Partial actions in semigroup theory

Ganna Kudryavtseva

University of Ljubljana Faculty of Civil and Geodetic Engineering IMFM, Ljubljana

Second ANTIPODE workshop

Brussels, ULB September 13, 2022

<ロト < 団 > < 三 > < 三 > < 三 > の Q (* 1/34

Partial actions of groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

2/34

Partial group actions: equivalent definitions

Definition 1. A partial action of G on X is α = ({X_g}_{g∈G}, {α_g}_{g∈G}) where X_g ⊆ X and α_g: X_{g⁻¹} → X_g is a bijection ∀g ∈ G, such that:

(i)
$$X_e = X$$
 and $\alpha_e = \operatorname{id}_X$
(ii) $\alpha_h^{-1}(X_{g^{-1}} \cap X_h) \subseteq X_{(gh)^{-1}}$
(iii) $\alpha_g(\alpha_h(x)) = \alpha_{gh}(x)$ for each $x \in \alpha_h^{-1}(X_{g^{-1}} \cap X_h)$

- A partial map φ: A → B is a map C → B where C ⊆ A. We say that φ(a) is defined if a ∈ C and undefined otherwise.
- Definition 2. A partial action of G on X is a partial map
 *: G × X → X, (g, x) → g * x (whenever defined) such that
 (i) e * x is defined and equals x for all x ∈ X.
 (ii) if g * x is defined then g⁻¹ * (g * x) is defined and g⁻¹ * (g * x) = x.
 (iii) if h + x and g + (h + x) are defined then gh + x is defined and
 - (iii) if h * x and g * (h * x) are defined then gh * x is defined and g * (h * x) = gh * x.

Partial group actions: equivalent definitions

- S inverse monoid, e.g., $S = \mathcal{I}(X)$
- ▶ A premorphism φ : $G \to S$, $g \mapsto \varphi_g$, is a map such that
 - (i) $\varphi_e = e$ (ii) $\varphi_{g^{-1}} = (\varphi_g)^{-1}$ (iii) $\varphi_g \varphi_h \le \varphi_{gh}$
- Definition 3. A partial action of G on X is a premorphism $G \rightarrow \mathcal{I}(X)$.
- Definitions 1,2 and 3 are equivalent.
- ▶ Definition 1 was introduced by Exel in 1998. Definition 2 first appears in Kellendonk and Lawson (2004). Definition 3 first appears in the work by McAlister and Reilly in 1977, and then applied by Petrich and Reilly to the description of *E*-unitary inverse semigroups.
- Partial actions of groups are precisely restrictions of actions (Kellendonk, Lawson, 2004).

E-unitary inverse semigroups via partial actions of groups

< □ ▶ < 큔 ▶ < 토 ▶ < 토 ▶ ○ ♀ ♡ ♀ ♡ < 5/34

Groupoid of a partial action of a group

- * partial action of G on X
- Objects of $\mathcal{G} = \mathcal{G}(G, X, *)$: elements of X
- ▶ There is an arrow $\bigoplus_{x} g = y$ iff g * x is defined and g * x = y. Denote this arrow by (y, g).
- $(z,h) \cdot (y,g)$ exists in \mathcal{G} iff $h^{-1} * z = y$.

then $(z, h) \cdot (y, g) = (z, hg)$.

- Suppose that X is a semilattice and G acts partially on it by order izomorphisms between order ideals.
- Example G group, X the set of finite subsets of G which contain e is a semilattice with respect to the union of subsets. g ∗ A is defined if g⁻¹ ∈ A in which case g ∗ A = gA = {ga: a ∈ A}.

Partial action product

• Define
$$X \rtimes G = \mathcal{G}$$
, as a set.

• Let
$$\xrightarrow{g}_{x \to y}$$
 and $\xrightarrow{h}_{x' \to y'}$ be arrows.

• if $x' \neq y$ the product $(y', h) \cdot (y, g)$ is not defined in \mathcal{G} . Put $z = x' \wedge y$.

► Then
$$\bigoplus_{x''}^{g} \xrightarrow{g}_{z}$$
 and $\bigoplus_{z}^{h} \xrightarrow{g}_{y''}^{y''}$ are in \mathcal{G}
where $x'' = g^{-1} * z$ and $y'' = h * z$.

• Put
$$(y', h) \circ (y, g) = (y'', h) \cdot (z, g) = (y'', hg).$$

 • is called the pseudoproduct, (X ⋊ G, ∘, ⁻¹) is an inverse semigroup, which is *E*-unitary (see the next slide).

E-unitary inverse semigroups

- ▶ S inverse semigroup, E(S) semilattice of idempotents of S.
- If γ is a group congruence on S (that is, S/γ is a group) then $e \gamma f$ for any $e, f \in E(S)$.
- ▶ If S contains 0 then γ is the universal congruence: $a = a \cdot a^{-1}a \gamma a \cdot 0 = 0$ for all $a \in S$.
- Let σ be the minimum group congruence. Then S/σ is the maximum group quotient of S. E.g.: if S = I(X) then S/σ = {0}.
- ▶ S is called *E*-unitary if $s \sigma e$ where $e \in E(S)$ implies that $s \in E(S)$.
- ▶ E.g.: groups and semilattices are *E*-unitary inverse semigroups.
- ► Let G be acting partially on X be order isomorphisms between order ideals. Then X ⋊ G is called the *partial action product* of X by G. It is E-unitary.

Structure of E-unitary inverse semigroups

- ► S inverse semigroup
- ► The underlying groupoid of *S*: vertices: E(S), arrows $\underbrace{\bullet}_{e}^{s} \xrightarrow{\bullet}_{f}^{s}$ where $e = s^{-1}s =: \mathbf{d}(s)$, $f = ss^{-1} =: \mathbf{r}(s)$.
- Suppose S is E-unitary and $[s] = \sigma^{\natural}(s) \in S/\sigma =: G$.
- ▶ Then s is uniquely determined by $\mathbf{r}(s)$ (or $\mathbf{d}(s)$) and [s]. Indeed, let $s \sigma t$ and $ss^{-1} = tt^{-1}$. Then $st^{-1} \sigma tt^{-1} \Rightarrow st^{-1} \in E(S)$. So $ss^{-1}t \leq s$. By symmetry, $t \leq s$ so t = s.
- Let g ∈ G and e ∈ E(S). Put g * e be defined if there is an arrow

 s
 • with [s] = g in the underlying groupoid of S in which case
 g * e = f. This is well defined and defines a partial action of G on
 E(S) by order isomorphisms between order ideals.
- ► Theorem (McAlister; interpretation by Kellendonk and Lawson) S ≃ E(S) ⋊ G.

Partial actions of groups and actions of inverse semigroups

・ロト ・ 一 ト ・ 三 ト ・ 三 ・ つ へ ()
10/34

Exel's inverse semigroup $\mathcal{S}(G)$

- ► G group, Exel's construction (1998), one of the (motivations) was to describe several classes of C*-algebras which are cross products by partial actions of groups as cross products by actions of inverse semigroups.
- S(G) universal semigroup given by generators [g], g ∈ G, and relations [s][t][t⁻¹] = [st][t⁻¹], [s⁻¹][s][t] = [s⁻¹][st], [e] is the unit element. Then:
- S(G) is an inverse semigroup, and there is a bijection between partial actions of G and actions of S(G). Moreover:
- For any inverse semigroup S and any premorphism φ: G → S there is a unique morphism of semigroups ψ: S(G) → S such that φ = ψι.

$\mathcal{S}(G) \simeq Sz(G)$

- G group, X the set of finite subsets of G which contain e is a semilattice with respect to the union of subsets. g * A is defined if g⁻¹ ∈ A in which case g * A = gA = {ga: a ∈ A}.
- $X \rtimes G =: Sz(G)$ the Szendrei expansion of G (Szendrei, 1989).
- ▶ Fact: $X \rtimes G \simeq S(G)$ (Kelendonk, Lawson, 2004).
- It is interesting that Sz(G) has yet another universal property:
 - 1. First, Sz(G) is an *F*-inverse monoid, that is, each σ -class has a maximum element. In addition $Sz(G)/\sigma \simeq G$ via the map $(A,g) \mapsto g$.
 - 2. *F*-inverse universal property. For any *F*-inverse monoid *S* and any *F*-inverse semigroup *S* with $S/\sigma \simeq G$, there is a unique morphism $\psi: Sz(G) \rightarrow S$ (which preserves maximum elements of σ -classes) such that the diagram below commutes:

Partial representations of groups

- A partial representation of a group G on a vector space V is a map φ: G → End(V) such that φ_e = id_V and ∀s, t ∈ S : φ_sφ_tφ_{t-1} = φ_{st}φ_{t-1}, φ_{s-1}φ_sφ_t = φ_{s-1}φ_{st}.
- If K is a field, a partial group algebra K_{par}(G) is the universal algebra given by generators [s], s ∈ S and relations
 [s][t][t⁻¹] = [st][t⁻¹], [s⁻¹][s][t] = [s⁻¹][st], s, t ∈ G, [e] = 1.
- $K_{par}G \simeq KS(G)$.
- Let Γ(S(G)) be the underlying groupoid of S(G). The product of generators s ⋅ t is the product st in S(G) if r(t) = d(s) and 0 otherwise.
- If G is finite then K_{par}(G) ≃ KΓ(S(G)) (Dokuchaev, Exel, Piccione, 2000). Its dimension is ∑ⁿ_{k=1} (ⁿ⁻¹_{k-1})k = 2ⁿ⁻²(n+1) (the cardinality of S(G)).
- This result also follows from Steinberg (2006): K(S) ≃ KΓ(S) for any inverse semigroup with finitely many idempotents.
- If S is infinite then a similar result holds with Γ(S) replaced by the universal groupoid of S.

Partial actions of monoids

Partial actions of monoids which restrict actions

- M monoid, X set
- If M acts (globally) on X and Y ⊆ X. Let * be the restricted partial action on Y.
- ▶ If *ts* * *x* is defined, then *s* * *x* does not need to be defined.
- ► If ts * x and s * x are defined then t * (s * x) is defined and ts * x = t * s * (x).

Partial groups actions without reference to inverses

Recall:

A partial action of G on X is a partial map
: G × X → X, (g, x) → g * x (whenever defined) such that
(i) e * x is defined and equals x for all x ∈ X
(ii) if g * x is defined then g⁻¹ * (g * x) is defined and g⁻¹ * (g * x) = x.

(iii) if h * x and g * (h * x) are defined then gh * x is defined and g * (h * x) = gh * x.

 Observation (Megrelishvili, Schröder, 2004) In the definition above axiom (ii) can be replaced by

(iia) If gh * x and h * x are defined then g * (h * x) is defined and gh * x = g * h * (x).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらう

16/34

Partial actions of monoids

- Definition. A partial action of *M* on *X* is a partial map
 - $*:X imes M o X,\ (x,s)\mapsto x*s$ (whenever defined) such that
 - 1. e * x is defined and equals x for all $x \in X$.
 - 2. if s * x and t * (s * x) are defined then ts * x is defined and ts * x = t * (s * x).
- Definition A strong partial action of M on X is a partial action, which, in addition satisfies:
 - 3. If gh * x and h * x are defined then g * (h * x) is defined and gh * x = g * h * (x).
- Definition A premorphism $\varphi \colon M \to \mathcal{PT}(X)^1$ is a map such that $\varphi_e = \operatorname{id}_X, \ \varphi_s \varphi_t \leq \varphi_{st}$ for all $s, t \in M$. It is strong, if, in addition, $\varphi_s \varphi_t = \varphi_s^+ \varphi_{st}$.
- Every strong partial monoid action is globalizable (Megrelishvili and Schröder). It follows that strong partial monoid actions are precisely restrictions of actions.

 $^{{}^1\}mathcal{PT}(X)$ is a left restriction monoid, instead of it one can consider any left restriction monoid.

Proper restriction semigroups and partial actions of monoids

Restriction semigroups

► Restrictions semigroups are non-regular generalizations of inverse semigroups. They have two unary operations * and +. In an inverse semigroup a* = d(a) and a⁺ = r(a).

► E.g.:
$$R = \{f \in \mathcal{I}(X) : \forall x \in X \ f(x) \ge x\}.$$

More formally: restriction semigroups form a variety of algebras of signature (·,*,*), defined by the following identities:

$$x^+x = x, \ x^+y^+ = y^+x^+, \ (x^+y)^+ = x^+y^+, \ (xy)^+x = xy^+.$$

Dual identites hold for *

•
$$(x^+)^* = x^+, (x^*)^+ = x^*.$$

- ▶ $P(S) = \{x \in S : x = x^+ = x^*\}$ semilattice of projection of S.
- ► Example Any monoid is a restriction semigroup with x^{*} = x⁺ = e for all x; as is any semilattice with x^{*} = x⁺ = x.
- σ minimum monoid congruence.
- Aim: generalize McAlister theorem to restriction semigroups. We need partial actions of monoids.

The partial action product

- Suppose that *M* acts partially on a semilattice *X* by order-isomorphisms between order ideals. Consider its underlying category.
- Note that an arrow \bullet is uniquely determined by y and s only.
- $\blacktriangleright \text{ Let } \underbrace{\overset{s}{\underset{x \to y}{\overset{y}{\xrightarrow{y}}}}}_{y} \text{ and } \underbrace{\overset{x}{\underset{x'}{\overset{t}{\xrightarrow{y}}}}}_{y'} \overset{y}{\underset{y'}{\overset{b}{\xrightarrow{y}}}} \text{ be arrows.}$
- ▶ Define $(y', t) \circ (y, s) = (y'', t) \cdot (z, s) = (y'', ts)$, where $z = x' \land y$, x'' is the source of the only arrow with label *s* and range *y*, and y'' = t * z.
- Define $(x, s)^+ = (x, e)$ and $(x, s)^* = (y, e)$ where x = s * y.
- (X ⋊ G, ∘, +, *) is a restriction semigroup which is proper and every proper restriction semigroup arises this way (Cornock and Gould, 2011; GK, 2015)
- Proper means: a^{*} = b^{*}, a σ b ⇒ a = b and a⁺ = b⁺, a σ b ⇒ a = b. Proper restriction semigroups generalize *E*-unitary inverse semigroups.
- This result has been extended to partial actions of restriction semigroups and to the structure of proper extensions of restirction semigroups (Dokuchaev, Khrypchenko, GK, 2021)

Almost perfect restriction semigroups

- *M* acts partially on *X* by partial bijections, and suppose that $\varphi: M \to \mathcal{I}(X), m \mapsto \varphi_m$ is a morphism: $\varphi_s \varphi_t = \varphi_{st}$ holds.
- If G is a group φ(G) ⊆ S(X), so G acts on X. Consequently, X ⋊ G is the semidirect product with respect to the action φ.
- If M is a monoid then the inclusion φ(M) ⊆ S(X) does not need to hold so we get a rich class of restriction semigroups, which does not have an adequate analogue if specialized to inverse semigroups.
- Partial action products with respect to homomorphisms are called almost perfect restriction semigroups (GK, 2015, called ultra proper, Jones 2016).
- The free restriction semigroup is almost perfect (but the free inverse semigroup is not).
- Every restriction semigroup has an almost perfect cover (which is not the case for inverse semigroups).
- Every left (or right) strong partial action of *M* on a semilattice by order-isomorphisms between order ideals is globalizable (GK, 2015; for inverse semigroups: Munn, 1976)

Expansions of monoids

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

22/34

$\mathcal{FR}_p(S)$ and $\mathcal{FR}_s(S)$

- ▶ S a monoid, put $[S] = \{[s]: s \in S\}$.
- ▶ Define *FR_p(S)* and *FR_s(S)* to be the following restriction semigroups:

1.
$$\mathcal{FR}_{\rho}(S) = \langle [S] : [e] = e, [s][t] \leq [st] \rangle$$

- 2. $\mathcal{FR}_s(S) = \langle [S] : [e] = e, [s][t] = [st][t]^* = [s]^+[st] \rangle$
- FR_s(S) is a generalization of S(G), FR_p(S) is a 'more relaxed' analogue of S(G).
- *FR_p(S)* and *FR_s(S)* are proper restriction semigroups,
 ι: *S* → *FR_p(S)* is a premorphism (resp. a strong premorphism).
- The universal property If φ: S → T is a premorphism to a restiction monoid then there is a morphism ψ: FR_p(S) → T making the triangle commute. Similarly, for FR_s(S) and φ being strong.

The coordinatization

- In what follows R stands for one of p or s.
- Since $\mathcal{FR}_R(S)$ is proper, we have $\mathcal{FR}_R(S) \simeq P(\mathcal{FR}_R(S)) \rtimes S$.
- What is the structure of $P(\mathcal{FR}_R(S))$?
- Define $\mathcal{FI}_p(S)$ and $\mathcal{FI}_s(S)$ to be the following **inverse** semigroups:

1.
$$\mathcal{FI}_p(S) = \langle [S] : [e] = e, [s][t] \leq [st] \rangle.$$

- 2. $\mathcal{FI}_{s}(S) = \langle [S] : [e] = e, [s][t] = [st][t]^{*} = [s]^{+}[st] \rangle.$
- Result (GK, 2019) $P(\mathcal{FR}_R(S)) \simeq E(\mathcal{FI}_R(S)).$
- ▶ S embeds into a group if and only if the canonical morphism $\mathcal{FR}_R(S) \to \mathcal{FI}_R(S)$ is injective.
- ► If S is an inverse monoid then FI_s(S) is isomorphic to the Lawson-Margolis-Steinberg generalized expansion.
- Corollary If the word problem in $\mathcal{FI}_R(S)$ is decidable, so is the word problem in $\mathcal{FR}_R(S)$.
- If *M* is finite then the word problem in $\mathcal{FR}_p(S)$ is decidable.

Globalization of partial actions of monoids and semigroups

The tensor product globalization

- S a monoid, * a strong partial action of S on X.
- ► $S \otimes X = S \otimes_S X = S \times X / \sim$, where \sim is generated by $(ts, x) \sim (t, s * x)$.
- Define $t \circ (s \otimes x) = ts \otimes x$. This defines a global action of S on $S \otimes X$.
- Define δ: X → S ⊗ X by x → e ⊗ x. It is an injection and if s ∗ x is defined, we have

 $s \circ (\delta(x)) = s \circ (e \otimes x) = s \otimes x = e \otimes s * x = \delta(s * x),$

so $(S \otimes X, \circ)$ is a globalization of (X, *) via δ .

- A globalization (Y, ·) of (X, ∗) is X-generated (or an enveloping action), if Y = S · X.
- $S \otimes X$ is a globalization of X (Hollings, 2007), which is an initial object in the category of all globalizations of X.
- If S is a group, S ⊗ X is, up to isomorphism, the only X-generated globalization of X (Kellendonk, Lawson, 2004).

Further results

- * partial action of a topological group G on a topological space X
- ► $G \star X = \{(g, x) : \exists g \star x\}; \star \text{ is continuous if the map } G \star X \to X, (g, x) \mapsto g \star x \text{ is continuous}$
- Result (Kellendonk and Lawson, 2004; see also Abadie 2003) * is globalizable if and only if:
 - 1. $G \star X$ is an open subset in $G \times X$ and
 - 2. * is continuous.

If \ast is globalizable, then $G\otimes X$ is X-generated and is unique, up to homeomorphism.

- The unifying setting: globalization of geometric partial co(modules), see Saracco and Vercruysse, 2020, 2021.
- A partial group action by isomorphisms between ideals of an algebra is globalizable if and only if the domains of all φ_g are unital algebras, see Dokuchaev and Exel, 2004.
- Partial actions of groups on cell complexes were studied by Steinberg, 2003.

The Hom-set construction (GK and Laan, 2022)

Let * − a partial action of a monoid S on a set X, s ∈ S and x ∈ X. Put

$$dom(f_{s,x}) = \{t \in S : ts * x \text{ is defined}\},\$$

$$f_{s,x}(t) = ts * x \text{ for all } t \in dom(f_{s,x}).$$
 (1)

Let

$$X^{S} = \{f_{s,x} \colon x \in X, s \in S\}.$$

Define

$$t \circ f_{s,x} = f_{ts,x}$$
 for all $f_{s,x} \in X^S$ and $t \in S$.

- Define $\lambda: X \to X^S$, $x \mapsto f_{e,x}$. It is an injection.
- ▶ Proposition. (X^{S}, \circ) is an X-generated globalization of (X, *) via λ .

An example: partially defined actions

- Let φ: S → PT(X) be a homomorphism. We call it a partially defined action of S on X.
- Let us calculate X^S.
 - If s * x is defined then $f_{s,x} = f_{e,s*x} \in \lambda(X)$.
 - If s ∗ x is undefined then dom(f_{s,x}) = {t ∈ S: ts ∗ x is defined} = Ø, since s ∗ x is undefined implies that ts ∗ x is undefined for all t ∈ T. Define f_{s,x} := o.
 - It follows that $X^{S} = \lambda(X) \cup \{o\} := X \cup \{o\}$. We get the global S-act $(X \cup \{o\}, \circ)$ where $s \circ x = \begin{cases} s * x, & \text{if } x \in X \text{ and } s * x \text{ is defined}, \\ o, & \text{otherwise.} \end{cases}$
- So X^S is obtain via the well known embedding of PT(X) into T(X) by adding one new element to X.

The universal property

S − monoid, (X, *) − a strong partial S-act

- G_X(S, X, *) − the category of X-generated globalizations of (X, *). Theorem S ⊗ X is an initial object and X^S is a terminal object in the category G_X(S, X, *).
- That is, if (Y, ∘) is an X-generated globalization of (X, *) via a map ι: X → Y then there are unique morphisms of global S-acts S ⊗ X → Y, s ⊗ x ↦ s * ι(x), and Y → X^S, s * ι(x) ↦ f_{s,x}, such that the following diagram commutes:

The part about the terminal objects – GK and Laan (2022).

An example

N⁰ = (N ∪ {0}, +) acts partially on N by setting φ_n(a) = n ⋅ a to be defined iff a − n > 0 in which case n ⋅ a = a − n. Then ⋅ is a partially defined action.

▶ For $b \in B_{\mathbb{Z}} = \mathbb{Z}$ and $n \in \mathbb{N}^0$ put $\psi_n(b) = n * b = b - n$. Then $(B_{\mathbb{Z}}, *)$ is globalization of (\mathbb{N}, \cdot) and is isomorphic to $\mathbb{N} \otimes \mathbb{N}^0$.

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の 4 で
31/34

An example: continuation

For an integer a ≤ 0 put B_a = {z ∈ Z: z ≥ a}. For each b ∈ B_a and n ∈ N⁰ put

$$\gamma_n(b) = n *_a b = \begin{cases} b - n, & \text{if } b - n > a, \\ a, & \text{if } b - n \le a. \end{cases}$$

Then $(B_a, *_a)$ is an \mathbb{N} -generated globalization of (\mathbb{N}, \cdot) .

• If a = 0, $(B_0, *_0)$ is isomorphic to $\mathbb{N}^{\mathbb{N}^0}$.

All the constructed globalizations are pairwise non-isomorphic.

Partial actions of semigroups

- ► The constructions of S ⊗ X and X^S can be extended to suitable classes of partial actions of semigroups (which do not have a unit).
- One needs to restrict attention for classes of partial actions with a suitable substitution for the condition that e * x is defined for all x and equals x.
- These classes are called firm and non-singular partial actions. Analogous classes for global actions arise naturally in Morita theory of semigroups.
- A partial action · of S on X is unital if for each x ∈ X there are y ∈ X and s ∈ S such that s · y is defined and equals x.
- A partial action · of S on X is firm if it is unitary and whenever s · x and t · y are defined and s · x = t · y we have s ⊗ x = t ⊗ y in S ⊗ X.
- ► The globalizations S ⊗ X and X^S are the initial object and the terminal object, respectively, in the appropriate categories of globalizations (GK, Laan, 2022).

Some questions and future work

- Study the Hom-set globalization in the case of action of a monoid on a topological space. Compare the results with those by Megrelishvili and Schröder.
- When is a partial monoid action by isomorphisms between ideals of an algebra globalizable? Can we construct the initial and the terminal product in the category of enveloping actions?
- Study partial cross products attached to partial actions of monoids (and semigroups) on algebras. Connect these with the universal category of a monoid.
- It is known that if (B, β) is an enveloping action of (A, α) where a group G acts partially on a unital algebra A, then the partial cross products A ⋊ G and B ⋊ G are Morita equivalent. Is there an analogue for G replaced by a monoid (or semigroup)?
- Similar question as above for the context of operator algebras.
- Fit the Hom-set globalization construction into the general framework of geometric partial (co)modules developed by Hu, Saracco and Vercruysse.