Hopf-Galois extensions and twisted Hopf algebroids

Xiao Han Queen Mary University of London (UK)

Abstract

We show that the Ehresmann-Schauenburg bialgebroid of a quantum principal bundle P or Hopf Galois extension with structure quantum group H is in fact a left Hopf algebroid L(P, H). We show further that if H is coquasitriangular then L(P, H) has an antipode map S obeying certain minimal axioms. Trivial quantum principal bundles or cleft Hopf Galois extensions with base B are known to be cocycle cross products $B\#_{\sigma}H$ for a cocycle-action pair (\triangleright, σ) and we look at these of a certain 'associative type' where \triangleright is an actual action. In this case also, we show that the associated left Hopf algebroid has an antipode obeying our minimal axioms. We show that if L is any left Hopf algebroid then so is its cotwist L^{ς} as an extension of the previous bialgebroid Drinfeld cotwist theory. We show that in the case of associative type, $L(B\#_{\sigma}H, H) = L(B\#H)^{\tilde{\sigma}}$ for a Hopf algebroid cotwist $\varsigma = \tilde{\sigma}$. Thus, switching on σ of associative type appears at the Hopf algebroid level as a Drinfeld cotwist. We view the affine quantum group $U_q(\mathfrak{sl}_2)$ and the quantum Weyl group of $u_q(\mathfrak{sl}_2)$ as examples of associative type.