Primeness of group-graded rings, with applications to partial crossed products and Leavitt path algebras

Johan Öinert

Blekinge Institute of Technology (BTH)

The Second Antipode Workshop, Brussels 2022

Collaborators

This is a joint work with:

- Daniel Lännström (Blekinge Institute of Technology, Sweden)
- Patrik Lundström (University West, Sweden)
- Stefan Wagner (Blekinge Institute of Technology, Sweden)

Outline

Outline

- 🚺 Background
 - Group rings
 - Strongly group-graded rings
 - Leavitt path algebras
 - Nearly epsilon-strongly graded rings
 - The main result
- 4 Comments on the proof
- Deplications
 - Leavitt path algebras
 - Partial crossed products
 - s-unital group rings

🕽 Background

- Group rings
- Strongly group-graded rings
- Leavitt path algebras
- Nearly epsilon-strongly graded rings
- 3 The main result
- 4 Comments on the proof
- 5 Applications
 - Leavitt path algebras
 - Partial crossed products
 - s-unital group rings

Group rings

Primeness of group rings

Theorem (Connell, 1963)

Let G be a group and let R be a unital ring. TFAAE:

- The group ring R[G] is prime.
- R is prime, and G has no non-trivial finite normal subgroup.

Recall: Group-graded rings

From now on, G denotes an arbitrary group.

Definition

A ring S is said to be G-graded if

•
$$S = \bigoplus_{g \in G} S_g$$

•
$$S_g S_h \subseteq S_{gh}$$
 for all $g, h \in G$.

Definition

A G-graded ring S is strongly G-graded if

•
$$S_g S_h = S_{gh}$$
 for all $g, h \in G$.

Primeness of unital strongly graded rings

Theorem (Passman, 1984)

Suppose that S is a unital and strongly G-graded ring. Then S is not prime if and only if there exist:

- **(**) subgroups $N \lhd H \subseteq G$ with N finite,
- (1) an H -invariant ideal I of S_e such that $I^xI=\{0\}$ for every $x\in G\setminus H$, and
- **(**) nonzero *H*-invariant ideals \tilde{A}, \tilde{B} of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$ and $\tilde{A}\tilde{B} = \{0\}.$

Notation

• $S_N := \bigoplus_{n \in N} S_n$

•
$$I^x := S_{x^{-1}}IS_x$$

The history of Leavitt path algebras

- 1962: Leavitt algebras
- 1977: Cuntz C*-algebras
- 1998: Graph C*-algebras
- 2005: Leavitt path algebras

Recommended survey article

G. Abrams, *Leavitt path algebras: the first decade*, Bull. Math. Sci. 5 (2015), no. 1, 59–120.

Leavitt path algebras

Definition

Let $E = (E^0, E^1)$ be a directed graph and let R be a unital ring. The *Leavitt path algebra* $L_R(E)$ is the free associative R-algebra generated by the symbols $\{v \mid v \in E^0\} \cup \{f \mid f \in E^1\} \cup \{f^* \mid f \in E^1\}$ subject to the following relations:

Remark (A natural Z-grading on $L_R(E)$) Put: $\deg(v) = 0$, $\deg(f) = 1$, and $\deg(f^*) = -1$ for all v and f.

Leavitt path algebras are partial skew group algebras!

Theorem (Goncalves & Royer, 2014)

Let K be a field and let $E = (E^0, E^1)$ be a directed graph. Then $L_K(E) \cong D(X) \rtimes_{\alpha} \mathbb{F}$ as K-algebras.

Explanation:

- \mathbb{F} is the free group generated by E^1 .
- D(X) is a certain subalgebra of the function K-algebra on the set of sinks, infinite paths and finite paths ending in sinks.

Primeness of Leavitt path algebras

Definition

A directed graph E is said to satisfy *condition (MT-3)* if for all $u, v \in E^0$, there exist $w \in E^0$ and paths from u to w and from v to w.

Theorem (Larki, 2015)

Suppose that E is a directed graph and that R is a unital commutative ring. TFAAE:

- **()** The Leavitt path algebra $L_R(E)$ is prime.
- \bigcirc R is prime, and E satisfies condition (MT-3).

Background

- Group rings
- Strongly group-graded rings
- Leavitt path algebras

Nearly epsilon-strongly graded rings

- 3) The main result
- 4 Comments on the proof

5 Applications

- Leavitt path algebras
- Partial crossed products
- s-unital group rings

Two key properties of unital strongly graded rings

Definition

A G-graded ring S is said to be symmetrically G-graded if

•
$$S_g S_{g^{-1}} S_g = S_g$$
 for every $g \in G$.

Observation

Suppose that S is a unital and strongly G-graded ring. Then:

- S is symmetrically G-graded.
- $S_g S_{g^{-1}}$ is a unital ring for every $g \in G$ (because $S_g S_{g^{-1}} = S_e$).

Epsilon-strongly graded rings

Definition (Pinedo, Nystedt, Ö)

A G-graded ring S is said to be *epsilon-strongly* G-graded if the following assertions hold:

- S is symmetrically G-graded
- $S_g S_{g^{-1}}$ is a unital ring for every $g \in G$.

Remark

An epsilon-strongly G-graded ring is always unital.

Examples

- Every unital strongly G-graded ring.
- Every \mathbb{Z} -graded Leavitt path algebra $L_R(E)$, when E is a finite graph.
- Every G-graded unital partial crossed product $R \rtimes^w_{\alpha} G$.

Nearly epsilon-strongly graded rings

Definition (Nystedt, Ö)

A G-graded ring S is said to be *nearly epsilon-strongly* G-graded if the following assertions hold:

- S is symmetrically G-graded
- $S_g S_{g^{-1}}$ is an *s*-unital ring for every $g \in G$.

Examples

- Every epsilon-strongly G-graded ring.
- Every \mathbb{Z} -graded Leavitt path algebra $L_R(E)$, for any graph E.

Observation (Lännström, 2021)

Every graded von Neumann regular ring is nearly epsilon-strongly graded.

🚺 Background

- Group rings
- Strongly group-graded rings
- Leavitt path algebras
- Nearly epsilon-strongly graded rings

The main result

Comments on the proof

5 Applications

- Leavitt path algebras
- Partial crossed products
- s-unital group rings

Yet another definition

Definition

A G-graded ring S is said to be *non-degenerately* G-graded if

• for every $g\in G,$ and every nonzero $s\in S_g,$ we have $sS_{g^{-1}}\neq \{0\}$ and $S_{g^{-1}}s\neq \{0\}.$

Remark

A nearly epsilon-strongly G-graded ring S is non-degenerately G-graded.

Proof (50%).

- Take $s \in S_g$ and suppose that $S_{g^{-1}}s = \{0\}.$
- Then $s = \sum_{i=1}^{n} a_i b_i c_i$ where $a_i, c_i \in S_g$ and $b_i \in S_{g^{-1}}$.
- Let $u \in S_g S_{g^{-1}}$ be an *s*-unit for $\{a_1 b_1, \ldots, a_n b_n\}$.
- $s = \sum_{i=1}^{n} a_i b_i c_i = \sum_{i=1}^{n} (ua_i b_i) c_i = us \in S_g S_{g^{-1}} s = \{0\}.$

Theorem (Lännström, Lundström, Ö, Wagner)

Suppose that G is a group and that S is a $G\mbox{-}graded$ ring. Consider the following five assertions:

- S is not prime.
- There exist:
 - \bigcirc subgroups $N \lhd H \subseteq G$ with N finite,
 - **(1)** an *H*-invariant ideal *I* of S_e such that $I^xI = \{0\}$ for every $x \in G \setminus H$,
 - **(**) nonzero ideals \tilde{A}, \tilde{B} of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$ and $\tilde{A}S_H\tilde{B} = \{0\}$.

) There exist:

- **()** subgroups $N \lhd H \subseteq G$ with N finite,
- **(1)** an *H*-invariant ideal *I* of S_e such that $I^xI = \{0\}$ for every $x \in G \setminus H$,
- **(b)** nonzero *H*-invariant ideals \tilde{A}, \tilde{B} of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$ and $\tilde{A}S_H\tilde{B} = \{0\}.$

The following assertions hold:

If S is non-degenerately G-graded, then $(c) \Longrightarrow (b) \Longrightarrow (a)$.

If S is nearly epsilon-strongly G-graded, then $(a) \iff (b) \iff (c)$.

🛯 Background

- Group rings
- Strongly group-graded rings
- Leavitt path algebras
- Nearly epsilon-strongly graded rings
- 3 The main result

Comments on the proof

Applications

- Leavitt path algebras
- Partial crossed products
- s-unital group rings

The "easy" direction

Proposition

Suppose that S is non-degenerately G-graded and that there exist

- \bigcirc subgroups $N \lhd H \subseteq G$ with N finite,
- (1) an H-invariant ideal I of S_e such that $I^xI = \{0\}$ for every $x \in G \setminus H$, and

• nonzero ideals \tilde{A}, \tilde{B} of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$, and $\tilde{A}S_H\tilde{B} = \{0\}$. Then S is not prime.

Proof (sketch).

Consider the ideals $A := S\tilde{A}S$ and $B := S\tilde{B}S$ of S.

- By non-degeneracy of the grading, A and B are both nonzero.
- One can show that $\tilde{A}S_g\tilde{B} = \{0\}$ for every $g \in G$. From this we get that $AB = \{0\}$.

Definition

- Let S be a G-graded ring. An NP-datum for S is a quintuple $(H,N,I,\tilde{A},\tilde{B})$ with the following three properties:
- (NP1) H is a subgroup of G, and N is a finite normal subgroup of H,
- (NP2) I is a nonzero H-invariant ideal of S_e such that $I^xI=\{0\}$ for every $x\in G\setminus H,$ and
- (NP3) \tilde{A}, \tilde{B} are nonzero ideals of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$, and $\tilde{A}\tilde{B} = \{0\}$. An NP-datum $(H, N, I, \tilde{A}, \tilde{B})$ is said to be *balanced* if it satisfies the following property:
- (NP4) \tilde{A}, \tilde{B} are nonzero ideals of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$, and $\tilde{A}S_H\tilde{B} = \{0\}.$

Remark

If S is nearly epsilon-strongly G-graded, then (NP4) implies (NP3).

Remark

Suppose that S is s-unital strongly G-graded. An NP-datum $(H, N, I, \tilde{A}, \tilde{B})$ for S is necessarily balanced whenever \tilde{A} or \tilde{B} is H-invariant. Indeed, suppose that \tilde{A} is H-invariant. For any $h \in H$, we get that

$$\tilde{A}S_h\tilde{B} = S_e\tilde{A}S_h\tilde{B} = S_hS_{h^{-1}}\tilde{A}S_h\tilde{B} \subseteq S_h\tilde{A}\tilde{B} = \{0\}.$$

The proof of the case when \tilde{B} is H-invariant is analogous.

Proposition

Suppose that S_e is not G-prime. Then S has a balanced NP-datum $(H, N, I, \tilde{A}, \tilde{B})$ for which \tilde{A}, \tilde{B} are H-invariant.

Proof.

- There are nonzero G-invariant ideals \tilde{A}, \tilde{B} of S_e such that $\tilde{A}\tilde{B} = \{0\}$.
- We claim that $(G, \{e\}, S_e, \tilde{A}, \tilde{B})$ is a balanced NP-datum.
- Conditions (NP1), (NP2) and (NP3) are trivially satisfied.
- We now check condition (NP4). Take $x \in G$. Seeking a contradiction, suppose that $\tilde{A}S_x\tilde{B} \neq \{0\}$. Note that $\tilde{A}S_x\tilde{B} \subseteq S_x$. By non-degeneracy of the *G*-grading, $S_{x^{-1}} \cdot \tilde{A}S_x\tilde{B} \neq \{0\}$. Since \tilde{A} is *G*-invariant, we get that $S_{x^{-1}}\tilde{A}S_x\tilde{B} \subseteq \tilde{A}\tilde{B} = \{0\}$, which is a contradiction. Note that, trivially, \tilde{A}, \tilde{B} are both *G*-invariant.

Proposition

Suppose that S is nearly epsilon-strongly G-graded. If S is not prime, then it has a balanced NP-datum $(H, N, I, \tilde{A}, \tilde{B})$ for which \tilde{A}, \tilde{B} are H-invariant.

Comment on the proof.

Case 1 (S_e is not G-semiprime): Previous slide. Case 2 (S_e is G-semiprime): Requires long (\approx 15 pages) and technical arguments...

🚺 Background

- Group rings
- Strongly group-graded rings
- Leavitt path algebras
- Nearly epsilon-strongly graded rings
- 3 The main result
- Comments on the proof

Applications

- Leavitt path algebras
- Partial crossed products
- s-unital group rings

Primeness of Leavitt path algebras

Theorem (Lännström, Lundström, Ö, Wagner)

Suppose that E is a directed graph and that R is a unital ring. TFAAE:

- **(**) The Leavitt path algebra $L_R(E)$ is prime.
- \bigcirc R is prime, and E satisfies condition (MT-3).

Primeness of partial crossed products

Remark

Let $R \star_{\alpha}^{w} G$ be a unital partial crossed product coming from a unital twisted partial action $(\{\alpha_g\}_{g \in G}, \{D_g\}_{g \in G}, \{w_{g,h}\}_{(g,h) \in G \times G})$.

- An ideal I of R is *G*-invariant if $\alpha_g(I \cap D_{g^{-1}}) \subseteq I$ for every $g \in G$.
- R is G-prime if there are no nonzero G-invariant ideals I, J of R such that $IJ = \{0\}$.

Theorem (Lännström, Lundström, Ö, Wagner)

Suppose that G is torsion-free and that $R \star_{\alpha}^{w} G$ is a unital partial crossed product. Then $R \star_{\alpha}^{w} G$ is prime if and only if R is G-prime.

The s-unital Connell's theorem

Let R be an s-unital ring. We define the group ring R[G] as the set of all formal sums $\sum_{x \in G} r_x \delta_x$ where δ_x is a symbol for each $x \in G$ and $r_x \in R$ is zero for all but finitely many $x \in G$. Addition on R[G] is defined in the natural way and multiplication is defined by linearly extending the rules $r\delta_x r'\delta_y = rr'\delta_{xy}$, for all $r, r' \in R$ and $x, y \in G$.

Theorem (Lännström, Lundström, Ö, Wagner)

Let R be an s-unital ring. TFAAE:

- **()** The group ring R[G] is prime.
- \blacksquare R is prime, and G has no non-trivial finite normal subgroup.

D. Lännström, P. Lundström, J. Öinert and S. Wagner,

Prime group graded rings with applications to partial crossed products and Leavitt path algebras,

arXiv:2105.09224 [math.RA]

The location of Blekinge Institute of Technology

The location of Blekinge Institute of Technology

The location of Blekinge Institute of Technology

Johan Öinert (BTH)

Primeness of group-graded rings

2022-09-13

32 / 34

The campus in Karlskrona

THANK YOU FOR YOUR ATTENTION!

Johan Öinert (BTH)

Primeness of group-graded rings

2022-09-13