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Partial actions of groups
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Partial group actions: equivalent definitions

» G — group with the unit e, X — set

» Definition 1. A partial action of G on X is
a = ({Xgtgec: {ag}gec) where Xg € X and ag: X1 — X, is a
bijection Vg € G, such that:
(i) Xe =X and a. =idx
(i) o (Xg=1 N Xn) C Xigy—1
(iii) ag(an(x)) = agn(x) for each x € o " (Xz-1 N Xa)

» A partial map ¢: A — Bis a map C — B where C C A. We say
that ¢(a) is defined if a € C and undefined otherwise.

» Definition 2. A partial action of G on X is a partial map
x:G x X =X, (g,x)— gxx (whenever defined) such that
(i) ex*x is defined and equals x for all x € X.

(i) if g *x is defined then g7! (g * x) is defined and g7 * (g * x) = x.

(iii) if h*x and g (h* x) are defined then gh * x is defined and
g (hxx)=ghx*x.

3/34



Partial group actions: equivalent definitions

>

>

S — inverse monoid, e.g., S = Z(X)
A premorphism ¢: G — S, g — g, is a map such that

(i) pe=e

(i) g1 = ()™

(iii) pgpn < pen
Definition 3. A partial action of G on X is a premorphism
G — I(X).

Definitions 1,2 and 3 are equivalent.

Definition 1 was introduced by Exel in 1998. Definition 2 first
appears in Kellendonk and Lawson (2004). Definition 3 first appears
in the work by McAlister and Reilly in 1977, and then applied by
Petrich and Reilly to the description of E-unitary inverse
semigroups.

Partial actions of groups are precisely restrictions of actions
(Kellendonk, Lawson, 2004).
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E-unitary inverse semigroups
via
partial actions of groups
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Groupoid of a partial action of a group

>

>

* — partial action of G on X

Objects of G = G(G, X, *): elements of X

There is an arrow .L). iff g * x is defined and g * x = y. Denote
x y

this arrow by (y, g).
(z,h) - (y,g) existsin Giff mlxz=y.

g h
*——e—)0
X y z

then (z,h) - (v,8) = (z, hg).

Suppose that X is a semilattice and G acts partially on it by order
izomorphisms between order ideals.

Example G — group, X — the set of finite subsets of G which
contain e is a semilattice with respect to the union of subsets. g x A
is defined if g71 € A in which case g x A = gA = {ga: a € A}.
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Partial action product

» Define X X G = G, as a set.

g h
> Let «———@ and e———e be arrows.
X y x/ y!

» if x' # y the product (y’, h) - (v, g) is not defined in G. Put
z=x"Ny.

g h .
» Then e———e and e— are in §
X// z z y//

1

where X’ = g7 txzand y’" = hx z.
g y

> Put (y',h)o(y,g)=(y",h) (z,8) = (v", hg).

> o is called the pseudoproduct, (X x G,0,71) is an inverse
semigroup, which is E-unitary (see the next slide).

7/34



E-unitary inverse semigroups

» S —inverse semigroup, E(S) — semilattice of idempotents of S.

» If v is a group congruence on S (that is, S/ is a group) then e v f
for any e, f € E(S).

» If S contains 0 then -y is the universal congruence:
a=a-alaya-0=0forallacs.

> Let o be the minimum group congruence. Then S/o is the
maximum group quotient of S. E.g.: if S = Z(X) then S/o = {0}.

» S is called E-unitary if s 0 e where e € E(S) implies that s € E(S).
» E.g.: groups and semilattices are E-unitary inverse semigroups.

» Let G be acting partially on X be order isomorphisms between order
ideals. Then X x G is called the partial action product of X by G.
It is E-unitary.
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Structure of E-unitary inverse semigroups

>

>

S - inverse semigroup

The underlying groupoid of S: vertices: E(S), arrows o;?
e

where e = s71s =:d(s), f = ss7! =:r(s).

Suppose S is E-unitary and [s] = 0%(s) € S/o =: G.

Then s is uniquely determined by r(s) (or d(s)) and [s].

Indeed, let s o t and ss™* = tt™*. Thenst ' o tt™* = st € E(S). So
ss~'t <s. By symmetry, t < ssot=s.

Let g € G and e € E(S). Put g * e be defined if there is an arrow

;;? with [s] = g in the underlying groupoid of S in which case
g*xe= 1. This is well defined and defines a partial action of G on

E(S) by order isomoprhisms between order ideals.

Theorem (McAlister; interpretation by Kellendonk and Lawson)
S~ E(S)xG.
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Partial actions of groups

and
actions of inverse semigroups
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Exel's inverse semigroup S(G)

» G — group, Exel's construction (1998), one of the (motivations) was
to describe several classes of C*-algebras which are cross products

by partial actions of groups as cross products by actions of inverse
semigroups.

» S(G) — universal semigroup given by generators [g],g € G, and
relations [s][t][t ] = [st][t~1], [s~Y][s][t] = [s~!][st], [e] is the unit
element. Then:

» S(G) is an inverse semigroup, and there is a bijection between
partial actions of G and actions of S(G). Moreover:

» For any inverse semigroup S and any premorphism ¢: G — S there
is a unique morphism of semigroups 1: S(G) — S such that
p =t.
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S(G) ~ 5z(G)

» G — group, X — the set of finite subsets of G which contain e is a
semilattice with respect to the union of subsets. g x A is defined if
gl € Ain which case g x A= gA = {ga: ac A}.

» X x G =: 5z(G) — the Szendrei expansion of G (Szendrei, 1989).
» Fact: X x G ~ S§(G) (Kelendonk, Lawson, 2004).
> |t is interesting that Sz(G) has yet another universal property:

1. First, Sz(G) is an F-inverse monoid, that is, each o-class has a
maximum element. In addition Sz(G)/o ~ G via the map
(Ag)— e

2. F-inverse universal property. For any F-inverse monoid S and any
F-inverse semigroup S with S/o ~ G, there is a unique morphism
1: 52(G) — S (which preserves maximum elements of o-classes)
such that the diagram below commutes:

G <7n 5z(G)
W/
S
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Partial representations of groups

> A partial representation of a group G on a vector space V is a map
¢: G — End(V) such that ¢, =idy and Vs, t € S :

PsPtPt-1 = PstPt-1, Ps—1PsPt = Ps—1Pst-
> If K is a field, a partial group algebra Kp,-(G) is the universal
algebra given by generators [s],s € S and relations
[s[e][t 1] = [stllt "], [s~*1[s][t] = [s~*][st]. s, t € G, [e] = 1.
> Koar G ~ KS(G).
> Let I'(S(G)) be the underlying groupoid of S(G). The product of
d

generators s - t is the product st in S(G) if r(t) =d(s) and 0
otherwise.

> If G is finite then K, (G) >~ KT(S(G)) (Dokuchaev, Exel, Piccione,
2000). Its dimension is > 7_; (7_1)k = 2"72(n + 1) (the cardinality
of S(G)).

» This result also follows from Steinberg (2006): K(S) ~ KT (S) for
any inverse semigroup with finitely many idempotents.

» If S is infinite then a similar result holds with I'(S) replaced by the
universal groupoid of S.
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Partial actions of monoids
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Partial actions of monoids which restrict actions

» M — monoid, X — set

> If M acts (globally) on X and Y C X. Let  be the restricted
partial action on Y.

» If ts * x is defined, then s * x does not need to be defined.

> If ts x x and s % x are defined then t * (s * x) is defined and
tsx x =t *x s * ().

u]
)
I
i
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Partial groups actions without reference to inverses

» Recall:

» A partial action of G on X is a partial map
x:Gx X — X, (g,x)— g*x (whenever defined) such that
(i) ex x is defined and equals x for all x € X

(i) if g *x is defined then g7! (g * x) is defined and g7 * (g * x) = x.

(i) if hx x and g * (h* x) are defined then gh « x is defined and
g * (h*x)=ghxx.

» Observation (Megrelishvili, Schroder, 2004) In the definition above
axiom (ii) can be replaced by

(iia) If gh* x and h* x are defined then g x (h x x) is defined and
gh*x = g* hx(x).
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Partial actions of monoids

» Definition. A partial action of M on X is a partial map
x: X X M— X, (x,s) — x s (whenever defined) such that

1. ex* x is defined and equals x for all x € X.

2. if s*x and t * (s * x) are defined then ts * x is defined and
ts* x = t* (s % x).

» Definition A strong partial action of M on X is a partial action,
which, in addition satisfies:

3. If ghx x and hx x are defined then g x (h * x) is defined and
gh*x = g* hx*(x).

» Definition A premorphism ¢: M — PT(X)Yis a map such that
e = idx, wspr < g for all s, t € M. It is strong, if, in addition,

st = O Pst.
» Every strong partial monoid action is globalizable (Megrelishvili and

Schroder). It follows that strong partial monoid actions are precisely
restrictions of actions.

PT(X) is a left restriction monoid, instead of it one can consider any left
restriction monoid.
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Proper restriction semigroups and
partial actions of monoids
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Restriction semigroups

>

Restrictions semigroups are non-regular generalizations of inverese

semigroups. They have two unary operations * and +. In an inverse

semigroup a* = d(a) and at = r(a).
Eg: R={f €Z(X): Vx € X f(x) > x}.

More formally: restriction semigroups form a variety of algebras of
signature (-,* ;7), defined by the following identities:

xtx = x, xtyt = yrxt, (xty)t = xTyT, () x = xyt
Dual identites hold for x
(xT)* = xT, (x*)" = x*.
P(S) = {x € S: x = xT = x*} — semilattice of projection of S.

Example Any monoid is a restriction semigroup with x* = x* = e
for all x; as is any semilattice with x* = x™ = x.

o - minimum monoid congruence.

Aim: generalize McAlister theorem to restriction semigroups. We
need partial actions of monoids.
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The partial action product

>

Suppose that M acts partially on a semilattice X by
order-isomorphisms between order ideals. Consider its underlying
category. .

Note that an arrow ﬁ is uniquely determined by y and s only.

s t
Let «#———e and o——e be arrows.
X y 5%

y
Define (y',t) o (y,s) = (y",t) - (z,5) = (v, ts), where z=x" Ay,
x"""is the source of the only arrow with label s and range y, and
y'=t=x*z

Define (x,s)" = (x, e) and (x,s)* = (y, e) where x = s * y.

(X x G,0,7,*) is a restriction semigroup which is proper and every
proper restriction semigroup arises this way (Cornock and Gould,
2011; GK, 2015)

Proper means: a* = b*, acb=a=band at =b", ac b=

a = b. Proper restriction semigroups generalize E-unitary inverse
semigroups.

This result has been extended to partial actions of restriction
semigroups and to the structure of proper extensions of restirction
semigroups (Dokuchaev, Khrypchenko, GK, 2021)
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Almost perfect restriction semigroups

» M acts partially on X by partial bijections, and suppose that
©: M = Z(X), m— pn is a morphism: @sp: = @g holds.

> If G is a group p(G) C S(X), so G acts on X. Consequently,
X x G is the semidirect product with respect to the action ¢.

» If M is a monoid then the inclusion (M) C S(X) does not need to
hold so we get a rich class of restriction semigroups, which does not
have an adequate analogue if specialized to inverse semigroups.

» Partial action products with respect to homomorphisms are called
almost perfect restriction semigroups (GK, 2015, called ultra proper,
Jones 2016).

» The free restriction semigroup is almost perfect (but the free inverse
semigroup is not).

» Every restriction semigroup has an almost perfect cover (which is
not the case for inverse semigroups).

» Every left (or right) strong partial action of M on a semilattice by
order-isomorphisms between order ideals is globalizable (GK, 2015;
for inverse semigroups: Munn, 1976)
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Expansions of monoids
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FR,(S) and FR4(S)

>

>

S —a monoid, put [S] = {[s]: s € S}.
Define FR,(S) and FRs(S) to be the following restriction
semigroups:

L FRp(S) = ([S]: [e] = e, [s][t] < [st])

2. FRs(S) = ([S]: [e] = e, [s][t] = [st][t]" = [s]"[st])
FRs(S) is a generalization of S(G), FRy(S) is a ‘more relaxed’
analogue of S(G).

FRp(S) and FR4(S) are proper restriction semigroups,
t: S — FRp(S) is a premorphism (resp. a strong premorphism).

The universal property If ¢: S — T is a premorphism to a restiction
monoid then there is a morphism ¢: FR,(S) — T making the
triangle commute. Similarly, for FR¢(S) and ¢ being strong.
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The coordinatization

>

In what follows R stands for one of p or s.
Since FRg(S) is proper, we have FRg(S) ~ P(FRg(S)) x S.
What is the structure of P(FRg(S))?
Define FZ,(S) and FZ¢(S) to be the following inverse semigroups:
1. FI,(S) = ([S]: [¢e] = e, [s][t] < [st]).
2. FIs(S) = ([S]: [e] = e [s][t] = [st][t]" = [s] "[st]).
Result (GK, 2019) P(FRr(S)) =~ E(FZr(S)).

S embeds into a group if and only if the canonical morphism
FRgr(S) — FZgr(S) is injective.

If S is an inverse monoid then FZ,(S) is isomorphic to the
Lawson-Margolis-Steinberg generalized expansion.

Corollary If the word problem in FZg(S) is decidable, so is the word
problem in FRg(S).

If M is finite then the word problem in FR,(S) is decidable.
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Globalization of partial actions of
monoids and semigroups
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The tensor product globalization

>

>

S — a monoid, * a strong partial action of S on X.

S®X=5®s X =S5 x X/ ~, where ~ is generated by
(ts, x) ~ (t, s * x).

Define t o (s ® x) = ts ® x. This defines a global action of S on
S® X.

Define 6: X - S® X by x — e® x. It is an injection and if s x is
defined, we have

so(d(x))=s0(e®@x)=s5s@x=e®s*xx=0(s * x),
so (S ® X, o) is a globalization of (X, *) via d.

A globalization (Y, -) of (X, ) is X-generated (or an enveloping
action), if Y =5 - X.

S ® X is a globalization of X (Hollings, 2007), which is an initial
object in the category of all globalizations of X.

If S is a group, S ® X is, up to isomorphism, the only X-generated
globalization of X (Kellendonk, Lawson, 2004).
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Further results

>

>

x — partial action of a topological group G on a topological space X

G+ X = {(g,x): 3g * x}; = is continuous if the map G x X — X,
(g,x) — g * x is continuous
Result (Kellendonk and Lawson, 2004; see also Abadie 2003) * is
globalizable if and only if:

1. G x X is an open subset in G x X and

2. x is continuous.

If % is globalizable, then G ® X is X-generated and is unique, up to
homeomorphism.

The unifying setting: globalization of geometric partial co(modules),
see Saracco and Vercruysse, 2020, 2021.

A partial group action by isomorphisms between ideals of an algebra
is globalizable if and only if the domains of all ¢ are unital
algebras, see Dokuchaev and Exel, 2004.

Partial actions of groups on cell complexes were studied by
Steinberg, 2003.
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The Hom-set construction (GK and Laan, 2022)

> Let * — a partial action of a monoid S on aset X, s € S and x € X.

Put
dom(f; «) = {t € S: ts * x is defined},
fsx(t) = ts * x for all t € dom( ). (1)
> Let
X® ={fix:x€X,s€S}.
> Define

tofsx = fisx forall fs € X% and t €S.
» Define A\: X — X°, x — fe x. It is an injection.

> Proposition. (X°,0) is an X-generated globalization of (X, *) via .
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An example: partially defined actions

» Let ¢: S — PT(X) be a homomorphism. We call it a partially
defined action of S on X.

» Let us calculate X°.

> If s x is defined then fsx = fe sex € A(X).
> If s x is undefined then
dom(f;x) = {t € S: ts x x is defined} = &, since s x x is undefined
implies that ts x x is undefined for all t € T. Define £ x := o.
> It follows that X° = A\(X) U {0} := X U {0}. We get the global
S-act (X U {o},0) where
{ sxx, if x€ X and s x x is defined,
SOX = .
o, otherwise.

» So X? is obtain via the well known embedding of P T(X) into
T(X) by adding one new element to X.
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The universal property

>

>

S — monoid, (X, *) — a strong partial S-act

Gx(S, X, *) — the category of X-generated globalizations of (X, *).

Theorem S ® X is an initial object and X* is a terminal object in
the category Gx (S, X, ).

That is, if (Y,0) is an X-generated globalization of (X, ) via a
map ¢: X — Y then there are unique morphisms of global S-acts
SRX =Y, s@x+s*u(x), and Y — X°, 5% 1(x) fsx. such
that the following diagram commutes:

AN

SX——Y — X5

The part about the terminal objects — GK and Laan (2022).

30/34



An example

» NO = (NU{0},+) acts partially on N by setting ,(a) = n- a to be
defined iff a— n > 0 in which case n-a=a—n. Then - is a
partially defined action.

The partially defined action of ¢,
1 2 3 4 5 6
e
. s : o
» For b€ Bz =Z and n € N° put ¢,(b) = n* b= b —n. Then
(Bz, ) is globalization of (N, -) and is isomorphic to N @ N°.
The action of ),
SR : . s : o
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An example: continuation

> For an integer a <0 put B, ={z € Z: z > a}. For each b € B,
and n € N° put

b—n, ifb—n> a,
7"(b)n*ab{a, if b—n<a.

Then (B,, x,) is an N-generated globalization of (N;-).
> If a=0, (B, *o) is isomorphic to NIV

a =0, the action of 7,

» All the constructed globalizations are pairwise non-isomorphic.
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Partial actions of semigroups

>

The constructions of S ® X and X° can be extended to suitable
classes of partial actions of semigroups (which do not have a unit).

One needs to restrict attention for classes of partial actions with a
suitable substitution for the condition that e x x is defined for all x
and equals x.

These classes are called firm and non-singular partial actions.
Analogous classes for global actions arise naturally in Morita theory
of semigroups.

A partial action - of S on X is unital if for each x € X there are
y € X and s € S such that s - y is defined and equals x.

A partial action - of S on X is firm if it is unitary and whenever s - x
and t-y are defined and s-x =t-y we have s@x =t®y in S® X.

The globalizations S ® X and X are the initial object and the
terminal object, respectively, in the appropriate categories of
globalizations (GK, Laan, 2022).
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Some questions and future work

>

Study the Hom-set globalization in the case of action of a monoid
on a topological space. Compare the results with those by
Megrelishvili and Schroder.

When is a partial monoid action by isomorphisms between ideals of
an algebra globalizable? Can we construct the initial and the
terminal product in the category of enveloping actions?

Study partial cross products attached to partial actions of monoids
(and semigroups) on algebras. Connect these with the universal
category of a monoid.

It is known that if (B, 3) is an enveloping action of (A, «) where a
group G acts partially on a unital algebra A, then the partial cross
products A x G and B x G are Morita equivalent. Is there an
analogue for G replaced by a monoid (or semigroup)?

» Similar question as above for the context of operator algebras.

» Fit the Hom-set globalization construction into the general

framework of geometric partial (co)modules developed by Hu,
Saracco and Vercruysse.
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