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THE  PROBLEM
Let n observations of a dependent variable y and explanatory variables x1, ..., xk  stored in a
vector Y and a matrix X:
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The model is described by
y x x ek k= + + +β β1 1 … ,

The βj are the regression coefficients, which should be estimate from the data,
and e, is the error term.
The least squares estimator is the solution of the system of normal equations, in matrix form

$ ( ) .β = −X X X YT T1 (1)
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From the numerical point of view, there is a double problem:
1° the use of XTX and XTY in (1) corresponds implicitly to the "calculator" algorithm (see
section 2.1) to calculate the variances and covariances but we saw that that algorithm is not
numerically stable.
2° inversion of the matrix XTX can raise numerical problems if the matrix is "almost
noninvertible " (case of quasi-colinearity).

Notice.  A simple way to improve the precision is to center the variables before carrying out
the calculations, provided that the initial model has a constant.
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Example.  Let us suppose calculations with a precision ε such as 1 + ε2 ≈ 1 (for example, in
single precision, with ε  = 10-7) and the matrix

X =
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0
0 0

ε
ε

so that

X XT =
+

+
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1 1
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2
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ε
ε

is a non invertible matrix.
Numerically stable algorithms for multiple linear multiple regression
1° don't calculate  XTX ;
2° a fortiori, don't invert  XTX.
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NUMERICALLY STABLE ALGORITHMS
They are based on orthogonal transformations and a factorisation of matrix X :
1° the modified Gram-Schmidt method, an alternative of a well-known method in linear
algebra;
2° the Householder transformation
3° the singular value decomposition
The Givens method can also be used, particularly when the data are read in one by one.
We add the Cholesky factorisation, which is interesting for other reasons.
One can find all these algorithms in the LINPACK library.
For recent references, see Gentle (1998).

Remark. The least squares method can be introduced without using the normal equations, for
example Thisted [1988, p. 63].
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THE MODIFIED GRAM-SCHMIDT METHOD

Description

Example.

Indirect solution of the normal equations

Implementation
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Description
Principle: build an orthonormalised basis in a metric space in the n-dimensional space
generated by the columns of X
Classical Gram-Schmidt method (Chambers, 1977):
1° as first base vector take the first column of X, duly normalised
2° as second base vector take a vector orthogonal with the first base vector, in the space
generated by the first two columns: it is obtained by taking the residual of the orthogonal
projection of the second column on the first, followed by a normalisation
3° and so on, the i-th vector being built in the space of first i columns, orthogonal with (i - 1)
first base vectors and being normalised.
The i-th column of X can be written as a linear combination of the elements of that
orthonormalised base using the first (i - 1) elements only.
The factorisation of X has the following form:

X Q R
n k n n n k

=
× × ×

.

where
Q is an orthogonal matrix, such that QT = Q-1,

R
R

=










1

0
, where R1 is a upper triangular matrix.



Chapter 3, section 3.5. Multiple linear regression 87

Guy Mélard, 1997, 1999 ISRO, U.L.B.

Example.
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Denoting the scalar product by <.,.>:
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Indirect solution of the normal equations
A solution is obtained by solving the triangular system

R Q YT$ .β =
Indeed, left multiply by RT:

R R R Q YT T T$ ,β =
hence
$ ( ) ( ) ( ) ( ) .β = = = =− − − − −R R R Q Y R Q QR R Q Y R Q QR R Q Y X X X YT T T T T T T T T T T T1 1 1 1 1

Example.
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Consequently,
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This is an easy to solve a triangular system
The solution is obtained without loss of precision

Remark. 1.There is an inconvenience: the whole matrix X should be in memory, as well as Q
(more precisely k rows). However, it is possible to add an explanatory variable without doing
all the calculations.

2. A problem is the lack of orthogonality of Q when X is badly conditioned. It should be
orthogonalised. This is the reason for the modification in the modified Gram-Schmidt
method.
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Implementation
Here is MGSREG (from TSE, see Mélard et Pasteels [1994]) which implements the modified
Gram-Schmidt method for multiple linear regression.

Mgsreg.htm
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HOUSEHOLDER TRANSFORMATION

2-dimensional case

k dimensional case

Householder transformation of a matrix

Example.

Numerical aspects

Application to regression
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The Householder transformation is a reflection, i. e. a symmetry with respect to a hyperplan,
sending a vector in a lower-dimensional space.

2-dimensional case
Let e1, e2 an orthonormal basis. We want a reflection H which maps vector x on Hx on the
first axis, e. g. Hx = x  e1. It suffices to take vector u = x - x  e1, and perform a symmetry
with respect to the straight line orthogonal to u. Hence Hx = x - u. Remark that the solution is
not unique. More precisely, there is a second solution for which Hx = - x  e1, defined by u =
x + x  e1. An arbitrary vector, x’, will not be mapped on the first axis and Hx’ ≠ x’ - u.
Geometrically, it can be seen that Hx’ = x’ - 2 (<x’, u>/ u 2) u.
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k dimensional case
Consider x = (x1 ... xk)T in an orthonormalised basis. We are looking for transformation H
which
1° preserves the first j - 1 components of x;
2° put zeros in the last n - j components;
3° preserves the norm.
More precisely

H x
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where s x xj j n= + +2 2" .
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The reflection is a symmetry with respect to the hyperplan which is orthogonal to vector

u x Hx
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More generally, if x’ is an arbitrary vector, the orthogonal projection of x’ onto u should be
determined, and

Hx’ = x’ - 2 (<x’, u>/ u 2) u = x’ - 2 u x
u u

T

T

′  u = I uu
u u

x
T

T−






 ′2 ,

because uT x’ u = u uT x’.
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That expression defines H as a matrix: 
uu

uuIH T

T

2−=

Remark that H = HT.
The reflection is an isometry since

HH HH I uu
u u

I uu
u u

I uu uu
u

uu
u

IT
T

T

T

T

T T T

= = −






 −






 = + −









 =2 2 4 44 2 ,

noting that scalar uT u equals u 2. Consequently H = HT = H-1 is a symmetric matrix.

Remark. For x’ = u + Hx, we have  uT x’ = ∓ " ∓s x x x s x sj j j n j j j+ + + = +2 2 2 .

But  u x s x x s x sj j j n j j j
2 2

1
2 2 22= + + + = ++( ) ( )∓ " ∓ .

Hence uT x’/ u 2 = 1/2 and, after simplification Hx’ = x’ - u.

Remark. Householder reflection is also used to transform a symmetric matrix in tridiagonal
form. This is the starting point of an algorithm for computing eigenvalues and eigenvectors
(Press et al., 1993).
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Householder transformation of a matrix
Consider a matrix X, with dimensions n×k, composed of columns [X1...Xk]
We apply successively k reflections Hj, where the j-th reflection puts zeros in the last n - j
components.
As the following reflections Hj + 1,..., Hk, will preserve the first j, ..., k - 1 components, zeros
will be preserved.
Consequently

R*=déf H H H Xk k − =

∗ ∗ ∗
∗ ∗

∗

























1 1

0
0

0

0 0 0

...
…

! ! !

.

Note that the product H H Hk k −1 1...  = Q*T is an orthogonal matrix and a factorisation X =
Q*R*, has been obtained which is similar but not identical to the QR factorisation obtained in
the modified Gram-Schmidt method.
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Example.
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H2H1X1 = H1X1 = 
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The coefficients of R* are those of R, in absolute value.
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Numerical aspects
1. Multiplicity of the solutions are due to the choice of signs ± at each reflection. In the
example, the first sign must be - to avoid division by 0. It is generally recommended, to
improve numerical stability, to select for sj the sign of xj. In the example, the second time, we
should have taken the upper sign, producing the following changes:
H2H1X2.= ?

s2
2 2 2 22= + ≈ ⇒ε ε ε u2

0
2

0

=
− −


















ε ε
ε
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2. If sj = 0, then u j  = 0 and a division by 0 will occur. This is a case of multicolinearity. In
that case, perform a permutation of rows and columns in order to have rows of zeros at the
positions r + 1 to k of R*.
3. Numerical stability can be bad in certain circumstances. In order to improve it, a
permutation of rows can be done to improve conditioning. In column j, the pivot is
determined, i. e. the maximum among rows j to n. If it is located on row l > j, let us permute
rows l and j. In practice, it is not necessary to perform physically the permutations of rows
and columns, just use pointers.
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Application to regression
It is better to perform Householder reflections to matrix [X1 ... Xk Y] obtained by juxtaposing
column Y.
Regression with a constant consists, as we know, to consider a column of 1 in X .
Suppose that it is the first column.
Since s1

2  = n, and we need to preserve the norm of X1, we have

H X

n
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Effect of H1 on the other columns, for example on Y?
Given that u n n1

2 2 1= −( )  and u Y y nyT
i1 1= −∑ , we have
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where we know that the sum of squares of the other elements is equal to
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SINGULAR VALUE DECOMPOSITION

Definition

Properties

Algorithm

Use in multiple regression
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Definition
The SVD concerns an arbitrary matrix X with dimensions n × k. Suppose that n > k.
There exists always two orthogonal matrices U, n × n, et V, k × k, and a matrix D, n × k, DT =
(D*T O) were D* is a k × k diagonal matrix, with diagonal elements di ≥ 0, such that

U XV D
D
O

T = =










∗

.

The factorisation can be written X = U D VT.
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Properties
In the special case where n = k, and matrix X is square, A, the singular values are the
eigenvalues.
The non-zero singular values of X are the square roots of the non zero eigenvalues of the
symmetric matrix A = XT X.
For a symmetric positive definite matrix A, the di are the eigenvalues of A, U = V, and the
columns of V are the eigenvectors of A. Then: A = V D VT.
The ratio max{di}/min{di} is a measure of the degree of conditioning of the matrix.
The singular value decomposition is very important from the theoretical point of view but
also from the numerical point of view.
It allows to detect the rank deficiency of a matrix with a higher precision (QR factorisation
can also be used but it is less accurate).
The SVD also allows to determine the null space of a matrix.
Suppose that the n × k, n>k, matrix X with rank r, is such that the singular values are
d d d dr r k1 1 0≥ ≥ ≥ = = =+… … .
The null space of X, which is the set of vectors x such that X x = 0, is then the subspace
spanned by the column vectors v vr k+1, ,…  of V.
The space spanned by the column vectors of X is identical to the one spanned by the first r
columns of U: u ur1, ,… .
That factorisation has another advantage: it leads to the definition of a function of a matrix.
For example, the square root of a symmetric positive definite matrix A = V D V T is defined by
A1/2 = V D1/2 V T, where D1/2 is the diagonal matrix composed of the square roots of the
elements of D, the eigenvalues of A.
Similarly, eA can be defined. Note also A2 = V D V T V D V T = V D2 V T or A-1 = V D-1 V T
(supposing strictly positive di's) are compatible with the usual definition.
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Algorithm
The algorithm of Golub-Reinsch is too complex to be given here. See Golub and Van Loan
[1983]. It makes use of Householder reflections to transform the matrix in a tridiagonal
matrix. It is included in library EISPACK.

Use in multiple regression

We have XTX = V D UT U D VT = V D2 VT. Furthermore the di
2  are eigenvalues of XTX with

corresponding eigenvector vi, i-th column of V. Supposing d d d dr r k1 1 0≥ ≥ ≥ = = =+… … , it can
be shown that

$ .β =
=
∑

u y
d vi
T

i
i

i

r

1

Remark. In the case of multicolinearity, that approach can eb used to determine a generalised
inverse.
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GENERALIZED INVERSES

Definition

Application to regression

Definition
Let a n×k matrix A,. Define the (g1-) inverse of A, every matrix A- such that AA-A = A.
Matrix A- is not unique.

Remark. There are other definitions of a pseudo-inverse A+ of a matrix A. Consider the four
properties:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)T = AA+

4. (A+A)T = A+A

A gi-inverse fulfils properties 1 to i.

A g4-inverse is also called a Moore-Penrose inverse. Such a matrix is unique.
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Block inverse
Suppose a matrix of rank r.
By means of a permutation of rows and columns, it can be put under the following form

A
A A
A A

=










11 12

21 22

so that A11 is invertible. Let us show that matrix

A
A−

−

=










11
1 0

0 0
is a generalised inverse. Indeed, since A and A11 are both rank r matrices, there exists a matrix
K such that [A21 A22] = K [A11 A12] and K = A21 A11

1− , hence A22 = A21 A11
1−  A12. Now

AA A
A A
A A

A
A

I
A A

A A
A A

A A
A A A A A
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−

− −=

















 =


















 =

=
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21 22

11
1

21 11
1

11 12

21 22
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21 21 11
1

12 22

0
0 0

0
0

.
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Application to regression
In the case where X is not of maximum rank, there is a phenomenon of multicolinearity.
The least squares method has then an infinite number of solutions.
One of these solutions can be written in terms of a generalised inverse: $ ( ) .β = −X X X YT T

This is not an estimator of β.
However, an estimator of E(y) = x β is determined uniquely by prediction x $β , in spite of
multicolinearity.
More generally an estimable function is a function of the parameters which can be uniquely
estimated.
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Example. Suppose that y = m + α1 x1 + α2 x2  + e, and X has the form:

X =

























1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

,

so that 

X XT =
















6 3 3
3 3 0
3 0 3

.



Chapter 3, section 3.5. Multiple linear regression 113

Guy Mélard, 1997, 1999 ISRO, U.L.B.

Let us compute ( )X XT − . The matrix has rank 2. Since

3 0
0 3
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, we have
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3

hence
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0
1
3 0

0 0
1
3

0
1
3
1
3

1 6

1 2 3

4 5 6

1 2 3

4 5 6

. ( )

( )

.
y y
y y y
y y y

y y y

y y y

"

Note that the first and second elements of $β  estimate uniquely m + α1 and m + α2,
respectively, hence α1 - α2 is estimated by ( ) /y y y y y y1 2 3 4 5 6 3+ + − − − , in a unique way.
These are three estimable functions.
It is well known that omitting the column of 1's in matrix X, or imposing constraint α1 + α2,
to suppress multicolinearity.
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CHOLESKY FACTORISATION

Definition

Algorithm

square root free variant

Definition
Let us factorise a symmetric definite positive matrix A. It is such that the quadratic form
vT A v > 0 for all vector v of ℜ k  such that v ≠ 0.
Such a matrix has all its eigenvalues strictly positive.
A is factorised as a product of a lower triangular matrix L,  by its transposed, a upper
triangular matrix: A = LU = LLT.
A square root free Cholesky factorisation is: A = L*D*U* = L*DL*T, where matrix D* is
diagonal and the main diagonal of L* is composed of 1.
We can then factorise L as L = L*D and define D* = DDT = D2.
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Algorithm
Let us start with a 3×3 example:
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a a a

a a
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. .

The following relations are used, in the given order:
a l11 11

2= l a11 11=
a l l12 11 21= l a l21 12 11= /

a l l22 21
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l32
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Remark. In order to determine a generalised inverse of A, the Cholesky factorisation can be
used by controlling the denominator of the ratio. There is numerical instability if

d a l aii ii ij
j

i

ii= − <
=

−

∑ 2

1

1

η ,

where η depends on the machine precision (for example 10-5, in simple precision). Then lii is
replaced by 0. For an implementation, see Healy [1968a, 1968b].

Remark. The square root free variant is as follows:
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using the relations:
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which can be summarised by:

l
a d l l

d
k i

d a d l

ik

ki ii kj ij
j

k

ii

ii ii ii ij
j

i

*

* * *

*

* * *2

,=
−

<

= −














=

−

=

−

∑

∑

1

1

1

1



Chapter 3, section 3.5. Multiple linear regression 117

Guy Mélard, 1997, 1999 ISRO, U.L.B.

Use in multiple regression
We have a symmetric definite positive matrix A = XTX.
Suppose factorisation XTX = LU.
The normal equations are written as L U X YT( $ )β =  which is a triangular system in U $β ,

which can be solved immediately by recurrence: U L X YT$β = −1 .

The system in $β  is also in triangular form
Remark. The algorithm is numerically less stable than modified Gram-Schmidt or
Householder because we need XTX.
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UTILISATION OF MATLAB
To solve the system of equations A*x = b, we write

x =A\b
If matrix A is n x k, avec n > k, the system is impossible and MATLAB computes the least
squares solution
To obtain the usual statistics (R2, standard errors, etc.), it is better to perform a QR
factorisation (using a Householder transformation) as follows (excerpt from REGRESS.M, in
the Statistics Toolbox of MATLAB):

Regress.htm
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Functions of MATLAB which correspond to algorithms considered in this section.

rank(X) rank of X
norm(X) or
norm(X, 2) largest singular value of X
norm(X, 1) largest sum of columns of X
norm(X, inf) largest sum of rows of X
norm(X, 'fro') Fröbenius norm
[U, S, V] = svd(X) singular value decomposition of X, where U and V

are orthogonal matrices and S is diagonal, such that
X = U S VT

R = chol(A) Cholesky factorisation of matrix A (hermitian or
symmetric) positive definite; R is upper triangular
such that A = RT R,

[R, p] = chol(A) factorisation such that A(1:p-1,1:p-1) = RT R
Y = pinv(X) (g4-) pseudo-inverse or Moore-Penrose inverse
L = eig(X) vector of eigenvectors of X
[V, L] = eig(X) matrix V of eigenvectors of X and vector L of eigenvalues

Remark. In both cases eig(X, Y) gives the solutions of
X v = Y v  L  (where L is a matrix)

null(X) null space of columns of X
orth(X)
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