An invitation to Hecke-Kiselman monoids

Alessandro D'Andrea

Università di Roma "La Sapienza"
Second Antipode Workshop September 122022

Coxeter systems

Coxeter system combinatorial information contained in a (unoriented)

graph 「

- vertices: generators (of order 2) of a group
- edges: relations (e.g., commutation, braid) between generators One obtains a presentation

$$
\begin{aligned}
& \left\langle s_{i}\right| s_{i}^{2}=1 \\
& \quad s_{i} s_{j}=s_{j} s_{i} \text { if } i \text { and } j \text { are not connected by an edge } \\
& \left.\quad s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \text { if } i \text { and } j \text { are connected by an edge }\right\rangle
\end{aligned}
$$

which yields a group W_{Γ}.
In this talk, everything is simply laced.

Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented) graph 「

- vertices: generators (of order 2) of a group
- edges: relations (e.g., commutation, braid) between generators One obtains a presentation

$$
\begin{aligned}
& \left\langle s_{i}\right| s_{i}^{2}=1 \\
& \quad s_{i} s_{j}=s_{j} s_{i} \text { if } i \text { and } j \text { are not connected by an edge } \\
& \left.\quad s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \text { if } i \text { and } j \text { are connected by an edge }\right\rangle
\end{aligned}
$$

which yields a group W_{Γ}.
In this talk, everything is simply laced

Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented) graph 「

- vertices: generators (of order 2) of a group
- edges: relations (e.g., commutation, braid) between generators One obtains a presentation

$$
\begin{aligned}
& \left\langle s_{i}\right| s_{i}^{2}=1 \\
& \quad s_{i} s_{j}=s_{j} s_{i} \text { if } i \text { and } j \text { are not connected by an edge } \\
& \left.\quad s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \text { if } i \text { and } j \text { are connected by an edge }\right\rangle
\end{aligned}
$$

which yields a group W_{Γ}.

Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented) graph 「

- vertices: generators (of order 2) of a group
- edges: relations (e.g., commutation, braid) between generators One obtains a presentation

which yields a group W_{Γ}

Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented) graph 「

- vertices: generators (of order 2) of a group
- edges: relations (e.g., commutation, braid) between generators One obtains a presentation

which yields a group W_{Γ}

Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented) graph 「

- vertices: generators (of order 2) of a group
- edges: relations (e.g., commutation, braid) between generators One obtains a presentation

$$
\begin{aligned}
& \left\langle s_{i}\right| s_{i}^{2}=1 \\
& \quad s_{i} s_{j}=s_{j} s_{i} \text { if } i \text { and } j \text { are not connected by an edge } \\
& \left.\quad s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \text { if } i \text { and } j \text { are connected by an edge }\right\rangle
\end{aligned}
$$

Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented) graph 「

- vertices: generators (of order 2) of a group
- edges: relations (e.g., commutation, braid) between generators One obtains a presentation

$$
\begin{aligned}
& \left\langle s_{i}\right| s_{i}^{2}=1 \\
& \quad s_{i} s_{j}=s_{j} s_{i} \text { if } i \text { and } j \text { are not connected by an edge } \\
& \left.\quad s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \text { if } i \text { and } j \text { are connected by an edge }\right\rangle
\end{aligned}
$$

which yields a group W_{Γ}.

Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented) graph 「

- vertices: generators (of order 2) of a group
- edges: relations (e.g., commutation, braid) between generators One obtains a presentation

$$
\begin{aligned}
& \left\langle s_{i}\right| s_{i}^{2}=1 \\
& \quad s_{i} s_{j}=s_{j} s_{i} \text { if } i \text { and } j \text { are not connected by an edge } \\
& \left.\quad s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \text { if } i \text { and } j \text { are connected by an edge }\right\rangle
\end{aligned}
$$

which yields a group W_{Γ}.
In this talk, everything is simply laced.

Coxeter monoids

The above presentation can be deformed (in an associative algebra context) to:

$$
s_{i}^{2}=1 \rightsquigarrow\left(s_{i}+1\right)\left(s_{i}-q\right)=0 .
$$

One obtains a $\mathbb{Z}\left[q^{ \pm 1}\right]$-algebra (lwahori-Hecke) which can be specialized to complex values of q.

- $q=1 \rightarrow$ group algebra of the Coxeter group W_{Γ}
- generic values of $q \rightarrow$ generators s_{i} do not close under product
- $q=0 \rightarrow$ monoid algebra of the Coxeter monoid (generated by $\left.a_{i}=-s_{i}\right) \quad$ "0-Hecke algebras", Norton 1979

Coxeter monoids

The above presentation can be deformed (in an associative algebra context) to:

$$
s_{i}^{2}=1 \rightsquigarrow\left(s_{i}+1\right)\left(s_{i}-q\right)=0 .
$$

One obtains a $\mathbb{Z}\left[q^{ \pm 1}\right]$-algebra (lwahori-Hecke) which can be specialized to complex values of q.

- $a=1 \rightarrow$ group algebra of the Coxeter group W_{Γ}
- generic values of $q \rightarrow$ generators s_{i} do not close under product
- $q=0 \rightarrow$ monoid algebra of the Coxeter monoid (generated by $\left.a_{i}=-s_{i}\right) \quad$ "0-Hecke algebras", Norton 1979

Coxeter monoids

The above presentation can be deformed (in an associative algebra context) to:

$$
s_{i}^{2}=1 \rightsquigarrow\left(s_{i}+1\right)\left(s_{i}-q\right)=0 .
$$

One obtains a $\mathbb{Z}\left[q^{-1}\right]$-algebra (lwahori-Hecke) which can be specialized to

- $q=1 \rightarrow$ group algebra of the Coxeter group W_{Γ}
- generic values of $q \rightarrow$ generators s_{i} do not close under product
- $q=0 \rightarrow$ monoid algebra of the Coxeter monoid (generated by "O-Hecke algebras", Norton 1979

Coxeter monoids

The above presentation can be deformed (in an associative algebra context) to:

$$
s_{i}^{2}=1 \rightsquigarrow\left(s_{i}+1\right)\left(s_{i}-q\right)=0
$$

One obtains a $\mathbb{Z}\left[q^{ \pm 1}\right]$-algebra (lwahori-Hecke) which can be specialized to complex values of q.

- $q=1 \rightarrow$ group algebra of the Coxeter group W_{Γ}
- generic values of $q \rightarrow$ generators s_{i} do not close under product
- $a=0 \rightarrow$ monoid algebra of the Coxeter monoid (generated by "O-Hecke algebras", Norton 1979

Coxeter monoids

The above presentation can be deformed (in an associative algebra context) to:

$$
s_{i}^{2}=1 \rightsquigarrow\left(s_{i}+1\right)\left(s_{i}-q\right)=0 .
$$

One obtains a $\mathbb{Z}\left[q^{ \pm 1}\right]$-algebra (lwahori-Hecke) which can be specialized to complex values of q.

- $q=1 \rightarrow$ group algebra of the Coxeter group W_{Γ}
- generic values of $q \rightarrow$ generators s_{i} do not close under product
- $q=0 \rightarrow$ monoid algebra of the Coxeter monoid (generated by $\left.a_{i}=-s_{i}\right) \quad$ "0-Hecke algebras", Norton 1979

Coxeter monoids

The above presentation can be deformed (in an associative algebra context) to:

$$
s_{i}^{2}=1 \rightsquigarrow\left(s_{i}+1\right)\left(s_{i}-q\right)=0
$$

One obtains a $\mathbb{Z}\left[q^{ \pm 1}\right]$-algebra (lwahori-Hecke) which can be specialized to complex values of q.

- $q=1 \rightarrow$ group algebra of the Coxeter group W_{Γ}
- generic values of $q \rightarrow$ generators s_{i} do not close under product
- $q=0 \rightarrow$ monoid algebra of the Coxeter monoid (generated by "0-Hecke algebras", Norton 1979

Coxeter monoids

The above presentation can be deformed (in an associative algebra context) to:

$$
s_{i}^{2}=1 \rightsquigarrow\left(s_{i}+1\right)\left(s_{i}-q\right)=0
$$

One obtains a $\mathbb{Z}\left[q^{ \pm 1}\right]$-algebra (lwahori-Hecke) which can be specialized to complex values of q.

- $q=1 \rightarrow$ group algebra of the Coxeter group W_{Γ}
- generic values of $q \rightarrow$ generators s_{i} do not close under product
- $q=0 \rightarrow$ monoid algebra of the Coxeter monoid (generated by $\left.a_{i}=-s_{i}\right)$

Coxeter monoids

The above presentation can be deformed (in an associative algebra context) to:

$$
s_{i}^{2}=1 \rightsquigarrow\left(s_{i}+1\right)\left(s_{i}-q\right)=0
$$

One obtains a $\mathbb{Z}\left[q^{ \pm 1}\right]$-algebra (lwahori-Hecke) which can be specialized to complex values of q.

- $q=1 \rightarrow$ group algebra of the Coxeter group W_{Γ}
- generic values of $q \rightarrow$ generators s_{i} do not close under product
- $q=0 \rightarrow$ monoid algebra of the Coxeter monoid (generated by $a_{i}=-s_{i}$) "0-Hecke algebras", Norton 1979

Coxeter monoids

The Coxeter monoid has the same order as the Coxeter group (it can be viewed as a different product on the same set). It also appears as the Richardson-Springer monoid (when dealing with combinatorics of B-orbits in spherical varieties).

Coxeter monoids are also known as 0-Hecke monoids

Knowledge of both the Coxeter group and the Coxeter monoid up to isomorphism determines the Coxeter system.
"Coxeter groups, Coxeter monoids and the Bruhat order" Kenney 2014

Coxeter monoids

The Coxeter monoid has the same order as the Coxeter group (it can be viewed as a different product on the same set). It also appears as the Richardson-Springer monoid (when dealing with combinatorics of B-orbits in spherical varieties)

Coxeter monoids are also known as 0-Hecke monoids.

Knowledge of both the Coxeter group and the Coxeter monoid up to isomorphism determines the Coxeter system. 'Coxeter groups, Coxeter monoids and the Bruhat order' Kenney 2014

Coxeter monoids

The Coxeter monoid has the same order as the Coxeter group (it can be viewed as a different product on the same set). It also appears as the Richardson-Springer monoid (when dealing with combinatorics of B-orbits in spherical varieties).

Coxeter monoids are also known as 0 -Hecke monoids.

> Knowledge of both the Coxeter group and the Coxeter monoid up to isomorphism determines the Coxeter system. "Coxeter groups, Coxeter monoids and the Bruhat order" Kenney 2014

Coxeter monoids

The Coxeter monoid has the same order as the Coxeter group (it can be viewed as a different product on the same set). It also appears as the Richardson-Springer monoid (when dealing with combinatorics of B-orbits in spherical varieties).

Coxeter monoids are also known as 0 -Hecke monoids.

Knowledge of both the Coxeter group and the Coxeter monoid up to isomorphism determines the Coxeter system.
"Coxeter groups, Coxeter monoids and the Bruhat order" Kenney 2014

Quotients of Coxeter monoids

(Quotients of) Coxeter monoids appear in the literature. Examples:

- Kiselman's semigroup and its generalizations
- Catalan monoid

Quotients of Coxeter monoids

(Quotients of) Coxeter monoids appear in the literature.
Examples:

- Kiselman's semigroup and its generalizations
- Catalan monoid

Quotients of Coxeter monoids

(Quotients of) Coxeter monoids appear in the literature. Examples:

- Kiselman's semigroup and its generalizations
- Catalan monoid

Quotients of Coxeter monoids

(Quotients of) Coxeter monoids appear in the literature. Examples:

- Kiselman's semigroup and its generalizations
- Catalan monoid

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- I(f): the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

Then c, I, m are idempotent operators, and satisfy

$$
\begin{aligned}
c \mid c & =|c|=l c \\
c m c & =m c m=m c \\
\mid m I & =m l m=m l .
\end{aligned}
$$

The monoid $\langle c, I, m\rangle$ has at most 18 elements. Indeed exactly 18 when E is a real infinite-dimensional normed space, and in this case the above relations provide a presentation.
The Kiselman monoid K_{n} generalizes the above presentation but admits n generators.

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- $I(f)$: the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

Then c, I, m are idempotent operators, and satisfy

$$
\begin{aligned}
c l c & =|c|=l c \\
c m c & =m c m=m c \\
|m| & =m / m=m l .
\end{aligned}
$$

The monoid $\langle c, I, m\rangle$ has at most 18 elements. Indeed exactly 18 when E is a real infinite-dimensional normed space, and in this case the above relations provide a presentation.
The Kiselman monoid K_{n} generalizes the above presentation but admits n generators.

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- I(f): the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

Then c, l, m are idempotent operators, and satisfy

$$
\begin{aligned}
c l c & =|c|=l c \\
c m c & =m c m=m c \\
|m| & =m l m=m l
\end{aligned}
$$

The monoid $\langle c, I, m\rangle$ has at most 18 elements. Indeed exactly 18 when E is a real infinite-dimensional normed space, and in this case the above relations provide a presentation.
The Kiselman monoid K_{n} generalizes the above presentation but admits n generators.

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- I(f): the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

Then c, I, m are idempotent operators, and satisfy

$$
\begin{aligned}
c l c & =|c|=l c \\
c m c & =m c m=m c \\
|m| & =m / m=m l .
\end{aligned}
$$

The monoid $\langle c, I, m\rangle$ has at most 18 elements. Indeed exactly 18 when E is a real infinite-dimensional normed space, and in this case the above relations provide a presentation.
The Kiselman monoid K_{n} generalizes the above presentation but admits n generators.

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- $I(f)$: the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

```
Then c, l,m are idempotent operators, and satisfy
clc=|c|=|c
cmc=mcm=mc
|m| = m|m =ml.
The monoid }\langlec,l,m\rangle\mathrm{ has at most }18\mathrm{ elements. Indeed exactly }18\mathrm{ when E
is a real infinite-dimensional normed space, and in this case the above
relations provide a presentation.
The Kiselman monoid K}\mp@subsup{K}{n}{}\mathrm{ generalizes the above presentation but admits n
```

generators.

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- $I(f)$: the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

Then c, l, m are idempotent operators

The monoid $\langle c, I, m\rangle$ has at most 18 elements. Indeed exactly 18 when E is a real infinite-dimensional normed space, and in this case the above relations provide a presentation.
The Kiselman monoid K_{n} generalizes the above presentation but admits n generators.

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- $I(f)$: the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

Then c, I, m are idempotent operators, and satisfy

$$
\begin{aligned}
c l c & =l c l=l c \\
c m c & =m c m=m c \\
I m l & =m l m=m l .
\end{aligned}
$$

The monoid $\langle c, I, m\rangle$ has at most 18 elements. Indeed exactly 18 when E is a real infinite-dimensional normed space, and in this case the above relations provide a presentation.
The Kiselman monoid K_{n} generalizes the above presentation but admits n generators.

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- $I(f)$: the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

Then c, I, m are idempotent operators, and satisfy

$$
\begin{aligned}
c l c & =l c l=l c \\
c m c & =m c m=m c \\
I m l & =m l m=m l .
\end{aligned}
$$

The monoid $\langle c, I, m\rangle$ has at most 18 elements. relations provide a presentation.
The Kiselman monoid K_{n} generalizes the above presentation but admits n generators.

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- $I(f)$: the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

Then c, I, m are idempotent operators, and satisfy

$$
\begin{aligned}
c l c & =l c l=l c \\
c m c & =m c m=m c \\
I m I & =m l m=m l .
\end{aligned}
$$

The monoid $\langle c, l, m\rangle$ has at most 18 elements. Indeed exactly 18 when E is a real infinite-dimensional normed space, and in this case the above relations provide a presentation.

Kiselman's semigroup

In convexity theory, one may attach to a function $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

- $c(f)$: the largest convex function not exceeding f
- $I(f)$: the largest lower semicontinuous function not exceeding f
- $m(f)=f$ if $f>-\infty$ everywhere; $m(f) \equiv-\infty$ otherwise

Then c, I, m are idempotent operators, and satisfy

$$
\begin{aligned}
c l c & =l c l=l c \\
c m c & =m c m=m c \\
I m I & =m l m=m l .
\end{aligned}
$$

The monoid $\langle c, I, m\rangle$ has at most 18 elements. Indeed exactly 18 when E is a real infinite-dimensional normed space, and in this case the above relations provide a presentation.
The Kiselman monoid K_{n} generalizes the above presentation but admits n generators.

Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K_{n} is generated by n idempotents $a_{i}, i=1, \ldots, n$.
When $1 \leq i<j<n$ one has relations aiajaj = ajajaj $=a_{j} a_{j}$
It is easy to show that if between two a_{i} only $a_{j}, j>i$, occur, then one may delete the rightmost a_{i} (similarly if only lower indices occur, one may remove the leftmost occurrence).

The only possible reduced expressions are such that between two identical generators, both higher and lower indices must occur. Using some old results on confluence (Newman 1942; also Huet 1980) one may show that

- Such words are all reduced
- All choices of cancellations from a given word lead to the same (hence unique) reduced expression. (Kudryavtseva, Mazorchuk 2009)

Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K_{n} is generated by n idempotents $a_{i}, i=1, \ldots, n$.
When $1 \leq i<j \leq n$ one has relations $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$
It is easy to show that if between two a_{i} only $a_{j}, j>i$, occur, then one may delete the rightmost a_{i} (similarly if only lower indices occur, one may remove the leftmost occurrence).

The only possible reduced expressions are such that between two identical generators, both higher and lower indices must occur. Using some old results on confluence (Newman 1942; also Huet 1980) one may show that

- Such words are all reduced
- All choices of cancellations from a given word lead to the same (hence unique) reduced expression. (Kudryavtseva, Mazorchuk 2009)

Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K_{n} is generated by n idempotents $a_{i}, i=1, \ldots, n$.
When $1 \leq i<j \leq n$ one has relations $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$.
It is easy to show that if between two a_{i} only $a_{j}, j>i$, occur, then one may delete the rightmost a_{i} (similarly if only lower indices occur, one may remove the leftmost occurrence)

The only possible reduced expressions are such that between two identical generators, both higher and lower indices must occur. Using some old results on confluence (Newman 1942; also Huet 1980) one may show that

- Such words are all reduced
- All choices of cancellations from a given word lead to the same (hence unique) reduced expression. (Kudryavtseva, Mazorchuk 2009)

Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K_{n} is generated by n idempotents $a_{i}, i=1, \ldots, n$.
When $1 \leq i<j \leq n$ one has relations $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$. It is easy to show that if between two a_{i} only $a_{j}, j>i$, occur, then one may delete the rightmost a_{i} remove the leftmost occurrence)

Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K_{n} is generated by n idempotents $a_{i}, i=1, \ldots, n$.
When $1 \leq i<j \leq n$ one has relations $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$.
It is easy to show that if between two a_{i} only $a_{j}, j>i$, occur, then one may delete the rightmost a_{i} (similarly if only lower indices occur, one may remove the leftmost occurrence).

Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K_{n} is generated by n idempotents $a_{i}, i=1, \ldots, n$.
When $1 \leq i<j \leq n$ one has relations $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$.
It is easy to show that if between two a_{i} only $a_{j}, j>i$, occur, then one may delete the rightmost a_{i} (similarly if only lower indices occur, one may remove the leftmost occurrence).

The only possible reduced expressions are such that between two identical generators, both higher and lower indices must occur. Using some old results on confluence (Newman 1942; also Huet 1980) one may show that

- Such words are all reduced
- All choices of cancellations from a given word lead to the same (hence unique) reduced expression

Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K_{n} is generated by n idempotents $a_{i}, i=1, \ldots, n$.
When $1 \leq i<j \leq n$ one has relations $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$.
It is easy to show that if between two a_{i} only $a_{j}, j>i$, occur, then one may delete the rightmost a_{i} (similarly if only lower indices occur, one may remove the leftmost occurrence).

The only possible reduced expressions are such that between two identical generators, both higher and lower indices must occur. Using some old results on confluence (Newman 1942; also Huet 1980) one may show that

- Such words are all reduced
- All choices of cancellations from a given word lead to the same (hence unique) reduced expression.
(Kudryavtseva, Mazorchuk 2009)

Cardinality of Kiselman's semigroups

K_{n} always has finitely many elements, but its cardinality is not well understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

- A closed or recursive formula for the cardinality of K_{n} is missing
- The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the literature is $\left|K_{n}\right| \leq n^{L(n)}$ where

$$
L(n)= \begin{cases}2^{k+1}-2 & \text { if } n=2 k \\ 3 \cdot 2^{k}-2 & \text { if } n=2 k+1\end{cases}
$$

- Indeed, $\log \left|K_{n}\right| \simeq c 2^{n / 2}$, separately for even and odd values of n. (joint with Stella)

Cardinality of Kiselman's semigroups

K_{n} always has finitely many elements, but its cardinality is not well understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...)

- A closed or recursive formula for the cardinality of K_{n} is missing
- The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the literature is $\left|K_{n}\right| \leq n^{L(n)}$ where

- Indeed, $\log \left|K_{n}\right| \simeq c 2^{n / 2}$, separately for even and odd values of n. (joint with Stella)

Cardinality of Kiselman's semigroups

K_{n} always has finitely many elements, but its cardinality is not well understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

- A closed or recursive formula for the cardinality of K_{n} is missing
- The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the literature is $\left|K_{n}\right| \leq n^{L(n)}$ where

- Indeed, $\log \left|K_{n}\right| \simeq c 2^{n / 2}$, separately for even and odd values of n. (joint with Stella)

Cardinality of Kiselman's semigroups

K_{n} always has finitely many elements, but its cardinality is not well understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

- A closed or recursive formula for the cardinality of K_{n} is missing
- The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the literature is $\left|K_{n}\right| \leq n^{L(n)}$ where

- Indeed, $\log \left|K_{n}\right| \simeq c 2^{n / 2}$, separately for even and odd values of n. (joint with Stella)

Cardinality of Kiselman's semigroups

K_{n} always has finitely many elements, but its cardinality is not well understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

- A closed or recursive formula for the cardinality of K_{n} is missing
- The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the literature is $\left|K_{n}\right| \leq n^{L(n)}$ where

$$
L(n)= \begin{cases}2^{k+1}-2 & \text { if } n=2 k \\ 3 \cdot 2^{k}-2 & \text { if } n=2 k+1\end{cases}
$$

Cardinality of Kiselman's semigroups

K_{n} always has finitely many elements, but its cardinality is not well understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

- A closed or recursive formula for the cardinality of K_{n} is missing
- The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the literature is $\left|K_{n}\right| \leq n^{L(n)}$ where

$$
L(n)= \begin{cases}2^{k+1}-2 & \text { if } n=2 k \\ 3 \cdot 2^{k}-2 & \text { if } n=2 k+1\end{cases}
$$

- Indeed, $\log \left|K_{n}\right| \simeq c 2^{n / 2}$ separately for even and odd values of n.

Cardinality of Kiselman's semigroups

K_{n} always has finitely many elements, but its cardinality is not well understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

- A closed or recursive formula for the cardinality of K_{n} is missing
- The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the literature is $\left|K_{n}\right| \leq n^{L(n)}$ where

$$
L(n)= \begin{cases}2^{k+1}-2 & \text { if } n=2 k \\ 3 \cdot 2^{k}-2 & \text { if } n=2 k+1\end{cases}
$$

- Indeed, $\log \left|K_{n}\right| \simeq c 2^{n / 2}$, separately for even and odd values of n. (joint with Stella)

Catalan monoid

Order decreasing, order preserving functions $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ form a monoid C_{n} with respect to composition.

The cardinality of C_{n} is given by the n-th Catalan number.
C_{n} has been considered in computer science in the context of hashing and storing/retrieval of information.

$$
\begin{aligned}
C_{n}=\left\langle a_{i}, i=1, \ldots, n-1\right| & a_{i}^{2}=a_{i} \\
& a_{i} a_{j}=a_{j} a_{i} \text { if }|i-j|>1 \\
& \left.a_{i} a_{i+1} a_{i}=a_{i+1} a_{i} a_{i+1}=a_{i} a_{i+1}\right\rangle
\end{aligned}
$$

Here a_{i} is the function mapping $i+1$ to i and fixing all other elements.

Catalan monoid

Order decreasing, order preserving functions $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ form a monoid C_{n} with respect to composition.

The cardinality of C_{n} is given by the n-th Catalan number.
> C_{n} has been considered in computer science in the context of hashing and storing/retrieval of information.

$$
\begin{aligned}
& a_{i} a_{j}=a_{j} a_{i} \text { if }|i-j|>1 \\
& \left.a_{i} a_{i+1} a_{i}=a_{i+1} a_{i} a_{i+1}=a_{i} a_{i+1}\right\rangle
\end{aligned}
$$

Here a_{i} is the function mapping $i+1$ to i and fixing all other elements.

Catalan monoid

Order decreasing, order preserving functions $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ form a monoid C_{n} with respect to composition.

The cardinality of C_{n} is given by the n-th Catalan number.
C_{n} has been considered in computer science in the context of hashing and storing/retrieval of information.

Here a_{i} is the function mapping $i+1$ to i and fixing all other elements.

Catalan monoid

Order decreasing, order preserving functions $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ form a monoid C_{n} with respect to composition.

The cardinality of C_{n} is given by the n-th Catalan number.
C_{n} has been considered in computer science in the context of hashing and storing/retrieval of information.

$$
\begin{aligned}
C_{n}=\left\langle a_{i}, i=1, \ldots, n-1\right| & a_{i}^{2}=a_{i} \\
& a_{i} a_{j}=a_{j} a_{i} \text { if }|i-j|>1 \\
& a_{i} a_{i+1} a_{i}=a_{i+1} a_{i} a_{i+1}=
\end{aligned}
$$

Here a_{i} is the function mapping $i+1$ to i and fixing all other elements.

Catalan monoid

Order decreasing, order preserving functions $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ form a monoid C_{n} with respect to composition.

The cardinality of C_{n} is given by the n-th Catalan number.
C_{n} has been considered in computer science in the context of hashing and storing/retrieval of information.

$$
\begin{aligned}
C_{n}=\left\langle a_{i}, i=1, \ldots, n-1\right| & a_{i}^{2}=a_{i} \\
& a_{i} a_{j}=a_{j} a_{i} \text { if }|i-j|>1 \\
& \left.a_{i} a_{i+1} a_{i}=a_{i+1} a_{i} a_{i+1}=a_{i} a_{i+1}\right\rangle
\end{aligned}
$$

Here a_{i} is the function mapping $i+1$ to i and fixing all other elements.

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) 「 yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge $=$ side
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge $=$ arrow, connecting i to j.
- $a_{i} a_{j}=a_{j} a_{i}$ if i and j are not connected,

There is at most one edge between any two vertices.
Reduced expressions are as before, once one takes commutation relations into account.
(joint with Aragona, 2020)

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) 「 yielding a presentation of a monoid
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge $=$ side,
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge $=$ arrow, connecting i to j
- $a_{i} a_{j}=a_{j} a_{j}$ if i and j are not connected,

There is at most one edge between any two vertices.
Reduced expressions are as before, once one takes commutation relations
into account.
(joint with Aragona, 2020)

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph oriented and unoriented edges) 「 yielding a presentation of a monoid
- one has an idempotent generator a_{i} for each vertex $i ;$

$\bullet a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge $=$ arrow, connecting i to j
- $a_{i} a_{j}=a_{j} a_{j}$ if i and j are not connected

There is at most one edge between any two vertices
Reduced expressions are as before, once one takes commutation relations
into account.
(joint with Aragona, 2020)

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges)
- one has an idempotent generator a_{i} for each vertex $i ;$
\square $a_{i} a_{j} a_{j}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ If there IS an orrented edge $=$ arrow, connecting - $a_{i} a_{j}=a_{j} a_{i}$ if i and j are not connected, There is at most one edge between any two vertices Reduced expressions are as before, once one takes commutation relations into account.

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) 「 yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge $=$ arrow, connecting
\square
- $a_{i} a_{j}=a_{j} a_{i}$ if i and j are not connected

There is at most one edge between any two vertices

Reduced expressions are as before, once one takes commutation relations
into account
(ioint with Aragona, 2020)

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) 「 yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;

\square
- $a_{i} a_{j}=a_{j} a_{i}$ if i and j are not connected

There is at most one edge between any two vertices

Reduced expressions are as before, once one takes commutation relations
into account
(ioint with Aragona, 2020)

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) 「 yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge

\qquad
- $a_{i} a_{j}=a_{j} a_{i}$ if i and j are not connected

There is at most one edge between any two vertices

Reduced expressions are as before, once one takes commutation relations
into account
(ioint with Aragona, 2020)

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) 「 yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge $=$ side,

- $a_{i} a_{j}=a_{j} a_{i}$ if i and j are not connected

There is at most one edge between any two vertices
Reduced expressions are as before, once one takes commutation relations
into account.
(joint with Aragona, 2020)

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) Γ yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge $=$ side,
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) Γ yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge $=$ side,
- $a_{i} a_{j} a_{j}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge = arrow, \qquad

There is at most one edge between any two vertices

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) Γ yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge $=$ side,
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge $=$ arrow, connecting i to j.

There is at most one edge between any two vertices.

Reduced expressions are as before, once one takes commutation relations
into account.
(joint with Aragona, 2020)

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) 「 yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge $=$ side,
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge $=$ arrow, connecting i to j.
- $a_{i} a_{j}=a_{j} a_{i}$ if i and j are not connected,
\square
There is at most one edge between any two vertices

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) Γ yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge $=$ side,
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge $=$ arrow, connecting i to j.
- $a_{i} a_{j}=a_{j} a_{i}$ if i and j are not connected,

There is at most one edge between any two vertices.
Reduced expressions are as before, once one takes commutation relations into account.

Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

- The combinatorial informations is contained in a digraph (with both oriented and unoriented edges) 「 yielding a presentation of a monoid $H K_{\Gamma}$:
- one has an idempotent generator a_{i} for each vertex i;
- $a_{i} a_{j} a_{i}=a_{j} a_{i} a_{j}$ if i and j are connected by an unoriented edge $=$ side,
- $a_{i} a_{j} a_{j}=a_{j} a_{i} a_{j}=a_{i} a_{j}$ if there is an oriented edge $=$ arrow, connecting i to j.
- $a_{i} a_{j}=a_{j} a_{i}$ if i and j are not connected,

There is at most one edge between any two vertices.
Reduced expressions are as before, once one takes commutation relations into account. (joint with Aragona, 2020)

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

If Γ^{\prime} is obtained from Γ by means of a finite sequence of such moves, and $H K_{\Gamma}$ is finite, then $H K_{\Gamma^{\prime}}$ must be finite too. (as it is a quotient)

If Γ has no arrows, HK is finite iff Γ is a finite disjoint union of finite Dynking diagrams (simply laced \Longrightarrow ADE classification)

Hence, if $H K_{\Gamma}$ is finite, then Γ is obtained by adding arrows to a finite disjoint union of ADE graphs. The converse is false, and apparently very involved.

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

If Γ^{\prime} is obtained from Γ by means of a finite sequence of such moves, and $H K_{\Gamma}$ is finite, then $H K_{\Gamma}$, must be finite too. (as it is a quotient) If Γ has no arrows, $H K_{\Gamma}$ is finite iff Γ is a finite disjoint union of finite Dynking diagrams (simply laced \Longrightarrow ADE classification)

Hence, if $H K_{\Gamma}$ is finite, then Γ is obtained by adding arrows to a finite disjoint union of ADE graphs. The converse is false, and apparently very

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

If Γ^{\prime} is obtained from Γ by means of a finite sequence of such moves, and $H K_{\Gamma}$ is finite, then $H K_{\Gamma^{\prime}}$ must be finite too.

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

If Γ^{\prime} is obtained from Γ by means of a finite sequence of such moves, and $H K_{\Gamma}$ is finite, then $H K_{\Gamma^{\prime}}$ must be finite too. (as it is a quotient)

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

If Γ^{\prime} is obtained from Γ by means of a finite sequence of such moves, and $H K_{\Gamma}$ is finite, then $H K_{\Gamma^{\prime}}$ must be finite too. (as it is a quotient)

If Γ has no arrows, $H K_{\Gamma}$ is finite iff Γ is a finite disjoint union of finite Dynking diagrams

Hence, if H_{Γ} is finite, then 「 is obtained by adding arrows to a finite disjoint union of ADE graphs. The converse is false, and apparently very

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

If Γ^{\prime} is obtained from Γ by means of a finite sequence of such moves, and $H K_{\Gamma}$ is finite, then $H K_{\Gamma^{\prime}}$ must be finite too. (as it is a quotient)

If Γ has no arrows, $H K_{\Gamma}$ is finite iff Γ is a finite disjoint union of finite Dynking diagrams (simply laced \Longrightarrow ADE classification).

Hence, if $H_{K_{\Gamma}}$ is finite, then Γ is obtained by adding arrows to a finite disjoint union of ADE graphs. The converse is false, and apparently very

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

If Γ^{\prime} is obtained from Γ by means of a finite sequence of such moves, and $H K_{\Gamma}$ is finite, then $H K_{\Gamma^{\prime}}$ must be finite too. (as it is a quotient)

If Γ has no arrows, $H K_{\Gamma}$ is finite iff Γ is a finite disjoint union of finite Dynking diagrams (simply laced \Longrightarrow ADE classification).

Hence, if $H K_{\Gamma}$ is finite, then Γ is obtained by adding arrows to a finite disjoint union of ADE graphs.

Finiteness of Hecke-Kiselman monoids

Commutation $a b=b a$ implies $a b a=b a b=a b$, thus $H K_{\Gamma^{\prime}}$ is a quotient of $H K_{\Gamma}$ if Γ^{\prime} if obtained from Γ by:

- removing an arrow
- making a side into an arrow
- removing a side

If Γ^{\prime} is obtained from Γ by means of a finite sequence of such moves, and $H K_{\Gamma}$ is finite, then $H K_{\Gamma^{\prime}}$ must be finite too. (as it is a quotient)

If Γ has no arrows, $H K_{\Gamma}$ is finite iff Γ is a finite disjoint union of finite Dynking diagrams (simply laced \Longrightarrow ADE classification).

Hence, if $H K_{\Gamma}$ is finite, then Γ is obtained by adding arrows to a finite disjoint union of ADE graphs. The converse is false, and apparently very involved.

Update systems on graphs

Let Γ be an oriented graph with at most one arrow between any two vertices.

- a set S_{i} of local states for each vertex i;
- a local update function $f_{i}: \prod_{i \rightarrow j} S_{j} \rightarrow S_{i}$

If $S=\prod_{i} S_{i}$ is the set of global states, each f_{i} induces a global update function $F_{i}: S \rightarrow S$ given by

$$
\left(F_{i}(s)\right)_{k}= \begin{cases}s_{k} & \text { if } k \neq i \\ f_{i}\left(s_{j}, i \rightarrow j\right) & \text { if } k=i\end{cases}
$$

Every word in the vertices of Γ yields a corresponding composition of the F_{i}

The image of the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ is the dynamics monoid of the update system.

Update systems on graphs

Let Γ be an oriented graph with at most one arrow between any two vertices. An update system on Γ is a choice of:

- a set S_{i} of local states for each vertex i;
- a local update function $f_{i}: \prod_{i \rightarrow j} S_{j} \rightarrow S_{i}$

If $S=\prod_{i} S_{i}$ is the set of global states, each f_{i} induces a global update function $F_{i}: S \rightarrow S$ given by

$$
\left(F_{i}(s)\right)_{k}= \begin{cases}s_{k} & \text { if } k \neq i \\ f_{i}\left(s_{j}, i \rightarrow j\right) & \text { if } k=i\end{cases}
$$

Every word in the vertices of Γ yields a corresponding composition of the F_{i}

The image of the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ is the dynamics monoid of the update system.

Update systems on graphs

Let Γ be an oriented graph with at most one arrow between any two vertices. An update system on Γ is a choice of:

- a set S_{i} of local states for each vertex i;

If $S=\prod_{i} S_{i}$ is the set of global states, each f_{i} induces a global update function $F_{i}: S \rightarrow S$ given by

Every word in the vertices of Γ yields a corresponding composition of the
\square
The image of the natural homomorphism $F(V) \rightarrow$ End (S) is the dynamics monoid of the update system.

Update systems on graphs

Let Γ be an oriented graph with at most one arrow between any two vertices. An update system on Γ is a choice of:

- a set S_{i} of local states for each vertex i;
- a local update function $f_{i}: \prod_{i \rightarrow j} S_{j} \rightarrow S_{i}$.
 function $F_{i}: S \rightarrow S$ given by

Every word in the vertices of Γ yields a corresponding composition of the
The image of the natural homomorphism $F(V) \rightarrow$ End (S) is the dynamics monoid of the update system.

Update systems on graphs

Let Γ be an oriented graph with at most one arrow between any two vertices. An update system on Γ is a choice of:

- a set S_{i} of local states for each vertex i;
- a local update function $f_{i}: \prod_{i \rightarrow j} S_{j} \rightarrow S_{i}$.

If $S=\prod_{i} S_{i}$ is the set of global states, each f_{i} induces a global update function $F_{i}: S \rightarrow S$ given by

$$
\left(F_{i}(s)\right)_{k}= \begin{cases}s_{k} & \text { if } k \neq i \\ f_{i}\left(s_{j}, i \rightarrow j\right) & \text { if } k=i\end{cases}
$$

Every word in the vertices of Γ yields a corresponding composition of the
F_{i}.
The image of the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ is the dynamics monoid of the update system.

Update systems on graphs

Let Γ be an oriented graph with at most one arrow between any two vertices. An update system on Γ is a choice of:

- a set S_{i} of local states for each vertex i;
- a local update function $f_{i}: \prod_{i \rightarrow j} S_{j} \rightarrow S_{i}$.

If $S=\prod_{i} S_{i}$ is the set of global states, each f_{i} induces a global update function $F_{i}: S \rightarrow S$ given by

$$
\left(F_{i}(s)\right)_{k}= \begin{cases}s_{k} & \text { if } k \neq i \\ f_{i}\left(s_{j}, i \rightarrow j\right) & \text { if } k=i\end{cases}
$$

Every word in the vertices of Γ yields a corresponding composition of the
F_{i}.
The image of the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ is the dynamics monoid of the update system.

Update systems on graphs

Let Γ be an oriented graph with at most one arrow between any two vertices. An update system on Γ is a choice of:

- a set S_{i} of local states for each vertex i;
- a local update function $f_{i}: \prod_{i \rightarrow j} S_{j} \rightarrow S_{i}$.

If $S=\prod_{i} S_{i}$ is the set of global states, each f_{i} induces a global update function $F_{i}: S \rightarrow S$ given by

$$
\left(F_{i}(s)\right)_{k}= \begin{cases}s_{k} & \text { if } k \neq i \\ f_{i}\left(s_{j}, i \rightarrow j\right) & \text { if } k=i\end{cases}
$$

Every word in the vertices of Γ yields a corresponding composition of the
F_{i}.
The image of the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ is the dynamics monoid of the update system.

Update systems on graphs

Let Γ be an oriented graph with at most one arrow between any two vertices. An update system on Γ is a choice of:

- a set S_{i} of local states for each vertex i;
- a local update function $f_{i}: \prod_{i \rightarrow j} S_{j} \rightarrow S_{i}$.

If $S=\prod_{i} S_{i}$ is the set of global states, each f_{i} induces a global update function $F_{i}: S \rightarrow S$ given by

$$
\left(F_{i}(s)\right)_{k}= \begin{cases}s_{k} & \text { if } k \neq i \\ f_{i}\left(s_{j}, i \rightarrow j\right) & \text { if } k=i\end{cases}
$$

Every word in the vertices of Γ yields a corresponding composition of the F_{i}.

The image of the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ is the dynamics monoid of the update system.

A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent. Henceforth: no self-loops!
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$.

If Γ has no cycles of length 1 or 2 , then the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ factor through H_{K}.

Example: $\mathrm{Cyc}_{n}=\mathbb{Z} / n \mathbb{Z}$ with arrows $i \rightarrow i+1 ; S_{i}=\mathbb{Z}$, for all i; $f_{i}\left(s_{i+1}\right)=s_{i+1}+1$. Then powers of $F_{1} F_{2} \ldots F_{n}$ are all distinct.

Consequently $H K_{\mathrm{Cyc}_{n}}$ is infinite. We learn that if $H K_{\Gamma}$ is finite, it contains no oriented cycle.

A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent.
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$ If Γ has no cycles of length 1 or 2 , then the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ factor through $H K_{\Gamma}$.

$f_{i}\left(s_{i+1}\right)=s_{i+1}+1$. Then powers of $F_{1} F_{2} \ldots F_{n}$ are all distinct.
Consequently $H K_{\mathrm{Cyc}_{n}}$ is infinite. We learn that if $H K_{\Gamma}$ is finite, it contains no oriented cycle.

A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent. Henceforth: no self-loops!
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$

If Γ has no cycles of length 1 or 2 , then the natural homomorphism

 $F(V) \rightarrow \operatorname{End}(S)$ factor through $H^{\prime} K_{\Gamma}$.
$f_{i}\left(s_{i+1}\right)=s_{i+1}+1$. Then powers of $F_{1} F_{2} \ldots F_{n}$ are all distinct.
Consequently $\mathrm{HK}_{\mathrm{Cyc}_{n}}$ is infinite. We^{2} learn that if $\mathrm{H} K_{r}$ is finite, it contains no oriented cycle.

A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent. Henceforth: no self-loops!
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$ If Γ has no cycles of length 1 or 2 , then the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ factor through $H K_{\Gamma}$

$f_{i}\left(s_{i+1}\right)=s_{i+1}+1$. Then powers of $F_{1} F_{2} \ldots F_{n}$ are all distinct.
Consequently $\mathrm{HK}_{\mathrm{Crc}_{\mathrm{c}}}$ is infinite. We learn that if HK_{r} is finite, it contains no oriented cycle.

A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent. Henceforth: no self-loops!
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$.

```
If }\Gamma\mathrm{ has no cycles of length 1 or 2, then the natural homomorphism
F(V)->\operatorname{End}(S) factor through HK
Example: Cyc }=\mathbb{Z}/n\mathbb{Z}\mathrm{ with arrows }i->i+1;\mp@subsup{S}{i}{}=\mathbb{Z}\mathrm{ , for all i;
fi}(\mp@subsup{s}{i+1}{})=\mp@subsup{s}{i+1}{}+1.\mathrm{ . Then powers of }\mp@subsup{F}{1}{}\mp@subsup{F}{2}{}\ldots\mp@subsup{F}{n}{}\mathrm{ are all distinct.
Consequently }H\mp@subsup{K}{\mp@subsup{\textrm{Cyc}}{n}{}}{}\mathrm{ is infinite. We learn that if }H\mp@subsup{K}{\Gamma}{}\mathrm{ is finite, it contains
no oriented cycle.
```


A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent. Henceforth: no self-loops!
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$.

If Γ has no cycles of length 1 or 2 , then the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ factor through $H K_{\Gamma}$.

Consequently $H K_{\mathrm{Cyc}_{n}}$ is infinite. We learn that if $H K_{\Gamma}$ is finite, it contains no oriented cycle.

A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent. Henceforth: no self-loops!
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$.

If Γ has no cycles of length 1 or 2 , then the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ factor through $H K_{\Gamma}$.

Example: $\mathrm{Cyc}_{n}=\mathbb{Z} / n \mathbb{Z}$ with arrows $i \rightarrow i+1 ; S_{i}=\mathbb{Z}$, for all i; $f_{i}\left(s_{i+1}\right)=s_{i+1}+1$.

A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent. Henceforth: no self-loops!
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$.

If Γ has no cycles of length 1 or 2 , then the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ factor through $H K_{\Gamma}$.

Example: $\mathrm{Cyc}_{n}=\mathbb{Z} / n \mathbb{Z}$ with arrows $i \rightarrow i+1 ; S_{i}=\mathbb{Z}$, for all i; $f_{i}\left(s_{i+1}\right)=s_{i+1}+1$. Then powers of $F_{1} F_{2} \ldots F_{n}$ are all distinct.

A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent. Henceforth: no self-loops!
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$.

If Γ has no cycles of length 1 or 2 , then the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ factor through $H K_{\Gamma}$.

Example: $\mathrm{Cyc}_{n}=\mathbb{Z} / n \mathbb{Z}$ with arrows $i \rightarrow i+1 ; S_{i}=\mathbb{Z}$, for all i; $f_{i}\left(s_{i+1}\right)=s_{i+1}+1$. Then powers of $F_{1} F_{2} \ldots F_{n}$ are all distinct.

Consequently $H K_{\mathrm{Cyc}_{n}}$ is infinite. We learn that if $H K_{\Gamma}$ is finite, it contains

A finiteness argument

- If Γ has no self-loops, then every F_{i} is idempotent. Henceforth: no self-loops!
- If i and j are not connected, then F_{i} and F_{j} commute.
- If $i \rightarrow j$, BUT $j \nrightarrow i$, then $F_{i} F_{j} F_{i}=F_{j} F_{i} F_{j}=F_{i} F_{j}$.

If Γ has no cycles of length 1 or 2 , then the natural homomorphism $F(V) \rightarrow \operatorname{End}(S)$ factor through $H K_{\Gamma}$.

Example: $\mathrm{Cyc}_{n}=\mathbb{Z} / n \mathbb{Z}$ with arrows $i \rightarrow i+1 ; S_{i}=\mathbb{Z}$, for all i; $f_{i}\left(s_{i+1}\right)=s_{i+1}+1$. Then powers of $F_{1} F_{2} \ldots F_{n}$ are all distinct.

Consequently $H K_{\mathrm{Cyc}_{n}}$ is infinite. We learn that if $H K_{\Gamma}$ is finite, it contains no oriented cycle.

Finiteness of HK_{Γ}

What do we know of Γ if $H K_{\Gamma}$ is finite?

- 「 has no oriented (or orientable) cycles
- If Γ has only unoriented edges, then it is a disjoint union of finite Dynkin graphs
- If Γ_{n} is the graph with vertices v_{1}, \ldots, v_{n} connected by arrows $v_{i} \rightarrow v_{j}$ iff $i<j$, then $H K_{\Gamma_{n}}=K_{n}$ is finite
- If Γ has only arrows, $H K_{\Gamma}$ is finite iff Γ is acyclic (if it is acyclic, it is a quotient of some $H K_{\Gamma_{n}}$, which is finite)

The mixed case is complicated and exhibits not well understood interactions between ADE components and arrows between them: acyclicity and ADE components do not suffice to ensure finiteness.

Finiteness of HK_{Γ}

What do we know of Γ if $H K_{\Gamma}$ is finite?

- 「 has no oriented (or orientable) cycles
- If Γ has only unoriented edges, then it is a disjoint union of finite Dynkin graphs
- If Γ_{n} is the graph with vertices v_{1}, \ldots, v_{n} connected by arrows $v_{i} \rightarrow v_{j}$ iff $i<j$, then $H K_{\Gamma_{n}}=K_{n}$ is finite
- If Γ has only arrows, $H K_{\Gamma}$ is finite iff Γ is acyclic (if it is acyclic, it is a quotient of some $H K_{\Gamma_{n}}$, which is finite)

The mixed case is complicated and exhibits not well understood interactions between ADE components and arrows between them: acyclicity and ADE components do not suffice to ensure finiteness.

Finiteness of HK_{Γ}

What do we know of Γ if $H K_{\Gamma}$ is finite?

- 「 has no oriented (or orientable) cycles
- If Γ has only unoriented edges, then it is a disjoint union of finite Dynkin graphs
- If Γ_{n} is the graph with vertices v_{1}, \ldots, v_{n} connected by arrows $v_{i} \rightarrow v_{j}$ iff $i<j$, then $H K_{\Gamma_{n}}=K_{n}$ is finite
- If Γ has only arrows, $H K_{-}$is finite iff Γ is acyclic (if it is acyclic, it is a quotient of some $H K_{\Gamma_{n}}$, which is finite)

The mixed case is complicated and exhibits not well understood interactions between ADE components and arrows between them: acyclicity and $A D E$ components do not suffice to ensure finiteness.

Finiteness of HK_{Γ}

What do we know of Γ if $H K_{\Gamma}$ is finite?

- 「 has no oriented (or orientable) cycles
- If Γ has only unoriented edges, then it is a disjoint union of finite Dynkin graphs
- If Γ_{n} is the graph with vertices v_{1}, \ldots, v_{n} connected by arrows $v_{i} \rightarrow v_{j}$ iff $i<j$
- If Γ has only arrows, H_{Γ} is finite iff Γ is acyclic (if it is acyclic, it is a quotient of some $H K_{\Gamma_{n}}$, which is finite)

The mixed case is complicated and exhibits not well understood interactions between ADE components and arrows between them: acyclicity and ADE components do not suffice to ensure finiteness.

Finiteness of HK_{Γ}

What do we know of Γ if $H K_{\Gamma}$ is finite?

- 「 has no oriented (or orientable) cycles
- If Γ has only unoriented edges, then it is a disjoint union of finite Dynkin graphs
- If Γ_{n} is the graph with vertices v_{1}, \ldots, v_{n} connected by arrows $v_{i} \rightarrow v_{j}$ iff $i<j$, then $H K_{\Gamma_{n}}$ quotient of some $H K_{\Gamma_{n}}$, which is finite)

The mixed case is complicated and exhibits not well understood interactions between ADE components and arrows between them: acyclicity and ADE components do not suffice to ensure finiteness.

Finiteness of HK_{Γ}

What do we know of Γ if $H K_{\Gamma}$ is finite?

- 「 has no oriented (or orientable) cycles
- If Γ has only unoriented edges, then it is a disjoint union of finite Dynkin graphs
- If Γ_{n} is the graph with vertices v_{1}, \ldots, v_{n} connected by arrows $v_{i} \rightarrow v_{j}$ iff $i<j$, then $H K_{\Gamma_{n}}=K_{n}$ is finite
quotient of some $H K_{\Gamma_{n}}$, which is finite)
The mived case is complicated and exhibits not well understood interactions between ADE components and arrows between them:

Finiteness of HK_{Γ}

What do we know of Γ if HK_{Γ} is finite?

- 「 has no oriented (or orientable) cycles
- If Γ has only unoriented edges, then it is a disjoint union of finite Dynkin graphs
- If Γ_{n} is the graph with vertices v_{1}, \ldots, v_{n} connected by arrows $v_{i} \rightarrow v_{j}$ iff $i<j$, then $H K_{\Gamma_{n}}=K_{n}$ is finite
- If Γ has only arrows, $H K_{\Gamma}$ is finite iff Γ is acyclic (if it is acyclic, it is a
\square

Finiteness of HK_{Γ}

What do we know of Γ if HK_{Γ} is finite?

- 「 has no oriented (or orientable) cycles
- If Γ has only unoriented edges, then it is a disjoint union of finite Dynkin graphs
- If Γ_{n} is the graph with vertices v_{1}, \ldots, v_{n} connected by arrows $v_{i} \rightarrow v_{j}$ iff $i<j$, then $H K_{\Gamma_{n}}=K_{n}$ is finite
- If Γ has only arrows, $H K_{\Gamma}$ is finite iff Γ is acyclic (if it is acyclic, it is a quotient of some $H K_{\Gamma_{n}}$, which is finite)
\square

Finiteness of HK_{Γ}

What do we know of Γ if HK_{Γ} is finite?

- 「 has no oriented (or orientable) cycles
- If Γ has only unoriented edges, then it is a disjoint union of finite Dynkin graphs
- If Γ_{n} is the graph with vertices v_{1}, \ldots, v_{n} connected by arrows $v_{i} \rightarrow v_{j}$ iff $i<j$, then $H K_{\Gamma_{n}}=K_{n}$ is finite
- If Γ has only arrows, $H K_{\Gamma}$ is finite iff Γ is acyclic (if it is acyclic, it is a quotient of some $H K_{\Gamma_{n}}$, which is finite)

The mixed case is complicated and exhibits not well understood interactions between ADE components and arrows between them: acyclicity and ADE components do not suffice to ensure finiteness.

Finiteness of Hecke-Kiselman monoids

There is a unique acyclic digraph on four vertices with ADE connected components which yields an infinite Hecke-Kiselman monoid:

This is proved by making it act "transitively" on an infinite set.
joint with Aragona 2013

Figure 1

Is universal dynamics possible?

- Is it possible to set up an update system on the graph 「 so that $H K_{\Gamma} \rightarrow \operatorname{End}(S)$ be injective?

We already know that maps F_{i} satisfy the Hecke-Kiselman relations, but there might be further relations we failed to spot so far.

In order to show there are no further universal relation is to set up an update system on Γ in which the F_{i} generate a monoid isomorphic to $H K_{\Gamma}$ Idea: set up local functions that (combinatorially?) recover a word (= update sequence) inducing the information found on outward vertices.

Is universal dynamics possible?

- Is it possible to set up an update system on the graph 「 so that $H K_{\Gamma} \rightarrow \operatorname{End}(S)$ be injective?

We already know that maps F_{i} satisfy the Hecke-Kiselman relations, but there might be further relations we failed to spot so far.

In order to show there are no further universal relation is to set up an update system on Γ in which the F_{i} generate a monoid isomorphic to $H K_{\Gamma}$ Idea: set un local functions that (combinatorially?) recover a word (= update sequence) inducing the information found on outward vertices.

Is universal dynamics possible?

- Is it possible to set up an update system on the graph Γ so that $H K_{\Gamma} \rightarrow \operatorname{End}(S)$ be injective?

We already know that maps F_{i} satisfy the Hecke-Kiselman relations, but there might be further relations we failed to spot so far.

In order to show there are no further universal relation is to set up an update system on Γ in which the F_{i} generate a monoid isomorphic to $H K_{\Gamma}$.

Idea: set up local functions that (combinatorially?) recover a word (= update sequence) inducing the information found on outward vertices.

Is universal dynamics possible?

- Is it possible to set up an update system on the graph Γ so that $H K_{\Gamma} \rightarrow \operatorname{End}(S)$ be injective?

We already know that maps F_{i} satisfy the Hecke-Kiselman relations, but there might be further relations we failed to spot so far.

In order to show there are no further universal relation is to set up an update system on Γ in which the F_{i} generate a monoid isomorphic to $H K_{\Gamma}$. Idea: set up local functions that (combinatorially?) recover a word (= update sequence) inducing the information found on outward vertices.

Kiselman case

The most convenient case to treat is when $\Gamma=\Gamma_{n}$ is the complete (acyclic, ordered) graph. It is convenient since:

- one has an explicit characterization of reduced words in $H K_{\Gamma_{n}}=K_{n}$;
- simplifications from non reduced to reduced words are always monotone: one may simplify any given word to its reduced form by a sequence of length-reducing steps and
- ... every such sequence ends on the same reduced word.

Kiselman case

The most convenient case to treat is when $\Gamma=\Gamma_{n}$ is the complete (acyclic, ordered) graph. It is convenient since:

- one has an explicit characterization of reduced words in $H K_{\Gamma_{n}}=K_{n}$;
- simplifications from non reduced to reduced words are always monotone: one may simplify any given word to its reduced form by a sequence of length-reducing steps and
- ... every such sequence ends on the same reduced word.

Kiselman case

The most convenient case to treat is when $\Gamma=\Gamma_{n}$ is the complete (acyclic, ordered) graph. It is convenient since:

- one has an explicit characterization of reduced words in $H K_{\Gamma_{n}}=K_{n}$;
- simplifications from non reduced to reduced words are always monotone: one may simplify any given word to its reduced form by a sequence of length-reducing steps and.
every such sequence ends on the same reduced word.

Kiselman case

The most convenient case to treat is when $\Gamma=\Gamma_{n}$ is the complete (acyclic, ordered) graph. It is convenient since:

- one has an explicit characterization of reduced words in $H K_{\Gamma_{n}}=K_{n}$;
- simplifications from non reduced to reduced words are always monotone: one may simplify any given word to its reduced form by a sequence of length-reducing steps and...
every such sequence ends on the same reduced word.

Kiselman case

The most convenient case to treat is when $\Gamma=\Gamma_{n}$ is the complete (acyclic, ordered) graph. It is convenient since:

- one has an explicit characterization of reduced words in $H K_{\Gamma_{n}}=K_{n}$;
- simplifications from non reduced to reduced words are always monotone: one may simplify any given word to its reduced form by a sequence of length-reducing steps and...
- ... every such sequence ends on the same reduced word.

A linking operation

If $u, v \in F(A)$ are words in the alphabet A, we define $[u, v]$ to be the shortest word that

- has v as a suffix
- admits u as a subword

How to compute $[u, v]$:

- Factor $u=u_{1} u_{2}$ so that u_{2} is longest suffix of u which is a subword of
- Then $[u, v]=u_{1} v$.
E.g.: $[a b c a b, b a b c]=a b c b a b c$.

The product [,] is neither commutative nor associative. It seems to lack good properties, but solves the universal dynamics problem for the graph

A linking operation

If $u, v \in F(A)$ are words in the alphabet A, we define $[u, v]$ to be the shortest word that

- has v as a suffix
- admits u as a subword

How to compute $[u, v]$

- Factor $u=u_{1} u_{2}$ so that u_{2} is longest suffix of u which is a subword of
- Then $[u, v]=u_{1} v$.
E.g.: $[a b c a b, b a b c]=a b c b a b c$.

The product [] is neither commutative nor associative. It seems to lack good properties, but solves the universal dynamics problem for the graph

A linking operation

If $u, v \in F(A)$ are words in the alphabet A, we define $[u, v]$ to be the shortest word that

- has v as a suffix
- admits u as a subword

How to compute $[u, v]$:

- Factor $u=u_{1} u_{2}$ so that u_{2} is longest suffix of u which is a subword of
- Then $[u, v]=u_{1} v$.
E.g.: $[a b c a b, b a b c]=a b c b a b c$.

The product [,] is neither commutative nor associative. It seems to lack good properties, but solves the universal dynamics problem for the graph

A linking operation

If $u, v \in F(A)$ are words in the alphabet A, we define $[u, v]$ to be the shortest word that

- has v as a suffix
- admits u as a subword

How to compute $[u, v]$:

- Factor $u=u_{1} u_{2}$ so that u_{2} is longest suffix of u which is a subword of v.
- Then $[u, v]=u_{1} v$.
E.g.: $[a b c a b, b a b c]=a b c b a b c$.
\square

A linking operation

If $u, v \in F(A)$ are words in the alphabet A, we define $[u, v]$ to be the shortest word that

- has v as a suffix
- admits u as a subword

How to compute $[u, v]$:

- Factor $u=u_{1} u_{2}$ so that u_{2} is longest suffix of u which is a subword of v.
- Then $[u, v]=u_{1} v$.
E.g.: $[a b c a b, b a b c]=a b c b a b c$.

The product [,] is neither commutative nor associative. It seems to lack good properties, but solves the universal dynamics problem for the graph Γ_{n}.

A universal update system on Γ_{n}

On the graph Γ_{n} set $S_{i}=F\left(a_{i}, \ldots, a_{n}\right)$ and define

$$
f_{i}\left(s_{i+1}, \ldots, s_{n}\right)=a_{i}\left[s_{n}, \ldots\left[s_{i+3},\left[s_{i+2}, s_{i+1}\right]\right] \ldots\right] .
$$

Teorema

```
let w}\inF(\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{}).\mathrm{ If }\mp@subsup{F}{w}{}(1,1,\ldots,1)=(\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\ldots,\mp@subsup{s}{n}{})\mathrm{ , then
[sn,\ldots[s\mp@subsup{s}{3}{},[\mp@subsup{s}{2}{},\mp@subsup{s}{1}{}]]\ldots] is the (unique) reduced expression of w in
HK}\mp@subsup{\Gamma}{\mp@subsup{\Gamma}{n}{}}{}=\mp@subsup{K}{n}{}
```

The dynamical complexity of K_{n} is captured by symbolic-combinatorial properties of the linking operation.

Warning! One obtains a reduced expression WHEN the state $\left(s_{1}, \ldots, s_{n}\right)$ is reachable from ($1,1, \ldots, 1$), but not in general.

A universal update system on Γ_{n}
On the graph Γ_{n} set $S_{i}=F\left(a_{i}, \ldots, a_{n}\right)$ and define

$$
f_{i}\left(s_{i+1}, \ldots, s_{n}\right)=a_{i}\left[s_{n}, \ldots\left[s_{i+3},\left[s_{i+2}, s_{i+1}\right]\right] \ldots\right] .
$$

Teorema
Lei $w \in F\left(a_{1}, \ldots, a_{n}\right)$. If $F_{w}(1,1, \ldots, 1)=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, then
$\left[s_{n}, \ldots\left[s_{3},\left[s_{2}, s_{1}\right]\right] \ldots\right]$ is the (unique) reduced expression of w in
$H K_{\Gamma_{n}}=K_{n}$.
The dynamical complexity of K_{n} is captured by symbolic-combinatorial properties of the linking operation.

Warning! One obtains a reduced expression WHEN the state $\left(s_{1}, \ldots, s_{n}\right)$ is reachable from ($1,1, \ldots, 1$), but not in general.

A universal update system on Γ_{n}
On the graph Γ_{n} set $S_{i}=F\left(a_{i}, \ldots, a_{n}\right)$ and define

$$
f_{i}\left(s_{i+1}, \ldots, s_{n}\right)=a_{i}\left[s_{n}, \ldots\left[s_{i+3},\left[s_{i+2}, s_{i+1}\right]\right] \ldots\right] .
$$

Teorema
Let $w \in F\left(a_{1}, \ldots, a_{n}\right)$. If $F_{w}(1,1, \ldots, 1)=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, then $\left[s_{n}, \ldots\left[s_{3},\left[s_{2}, s_{1}\right]\right] \ldots\right]$ is the (unique) reduced expression of w in $H K_{\Gamma_{n}}=K_{n}$.

The dynamical complexity of K_{n} is captured by symbolic-combinatorial properties of the linking operation.

Warning! One obtains a reduced expression WHEN the state $\left(s_{1}, \ldots, s_{n}\right)$ is reachable from $(1,1, \ldots, 1)$, but not in general.

A universal update system on Γ_{n}

On the graph Γ_{n} set $S_{i}=F\left(a_{i}, \ldots, a_{n}\right)$ and define

$$
f_{i}\left(s_{i+1}, \ldots, s_{n}\right)=a_{i}\left[s_{n}, \ldots\left[s_{i+3},\left[s_{i+2}, s_{i+1}\right]\right] \ldots\right] .
$$

Teorema
Let $w \in F\left(a_{1}, \ldots, a_{n}\right)$. If $F_{w}(1,1, \ldots, 1)=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, then $\left[s_{n}, \ldots\left[s_{3},\left[s_{2}, s_{1}\right]\right] \ldots\right]$ is the (unique) reduced expression of w in $H K_{\Gamma_{n}}=K_{n}$.

The dynamical complexity of K_{n} is captured by symbolic-combinatorial properties of the linking operation.

Warning! One obtains a reduced expression WHEN the state $\left(s_{1}, \ldots, s_{n}\right)$ is reachable from $(1,1, \ldots, 1)$, but not in general.

A universal update system on Γ_{n}

On the graph Γ_{n} set $S_{i}=F\left(a_{i}, \ldots, a_{n}\right)$ and define

$$
f_{i}\left(s_{i+1}, \ldots, s_{n}\right)=a_{i}\left[s_{n}, \ldots\left[s_{i+3},\left[s_{i+2}, s_{i+1}\right]\right] \ldots\right] .
$$

Teorema

Let $w \in F\left(a_{1}, \ldots, a_{n}\right)$. If $F_{w}(1,1, \ldots, 1)=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, then $\left[s_{n}, \ldots\left[s_{3},\left[s_{2}, s_{1}\right]\right] \ldots\right]$ is the (unique) reduced expression of w in $H K_{\Gamma_{n}}=K_{n}$.

The dynamical complexity of K_{n} is captured by symbolic-combinatorial properties of the linking operation.

Warning! One obtains a reduced expression WHEN the state $\left(s_{1}, \ldots, s_{n}\right)$ is reachable from ($1,1, \ldots, 1$), but not in general.

EXAMPLE: Kiselman semigroup K_{4} corresponds to graph

We denote both vertices and update function with a single letter

$$
a \quad b \quad c \quad d
$$

At the beginning each (local) state is the empty word

we want to perform the word $b c a b d e$ from niglet to left.

EXAMPLE: Kiselman semigroup K_{4} corresponds to graph

We denote both vertices and update function with a single letter
$a \quad b \quad c \quad d$

At the beginning each (leal) state is the empty word
we want to perform the word $b c a b d e$ from night to left.

EXAMPLE: Kiselman semigroup K_{4} corresponds to graph

a	b	c	d
$*$	$*$	$*$	$*$
$*$	$*$	c	$*$
$*$	$*$	c	d

We denote both vertices and update function with a single letter

$$
a \quad b \quad c \quad d
$$

At the beginning each (local) state is the empty word
we want to perform the word bcabde from night to left.

EXAMPLE: Kiselman semigroup K_{4} corresponds to graph

a	b	c	d
$*$	$*$	$*$	$*$
$*$	$*$	c	$*$
$*$	$*$	c	d
$*$	b	$d e$	e

We denote both vertices and update function with a single letter

$$
a \quad b \quad c \quad d
$$

At the beginning each (local) state is the empty word
we want to perform the word $b c a b d e$ from niglet to left.

EXAMPLE: Kiselman semigroup K_{4} corresponds to graph

We denote both vertices and update function with a single letter $a b d e b d e c d a$ $a \quad b \quad e \quad d$
At the beginning each (local) state is the empty word
we want to perform the word bcabde from niglet to left.

EXAMPLE: Kiselman semigroup K_{4} corresponds to graph

We denote both vertices and update function with a single letter
$\left.\begin{array}{cccc}a & b & c & d \\ * & * & * & * \\ * & * & c & *\end{array}\right] c$ abde bode c d
abde bode cd d
At the beginning each (leal) state abode bcd cd $d b$ is the empty word $c^{\prime \prime} d$
we want to perform the word $b c a b d e$ from niglet to left.

A universal update system on Γ_{n}

We have reached the state

$a b d c$ bcd cd d

which, according to the theorem, is induced by the word

$$
[d,[c d,[b c d, a b d c]]]=[d,[c d, b c a b \underline{d} c]]=[d, b \underline{c} a b \underline{d} c]=b c a b \underline{d} c,
$$

as we indeed computed.

A universal update system on Γ_{n}

We have reached the state

$$
a b d c \quad b c d \quad c d \quad d
$$

which, according to the theorem, is induced by the word
$[d,[c d,[b c d, a b d c]]]=[d,[c d, b c a b d c]]=[d, b c a b d c]=b c a b d c$,
as we indeed computed.

A universal update system on Γ_{n}

We have reached the state

$$
a b d c \quad b c d \quad c d \quad d
$$

which, according to the theorem, is induced by the word

$$
[d,[c d,[b c d, a b d c]]]=[d,[c d, b c a b d c]]=[d, b c a b d c]=b c a b d c,
$$

as we indeed computed.

A universal update system on Γ_{n}

We have reached the state

$$
a b d c \quad b c d \quad c d \quad d
$$

which, according to the theorem, is induced by the word

$$
[d,[c d,[b c d, a b d c]]]=[d,[c d, b c a b \underline{d} c]]
$$

as we indeed computed.

A universal update system on Γ_{n}

We have reached the state

$$
a b d c \quad b c d \quad c d \quad d
$$

which, according to the theorem, is induced by the word

$$
[d,[c d,[b c d, a b d c]]]=[d,[c d, b c a b \underline{d} c]]=[d, b \underline{c} a b \underline{d} c]
$$

as we indeed computed.

A universal update system on Γ_{n}

We have reached the state

$$
a b d c \quad b c d \quad c d \quad d
$$

which, according to the theorem, is induced by the word

$$
[d,[c d,[b c d, a b d c]]]=[d,[c d, b c a b \underline{d} c]]=[d, b \underline{c} a b \underline{d} c]=b c a b \underline{d} c,
$$

as we indeed computed.

What happens for other choices of Γ ?

The linking operation [,] works for a few other choices of Γ (e.g.: equioriented $A_{n} \rightsquigarrow$ Catalan monoid) but not always. For general choices of「 one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely. One may show that all simplifications from any given word to a reduced expression are monotone. However, reduced expression is not unique due to possibility to commute letters but this is the only form of non-uniqueness and can be dealt with by taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some reduced expression. Same with subword. The linking operation needs to be redefined to account for these new features. New definition is ugly.
but works (experimentally) in all cases (all 「's with at most 8 vertices and a few other scattered examples).

What happens for other choices of Γ ?
The linking operation [,] works for a few other choices of Γ (e.g.: equioriented $A_{n} \rightsquigarrow$ Catalan monoid) but not always. For general choices of Γ one needs to take time priority of local updates into account.

but works (experimentally) in all cases (all Г's with at most 8 vertices and a few other scattered examples)

What happens for other choices of Γ ?

The linking operation [,] works for a few other choices of Γ (e.g.: equioriented $A_{n} \rightsquigarrow$ Catalan monoid) but not always. For general choices of「 one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely.
> redefined to account for these new features. New definition is ugly
but works (experimentally) in all cases (all 「's with at most 8 vertices and a few other scattered examples)

What happens for other choices of Γ ?

The linking operation [,] works for a few other choices of Γ (e.g.: equioriented $A_{n} \rightsquigarrow$ Catalan monoid) but not always. For general choices of「 one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely. One may show that all simplifications from any given word to a reduced expression are monotone. However, reduced expression is not unique due to possibility to commute letters but this is the only form of non-uniqueness and can be dealt with by taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be redefined to account for these new features. New definition is ugly and a few other scattered examples)

What happens for other choices of Γ ?

The linking operation [,] works for a few other choices of Γ (e.g.: equioriented $A_{n} \rightsquigarrow$ Catalan monoid) but not always. For general choices of「 one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely. One may show that all simplifications from any given word to a reduced expression are monotone. However, reduced expression is not unique due to possibility to commute letters but this is the only form of non-uniqueness and can be dealt with by taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some reduced expression. Same with subword. The linking operation needs to be redefined to account for these new features. New definition is ugly...
but works (experimentally) in all cases (all 「's with at most 8 vertices and a few other scattered examples)

What happens for other choices of Γ ?

The linking operation [,] works for a few other choices of Γ (e.g.: equioriented $A_{n} \rightsquigarrow$ Catalan monoid) but not always. For general choices of「 one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely. One may show that all simplifications from any given word to a reduced expression are monotone. However, reduced expression is not unique due to possibility to commute letters but this is the only form of non-uniqueness and can be dealt with by taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some reduced expression. Same with subword. The linking operation needs to be redefined to account for these new features. New definition is ugly...
. . . but works (experimentally) in all cases \qquad

What happens for other choices of Γ ?

The linking operation [,] works for a few other choices of Γ (e.g.: equioriented $A_{n} \rightsquigarrow$ Catalan monoid) but not always. For general choices of「 one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely. One may show that all simplifications from any given word to a reduced expression are monotone. However, reduced expression is not unique due to possibility to commute letters but this is the only form of non-uniqueness and can be dealt with by taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some reduced expression. Same with subword. The linking operation needs to be redefined to account for these new features. New definition is ugly...
... but works (experimentally) in all cases (all 「's with at most 8 vertices and a few other scattered examples).

Generalized linking operation

$\operatorname{Set}[u, \star]=[\star, u]=u$.
Let $u=a_{1} a_{2} \ldots a_{n}, v=b_{1} b_{2} \ldots b_{m}$ be non empty words in the alphabet V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b_{i} of v such that

- b_{i} commutes with all $b_{j}, j>i$;
- no letter in the longest suffix of u not containing b_{i} has an arrow pointing to b_{i}.
Denote by \bar{v} the word obtained by removing the rightmost occurence of b_{i} from v (and similarly with u). Then
- if u contains b_{i}, and b_{i} commutes with all letters in the longest suffix of u not containing b_{i}, then set $[u, v]=[\bar{u}, \bar{v}] b_{i}$;
- otherwise, set $[u, v]=[u, \bar{v}] b_{i}$.

Generalized linking operation

$\operatorname{Set}[u, \star]=[\star, u]=u$.
Let $u=a_{1} a_{2} \ldots a_{n}, v=b_{1} b_{2} \ldots b_{m}$ be non empty words in the alphabet V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter bi of v such that

- b_{i} commutes with all $b_{j}, j>i$;
- no letter in the longest suffix of u not containing b_{i} has an arrow pointing to b_{i}.
Denote by \bar{v} the word obtained by removing the rightmost occurence of b_{i} from v (and similarly with u). Then
- if u contains b_{i}, and b_{i} commutes with all letters in the longest suffix of u not containing b_{i}, then set $[u, v]=[\bar{u}, \bar{v}] b_{i}$;
- otherwise, set $[u, v]=[u, \bar{v}] b_{i}$.

Generalized linking operation

Set $[u, \star]=[\star, u]=u$.
Let $u=a_{1} a_{2} \ldots a_{n}, v=b_{1} b_{2} \ldots b_{m}$ be non empty words in the alphabet V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b_{i} of v such that

- b_{i} commutes with all $b_{j}, j>i$;
- no letter in the longest suffix of u not containing b_{i} has an arrow pointing to b_{i}.
Denote by \bar{v} the word obtained by removing the rightmost occurence of b_{i} from v (and similarly with u). Then
- if u contains b_{i}, and b_{i} commutes with all letters in the longest suffix of u not containing b_{i}, then set $[u, v]=[\bar{u}, \bar{v}] b_{i}$;
- otherwise, set $[u, v]=[u, \bar{v}] b_{i}$

Generalized linking operation

Set $[u, \star]=[\star, u]=u$.
Let $u=a_{1} a_{2} \ldots a_{n}, v=b_{1} b_{2} \ldots b_{m}$ be non empty words in the alphabet V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b_{i} of v such that

- no letter in the longest suffix of u not containing b_{i} has an arrow pointing to b_{i}.
Denote by \bar{v} the word obtained by removing the rightmost occurence of b_{i} from v (and similarly with u). Then
- if u contains b_{i}, and b_{i} commutes with all letters in the longest suffix of u not containing b_{i}, then set $[u, v]=[\bar{u}, \bar{v}] b_{i}$;
- otherwise, set $[u, v]=[u, \bar{v}] b_{i}$

Generalized linking operation

Set $[u, \star]=[\star, u]=u$.
Let $u=a_{1} a_{2} \ldots a_{n}, v=b_{1} b_{2} \ldots b_{m}$ be non empty words in the alphabet V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b_{i} of v such that

- b_{i} commutes with all $b_{j}, j>i$;
- no letter in the longest suffix of u not containing b_{i} has an arrow pointing to b_{i}.
Denote by \bar{v} the word obtained by removing the rightmost occurence of b_{i} from v (and similarly with u). Then
- if u contains b_{i}, and b_{i} commutes with all letters in the longest suffix of u not containing b_{i}, then set $[u, v]=[\bar{u}, \bar{v}] b_{i}$;
- otherwise, set $[u, v]=[u, \bar{v}] b_{i}$

Generalized linking operation

Set $[u, \star]=[\star, u]=u$.
Let $u=a_{1} a_{2} \ldots a_{n}, v=b_{1} b_{2} \ldots b_{m}$ be non empty words in the alphabet V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b_{i} of v such that

- b_{i} commutes with all $b_{j}, j>i$;
- no letter in the longest suffix of u not containing b_{i} has an arrow pointing to b_{i}.

Generalized linking operation

Set $[u, \star]=[\star, u]=u$.
Let $u=a_{1} a_{2} \ldots a_{n}, v=b_{1} b_{2} \ldots b_{m}$ be non empty words in the alphabet V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b_{i} of v such that

- b_{i} commutes with all $b_{j}, j>i$;
- no letter in the longest suffix of u not containing b_{i} has an arrow pointing to b_{i}.
Denote by \bar{v} the word obtained by removing the rightmost occurence of b_{i} from v (and similarly with u). Then
- if u contains b_{i}, and b_{i} commutes with all letters in the longest suffix
\square

Generalized linking operation

Set $[u, \star]=[\star, u]=u$.
Let $u=a_{1} a_{2} \ldots a_{n}, v=b_{1} b_{2} \ldots b_{m}$ be non empty words in the alphabet V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b_{i} of v such that

- b_{i} commutes with all $b_{j}, j>i$;
- no letter in the longest suffix of u not containing b_{i} has an arrow pointing to b_{i}.
Denote by \bar{v} the word obtained by removing the rightmost occurence of b_{i} from v (and similarly with u). Then
- if u contains b_{i}, and b_{i} commutes with all letters in the longest suffix of u not containing b_{i}, then set $[u, v]=[\bar{u}, \bar{v}] b_{i}$;
- otherwise, set $[u, v]=[u, \bar{v}] b_{i}$.

Generalized linking operation

If there exists no such b_{i}, then choose the rightmost letter a_{i} of u such that

- a_{i} commutes with all $a_{j}, j>i ;$
- no letter in the longest suffix of v not containing a_{i} has an arrow pointing to a_{i}.
Denote by \bar{u} the word obtained by removing the rightmost occurence of a_{i} from v (and similarly with u). Then
- if v contains a_{i}, and a_{i} commutes with all letters in the longest suffix of v not containing a_{i}, then set $[u, v]=[\bar{u}, \bar{v}] a_{i} ;$
- otherwise, set $[u, v]=[\bar{u}, v] a_{i}$.

If there exists no such a_{i}, then set $[u, v]=*$.

Generalized linking operation

If there exists no such b_{i}, then choose the rightmost letter a_{i} of u such that

- a_{i} commutes with all $a_{j}, j>i$;
- no letter in the longest suffix of v not containing a_{i} has an arrow pointing to a_{i}.
Denote by \bar{u} the word obtained by removing the rightmost occurence of a_{i} from v (and similarly with u). Then
- if v contains a_{i}, and a_{i} commutes with all letters in the longest suffix of v not containing a_{i}, then set $[u, v]=[\bar{u}, \bar{v}] a_{i}$;
- otherwise, set $[u, v]=[\bar{u}, v] a_{i}$.

If there exists no such a_{i}, then set $[u, v]=\star$.

Generalized linking operation

If there exists no such b_{i}, then choose the rightmost letter a_{i} of u such that

- a_{i} commutes with all $a_{j}, j>i$;
- no letter in the longest suffix of v not containing a_{i} has an arrow pointing to a_{i}.
Denote by \bar{u} the word obtained by removing the rightmost occurence of a_{i} from v (and similarly with u). Then
- if v contains a_{i}, and a_{i} commutes with all letters in the longest suffix of v not containing a_{i}, then set $[u, v]=[\bar{u}, \bar{v}] a_{i}$;
- otherwise, set $[u, v]=[\bar{u}, v] a_{i}$.

If there exists no such a_{i}, then set $[u, v]=\star$.

Questions

- Can one find a canonical combinatorial action of Hecke-Kiselman monoids on something?
- Can one set up a universal update system also on oriented graphs with cycles?
- Does Coxeter combinatorics play a role in this setting?
- Is there a way to recursively compute the order of Hecke-Kiselman monoids as in the Coxeter setting?
- Can one prov(id)e a characterization of digraphs inducing finite Hecke-Kiselman monoids?

Questions

- Can one find a canonical combinatorial action of Hecke-Kiselman monoids on something?
- Can one set up a universal update system also on oriented graphs with cycles?
- Does Coxeter combinatorics play a role in this setting?
- Is there a way to recursively compute the order of Hecke-Kiselman monoids as in the Coxeter setting?
- Can one prov(id)e a characterization of digraphs inducing finite Hecke-Kiselman monoids?

Questions

- Can one find a canonical combinatorial action of Hecke-Kiselman monoids on something?
- Can one set up a universal update system also on oriented graphs with cycles?
- Does Coxeter combinatorics play a role in this setting?
- Is there a way to recursively compute the order of Hecke-Kiselman monoids as in the Coxeter setting?
- Can one prov(id)e a characterization of digraphs inducing finite Hecke-Kiselman monoids?

Questions

- Can one find a canonical combinatorial action of Hecke-Kiselman monoids on something?
- Can one set up a universal update system also on oriented graphs with cycles?
- Does Coxeter combinatorics play a role in this setting?
- Is there a way to recursively compute the order of Hecke-Kiselman monoids as in the Coxeter setting?
- Can one prov(id)e a characterization of digraphs inducing finite Hecke-Kiselman monoids?

Questions

- Can one find a canonical combinatorial action of Hecke-Kiselman monoids on something?
- Can one set up a universal update system also on oriented graphs with cycles?
- Does Coxeter combinatorics play a role in this setting?
- Is there a way to recursively compute the order of Hecke-Kiselman monoids as in the Coxeter setting?
- Can one prov(id)e a characterization of digraphs inducing finite Hecke-Kiselman monoids?

Bibliography

- M.H.A. Newman, "On theories with a combinatorial definition of equivalence", Ann. Math 1942
- P.N. Norton, "0-Hecke algebras", J. Austr. Math. Soc. 1979
- G.P. Huet, "Confluent reductions: abstract properties and applications to term rewriting systems", J. Assoc. Computer Machinery 1980
- R. Richardson, T. Springer, "The Bruhat order on symmetric varieties", Geom. dedicata 1990
- A. Solomon, "Catalan monoids, monoids of local endomorphisms, and their presentations", Semigroup Forum 1996
- H.S. Mortveit, C.M. Reidys, "Discrete, sequential dynamical systems", Discr. Math. 2001
- C. Kiselman, "A semigroup of operators in convexity theory", Trans. AMS 2002
- G. Kudryavtseva, V. Mazorchuk, "On Kiselman's semigroup", Yokohama Math. J. 2009
- T. Kenney, "Coxeter groups, Coxeter monoids and the Bruhat order", J. Alg. Comb. 2013
- R. Aragona, A. D'Andrea, "Hecke-Kiselman monoids of small cardinality", Semigroup Forum 2013
- E. Collina, A. D'Andrea, "A graph-dynamical interpretation of Kiselman's semigroups", J. Alg. Comb. 2015
- R. Aragona, A. D'Andrea, "Normal form in Hecke-Kiselman monoids associated with simple oriented graphs", Alg. Discr. Math. 2020
- A. D'Andrea, S. Stella, "The cardinality of Kiselman's semigroups grows double-exponentially", draft

Thanks

for your attention!!!

