
ky=—d ka=—d

where we have changed the summation indices k3 and k4 by subtracting d and moved
factors in the opposite way. Taking the conditional expectation with respect to F;_,,,
the second factor of (I1]) has lower summation indices equal to max(ry, —d) and is
written
t—1 t—1 R
[vec(er,€f_y,) — SE{vec(er el ) M) (6,6°), (5.6)

k3,ka=max(v2,—d

where the r? x 1 matrix Mt(dq,i;q,;:)(ﬁ, 6°) is a special case of

/ //

Mtfk’k” (9 90) = vecC <gt k'¢ti}?};’+f(67 90)5t+f(6)w§i‘]c),k/’+f(67 eo)gt_k//> 3 (57)

for f = d. Similarly, for the first factor of (AI1), (54]) can be written

t—1 t—
MEWT(9,6%) vec(er_gyel ),

1
k1,ko=max(v1,0)
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where the r? x 1 matrix Mfg,i;ff(@, 6°) is as defined in (5.7)) for f = 0. Hence (5.2)) is
equal to

SN MEDT(0,0%) vec(er et y,) — SE{vec(eriy6r i)}, (5.8)

k‘l,kgimax(yl,())

a special case of (5.7)) but for f = 0. Note that ¢/, ¢", k', k" are replaced by g2, 1, k2, k1,
in that order. Taking the expectation of the product of (5.8)) by (5.8]) for § = 6°, with

the notation Mt(;,;’,ql;:,) = Mt(;;g’z;:,) (6°,6"), using again Lemma B3 ¢), (I]) is equal to

t—1 t—1 t—1 t—1

)T k1 ka ks k 3,
>0 Yo>T MRtk (5.9)

k1,ko=max(v1,0) k3,ka=max(va2,—d)

1

and f = d, respectively, and

where Mt(g,i;ﬁ) and Mt(g,iﬁ) comply with the definition of ij‘?;,’iﬁ? in (LI6), for f =0

O ) [(Vec(et_kQEtT_kl) - SE{Vec(et_bef_kl)}) .

. T
<Vec(et_k4ef_k3) — 5E{Vec(et_k4ef_k3)}> }

= F {Vec(et,kQEtT_kl) Vec(et,k4etT_k3)T}
—0E {vec(er_iy€l 1) } E{vec(er—pel )"}, (5.10)

since 20 — 62 = 5, given that 5 =0 or 1. We need to distinguish four cases for the
first term of QFVF»F384: (1) by = ky = kg = ky, (ii) ky = ks and ky = ky, with ky # ko,
(111) ]{71 = k4 and kQ = ]{73, with ]{31 # k‘g, (IV) k‘l = ]{32 and ]{?3 = k‘4, with 1{71 7£ ]{53,
and in the other cases, it is equal to 0, because the ¢, are independent with mean
0. The second term of QF*>*354 is equal to 0 for ky # ko and ks # ky and is equal
to (vecX).(vec X)T, otherwise. Hence, given Lemma 2] (EII]) becomes (assuming
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d>0):

t—1
Z Mt(glikQI)T“t—kMt(gz}fq4) (5.11)
k=max(v1,v2,0)
t—1 t—1
(g2,q1)T (g3,q4)
+ Z Z Mtoq]i;ﬁl K”’v""(z ® Z>Mt§21?€42
k1,ko=max(v1,v2,0
1,ko k17£l<(;21 2,0)
t—1 t—1
( s )T ( 35 )
+ Z Z Mtgéz?@‘ll <E ® Z)Mtjzgq]’:‘ll
k1,ko=max(v1,v2,0
1,k2 kl#é; 2,0)
t—1 t—1
D MR (vee D) (vee X)T MY
k1,ks=max(v1,v2,0
1,k3 kl;«élggl 2,0)

t—1 t—1
—5 Z Mt(g,iﬁ;l)T (vec ) (vec X)) Z Mt(ﬁ;%; . (5.12)
k1=max(v1,0) ks=max(v2,—d)

The terms (5.11) and (5.12) are nearly in final form. Completing the three double
sums for equal indices and compensating yields for the remaining terms

t—1 t—1
(g2,91)T (g3,94)
E , E Mgy Ko (8 @ X) Mg
k1,ke=max(v1,v2,0)
t—1 t—1

b T b
+ Y ME(sen)ME

k1,ko=max(v1,v2,0)

t—1 t—1
+ > MW ¢ (vee ) (vee )T x M) L (5.13)
k1=max(v1,0) ks=max(va,—d)

t—1
- > MBI, (@Y%) + (30 %) 4 (vee X)(vee £)T F M%),

k=max(v1,v2,0)

(5.14)

The sum (5.14]) can be combined with (5.11), using the definition (£1I7), giving (£.12]),
whereas (5.13]) combines with (5.12) to give (4I15). The two other double sums cor-

respond to ({I3]) and (£14]).
There remains to check [AI8]) when ¢; =¢2 =¢3 =q =0,d =0, and v; = v, = 0.

Given (LI0O), there is only case (i) for QFvkebske £ 0 when ky = ko = ky = kg = 0
and then (5.I0) is then equal to x; — §(vec ) (vec X)L O
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5.4 Proof of Lemma (4.4
By using Lemma [3.1] the derivative of oy () is given by:
Dicu(0) = tr (Z,1(0)9,5(0)) + 2/ (0)S, " 9,e4(0) + e ()0, 2,1 (0)ex(6). (5.15)
Hence taking the conditional expectation and using Lemma 1]
En{0hau(0)/Fir} = tr (57 (0)0,24(0)) — Eofel 000,57 (0)eu(8)/Frs}.  (5.16)

Moreover the second term is equal to

Egltr(e(0)e; (0)0:%,(0))/ Fii]
[ Ey(en(0)e; (0)/Fi-1)0:5, ' (0)]

)0:%, " (0)] (5.17)
Y[Et 0)2; (0)04(0)5; 1 (0)] = tr[S(0)0:%(0)],

proving (4.23)). O

5.5 Proof of Lemma
From (5.I5) we have, fori,j =1,....,m

Doaul) = 04tr (STOEA0) + 20, (05 0,0)
10, (T (0)0,57 (0)en(0))

The first two terms can be written respectively
O tr (3, 1(0)0; 5i(0)) = tr (01-251(9)8]-&(9)) +tr (2, (9)&]&(9))
and

0; (e (0)S7'0je4(0)) = Dies(0)X;1(0)0;e4(0) + € (0)0:5;"(6)D;e4(0)
+e] (0)3,(0)0;5e:(0).

Furthermore, by using Lemma A1l we have
0; (e (0)0;5(0)en(0)) = 2¢{ (0)0;5;(0)0eu(0) + e (0)05%, " (0)ex(0).
Consequently, we get

Ojau(0) = tr (0:5;1(0)9;5:(0)) + tr (3;1(6)0;%:(6))
+20ie0(0); 1 (0)0je4(0) + 2¢; (0)0;5, " (0)9;e4(0)
+2¢/ (0)%1(0)0;e4(6)
+2e; (0)0;5; 1 (0)0iee(0) + e (0)055, " (0)ex(0), (5.18)
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We take the conditional expectation with respect to F;_;. It can be omitted from the
third term, by using Lemma .1l The next three terms vanish and the conditional ex-
pectation of the last term, Ey(el (6)0;;3; 1 (0)e:(0)/ Fi_1), is equal to tr[2(0)0;;2; 1 (6)],
by proceeding like in (B.I7). Consequently we have:

Eg(&;jat(@)/ﬂ,l) = 286{/(0) 71(9)8 €t(¢9) 4+ tr (822;1(9)@215(9))
+tr (Z71(0)9;,24(6)) + tr[Si(0)9; 5 ()] (5.19)
Using Lemma 3] the last term of (5.19) can be written
tr ( (0)0;;5, (9)) = —tr [GijEt(G)E;l(Q)} + 2tr [@Et(G)E;l(9)@-2,5(0)2;1(9)} .
(5.20)
In addition, using the same Lemma Bl the second term of (5I9]) equals
tr (02 1(0)9,2,(0)) = —tr [9,5,(0)%71(0)9;5,(0)=(0)]

so the sum of the last three terms of (5.19) is equal to tr [0;%,(0)S; " (6)9;%,(0) S, (6)],
proving ([£.26). Now, subtracting (5.19) from (5.I8]), we obtain after some cancella-
tions

Oij0e(0) — Egl0ij0(0)/ Fea] = 26/ (0)0;5 (0)Dier(0) + 2¢/ (0) 3 (60)Dize.(0)
+ 2€, (0)0;5;(0)0;e4(0) + €/ (0)0;5; " (0)ex(9)
— tr(Et&]E 1(9)).

Taking the conditional expectation of this expression with respect to F;_; and applying
again Lemma 3.5 achieves the proof. O

5.6 Proof of Lemma

We have to show that )
Egpo ([ef(e)et(e)} ) < miM,.

Since e;(6°) = gs¢;, we have
(T (@)e,(09)" = [tr (T gF guer)]* = [tr (97 gyeeel)]”
o7 g, (eFee)* = llgslls (eFer) ",

IN

using Lemma B.4] twice, then
Ep (eF(0)e0))" < lally B [(Fe)'].
Consequently, since Hs 4 implies that E(el'e,)* < My, and Hss, that ||g||5% < ma,
Ep (X (0)e,(0))" < miM,.

Similarly Ego (ef (6)e (9)) < g+ E (ef et) < m2M,"?, using Cauchy-Schwarz in-
equality. Finally |Ego (e] (0)e,(0)) | = tr(Z) < rmq||X||p. O
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5.7 Proof of Lemma 4.7
By the first part of Lemma [£.3] and Lemma [3.4]

g [0 (0)510)05 e 0)] | < Z A e A e P

_ -1 1/2
< mym||9)p {Z s < ||¢§z”||%}
k=1 k=1
< mam(N] Ny V2|2,

using ([A.29), since P(1) = 1, ([@.31]), Cauchy-Schwartz inequality and assumption Hs
of Theorem 3.1 in the main paper. This proves (£32]). By the second part of Lemma

13, Lemma [3.4] and given the definition of Mt(f,;’fl,;/) for f =0 in ({I0),

= ”gt k’HF Hgt k”HF

(¢',9")
‘WAQOWk” r tk”

D sl e

¢t,k2” r

<

(5.21)

' 1

for all ¢,k k", and using (£3]]) and assumption Hzs of Theorem 3.1 in the main
paper Using Hj 4, we have ||Z;,_x||» < Ms. Hence, given (5.21)),

t—1
> MEmTE M| < il
k=v
< m1m2M3(N{/N§’)1/2P(V)cI>” Y (5.22)

using Cauchy-Schwarz inequality and (£30). This is the first term of (£33]). Given
the restrictions in the statement, using again (5.21), the term (£.I3]) can be bounded
in absolute value by

t—1 t—1
) T ’
>3 || e [
k1,ke=v
t—1 9 t—1
~ 2
< mzar s Y [ X e
ki1=v ka=v
< mbitrN{NGP (1)@ S (5.23)

using now ([£.29) and || K, .||, = r. This gives the first part of the second term of
#33). Still given the restrictions, the term (AI4]) can be rewritten, using (5.7)) and
Lemma B3 f)

t—1 t—-1

>3 (MgaeMges) (5.24)

k1,ko=v
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whose absolute value can be bounded similarly by

~2||2HFZ\ Z\

Finally the term (£I3]) is also bounded in absolute value by

2
g m2m2N| NP2 (1)@ =D ||I2)17%,. (5.25)

i Y

11— §|m3m*N] Ny P2 (1) @21 |27, (5.26)

To obtain the second part of the second term of (33)), the last two bounds can be
put together noting that § € {0, 1} implies that 14 |1 — §| = 2 — 4. In order to prove
([#34]), we use the second part of Lemma [£.3]in the case where ¢ = g2 = q3 =q4 =0

and v; = vp = 0, more specifically (£I8]). The upper bound (5.21]) of ||Mt(?08) lF =
vec(gl Sig:) becomes mym. An upper bound of |k, — d(vecX)(vec £)T|| based on
assumption Hs 4 of Theorem 3.1 in the main paper is M3. Consequently, in that case,
the upper bound ([f33) simplifies to m¥m?Ms. O

5.8 Proof of Lemma 4.8

We have to obtaln an upper bound to the absolute value of Ejo {8 e; (0)0;e.(6 )} and
of Ego {0;;el (0)0ije+()}. From (LG) and (7)) we can write the expressions in the left
hand side of (A35]) and (30) as special cases of the left hand side of (Z10), so we can
use the first part of Lemma with ¢ = ¢o = 1, and ¢; = g2 = 2, respectively. Also
S(0) is equal to the identity matrix. We use the first part of Lemma 7] respectively
with N{ = N} = N; and N{ = N} = N3, as defined in assumption Hjo of Theorem
3.1 in the main paper. Hence

|Ego {0ief (0)0ie,(0)} | < maNi | Zll g | Ego {Oief (0)Dije,(0)} | < maN3 |15

using also Hss. O

5.9 Proof of Lemma

We have to compute

covgn (DieT (62 (6)0,4(6). Duel, a(0)57 4 (0)Dye1-a(0))

The proof is a direct consequence of the second part of Lemma using ¢ = qa =
g3 =qs = 1, and aéq/)et(e) = 0;e4(0) for ¢ = ¢ = q3 and agq”>et(9) = 0je,(0) for ¢" =
g2 = q4. Indeed the covariance can be put under the form of ({I1]) provided 5 = 1,
S(@) =X71(0), and v; = 1 and v, = 1 — d, so that the two conditional expectations
can be replaced by ordinary expectations. Note that all the lower summation limits

of (AI2)-(I5) will be 1. Then, Mt(]?,;’/q,;:,) becomes

ij _ T T -1
Mtfk’k:” = gt—kz’wt+f,i,k’+f2t+fwt—i—f,j,k”—i—fgt—kz”7

noting that X;!; = {g,, ;Sg/, ;}~', which completes the proof. O
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5.10 Proof of Lemma 4. 10|

We have to show ([@38) with K,; defined by ({39) and E(e®) defined by (&40).
Using (5.135), the first derivative of a,(f) with respect to 6; is equal to 37, ai(f)using

(E20)- (#.22), hence
0;a,(0).0;0,(6 Z Z aj (6 al2 (5.27)

l1=112=1

We take the expectation and the conditional expectation of (527]) term by term.
We need to evaluate

AP, = B (aj,(0)aj,(0)/ Fi—1) — Ego (aj, (0)aj, (6)) ,
for 11,1, = 1,2,3 and the left hand side of (438 is

Z Z A, (5.28)

l1=112=1

By symmetry we can limit ourselves to l; < l,. First note that ai(6)a(6) is non
random, hence AY, = 0.
Using the fact that, for 6 = 6°, €,(0) and 9;e,(f) are independent

Ego (a5(0)ab(0)/Fi1) = Ego (tr (Z,71(0)0:5,(0)) -2¢] (0),7(0)Die,(0)/ Fii)
= 0. (5.29)
Hence Ego (aﬁ(Q)ag(Q)) — 0 and A%, = 0.
To compute AY;, we have
Ego (ay(0)a}(6)/Fi-1)

= B (0[5 0)02,0)] ¢ (00,57 (0)e,(6)/ Frr)

=[S 0RO) ggo] ({057 (0)} o Ewo (c(0)e] (9)/ )]

= —tr [5;71{0:5,(0) o] tr [Z; {ajzt(e)}azao} : (5.30)

using Lemma B} then Ego (a}(0)a}(d)) = E30) and A, = 0.
To compute A%, we deduce from Lemma 1]

Ego (a2(9)a (0)/F—1)
= By (2¢7 (0)Z71(0)ie,(0)2¢] (0)57(0)05e,(0)/ Fin)
ABp (ef (0)27"(0)0ie,(0)05e ()57 (0)e,(0)/ Fi-1)
AEp (tr (Z77(0)0ie,(0)05e (0)27 (0)e,(0)ef (0)) / Fimv)
4tr[ -t {8-et )0je€, (9)}9 o Y Ego ( (0)el' (6 ))]
= 4tr[ 1{8et (0)0;el (0 }6 60}
= 4{8]'615 }9 o0 2t " {0ie,(0 )Yo—go - (5.31)
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since e,(0) and e, (0) with [ = i, j are independent for = 6°. Then Fjyo (aé(@)aé(é’))
is equal to

4Eq (9je7 (0)S,1(0)0se,(0)) (5.32)

which differs from (531). The resulting difference A%, is the first term in the right

hand side of ([£38).
Now consider A3,

Epo (a(0)ad(6)/Fi 1) = Ei (267 (0)5 )0, (0)eT (0)0,5 (0)e,(0)/Fo )
we have from (L2) ¢,(6°) = g,¢; then,

Lo (aé(&)aﬁ(@)/ﬂ,l)
= 2B (tr (¢ 9/ 57" {0ie,(0) }g_go € 9/ {8]-2[1(9)}0:90 giet) JFio1)
= 28 (tr (g, 27 {0ie(0) Yoopo € 9 10571 (0)}_po Gis€t ) /Fr1)» (5.33)

thus, using Lemma B3] f) and then e),
G33) = 2E [Vec ({37 (0)},_po S'0)) " (acT @ €F)
X vec (gtT {ajz;l(e)}(;:go gt} /thl) ;

= 2{0ie (0)} ,_go B 0, F [(6)) @ € [ Fia] vee (g) {05571(0) } g0 92)
= 2{0i€] (0)} oo B "9 (%) (07 @ 9 ) vec({0,271(0) }o_go)

since the argument of the first vec factor is a r x 1 vector and E [(g€]) @ € /F,_1] is
equal to E [(e€e]) @ €], given by ([£A0). Consequently

Ego (ay(0)a}(0)/Fi1) = 2{0e] (0)},_p0 Ky, (5.34)
with K, is defined by (£.39):
Ky =57 0B (67%) (9) @ g7 ) vee [{9;571(0) }o_yo] -
Similarly
Ego (af(0)a}(0)) = 2Eg (9;e] (0)) K, (5.35)

and consequently

Ay =2 [{0ie] (0)},_p0 — Eoo (0i€7 (0))] K. (5.36)
By symmetry -
Ay =2 [{05¢] (0) },_go — Eoo (057 (0))] K. (5.37)

Finally, for computing A:%, consider

By (ay(0)ad(0)/Fimr) = Egn (e (0)0:5 (0)e(0)eT (6)0,57 ' (9)e,(6)/Fior)
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We have for § = 6° and by using Lemma 3.3 ¢)
= F (tr (g;‘F {(’3-271 }0:00 gtetegf)
X tr (Et‘ft 9y {8 =t )}9:90 gt) /Ft—l)
= vec (gt {&Et }(9:00 gt)T
E (Vec (etTet) X vec (etet ) JFy_ 1) vec (gt {8 Z )}9:90 gt)
= vee (g7 {071 0) ),y 9.) " mevee (67 {10,5710) Y 0 01) -
Moreover
Ep (a5(0)a}(0)) = Ep (a5(0)a}(0)/Fia) (5.38)

because of (L7) and therefore Az = 0.
Finally, from (5.27)-(5.38), we have

Epo (0;0,(0)0;0,(0)/ Fi—1) — Epo (0;01,(0)0;,(0))
= 4[8;e] (0)5;1(0)die,(0) — Epo (95¢] (0);1(0)Die,(6))]
+2 [{0:e] (0) },_po — Eoo (a-etT(e))] S0, E (67°)
x (gt ® g) vee ({0;27(6)}o=eo)
+2 ({05 (0)} 5o — Ew (91 (0))] T 9, (€])
x (gf @ g/) vec ({057 (0)}ozpo) ,

which corresponds to (£38]). O

5.11 Proof of Lemma 4.17]

Since d;c4(6) is decomposed in a sum of three terms a), £ = 1,2, 3, using the notations
(A20H122), we can use Lemma B2 by taking p = 4 and n = 3:

0} (8) + a3(0) + a(8)] < 3° (|ai ()] + |ab(®)[* + |as(0)[") (5.39)
We need to show that
Epo {|a’i(0) + ab(6) + aé(@)‘}4 <Cc,=3% maX(Cfl), C’fg), CP)),

where C’fl), CfQ) and Cf’) will be given by the upper bounds in the right hand sides of
(540), (54T) and (5.42) respectively. Recall that X,(6) is symmetric, hence its inverse
and derivatives. From (£20) and the results of Lemma B.4] we have

@) = |t (371(0)05,0))[
< o ({500 500) v (020 0x0)
< 57O 10200
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Therefore, replacing 6 by 6° and under Hs3 and Hs 5 in the main paper
i 4 i 4 —1114
Ep (|ai0)]") = |0 < 157 [ IHOZ.O) ol < CF = m3K3. (5.40)

From (4.21)) we have

4

a0)]" = [tr (27 ()%, 7 (0)die, (9))]
= 2 tr (Z;1(0)dse, (0)eT ()]

By using Lemma 3.4]

i 0)" < 20 ({z;l (9)) 012 (e,(0)0ieT (0)Dye, (0)eT (0))
< 2H70) 0 (D] (0)drey(0)e] (9)ey(0))
< 24“2;1(9)“Ftr (e} (9) 0ie,(0)0,e/ (0)Die,(0)) x

x tr (ef (0)e,(0)e] (0)e,(6))
= 24\\2;1<9>H2<aiet< > die,(0))” (e (8)e,(6))”.

Hence, using arguments like in Lemma ], we have for § = 6°, that the derivatives
0;¢,(0) are independent of e,(0) for i = 1,...,m and ¢t = 1,...,n. Then under Hjy5

2

E90(|ag(9)|4) < 2'm2Eg (9l (0)0ie,(0))° Ego (€7 (0)e,(0))”

The factor Ego (@etT(@)(?iet(Q))g can be put in the form of (£I1)) in Lemma E.3] pro-
vided vy =10 =1,d=0,0=0,¢1 = q» = q3 = ¢4 = 1, and S¢(0) is the identity
matrix. So, using the second part of LemmaL7, with v = 1, S(0) = I,., hence m = r?,
and also Lemma

Ego (|a;(9)}4> < P = 2 2mtmIMY? {(MyNy + (r + 2)NZ B2} . (5.41)

From (@.22]) we have

i) = |er(eF (e)az (@)e, ()"
= ’tr 82 06?(0)’2
By Lemma [3.4]
(@) < 6 ({0370)}) 0 ([ 0)e,O)ef (0)e,(6)])
< [l O] (eF (0)e.(0)) "
hence

B (J60)") < 100500}l B { (00}
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and, under Hs33 and using Lemma
0 (|ag(9)|4) < 0% = K2miM,. (5.42)
In conclusion, from (5.40)), (5.41]) and (5.42), the assumption H  is satisfied by taking
c, =3¢ max(C’(l) C’f ), C’f?’)),
which completes the proof. O

5.12 Proof of Lemma

To check that (Z.3]) is bounded by a constant Cy. We have assumed that the parame-
ters in the autoregressive and moving average coefficients, so in e;() are functionally
independent than those involved in the covariance matrix so in g;(6). Assume they are
ordered so that the first s parameters are involved in e;(#) and the remaining m — s
are involved in g;(), thus in ¥,(f). For 4,5 =1,...,s, both §; and 6, are involved in
e;(#) but not in ¥;(0). Then (2.3]) becomes

Ego |2 (ef (0)271(0)05¢,(0)) |

2

which equals to
2 2

4B |tr (ef ()5, 1(0)0;5¢,(0))|" = 4Ego |tr (S;71(0)05¢,(0)ef (8))] -
Using Lemma [3.4] and the fact that e,(0) and 0;;e,(#) are independent

B3 < 4t (S75) B [tr (6,(0)0¢7 (6)0¢,0)el (6) |
S 4tr (Zt_lE;l) Ego |tI' (87,]6?(9)8U6t(0)6?(9)6t(6‘))‘
12
S 4 HZt IHF Ego (8U€?(9)8”6t(€)) E@O (6?(9)615(9)) .
Thus, under Hjz s, using Lemmas and [L.8 together
@3 < 5 =drmimoNy|[Z]}. (5.43)

Now, suppose that i < s and j > s so that 6; is involved in e,(f) whereas 6; is
involved in 3,(#). Therefore (2.3) becomes

Epo |(e] ()05, (0)e(0)) — tr (2, {055 (0)}o_go) |
which, using Lemmas and 3.4] can be bounded by
2B (f (0)0557 1 (0)en(0))” +2 [ox (2 {0550 0)} )]
< 2Fp [tr (05271 (0 )et(Q)GZ(g))z}
+2tr (5,5, tr ({85, 1(0)055,1(0) }y_po)

< 2tr ({055710)9557(0)},_y) Eoo [tr (et(Q)etT(Q))Q]
+2 S5 {0557 0} oo
< 2[{055 0} o2 [Foo (7 (0)er(0)” + 1212
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In addition using (L3]), Lemma and under Hs3-Hs 5
@3) < 657 = 2Ksmi (M + ||SI17). (5.44)
Finally, suppose that 4,j > s so that 6; and 6; are both involved in ¥,(¢). Then
2
E@O ’2 Gt 8 E ( )det(é’)){ 5
and it is equal to
2 _ 2
4Eg |tr (ef (6)0;5, (0 )8iet((9))| = 4FEyp |tr (0;5,1(0)0e,(0)ef (0)) ]
Thus, by using Lemma [3.4]

Z3) < 4tr ({9;Z,7'(9) }9 50 {0,571( }0 50 ) Ego |tr (e,(0)0sef (0)Die,(0)ef (9))|
< 4|{0571 0} ol Boo [tr (0ie] (0)re, (0)e] (0)e, (0 ))\
< 4 ”{ajzt }(9:90HFE90 (8@-6,5 (6)3ie, (0 )E90 <etT( )

Therefore, using Lemmas and and under Hj 3,
@3) < ¢ = 4r Kym2 Ny || 5|2 (5.45)

Consequently, using (5.43)-(545), (Z3) is bounded by Cy = max(C{", S, C).
U

5.13 Proof of Lemma

Let us check the conditions of Lemma A.1 in the main paper with = 1. For condition
i, we have to show that

E (22

tig

) = Ew [0 (0)S7(0)0;e1(0) — Ego (0,67 (0)S7(0)9;e(0))]
is finite. That expression is bounded by
Ep (9:e7(0)5;71(0)0;e4(0))” (5.46)

We can use the second part of Lemma to evaluate that expression with ¢; = ¢ =
G=q¢u=106=0d=0, S,(0) = ;1(#), and v; = v, = 1. Then using Lemma 7]
with m = mgy, N = NJ = Ny, and Ny = NJ = Ns, given the assumptions Hj o, Hs4
and Hjz 5 of Theorem 3.1 in the main paper, the upper bound of (5.44)) is

Ego (aief(e)zgl(e)ajet(e)f < mim3{MsNy + (r* + 2)NE |25} (5.47)
To check condition ii, let us show that

n 2
FE (% Z Ztij) = —5 Z Z E thth%] (548)
t=1

t=1 t'=

o)
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But (5.48)) is equal to
n

: ZE “J +_Z Z Ztl]Zt’Zj (549)

t=1 t/=t+1
The first term can be bounded by 1/n times (5.47). The second term can be written
as twice

1

,_.

n—d
covs (Oiel (O)Z; (0)0,e,(0), Dl O, Ojer ). (5:50)

1 t=1

n—

ﬁ“

Then by using Lemma [£.9 and given the second part of assumption Hj; of Theorem
3.1 in the main paper, we have (5.50) = O(1/n). Hence the two conditions of Lemma
A.1 are completed. O

5.14 Proof of Lemma 4.14
Using the expression of ®,,(#°) in (ZH) and Lemma [3.4]
[@09)] <t [{0,5700055(0)} ] 1 HAZOAZA0)}ggo]
+tr Hajzt_l(g)ajzt_l(g)}e:e()] i tr [{ailxt(e al2t<0)}9:90]1/2
e [{057 (0002, (0)}y_go] " tr [{0Z,(0)91Z(6)}po]
+ e[S 2 o [0 (0) 0005, (6) Yogo]
< @y
where, using K, K5, K3, K4, and K5 as defined in assumption Hs s of Theorem 3.1
in the main theorem, and my in assumption Hss,
&, = KK 4 oKkPKYP 4+ mlP K (5.51)
O

5.15 Proof of Lemma 4.15

E(Z?) is a special case of (LI1]) in the second part of Lemma 3 with v; = vy = 0,
6=1,d=0,¢ =q =qs =qs =0, and S(A) = 9;;;%; (). The latter has an upper
bound K3 when 6 = §° by assumption Hs3 of Theorem 3.1 in the main paper. Using
Lemma A7 for that case and (£34]), under the assumptions of Theorem 3.1 in the
main paper, we have C3 = m3 K2 Mj. O

5.16 Proof of Lemma [4.16

We use Wt(q) defined by ([@43]). Then, we use Lemma A3, with v; = vy = v, d = 0,
0 =1, 1 = g3 = 0 and each of the alternative combinations (i) ¢o = ¢4 = 1 and
Stﬂ‘j(e) = 8”2;1(9>, (11) qo = Q4 = 2 and St,z(g) = 812;1(9), and (111) qo = Q4 = 3,
S,(0) = ;(0), respectively, giving the result.

]
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5.17 Proof of Lemma 4.17

To prove (i), an upper bound of E{E(Wt(Q)/Ft_V)2} given in Lemma [A.16] is obtained
using Lemma (7] where N = Ny, for ¢ = 1, Nj = N3, for ¢ = 2, Nj = N5, for
qg=3, N/ = Ny for q =1, NJ) = Ny, for ¢ = 2, m = K;, for ¢ = 1, m = Ky, for
q =2, m = my, for ¢ =3, where Ny, Ny, N3, Ny, N5 are defined in assumption Hs,
of Theorem 3.1 in the main paper, Ky, K5, in assumption Hsg3, mo in assumption
Hj 5. Note that neither N| or Ny, nor Ny for ¢ = 3 needs to be specified. Hence the
upper bound ¥,¢; has the form m;K? { MzNo@~! + (r + 1)N222D |57}, ie. a
constant times a function going exponentially to zero when v — oo. The conditions
(i) and (ii) of Definition A.1 and the assumptions of Lemma A.2, both in the main
paper, are thus verified. O

5.18 Proof of Lemma 4.18

We consider X;" defined in (45). We use Lemma @3 with vy = v, = v, d = 0,
@1=q =q =q = 1and S;(0) = 9,3, (), giving the result.

S
Il
R

5.19 Proof of Lemma [4.19i

For v > 1, we have to show that there exist sequences v, — 0 as v — 0o, and ¢; such
that (i) F{E(X;"|F,-,)*} < ¢, and (11) E(X}Y — BE(X["|Fi4,))? < w416, Since
XY involves only e,_j for k > 0, E(X{Y|F,,) = X", the left hand side of (ii) is 0.
To prove (i), an upper bound of E{E(X”J/Ft_V)Z} given in Lemma (.18 is obtained
using Lemma [.7] where N = N3, NJ = Ny, N/ = Ny, NJ) = Ny, m = mg, and Ny,
N3, N3, N, are defined in assumption Hzo of Theorem 3.1 in the main paper, and
mg, similarly defined in assumption Hs 5. Hence the upper bound v,¢; has the form
my K3 { MzNo® = + (r + 1) N2 =1 ||E||§}, i.e. a constant times a function going
exponentially to zero when v — oo. The conditions (i) and (ii) of Definition A.1 and
the assumptions of Lemma A.2, both in the main paper, are thus verified. OJ

5.20 Proof of Lemma

We consider Y;7" defined in [@48). Like in the proof of Lemma EI8, we use Lemma
A3 with 1, = 5 = v, d = 0, 6 = 1, but this time with ¢; = ¢s = 2 and ¢» = ¢ = 1,
using components ¢; and 6; of 6 in the former case and components ¢; of § in the
latter case, and S;(f) = ¥, '(6). This gives directly the result. O

5.21 Proof of Lemma 4.27]

For v > 1, we have to show that there exist sequences ¢, — 0 as v — oo, and ¢
such that () E{E(Y"|F,-,)?} < e, and (i) B(Y;7' — (Y”Z|Ft+,,))2 < i1y
Since Y;' involves only €_j, for k > 0, E(Y;"|F,,,) = Y;’', the left hand side of
(ii) is 0. To prove (i), an upper bound of E{E(Y”l/Ft )2 } given in Lemma [1.1§]
is obtained using Lemma (4.7 where N = N) = N;, N/ = NJ = N, and N; and
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N, are defined in assumption Hszo of Theorem 3.1 in the main paper, and m is Ky,
similarly defined in assumption Hssz. Hence the upper bound ,c¢; has the form
mi K3 { Mz No® ! + (r + 1)N292= D ||5|| 7}, i.e. a constant times a function going
exponentially to zero when v — oco. The conditions (i) and (ii) of Definition A.1 and
the assumptions of Lemma A.2, both in the main paper, are thus verified. OJ

5.22 Proof of Lemma

Note that th has appeared as AY, in (5.37). We have to check the conditions of

Lemma A.1 in the main paper, with 7,7 =1,...,m,

i B (2

) is bounded,

i. (% S Zi])? =O0(1/n).

We start by the first condition: F (th) = F(d;el (0)K)?* can be evaluated using the
first part of Lemma 3] giving

-1
Z tr (g 4y i K K jp 9,2
k=1

and this can be bounded, using Lemma 7] by m; Ny || K,;||%[/2|| . Moreover
K, =%"'¢9,E (6?3) (gf ® gtT) vec (8,-2;1(9))6:60 ,
and £ (61?3) =F (etetT ® etT) Then, under H33-Hjs s
1K l2 < mamiM2K,. (5.52)
Hence i is proved. To prove ii, in a manner analogous to while checking Lemma [£.13]
E <% 3 Zij) - Z E ( m) n % Y Y E (Zﬁjzw) . (5.53)
t=1 t=1 t'=t+1

The first term can be bounded by 1/n times the bound obtained in condition i. The
second term can be written as twice

n—1 n—d

1

— covgo (Dsef (0) Ky, Ojetq(0) Ky q;) (5.54)
d=1 t=1
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and this can be bounded, using the first part of Lemma £3 with S;(0) = K, K~

t+d,i’

(552), and independence among the ¢,’s and Lemma [3.4] by

n—1 n—d t—1
1
— Ztr [ k?/’tTer,j,kerKtiKtTer,ﬂ/’tjkgtw2)]
d=1 t=
1 t—1
2
< ﬁ HEHF Z HKtzHF || t—i—dzHF Z ||gt—kHF Hwtjk:HF “wt+d,j,k+d||p
d=1 t=1 k=1
1 n—d t—1
2
< ||E||Fm2m§’M22K4n2 Z Hgt—k”p ||77Z)tzk”F H@Z)t-s-d,i,k+dHF
d=1 t=1 k=1
= O(1/n),
using assumption Hss and the first part of assumption Hs; of Theorem 3.1 in the
main paper. O
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