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Partial actions of groups
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Partial group actions: equivalent definitions

I G – group with the unit e, X – set

I Definition 1. A partial action of G on X is
α = ({Xg}g∈G , {αg}g∈G ) where Xg ⊆ X and αg : Xg−1 → Xg is a
bijection ∀g ∈ G , such that:

(i) Xe = X and αe = idX

(ii) α−1
h (Xg−1 ∩ Xh) ⊆ X(gh)−1

(iii) αg (αh(x)) = αgh(x) for each x ∈ α−1
h (Xg−1 ∩ Xh)

I A partial map ϕ : A→ B is a map C → B where C ⊆ A. We say
that ϕ(a) is defined if a ∈ C and undefined otherwise.

I Definition 2. A partial action of G on X is a partial map
∗ : G × X → X , (g , x) 7→ g ∗ x (whenever defined) such that

(i) e ∗ x is defined and equals x for all x ∈ X .

(ii) if g ∗ x is defined then g−1 ∗ (g ∗ x) is defined and g−1 ∗ (g ∗ x) = x .

(iii) if h ∗ x and g ∗ (h ∗ x) are defined then gh ∗ x is defined and
g ∗ (h ∗ x) = gh ∗ x .
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Partial group actions: equivalent definitions

I S – inverse monoid, e.g., S = I(X )

I A premorphism ϕ : G → S , g 7→ ϕg , is a map such that

(i) ϕe = e

(ii) ϕg−1 = (ϕg )−1

(iii) ϕgϕh ≤ ϕgh

I Definition 3. A partial action of G on X is a premorphism
G → I(X ).

I Definitions 1,2 and 3 are equivalent.

I Definition 1 was introduced by Exel in 1998. Definition 2 first
appears in Kellendonk and Lawson (2004). Definition 3 first appears
in the work by McAlister and Reilly in 1977, and then applied by
Petrich and Reilly to the description of E -unitary inverse
semigroups.

I Partial actions of groups are precisely restrictions of actions
(Kellendonk, Lawson, 2004).
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E -unitary inverse semigroups

via
partial actions of groups
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Groupoid of a partial action of a group

I ∗ – partial action of G on X

I Objects of G = G(G ,X , ∗): elements of X

I There is an arrow •
x

g
−−−−→•

y
iff g ∗ x is defined and g ∗ x = y . Denote

this arrow by (y , g).

I (z , h) · (y , g) exists in G iff h−1 ∗ z = y .

•
x

g
−−−−→•

y

h
−−−−→•

z

then (z , h) · (y , g) = (z , hg).

I Suppose that X is a semilattice and G acts partially on it by order
izomorphisms between order ideals.

I Example G – group, X — the set of finite subsets of G which
contain e is a semilattice with respect to the union of subsets. g ∗A
is defined if g−1 ∈ A in which case g ∗ A = gA = {ga : a ∈ A}.
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Partial action product

I Define X o G = G, as a set.

I Let •
x

g
−−−−→•

y
and •

x′

h
−−−−→•

y ′
be arrows.

I if x ′ 6= y the product (y ′, h) · (y , g) is not defined in G. Put
z = x ′ ∧ y .

I Then •
x′′

g
−−−−→•

z
and •

z

h
−−−−→•

y ′′
are in G

where x ′′ = g−1 ∗ z and y ′′ = h ∗ z .

I Put (y ′, h) ◦ (y , g) = (y ′′, h) · (z , g) = (y ′′, hg).

I ◦ is called the pseudoproduct, (X o G , ◦,−1 ) is an inverse
semigroup, which is E -unitary (see the next slide).
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E -unitary inverse semigroups

I S – inverse semigroup, E (S) – semilattice of idempotents of S .

I If γ is a group congruence on S (that is, S/γ is a group) then e γ f
for any e, f ∈ E (S).

I If S contains 0 then γ is the universal congruence:
a = a · a−1a γ a · 0 = 0 for all a ∈ S .

I Let σ be the minimum group congruence. Then S/σ is the
maximum group quotient of S . E.g.: if S = I(X ) then S/σ = {0}.

I S is called E -unitary if s σ e where e ∈ E (S) implies that s ∈ E (S).

I E.g.: groups and semilattices are E -unitary inverse semigroups.

I Let G be acting partially on X be order isomorphisms between order
ideals. Then X o G is called the partial action product of X by G .
It is E -unitary.
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Structure of E -unitary inverse semigroups

I S - inverse semigroup

I The underlying groupoid of S : vertices: E (S), arrows •
e

s
−−−−→•

f

where e = s−1s =: d(s), f = ss−1 =: r(s).

I Suppose S is E -unitary and [s] = σ\(s) ∈ S/σ =: G .

I Then s is uniquely determined by r(s) (or d(s)) and [s].

Indeed, let s σ t and ss−1 = tt−1. Then st−1 σ tt−1 ⇒ st−1 ∈ E(S). So

ss−1t ≤ s. By symmetry, t ≤ s so t = s.

I Let g ∈ G and e ∈ E (S). Put g ∗ e be defined if there is an arrow

•
e

s
−−−−→•

f
with [s] = g in the underlying groupoid of S in which case

g ∗ e = f . This is well defined and defines a partial action of G on
E (S) by order isomoprhisms between order ideals.

I Theorem (McAlister; interpretation by Kellendonk and Lawson)
S ' E (S) o G .
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Partial actions of groups

and
actions of inverse semigroups
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Exel’s inverse semigroup S(G )
I G – group, Exel’s construction (1998), one of the (motivations) was

to describe several classes of C∗-algebras which are cross products
by partial actions of groups as cross products by actions of inverse
semigroups.

I S(G ) – universal semigroup given by generators [g ], g ∈ G , and
relations [s][t][t−1] = [st][t−1], [s−1][s][t] = [s−1][st], [e] is the unit
element. Then:

I S(G ) is an inverse semigroup, and there is a bijection between
partial actions of G and actions of S(G ). Moreover:

I For any inverse semigroup S and any premorphism ϕ : G → S there
is a unique morphism of semigroups ψ : S(G )→ S such that
ϕ = ψι.

S

G S(G)

ψ
ϕ

ι
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S(G ) ' Sz(G )
I G – group, X — the set of finite subsets of G which contain e is a

semilattice with respect to the union of subsets. g ∗ A is defined if
g−1 ∈ A in which case g ∗ A = gA = {ga : a ∈ A}.

I X o G =: Sz(G ) – the Szendrei expansion of G (Szendrei, 1989).

I Fact: X o G ' S(G ) (Kelendonk, Lawson, 2004).

I It is interesting that Sz(G ) has yet another universal property:

1. First, Sz(G) is an F -inverse monoid, that is, each σ-class has a
maximum element. In addition Sz(G)/σ ' G via the map
(A, g) 7→ g .

2. F -inverse universal property. For any F -inverse monoid S and any
F -inverse semigroup S with S/σ ' G , there is a unique morphism
ψ : Sz(G)→ S (which preserves maximum elements of σ-classes)
such that the diagram below commutes:

S

G Sz(G)

ψ

σ\
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Partial representations of groups
I A partial representation of a group G on a vector space V is a map
ϕ : G → End(V ) such that ϕe = idV and ∀s, t ∈ S :
ϕsϕtϕt−1 = ϕstϕt−1 , ϕs−1ϕsϕt = ϕs−1ϕst .

I If K is a field, a partial group algebra Kpar (G ) is the universal
algebra given by generators [s], s ∈ S and relations
[s][t][t−1] = [st][t−1], [s−1][s][t] = [s−1][st], s, t ∈ G , [e] = 1.

I KparG ' KS(G ).

I Let Γ(S(G )) be the underlying groupoid of S(G ). The product of
generators s · t is the product st in S(G ) if r(t) = d(s) and 0
otherwise.

I If G is finite then Kpar (G ) ' KΓ(S(G )) (Dokuchaev, Exel, Piccione,
2000). Its dimension is

∑n
k=1

(
n−1
k−1
)
k = 2n−2(n + 1) (the cardinality

of S(G )).

I This result also follows from Steinberg (2006): K (S) ' KΓ(S) for
any inverse semigroup with finitely many idempotents.

I If S is infinite then a similar result holds with Γ(S) replaced by the
universal groupoid of S .
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Partial actions of monoids
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Partial actions of monoids which restrict actions

I M – monoid, X – set

I If M acts (globally) on X and Y ⊆ X . Let ∗ be the restricted
partial action on Y .

I If ts ∗ x is defined, then s ∗ x does not need to be defined.

I If ts ∗ x and s ∗ x are defined then t ∗ (s ∗ x) is defined and
ts ∗ x = t ∗ s ∗ (x).

X

Y

•x •z

•y
s t

ts

X

Y

•x •z

•ys t

ts
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Partial groups actions without reference to inverses

I Recall:

I A partial action of G on X is a partial map
∗ : G × X → X , (g , x) 7→ g ∗ x (whenever defined) such that

(i) e ∗ x is defined and equals x for all x ∈ X

(ii) if g ∗ x is defined then g−1 ∗ (g ∗ x) is defined and g−1 ∗ (g ∗ x) = x .

(iii) if h ∗ x and g ∗ (h ∗ x) are defined then gh ∗ x is defined and
g ∗ (h ∗ x) = gh ∗ x .

I Observation (Megrelishvili, Schröder, 2004) In the definition above
axiom (ii) can be replaced by

(iia) If gh ∗ x and h ∗ x are defined then g ∗ (h ∗ x) is defined and
gh ∗ x = g ∗ h ∗ (x).
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Partial actions of monoids

I Definition. A partial action of M on X is a partial map
∗ : X ×M → X , (x , s) 7→ x ∗ s (whenever defined) such that

1. e ∗ x is defined and equals x for all x ∈ X .

2. if s ∗ x and t ∗ (s ∗ x) are defined then ts ∗ x is defined and
ts ∗ x = t ∗ (s ∗ x).

I Definition A strong partial action of M on X is a partial action,
which, in addition satisfies:

3. If gh ∗ x and h ∗ x are defined then g ∗ (h ∗ x) is defined and
gh ∗ x = g ∗ h ∗ (x).

I Definition A premorphism ϕ : M → PT (X )1is a map such that
ϕe = idX , ϕsϕt ≤ ϕst for all s, t ∈ M. It is strong, if, in addition,
ϕsϕt = ϕ+

s ϕst .

I Every strong partial monoid action is globalizable (Megrelishvili and
Schröder). It follows that strong partial monoid actions are precisely
restrictions of actions.

1PT (X ) is a left restriction monoid, instead of it one can consider any left
restriction monoid.
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Proper restriction semigroups and
partial actions of monoids
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Restriction semigroups
I Restrictions semigroups are non-regular generalizations of inverese

semigroups. They have two unary operations ∗ and +. In an inverse
semigroup a∗ = d(a) and a+ = r(a).

I E.g.: R = {f ∈ I(X ) : ∀x ∈ X f (x) ≥ x}.
I More formally: restriction semigroups form a variety of algebras of

signature (·,∗ ,+ ), defined by the following identities:

x+x = x , x+y+ = y+x+, (x+y)+ = x+y+, (xy)+x = xy+.

I Dual identites hold for ∗
I (x+)∗ = x+, (x∗)+ = x∗.

I P(S) = {x ∈ S : x = x+ = x∗} – semilattice of projection of S .

I Example Any monoid is a restriction semigroup with x∗ = x+ = e
for all x ; as is any semilattice with x∗ = x+ = x .

I σ - minimum monoid congruence.

I Aim: generalize McAlister theorem to restriction semigroups. We
need partial actions of monoids.
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The partial action product
I Suppose that M acts partially on a semilattice X by

order-isomorphisms between order ideals. Consider its underlying
category.

I Note that an arrow •
x

s
−−−−→•

y
is uniquely determined by y and s only.

I Let •
x

s
−−−−→•

y
and •

x′

t
−−−−→•

y ′
be arrows.

I Define (y ′, t) ◦ (y , s) = (y ′′, t) · (z , s) = (y ′′, ts), where z = x ′ ∧ y ,
x ′′ is the source of the only arrow with label s and range y , and
y ′′ = t ∗ z .

I Define (x , s)+ = (x , e) and (x , s)∗ = (y , e) where x = s ∗ y .
I (X o G , ◦,+ ,∗ ) is a restriction semigroup which is proper and every

proper restriction semigroup arises this way (Cornock and Gould,
2011; GK, 2015)

I Proper means: a∗ = b∗, a σ b ⇒ a = b and a+ = b+, a σ b ⇒
a = b. Proper restriction semigroups generalize E -unitary inverse
semigroups.

I This result has been extended to partial actions of restriction
semigroups and to the structure of proper extensions of restirction
semigroups (Dokuchaev, Khrypchenko, GK, 2021)
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Almost perfect restriction semigroups
I M acts partially on X by partial bijections, and suppose that
ϕ : M → I(X ), m 7→ ϕm is a morphism: ϕsϕt = ϕst holds.

I If G is a group ϕ(G ) ⊆ S(X ), so G acts on X . Consequently,
X o G is the semidirect product with respect to the action ϕ.

I If M is a monoid then the inclusion ϕ(M) ⊆ S(X ) does not need to
hold so we get a rich class of restriction semigroups, which does not
have an adequate analogue if specialized to inverse semigroups.

I Partial action products with respect to homomorphisms are called
almost perfect restriction semigroups (GK, 2015, called ultra proper,
Jones 2016).

I The free restriction semigroup is almost perfect (but the free inverse
semigroup is not).

I Every restriction semigroup has an almost perfect cover (which is
not the case for inverse semigroups).

I Every left (or right) strong partial action of M on a semilattice by
order-isomorphisms between order ideals is globalizable (GK, 2015;
for inverse semigroups: Munn, 1976)
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Expansions of monoids
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FRp(S) and FRs(S)
I S – a monoid, put [S ] = {[s] : s ∈ S}.
I Define FRp(S) and FRs(S) to be the following restriction

semigroups:

1. FRp(S) = 〈[S ] : [e] = e, [s][t] ≤ [st]〉
2. FRs(S) = 〈[S ] : [e] = e, [s][t] = [st][t]∗ = [s]+[st]〉

I FRs(S) is a generalization of S(G ), FRp(S) is a ‘more relaxed‘
analogue of S(G ).

I FRp(S) and FRs(S) are proper restriction semigroups,
ι : S → FRp(S) is a premorphism (resp. a strong premorphism).

I The universal property If ϕ : S → T is a premorphism to a restiction
monoid then there is a morphism ψ : FRp(S)→ T making the
triangle commute. Similarly, for FRs(S) and ϕ being strong.

T

S

FRR(S)
ψ

ϕ
ι
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The coordinatization
I In what follows R stands for one of p or s.

I Since FRR(S) is proper, we have FRR(S) ' P(FRR(S)) o S .

I What is the structure of P(FRR(S))?

I Define FIp(S) and FIs(S) to be the following inverse semigroups:

1. FIp(S) = 〈[S ] : [e] = e, [s][t] ≤ [st]〉.
2. FIs(S) = 〈[S ] : [e] = e, [s][t] = [st][t]∗ = [s]+[st]〉.

I Result (GK, 2019) P(FRR(S)) ' E (FIR(S)).

I S embeds into a group if and only if the canonical morphism
FRR(S)→ FIR(S) is injective.

I If S is an inverse monoid then FIs(S) is isomorphic to the
Lawson-Margolis-Steinberg generalized expansion.

I Corollary If the word problem in FIR(S) is decidable, so is the word
problem in FRR(S).

I If M is finite then the word problem in FRp(S) is decidable.
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Globalization of partial actions of
monoids and semigroups
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The tensor product globalization
I S – a monoid, ∗ a strong partial action of S on X .

I S ⊗ X = S ⊗S X = S × X/ ∼, where ∼ is generated by
(ts, x) ∼ (t, s ∗ x).

I Define t ◦ (s ⊗ x) = ts ⊗ x . This defines a global action of S on
S ⊗ X .

I Define δ : X → S ⊗ X by x 7→ e ⊗ x . It is an injection and if s ∗ x is
defined, we have

s ◦ (δ(x)) = s ◦ (e ⊗ x) = s ⊗ x = e ⊗ s ∗ x = δ(s ∗ x),

so (S ⊗ X , ◦) is a globalization of (X , ∗) via δ.

I A globalization (Y , ·) of (X , ∗) is X -generated (or an enveloping
action), if Y = S · X .

I S ⊗ X is a globalization of X (Hollings, 2007), which is an initial
object in the category of all globalizations of X .

I If S is a group, S ⊗ X is, up to isomorphism, the only X -generated
globalization of X (Kellendonk, Lawson, 2004).
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Further results
I ∗ – partial action of a topological group G on a topological space X

I G ? X = {(g , x) : ∃g ∗ x}; ∗ is continuous if the map G ? X → X ,
(g , x) 7→ g ∗ x is continuous

I Result (Kellendonk and Lawson, 2004; see also Abadie 2003) ∗ is
globalizable if and only if:

1. G ? X is an open subset in G × X and

2. ∗ is continuous.

If ∗ is globalizable, then G ⊗ X is X -generated and is unique, up to
homeomorphism.

I The unifying setting: globalization of geometric partial co(modules),
see Saracco and Vercruysse, 2020, 2021.

I A partial group action by isomorphisms between ideals of an algebra
is globalizable if and only if the domains of all ϕg are unital
algebras, see Dokuchaev and Exel, 2004.

I Partial actions of groups on cell complexes were studied by
Steinberg, 2003.
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The Hom-set construction (GK and Laan, 2022)

I Let ∗ – a partial action of a monoid S on a set X , s ∈ S and x ∈ X .
Put

dom(fs,x) = {t ∈ S : ts ∗ x is defined},

fs,x(t) = ts ∗ x for all t ∈ dom(fs,x). (1)

I Let
X S = {fs,x : x ∈ X , s ∈ S}.

I Define
t ◦ fs,x = fts,x for all fs,x ∈ X S and t ∈ S .

I Define λ : X → X S , x 7→ fe,x . It is an injection.

I Proposition. (X S , ◦) is an X -generated globalization of (X , ∗) via λ.
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An example: partially defined actions

I Let ϕ : S → PT (X ) be a homomorphism. We call it a partially
defined action of S on X .

I Let us calculate X S .

I If s ∗ x is defined then fs,x = fe,s∗x ∈ λ(X ).

I If s ∗ x is undefined then
dom(fs,x) = {t ∈ S : ts ∗ x is defined} = ∅, since s ∗ x is undefined
implies that ts ∗ x is undefined for all t ∈ T . Define fs,x := o.

I It follows that X S = λ(X ) ∪ {o} := X ∪ {o}. We get the global
S-act (X ∪ {o}, ◦) where

s ◦ x =

{
s ∗ x , if x ∈ X and s ∗ x is defined,
o, otherwise.

I So X S is obtain via the well known embedding of PT (X ) into
T (X ) by adding one new element to X .
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The universal property

I S – monoid, (X , ∗) – a strong partial S-act

I GX (S ,X , ∗) – the category of X -generated globalizations of (X , ∗).
Theorem S ⊗ X is an initial object and X S is a terminal object in
the category GX (S ,X , ∗).

I That is, if (Y , ◦) is an X -generated globalization of (X , ∗) via a
map ι : X → Y then there are unique morphisms of global S-acts
S ⊗ X → Y , s ⊗ x 7→ s ∗ ι(x), and Y → X S , s ∗ ι(x) 7→ fs,x , such
that the following diagram commutes:

X

YS ⊗ X X S

ι
δ λ

I The part about the terminal objects – GK and Laan (2022).
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An example
I N0 = (N ∪ {0},+) acts partially on N by setting ϕn(a) = n · a to be

defined iff a− n > 0 in which case n · a = a− n. Then · is a
partially defined action.

The partially defined action of ϕ2

• • • •
1 2 3 4

· · · · · · · · ·

• • • • • •1 2 3 4 5 6 · · ·

I For b ∈ BZ = Z and n ∈ N0 put ψn(b) = n ∗ b = b − n. Then
(BZ , ∗) is globalization of (N, ·) and is isomorphic to N⊗ N0.

The action of ψ2

• • • • • •
−1 0 1 2 3 4

· · · · · · · · · · · ·

• • • • • •1 2 3 4 5 6· · · · · · · · · · · ·
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An example: continuation

I For an integer a ≤ 0 put Ba = {z ∈ Z : z ≥ a}. For each b ∈ Ba

and n ∈ N0 put

γn(b) = n ∗a b =

{
b − n, if b − n > a,
a, if b − n ≤ a.

Then (Ba, ∗a) is an N-generated globalization of (N, ·).

I If a = 0, (B0, ∗0) is isomorphic to NN0

.

a = 0, the action of γ2

• • • • •
0 1 2 3 4

· · · · · · · · ·

• • • • • • •0 1 2 3 4 5 6 · · ·

I All the constructed globalizations are pairwise non-isomorphic.
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Partial actions of semigroups

I The constructions of S ⊗ X and X S can be extended to suitable
classes of partial actions of semigroups (which do not have a unit).

I One needs to restrict attention for classes of partial actions with a
suitable substitution for the condition that e ∗ x is defined for all x
and equals x .

I These classes are called firm and non-singular partial actions.
Analogous classes for global actions arise naturally in Morita theory
of semigroups.

I A partial action · of S on X is unital if for each x ∈ X there are
y ∈ X and s ∈ S such that s · y is defined and equals x .

I A partial action · of S on X is firm if it is unitary and whenever s · x
and t · y are defined and s · x = t · y we have s ⊗ x = t⊗ y in S ⊗X .

I The globalizations S ⊗ X and X S are the initial object and the
terminal object, respectively, in the appropriate categories of
globalizations (GK, Laan, 2022).
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Some questions and future work

I Study the Hom-set globalization in the case of action of a monoid
on a topological space. Compare the results with those by
Megrelishvili and Schröder.

I When is a partial monoid action by isomorphisms between ideals of
an algebra globalizable? Can we construct the initial and the
terminal product in the category of enveloping actions?

I Study partial cross products attached to partial actions of monoids
(and semigroups) on algebras. Connect these with the universal
category of a monoid.

I It is known that if (B, β) is an enveloping action of (A, α) where a
group G acts partially on a unital algebra A, then the partial cross
products Ao G and B o G are Morita equivalent. Is there an
analogue for G replaced by a monoid (or semigroup)?

I Similar question as above for the context of operator algebras.

I Fit the Hom-set globalization construction into the general
framework of geometric partial (co)modules developed by Hu,
Saracco and Vercruysse.
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