Partial actions in semigroup theory

Ganna Kudryavtseva

University of Ljubljana
Faculty of Civil and Geodetic Engineering
IMFM, Ljubljana

Second ANTIPODE workshop

Brussels, ULB
September 13, 2022

Partial actions of groups

Partial group actions: equivalent definitions

- G - group with the unit e, X - set
- Definition 1. A partial action of G on X is $\alpha=\left(\left\{X_{g}\right\}_{g \in G},\left\{\alpha_{g}\right\}_{g \in G}\right)$ where $X_{g} \subseteq X$ and $\alpha_{g}: X_{g-1} \rightarrow X_{g}$ is a bijection $\forall g \in G$, such that:
(i) $X_{e}=X$ and $\alpha_{e}=\mathrm{id}_{X}$
(ii) $\alpha_{h}^{-1}\left(X_{g^{-1}} \cap X_{h}\right) \subseteq X_{(g h)^{-1}}$
(iii) $\alpha_{g}\left(\alpha_{h}(x)\right)=\alpha_{g h}(x)$ for each $x \in \alpha_{h}^{-1}\left(X_{g-1} \cap X_{h}\right)$
- A partial map $\varphi: A \rightarrow B$ is a map $C \rightarrow B$ where $C \subseteq A$. We say that $\varphi(a)$ is defined if $a \in C$ and undefined otherwise.
- Definition 2. A partial action of G on X is a partial map *: $G \times X \rightarrow X, \quad(g, x) \mapsto g * x$ (whenever defined) such that
(i) $e * x$ is defined and equals x for all $x \in X$.
(ii) if $g * x$ is defined then $g^{-1} *(g * x)$ is defined and $g^{-1} *(g * x)=x$.
(iii) if $h * x$ and $g *(h * x)$ are defined then $g h * x$ is defined and $g *(h * x)=g h * x$.

Partial group actions: equivalent definitions

- S - inverse monoid, e.g., $S=\mathcal{I}(X)$
- A premorphism $\varphi: G \rightarrow S, g \mapsto \varphi_{g}$, is a map such that
(i) $\varphi_{e}=e$
(ii) $\varphi_{g^{-1}}=\left(\varphi_{g}\right)^{-1}$
(iii) $\varphi_{g} \varphi_{h} \leq \varphi_{g h}$
- Definition 3. A partial action of G on X is a premorphism $G \rightarrow \mathcal{I}(X)$.
- Definitions 1,2 and 3 are equivalent.
- Definition 1 was introduced by Exel in 1998. Definition 2 first appears in Kellendonk and Lawson (2004). Definition 3 first appears in the work by McAlister and Reilly in 1977, and then applied by Petrich and Reilly to the description of E-unitary inverse semigroups.
- Partial actions of groups are precisely restrictions of actions (Kellendonk, Lawson, 2004).

E-unitary inverse semigroups

via
partial actions of groups

Groupoid of a partial action of a group

- * - partial action of G on X
- Objects of $\mathcal{G}=\mathcal{G}(G, X, *)$: elements of X
- There is an arrow $\underset{x}{\stackrel{g}{\longrightarrow}} \underset{y}{\bullet}$ iff $g * x$ is defined and $g * x=y$. Denote this arrow by (y, g).
- $(z, h) \cdot(y, g)$ exists in \mathcal{G} iff $h^{-1} * z=y$.

then $(z, h) \cdot(y, g)=(z, h g)$.
- Suppose that X is a semilattice and G acts partially on it by order izomorphisms between order ideals.
- Example G - group, X - the set of finite subsets of G which contain e is a semilattice with respect to the union of subsets. $g * A$ is defined if $g^{-1} \in A$ in which case $g * A=g A=\{g a: a \in A\}$.

Partial action product

- Define $X \rtimes G=\mathcal{G}$, as a set.
- Let $\underset{x}{\stackrel{g}{y}} \underset{y^{\prime}}{\text { and }} \underset{x^{\prime}}{\bullet} \xrightarrow{h}$ be arrows.
- if $x^{\prime} \neq y$ the product $\left(y^{\prime}, h\right) \cdot(y, g)$ is not defined in \mathcal{G}. Put $z=x^{\prime} \wedge y$.
- Then $\underset{x^{\prime \prime}}{\bullet} \xrightarrow[z]{g}$ and $\underset{z}{\bullet}{ }^{h} \underset{y^{\prime \prime}}{\bullet}$ are in \mathcal{G} where $x^{\prime \prime}=g^{-1} * z$ and $y^{\prime \prime}=h * z$.
- Put $\left(y^{\prime}, h\right) \circ(y, g)=\left(y^{\prime \prime}, h\right) \cdot(z, g)=\left(y^{\prime \prime}, h g\right)$.
- \circ is called the pseudoproduct, $\left(X \rtimes G, \circ,{ }^{-1}\right)$ is an inverse semigroup, which is E-unitary (see the next slide).

E-unitary inverse semigroups

- S - inverse semigroup, $E(S)$ - semilattice of idempotents of S.
- If γ is a group congruence on S (that is, S / γ is a group) then e γf for any $e, f \in E(S)$.
- If S contains 0 then γ is the universal congruence: $a=a \cdot a^{-1} a \gamma a \cdot 0=0$ for all $a \in S$.
- Let σ be the minimum group congruence. Then S / σ is the maximum group quotient of S. E.g.: if $S=\mathcal{I}(X)$ then $S / \sigma=\{0\}$.
- S is called E-unitary if $s \sigma$ e where $e \in E(S)$ implies that $s \in E(S)$.
- E.g.: groups and semilattices are E-unitary inverse semigroups.
- Let G be acting partially on X be order isomorphisms between order ideals. Then $X \rtimes G$ is called the partial action product of X by G. It is E-unitary.

Structure of E-unitary inverse semigroups

- S - inverse semigroup
- The underlying groupoid of S : vertices: $E(S)$, arrows $\underset{e}{\bullet}{ }_{f}^{\text {s }}$ where $e=s^{-1} s=: \mathbf{d}(s), f=s s^{-1}=: \mathbf{r}(s)$.
- Suppose S is E-unitary and $[s]=\sigma^{\natural}(s) \in S / \sigma=: G$.
- Then s is uniquely determined by $\mathbf{r}(s)$ (or $\mathbf{d}(s)$) and [s]. Indeed, let $s \sigma t$ and $s s^{-1}=t t^{-1}$. Then $s t^{-1} \sigma t t^{-1} \Rightarrow s t^{-1} \in E(S)$. So $s s^{-1} t \leq s$. By symmetry, $t \leq s$ so $t=s$.
- Let ${ }_{s} g \in G$ and $e \in E(S)$. Put $g * e$ be defined if there is an arrow $\stackrel{\rightharpoonup}{\bullet} \xrightarrow[f]{\bullet}$ with $[s]=g$ in the underlying groupoid of S in which case $g * e=f$. This is well defined and defines a partial action of G on $E(S)$ by order isomoprhisms between order ideals.
- Theorem (McAlister; interpretation by Kellendonk and Lawson) $S \simeq E(S) \rtimes G$.

Partial actions of groups and

Exel's inverse semigroup $\mathcal{S}(G)$

- G - group, Exel's construction (1998), one of the (motivations) was to describe several classes of C^{*}-algebras which are cross products by partial actions of groups as cross products by actions of inverse semigroups.
- $\mathcal{S}(G)$ - universal semigroup given by generators $[g], g \in G$, and relations $[s][t]\left[t^{-1}\right]=[s t]\left[t^{-1}\right],\left[s^{-1}\right][s][t]=\left[s^{-1}\right][s t],[e]$ is the unit element. Then:
- $\mathcal{S}(G)$ is an inverse semigroup, and there is a bijection between partial actions of G and actions of $\mathcal{S}(G)$. Moreover:
- For any inverse semigroup S and any premorphism $\varphi: G \rightarrow S$ there is a unique morphism of semigroups $\psi: \mathcal{S}(G) \rightarrow S$ such that $\varphi=\psi \iota$.

$\mathcal{S}(G) \simeq S z(G)$

- G - group, X - the set of finite subsets of G which contain e is a semilattice with respect to the union of subsets. $g * A$ is defined if $g^{-1} \in A$ in which case $g * A=g A=\{g a: a \in A\}$.
- $X \rtimes G=: S z(G)$ - the Szendrei expansion of G (Szendrei, 1989).
- Fact: $X \rtimes G \simeq \mathcal{S}(G)$ (Kelendonk, Lawson, 2004).
- It is interesting that $S z(G)$ has yet another universal property:

1. First, $S z(G)$ is an F-inverse monoid, that is, each σ-class has a maximum element. In addition $S z(G) / \sigma \simeq G$ via the map $(A, g) \mapsto g$.
2. F-inverse universal property. For any F-inverse monoid S and any F-inverse semigroup S with $S / \sigma \simeq G$, there is a unique morphism $\psi: S z(G) \rightarrow S$ (which preserves maximum elements of σ-classes) such that the diagram below commutes:

Partial representations of groups

- A partial representation of a group G on a vector space V is a map $\varphi: G \rightarrow \operatorname{End}(V)$ such that $\varphi_{e}=\mathrm{id}_{V}$ and $\forall s, t \in S$:
$\varphi_{s} \varphi_{t} \varphi_{t^{-1}}=\varphi_{s t} \varphi_{t^{-1}}, \varphi_{s^{-1}} \varphi_{s} \varphi_{t}=\varphi_{s^{-1}} \varphi_{s t}$.
- If K is a field, a partial group algebra $K_{p a r}(G)$ is the universal algebra given by generators $[s], s \in S$ and relations $[s][t]\left[t^{-1}\right]=[s t]\left[t^{-1}\right],\left[s^{-1}\right][s][t]=\left[s^{-1}\right][s t], s, t \in G,[e]=1$.
- $K_{p a r} G \simeq K \mathcal{S}(G)$.
- Let $\Gamma(\mathcal{S}(G))$ be the underlying groupoid of $\mathcal{S}(G)$. The product of generators $s \cdot t$ is the product st in $\mathcal{S}(G)$ if $\mathbf{r}(t)=\mathbf{d}(s)$ and 0 otherwise.
- If G is finite then $K_{\text {par }}(G) \simeq K \Gamma(\mathcal{S}(G))$ (Dokuchaev, Exel, Piccione, 2000). Its dimension is $\sum_{k=1}^{n}\binom{n-1}{k-1} k=2^{n-2}(n+1)$ (the cardinality of $\mathcal{S}(G)$).
- This result also follows from Steinberg (2006): $K(S) \simeq K \Gamma(S)$ for any inverse semigroup with finitely many idempotents.
- If S is infinite then a similar result holds with $\Gamma(S)$ replaced by the universal groupoid of S.

Partial actions of monoids

Partial actions of monoids which restrict actions

- M - monoid, X - set
- If M acts (globally) on X and $Y \subseteq X$. Let $*$ be the restricted partial action on Y.
- If $t s * x$ is defined, then $s * x$ does not need to be defined.
- If $t s * x$ and $s * x$ are defined then $t *(s * x)$ is defined and $t s * x=t * s *(x)$.

Partial groups actions without reference to inverses

- Recall:
- A partial action of G on X is a partial map *: $G \times X \rightarrow X, \quad(g, x) \mapsto g * x$ (whenever defined) such that
(i) $e * x$ is defined and equals x for all $x \in X$
(ii) if $g * x$ is defined then $g^{-1} *(g * x)$ is defined and $g^{-1} *(g * x)=x$.
(iii) if $h * x$ and $g *(h * x)$ are defined then $g h * x$ is defined and $g *(h * x)=g h * x$.
- Observation (Megrelishvili, Schröder, 2004) In the definition above axiom (ii) can be replaced by
(iia) If $g h * x$ and $h * x$ are defined then $g *(h * x)$ is defined and $g h * x=g * h *(x)$.

Partial actions of monoids

- Definition. A partial action of M on X is a partial map *: $X \times M \rightarrow X, \quad(x, s) \mapsto x * s$ (whenever defined) such that

1. $e * x$ is defined and equals x for all $x \in X$.
2. if $s * x$ and $t *(s * x)$ are defined then $t s * x$ is defined and $t s * x=t *(s * x)$.

- Definition A strong partial action of M on X is a partial action, which, in addition satisfies:

3. If $g h * x$ and $h * x$ are defined then $g *(h * x)$ is defined and $g h * x=g * h *(x)$.

- Definition A premorphism $\varphi: M \rightarrow \mathcal{P} \mathcal{T}(X)^{1}$ is a map such that $\varphi_{e}=\operatorname{id}_{X}, \varphi_{s} \varphi_{t} \leq \varphi_{s t}$ for all $s, t \in M$. It is strong, if, in addition, $\varphi_{s} \varphi_{t}=\varphi_{s}^{+} \varphi_{s t}$.
- Every strong partial monoid action is globalizable (Megrelishvili and Schröder). It follows that strong partial monoid actions are precisely restrictions of actions.

[^0]
Proper restriction semigroups and partial actions of monoids

Restriction semigroups

- Restrictions semigroups are non-regular generalizations of inverese semigroups. They have two unary operations $*$ and + . In an inverse semigroup $a^{*}=\mathbf{d}(a)$ and $a^{+}=\mathbf{r}(a)$.
- E.g.: $R=\{f \in \mathcal{I}(X): \forall x \in X f(x) \geq x\}$.
- More formally: restriction semigroups form a variety of algebras of signature $\left(\cdot,{ }^{*},{ }^{+}\right)$, defined by the following identities:

$$
x^{+} x=x, x^{+} y^{+}=y^{+} x^{+},\left(x^{+} y\right)^{+}=x^{+} y^{+},(x y)^{+} x=x y^{+} .
$$

- Dual identites hold for $*$
- $\left(x^{+}\right)^{*}=x^{+},\left(x^{*}\right)^{+}=x^{*}$.
- $P(S)=\left\{x \in S: x=x^{+}=x^{*}\right\}$ - semilattice of projection of S.
- Example Any monoid is a restriction semigroup with $x^{*}=x^{+}=e$ for all x; as is any semilattice with $x^{*}=x^{+}=x$.
- σ-minimum monoid congruence.
- Aim: generalize McAlister theorem to restriction semigroups. We need partial actions of monoids.

The partial action product

- Suppose that M acts partially on a semilattice X by order-isomorphisms between order ideals. Consider its underlying category.
- Note that an arrow $\stackrel{\rightharpoonup}{\bullet}{ }_{t}^{s}{\underset{y}{ }}^{\text {b }}$ is uniquely determined by y and s only.
- Let $\underset{x}{\stackrel{s}{\longrightarrow}} \underset{y}{\bullet}$ and $\underset{x^{\prime}}{\stackrel{t}{\longrightarrow}} \stackrel{\bullet}{y^{\prime}}$ be arrows.
- Define $\left(y^{\prime}, t\right) \circ(y, s)=\left(y^{\prime \prime}, t\right) \cdot(z, s)=\left(y^{\prime \prime}, t s\right)$, where $z=x^{\prime} \wedge y$, $x^{\prime \prime}$ is the source of the only arrow with label s and range y, and $y^{\prime \prime}=t * z$.
- Define $(x, s)^{+}=(x, e)$ and $(x, s)^{*}=(y, e)$ where $x=s * y$.
- $\left(X \rtimes G, \circ,{ }^{+},{ }^{*}\right)$ is a restriction semigroup which is proper and every proper restriction semigroup arises this way (Cornock and Gould, 2011; GK, 2015)
- Proper means: $a^{*}=b^{*}, a \sigma b \Rightarrow a=b$ and $a^{+}=b^{+}, a \sigma b \Rightarrow$ $a=b$. Proper restriction semigroups generalize E-unitary inverse semigroups.
- This result has been extended to partial actions of restriction semigroups and to the structure of proper extensions of restirction semigroups (Dokuchaev, Khrypchenko, GK, 2021)

Almost perfect restriction semigroups

- M acts partially on X by partial bijections, and suppose that $\varphi: M \rightarrow \mathcal{I}(X), m \mapsto \varphi_{m}$ is a morphism: $\varphi_{s} \varphi_{t}=\varphi_{s t}$ holds.
- If G is a group $\varphi(G) \subseteq \mathcal{S}(X)$, so G acts on X. Consequently, $X \rtimes G$ is the semidirect product with respect to the action φ.
- If M is a monoid then the inclusion $\varphi(M) \subseteq \mathcal{S}(X)$ does not need to hold so we get a rich class of restriction semigroups, which does not have an adequate analogue if specialized to inverse semigroups.
- Partial action products with respect to homomorphisms are called almost perfect restriction semigroups (GK, 2015, called ultra proper, Jones 2016).
- The free restriction semigroup is almost perfect (but the free inverse semigroup is not).
- Every restriction semigroup has an almost perfect cover (which is not the case for inverse semigroups).
- Every left (or right) strong partial action of M on a semilattice by order-isomorphisms between order ideals is globalizable (GK, 2015; for inverse semigroups: Munn, 1976)

Expansions of monoids

- S - a monoid, put $[S]=\{[s]: s \in S\}$.
- Define $\mathcal{F} \mathcal{R}_{p}(S)$ and $\mathcal{F} \mathcal{R}_{s}(S)$ to be the following restriction semigroups:

$$
\begin{aligned}
& \text { 1. } \mathcal{F} \mathcal{R}_{p}(S)=\langle[S]:[e]=e,[s][t] \leq[s t]\rangle \\
& \text { 2. } \\
& \mathcal{F R}_{s}(S)=\left\langle[S]:[e]=e,[s][t]=[s t][t]^{*}=[s]^{+}[s t]\right\rangle
\end{aligned}
$$

- $\mathcal{F R}_{s}(S)$ is a generalization of $\mathcal{S}(G), \mathcal{F} \mathcal{R}_{p}(S)$ is a 'more relaxed' analogue of $\mathcal{S}(G)$.
- $\mathcal{F} \mathcal{R}_{p}(S)$ and $\mathcal{F} \mathcal{R}_{s}(S)$ are proper restriction semigroups, $\iota: S \rightarrow \mathcal{F} \mathcal{R}_{p}(S)$ is a premorphism (resp. a strong premorphism).
- The universal property If $\varphi: S \rightarrow T$ is a premorphism to a restiction monoid then there is a morphism $\psi: \mathcal{F} \mathcal{R}_{p}(S) \rightarrow T$ making the triangle commute. Similarly, for $\mathcal{F} \mathcal{R}_{s}(S)$ and φ being strong.

The coordinatization

- In what follows R stands for one of p or s.
- Since $\mathcal{F} \mathcal{R}_{R}(S)$ is proper, we have $\mathcal{F} \mathcal{R}_{R}(S) \simeq P\left(\mathcal{F} \mathcal{R}_{R}(S)\right) \rtimes S$.
- What is the structure of $P\left(\mathcal{F} \mathcal{R}_{R}(S)\right)$?
- Define $\mathcal{F} \mathcal{I}_{p}(S)$ and $\mathcal{F} \mathcal{I}_{s}(S)$ to be the following inverse semigroups:

$$
\begin{aligned}
& \text { 1. } \mathcal{F} \mathcal{I}_{p}(S)=\langle[S]:[e]=e,[s][t] \leq[s t]\rangle . \\
& \text { 2. } \mathcal{F I}_{s}(S)=\left\langle[S]:[e]=e,[s][t]=[s t][t]^{*}=[s]^{+}[s t]\right\rangle .
\end{aligned}
$$

- Result $(\mathrm{GK}, 2019) P\left(\mathcal{F} \mathcal{R}_{R}(S)\right) \simeq E\left(\mathcal{F I}_{R}(S)\right)$.
- S embeds into a group if and only if the canonical morphism $\mathcal{F} \mathcal{R}_{R}(S) \rightarrow \mathcal{F} \mathcal{I}_{R}(S)$ is injective.
- If S is an inverse monoid then $\mathcal{F I}_{s}(S)$ is isomorphic to the Lawson-Margolis-Steinberg generalized expansion.
- Corollary If the word problem in $\mathcal{F I}_{R}(S)$ is decidable, so is the word problem in $\mathcal{F} \mathcal{R}_{R}(S)$.
- If M is finite then the word problem in $\mathcal{F} \mathcal{R}_{p}(S)$ is decidable.

Globalization of partial actions of monoids and semigroups

The tensor product globalization

- S - a monoid, * a strong partial action of S on X.
- $S \otimes X=S \otimes_{S} X=S \times X / \sim$, where \sim is generated by $(t s, x) \sim(t, s * x)$.
- Define $t \circ(s \otimes x)=t s \otimes x$. This defines a global action of S on $S \otimes X$.
- Define $\delta: X \rightarrow S \otimes X$ by $x \mapsto e \otimes x$. It is an injection and if $s * x$ is defined, we have

$$
s \circ(\delta(x))=s \circ(e \otimes x)=s \otimes x=e \otimes s * x=\delta(s * x)
$$

so $(S \otimes X, \circ)$ is a globalization of $(X, *)$ via δ.

- A globalization (Y, \cdot) of $(X, *)$ is X-generated (or an enveloping action), if $Y=S \cdot X$.
- $S \otimes X$ is a globalization of X (Hollings, 2007), which is an initial object in the category of all globalizations of X.
- If S is a group, $S \otimes X$ is, up to isomorphism, the only X-generated globalization of X (Kellendonk, Lawson, 2004).

Further results

- * - partial action of a topological group G on a topological space X
- $G \star X=\{(g, x): \exists g * x\} ; *$ is continuous if the map $G \star X \rightarrow X$, $(g, x) \mapsto g * x$ is continuous
- Result (Kellendonk and Lawson, 2004; see also Abadie 2003) * is globalizable if and only if:

1. $G \star X$ is an open subset in $G \times X$ and
2. $*$ is continuous.

If $*$ is globalizable, then $G \otimes X$ is X-generated and is unique, up to homeomorphism.

- The unifying setting: globalization of geometric partial co(modules), see Saracco and Vercruysse, 2020, 2021.
- A partial group action by isomorphisms between ideals of an algebra is globalizable if and only if the domains of all φ_{g} are unital algebras, see Dokuchaev and Exel, 2004.
- Partial actions of groups on cell complexes were studied by Steinberg, 2003.

The Hom-set construction (GK and Laan, 2022)

- Let $*$ - a partial action of a monoid S on a set $X, s \in S$ and $x \in X$. Put

$$
\begin{gather*}
\operatorname{dom}\left(f_{s, x}\right)=\{t \in S: t s * x \text { is defined }\}, \\
f_{s, x}(t)=t s * x \text { for all } t \in \operatorname{dom}\left(f_{s, x}\right) . \tag{1}
\end{gather*}
$$

- Let

$$
X^{S}=\left\{f_{s, x}: x \in X, s \in S\right\} .
$$

- Define

$$
t \circ f_{s, x}=f_{t s, x} \text { for all } f_{s, x} \in X^{S} \text { and } t \in S .
$$

- Define $\lambda: X \rightarrow X^{S}, x \mapsto f_{e, x}$. It is an injection.
- Proposition. $\left(X^{S}, \circ\right)$ is an X-generated globalization of $(X, *)$ via λ.

An example: partially defined actions

- Let φ : $S \rightarrow \mathcal{P} \mathcal{T}(X)$ be a homomorphism. We call it a partially defined action of S on X.
- Let us calculate X^{S}.
- If $s * x$ is defined then $f_{s, x}=f_{e, s * x} \in \lambda(X)$.
- If $s * x$ is undefined then $\operatorname{dom}\left(f_{s, x}\right)=\{t \in S: t s * x$ is defined $\}=\varnothing$, since $s * x$ is undefined implies that $t s * x$ is undefined for all $t \in T$. Define $f_{s, x}:=0$.
- It follows that $X^{S}=\lambda(X) \cup\{o\}:=X \cup\{o\}$. We get the global S-act $(X \cup\{o\}, \circ)$ where $s \circ x= \begin{cases}s * x, & \text { if } x \in X \text { and } s * x \text { is defined, } \\ o, & \text { otherwise. }\end{cases}$
- So X^{S} is obtain via the well known embedding of $\mathcal{P} T(X)$ into $\mathcal{T}(X)$ by adding one new element to X.

The universal property

- S - monoid, $(X, *)$ - a strong partial S-act
- $\mathcal{G}_{X}(S, X, *)$ - the category of X-generated globalizations of $(X, *)$. Theorem $S \otimes X$ is an initial object and X^{S} is a terminal object in the category $\mathcal{G}_{X}(S, X, *)$.
- That is, if (Y, \circ) is an X-generated globalization of $(X, *)$ via a map $\iota: X \rightarrow Y$ then there are unique morphisms of global S-acts $S \otimes X \rightarrow Y, s \otimes x \mapsto s * \iota(x)$, and $Y \rightarrow X^{S}, s * \iota(x) \mapsto f_{s, x}$, such that the following diagram commutes:

- The part about the terminal objects - GK and Laan (2022).

An example

- $\mathbb{N}^{0}=(\mathbb{N} \cup\{0\},+)$ acts partially on \mathbb{N} by setting $\varphi_{n}(a)=n \cdot a$ to be defined iff $a-n>0$ in which case $n \cdot a=a-n$. Then \cdot is a partially defined action.

The partially defined action of φ_{2}

- For $b \in B_{\mathcal{Z}}=\mathbb{Z}$ and $n \in \mathbb{N}^{0}$ put $\psi_{n}(b)=n * b=b-n$. Then $\left(B_{\mathcal{Z}}, *\right)$ is globalization of (\mathbb{N}, \cdot) and is isomorphic to $\mathbb{N} \otimes \mathbb{N}^{0}$.

The action of ψ_{2}

An example: continuation

- For an integer $a \leq 0$ put $B_{a}=\{z \in \mathbb{Z}: z \geq a\}$. For each $b \in B_{a}$ and $n \in \mathbb{N}^{0}$ put

$$
\gamma_{n}(b)=n *_{a} b= \begin{cases}b-n, & \text { if } b-n>a, \\ a, & \text { if } b-n \leq a .\end{cases}
$$

Then $\left(B_{a}, *_{a}\right)$ is an \mathbb{N}-generated globalization of (\mathbb{N}, \cdot).

- If $a=0,\left(B_{0}, *_{0}\right)$ is isomorphic to $\mathbb{N}^{\mathbb{N}^{0}}$.

$$
a=0, \text { the action of } \gamma_{2}
$$

- All the constructed globalizations are pairwise non-isomorphic.

Partial actions of semigroups

- The constructions of $S \otimes X$ and X^{S} can be extended to suitable classes of partial actions of semigroups (which do not have a unit).
- One needs to restrict attention for classes of partial actions with a suitable substitution for the condition that $e * x$ is defined for all x and equals x.
- These classes are called firm and non-singular partial actions. Analogous classes for global actions arise naturally in Morita theory of semigroups.
- A partial action \cdot of S on X is unital if for each $x \in X$ there are $y \in X$ and $s \in S$ such that $s \cdot y$ is defined and equals x.
- A partial action - of S on X is firm if it is unitary and whenever $s \cdot x$ and $t \cdot y$ are defined and $s \cdot x=t \cdot y$ we have $s \otimes x=t \otimes y$ in $S \otimes X$.
- The globalizations $S \otimes X$ and X^{S} are the initial object and the terminal object, respectively, in the appropriate categories of globalizations (GK, Laan, 2022).

Some questions and future work

- Study the Hom-set globalization in the case of action of a monoid on a topological space. Compare the results with those by Megrelishvili and Schröder.
- When is a partial monoid action by isomorphisms between ideals of an algebra globalizable? Can we construct the initial and the terminal product in the category of enveloping actions?
- Study partial cross products attached to partial actions of monoids (and semigroups) on algebras. Connect these with the universal category of a monoid.
- It is known that if (\mathcal{B}, β) is an enveloping action of (\mathcal{A}, α) where a group G acts partially on a unital algebra \mathcal{A}, then the partial cross products $\mathcal{A} \rtimes G$ and $\mathcal{B} \rtimes G$ are Morita equivalent. Is there an analogue for G replaced by a monoid (or semigroup)?
- Similar question as above for the context of operator algebras.
- Fit the Hom-set globalization construction into the general framework of geometric partial (co)modules developed by Hu , Saracco and Vercruysse.

[^0]: ${ }^{1} \mathcal{P} \mathcal{T}(X)$ is a left restriction monoid, instead of it one can consider any left restriction monoid.

