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Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an
isomorphism.

Thus, a groupoid is a diagram of sets and maps:

· · · · · · G2

//
//· // G1oo

oo ��
s //
t // G0
ιoo

where G2 := G1 s× t G1
· // G1 is the multiplication (opposite to the

composition) and the map G1 → G1 assigns to each arrow its inverse.

Whenever a category admits a pull-backs, a groupoid construction can
be performed:

Category Groupoid Object
Tops topological groupoids

Smooth manifolds “Lie Groupoids”
Algebraic varieties Algebraic groupoids

Groups Crossed modules
(pre) Sheaves (pre) Stacks
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Groupoids: Definitions and examples.

Some examples of groupoids.

I Any set can be considered as a discrete category (the only arrows
are identities), known as a trivial groupoid.

I Any group is a groupoid with one object. The multiplication is that of
the group. Thus every arrow is a loop.

I The groupoid of pairs is a groupoid of the form (X × X ,X) with
source an target the first and second projection.

I Any equivalence relation R ⊆ X × X defines what is known as the
equivalence relation groupoid whose structure is analogue to the
previous one.

I The action groupoid is a groupoid of the form (X × G,X) where X a
right G-set. The source is the action while the target is the first
projection.

I Given any set X and any group G, then the pair
(
X × G × X ,X

)
is a

transitive groupoid whose source and target are the third and the
first projections, respectively. Here G is the isotropy type group.
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Groupoids: Definitions and examples
The four square Loyld’s Puzzle: The groupoid L2.

This is a game which consist in a 2 × 2 chessboard with positions
numbered from 1 to 4, and with 3 square pieces that can be moved at
each step of the game to a nearest position, provided that is empty.
Hence, each “move” represents the “state of the game”, it is reversible
and it can be undone in the next step.

1 2

3 4

Let us give to each position of the empty square a number in {1, 2, 3, 4},
that is, the state of the game, is represented as a matrix, and mark the
boxes with letters {a, b , c}:

b c

a

the move of the piece b

leads to the sate

b

c

a
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Groupoids: Definitions and examples

The four square Loyld’s Puzzle: The groupoid L2.

There are then four states {s1, s2, s3, s4} and each one of them has three
configurations:

The configurations of states one and two are as follows:

b c

a

a b

c

c a

b

b c

a

c a

b

a b

c
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The configurations of the third and fourth states are as follows:

b

c

a a

b

c c

a

b

c

ab

b

ca

a

bc



Groupoids: Definitions and examples

The four square Loyld’s Puzzle: The groupoid L2.
The configurations of the third and fourth states are as follows:
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Groupoids: Definitions and examples
The four square Loyld’s Puzzle: The groupoid L2.

Set G0 = {s1, s2, s3, s4} the set of all states of the game and G1 the set of
all moves from a state to another one including the configurations and the
action of no-moves.
Each move depends on its initial and final states and it is determined by a
certain permutation of {1, 2, 3, 4}. Thus, we have that G1 ⊆ G0 × S4 × G0.
The resulting move out of two consecutive moves in the game is in fact
the composition of the corresponding two arrows in the groupoid(
G0 × S4 × G0,G0

)
. The pair (G1,G0) is the clearly a transitive

sub-groupoid of
(
G0 × S4 × G0,G0

)
.

The isotropy type group of (G0,G1) is the abelian group of alternating
three elements A3. For instance,

Gs1 =
{(

1, id3, 1
)
,
(
1, (234), 1

)
,
(
1, (243), 1

)}
,

which corresponds to the three configurations of the state s1.
The rest of arrow from state to a state can be all computed and they are
in total 48. For example, the set of arrows from s2 to s4 is

G(s2, s4) =
{(

4, (24), 2
)
,
(
4, (1342), 2

)
,
(
4, (1423), 2

)}
.
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1, (234), 1

)
,
(
1, (243), 1

)}
,

which corresponds to the three configurations of the state s1.
The rest of arrow from state to a state can be all computed and they are
in total 48. For example, the set of arrows from s2 to s4 is

G(s2, s4) =
{(

4, (24), 2
)
,
(
4, (1342), 2

)
,
(
4, (1423), 2

)}
.
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Groupoids: Definitions and examples

Groupoid and the birth of non-commutative geometry.

The different levels of energies E(n)1≤ n ≤7, form a groupoids of
pairs. It seems that Alain Connes was the first who observed this,
and this was perhaps one of his motivation to formulate his non
commutative geometry.
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Groupoids: Definitions and examples

Molecular vibrations and vector bundle.

Consider the space of
motions of Carbon Tetrachloride. At equilibrium the carbon atom lies at
the center, and the four chlorine atoms at the vertices of a regular
tetrahedron.

4

C

1

2

3

vc
∈ E

C

v 1
∈

E 1

v 3
∈

E 3

v
4
∈

E
4

v
2
∈

E
2

Figure: Molecular model of Carbon Tetrachloride.

In a small displacement from equilibrium, each of the atoms moves in its
own three-dimensional vector space: E1,E2,E3,E4 and EC .
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Groupoids: Definitions and examples
Molecular vibrations and vector bundle.

A displacement of the
molecule as a whole moves each of the atoms, and so is a function f
such that f(C) ∈ EC and f(i) ∈ Ei , for i = 1, 2, 3, 4, which tells how each
atom has been displaced from its equilibrium.
Now, let us see how the group S4 acts on the set of displacements.
Consider, for example, the action of the element (123) ∈ S4. On the
molecule itself, at equilibrium, (123) leaves C fixed, rotates the chlorine
atoms 1, 2 and 3 and leaves 4 fixed:
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Figure: The action of the element (123) ∈ S4 on the displacements of Carbon Tetrachloride.
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Groupoids: Definitions and examples

Molecular vibrations and vector bundle.

Set M = {1, 2, 3, 4,C} to be
the set of atoms. Then (E, π), where E =

⊎
x ∈M Ex and π : E → M is the

obvious maps, is an S4-equivariant vector bundle, or homogeneous
vector bundle, whose associated module of global sections:

Γ(E) :=
{
σ : M → E | π ◦ σ = identity

}
is the space of displacements of the molecule as a whole, and the action
of S4 on Γ(E) might be considered as the action of the symmetry group
on the space of displacements.

As we will see below, in general if we assume that a group G is acting on
set M and consider it associated action groupoid G := (G ×M,M); then
any G-equivariant vector bundle over M leads to a linear representation
on G. The converse also holds true, thus, any finite-dimensional (having
the same dimension at each fibre) linear representation of G, gives rise to
a G-equivariant vector bundle.
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Groupoids: Finite dimensional representations.

Homogeneous vector bundles.

Let k denotes a ground base field,
Vect k its category of vector spaces, and vect k the full subcategory of finite
dimensional ones.
For a given groupoid

G : G1
s //
t // G0ιoo ,

we consider the category of all G-representations as the symmetric
monoidal k-linear abelian category of functors

[
G, Vect k

]
with identity

object 1 : G0 → Vect k, x → k, g → 1k.

For any G-representationV the image of an object x ∈ G0 is denoted by
Vx , and referred to as the fibre ofV over x.

The disjoint union of all the fibres of a G-representationV is denoted by
V =

⋃
x ∈G0
Vx and the canonical projection by πV : V → G0. This called

the associated vector G-bundle of the representationV.

If G = (G ×M,M) is an action groupoid, then there is an equivalence of
(symmetric monoidal) categories between the category of G-equivariant
vector bundles over M and that of linear representations of G.
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Groupoids: Finite dimensional representations.

The dimensional function.

LetV be a G-representation in
[
G, vect k

]
,

we define its dimension function as the map

dV : G0 −→ N,
(
x 7−→ dimk

(
Vx

))
,

which clearly extends to a map dV : π0(G)→ N.

A G-representationV in
[
G, vect k

]
is called a finite dimensional

representation, provided that the dimension function dV has a finite
image, that is, dV(G0) is a finite subset of the set of positive integers N.

We denote by repk(G) the category of finite dimensional representation
over G. Clearly, we have that

repk(G) =
[
G, vect k

]
, when π0(G) is a finite set.

LetV andW be two representations in repk(G). Then

dV⊕W = dV + dW, dDV = dV, and dV⊗W = dV dW.

Therefore, the category repk(G) is a symmetric rigid monoidal k-linear
abelian category. But NOT locally finite, in general.
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Groupoids: Finite dimensional representations.
Example of representations.

Consider the set X = {1, 2} and denote by G{1,2} the associated
groupoid of pairs. Thus G0 = {1, 2} and
G1 = {(1, 1), (1, 2), (2, 1), (2, 2)}.
An object in repk(G

{1,2}) is then a pair (n,N), where n is a positive
integer, and N ∈ GLn(k).
The vector spaces of homomorphisms are given by

repk(G
{1,2})

(
(n,N), (m,M)

)
= Mm, n(k),

the k-vector space of m × n matrices with matrix multiplication.

The other operations in repk(G
{1,2}) are

(n,N) ⊕ (m,M) =
(
n + m,

(
N 0
0 M

) )
, D(n,N) = (n,Nt )

(n,N)⊗(m,M) =
(
nm, (N bij)1≤i,j≤m

)
, where M = (bij), and 1 = (1, 1).

Tr(n,N) = n.
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Groupoids: Finite dimensional representations.

The transitive case.

Recall that a groupoid G is said to be transitive if for
any two objects x, y ∈ G0, there is an arrow g ∈ G1 such that s(g) = x
and t(g) = y, or equivalently, π0(G) is a singleton.

Let G be a transitive groupoid. Then, the category repk(G) is a symmetric
rigid monoidal locally finite k-linear abelian category.

Moreover, repk(G) admits a non trivial fibre functor to the category of
finite dimensional vector spaces. Namely, fix an object x ∈ G0, and
consider the functor

ωx : repk(G) −→ vect k,
(
V −→ Vx

)
.

Then ωx is a non trivial fibre functor, and ωx � ωy , for any x, y ∈ G0.

Furthermore, we have that k � Endrepk(G)(1), where 1 is the identity
G-representation.

Summarizing (repk(G),ωx) is a (neutral) Tannakian category in the sense
of Saavedra-Rivano, Deligne and Milne.
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Groupoids: Finite dimensional representations.

The fibre functor on repk(G).

Let G be a groupoid and denote by
A0(G) := kG0 its base algebra and by A1(G) := kG1 its total algebra. By
reflecting the groupoid structure of G, we have a diagram of algebras:

A0(G)
s∗ //

t∗ // A1(G) · · · · · ·ι∗oo

LetV be a finite dimensional G-representation and denote by

dV(G0) :=
{
n1, n2, · · · , nN

}
ordered as n1 < n2 < · · · < nN (where

obviously the maximal and minimal indices depend uponV).

The set of objects G0 is then a disjoint union G0 =
⋃N

i=1 G i
V
, where each

of the G i
V
’s is the inverse image G i

V
:= d−1

V

(
{ni}

)
, for any i = 1, · · · ,N.

This leads to a decomposition of the base algebra A0(G):

A0(G) = B1 × · · · · · · × BN,

where each of Bi ’s is the algebra of functions on G i
V
.
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Groupoids: Finite dimensional representations.

The fibre functor on repk(G).

We can then define the functor which acts
on objects by:

ω : repk(G) −→ proj(A0(G)), V −→ PV = Bn1
1 × · · · × BnN

N

an A0(G)-module which corresponds to the above decomposition.

Now, by considering the associated vector G-bundle ofV, we can
perform the k-vector space of ”global sections":

Γ(V) :=
{
s : G0 →V | πV ◦ s = idG0

}
.

It turns out that both functors ω and Γ are symmetric monoidal faithful
functors, and there is a tensorial natural isomorphism ω � Γ.

The functor ω is a non trivial exact, faithful and symmetric monoidal
functor. It is termed the fibre functor of repk(G).
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Lie algebroids: Definition and examples

LetM be a connected smooth real (or almost complex) manifold and
A := C∞(M). Consider (L,M) a locally trivial vector bundle with a
constant rank. Denote by L := Γ(L) its A -module of smooth global
sections. In this case, this is a finitely generated and projective module
with a constant rank.

The pair (L,M) is called a Lie algebroid, provided that there exist a
morphism of vector bundles ϕ : L → TM and a structure of Lie algebra
on L , such that Γ(ϕ) : L → Γ(TM) is a Lie algebras morphisms
satisfying:

[X , fY ] = f [X ,Y ] + Γ(ϕ)(X)(f)Y

for any pair of sections X ,Y ∈ L and any smooth function f ∈ A .

In a more general fashion, a Lie-Rinehart algebra, is a pair (L ,A)
consisting of an algebra A and an A -module L with a Lie algebra (over k)
structure together with a Lie algebras map φ : L → Derk(A) (the anchor)
which is A -linear and satisfies:

[X , aY ] = a[X ,Y ] + φ(X)(a)Y

for every pair of elements X ,Y ∈ L and every element a ∈ A .
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Lie algebroids: Definition and examples

Some examples:

I (Atiyah Lie algebroid) Let M be an A -module with action
l : A → Endk(M). The Atiyah’s algebra (also known as linear Lie
algebroid) associated to M, is the Lie-Rinehart algebra A(M)
whose elements are pairs of the form (φ, ∂) with φ ∈ Endk(M) and
∂ ∈ Derk(A , ) such that φ(am) − aφ(m) = ∂(a)m, for every a ∈ A ,
m ∈ M. The Lie bracket is [(φ, ∂), (φ′, ∂′)] = ([φ, φ′], [∂, ∂′]), and the
anchor is the second projection.

I (Poisson manifold) A smooth manifoldM is a Poisson manifold, if
and only if, its co-tangent vector bundle has a structure of Lie
algebroid overM.

I (The Lie algebroid of a Lie groupoid) Let us consider a Lie groupoid

G : G1
s //
t // G0,ιoo

where G1 is assumed to be a connected smooth real manifold and
s, t are surjective submersions. Consider the following vector
bundle E = ∪x ∈G0Ex , where each fibre Ex is the R-vector space
Ex = Der s∗

R
(C∞(G1),Rι(x)) � DerR(C∞(Gx),Rι(x)). Then

(Γ(E),C∞(G0)) has a structure of Lie-Rinehart algebra.
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Lie algebroids: representations and fibre functor

Let (L ,A) be a Lie-Rinehart algebra. An L-representation is a pair (M, ρ),
where M is an A -module and ρ : L → Endk(M) is simultaneously a
morphism of A -modules and Lie algebras such that

ρ(X)(am) = φX (a) m + a ρ(X)(m), for all a ∈ A ,m ∈ M,X ∈ L .

A morphism f : (M, ρ)→ (M′, ρ′) between two L -representations, is an
A -linear map f : M → M′ satisfying ρ′(X) ◦ f = f ◦ ρ(X), for all X ∈ L .

We denote by repk(L) the full subcategory of L -representations with
finitely generated and projective underlying A -modules. The forgetful
functor, leads then to a functor ω : repk(L)→ proj(A).

The category repk(L) is a k-linear symmetric and rigid monoidal category
with identity object I = (A , φ), whose endomorphism ring coincides with
the sub-algebra A c ⊂ A of L -constants elements:

A c = {a ∈ A | φX (a) = 0,∀X ∈ L}

In the particular case (L = C.∂z ,C[z]), we have that repC(L) coincides
with the category of differential C[z]-modules (i.e., linear differential
matrix equations).
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Hopf Algebroids: Definition and examples

Commutative Hopf algebroids: A commutative Hopf algebroid over k is
an affine groupoid k-scheme: that is a functor

H : Affk −→ Grpd

with image in groupoids and such that

Sets

Affk
H //

representable ++

representable

44

Grpd

Thus, we are considering a pair of objects (A ,H) in Affk such that, for
any other object C, we have, in a funtorial, way a structure of groupoid
(over the fibres)

H(C) := Algk(H ,C)
s //
t // Algk(A ,C) := A(C)ιoo

Thus we are considering a co-groupoid object in the category Algk:

A
s //
t // H ,εoo

source, target and the identity arrow

H
∆ // H ⊗A H ,
composition

sHt
S //

tHs .
inverse arrow
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Hopf Algebroids: Definition and examples.

Basic examples:

I For every commutative algebra A , the pair (A ,A) admits a trivial
Hopf algebroid structure over k.

I Each algebra extension A → B induces a Hopf algebroid of the
form (B ,B ⊗A B).

I If H is an Hopf k-algebra and A is an H-comodule algebra, then the
pair (A ,A ⊗k H) admits, in a natural way, a structure of Hopf
algebroid.

I Again if H is a Hopf k-algebra, then for every algebra A the pair of
algebras (A ,A ⊗k H ⊗k A) is a Hopf algebroid.

I In particular, (A , (A ⊗C A)[X ]) and (A , (A ⊗C A)[X ,X−1]) are Hopf
algebroids over C, by using respectively, Ga and Gm the additive and
the multiplicative C-groups.

Morphism of Hopf algebroids: A pair of algebra maps
(φ0, φ1) : (A ,H)→ (B ,K) is said to be a morphism of Hopf algebroids, if
φ0 and φ1 are compatible with both Hopf structures, that is, they induce a
morphism Φ : K→ H between the associated presheaves of groupoids.
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Hopf Algebroids: Definition and examples.

More examples: The coordinates algebras of Malgrange’s D-groupoid:
Consider the complex algebra of polynomial with one indeterminate
A = C[X ] and the polynomial algebra H = C[x0, y0, y1, y2, · · · ,

1
y1

].
There two algebra maps
s : A → H ,

(
X 7→ x0 := x

)
and t : A → H ,

(
X 7→ y0 := y

)
.

The comultiplication ∆ : sHt
//

sHt ⊗A sHt is given by:

∆(x) = x ⊗A 1, ∆(y) = 1 ⊗A y, and for n ≥ 1 :

∆(yn) =
∑

(k1 , k2 ,··· , kn)

k1+2k2+···+nkn=n

n!

k1! · · · kn!

( (y1

1!

)k1
(y2

2!

)k2

· · ·

(yn

n!

)kn )
⊗A yk1+k2+···+kn ,

The antipode S : sHt
//

tHs is given by :

S(x) = y, S(y) = x, S(y1) = y−1
1 , and for n ≥ 2 :

S(yn) =
∑

(k1 , k2 ,··· , kn), (n,0,··· ,0)

k1+2k2+···+nkn=n

−
n!

k1! · · · kn!
S
(
yk1+k2+···+kn

) ( (y1

1!

)k1−n (y2

2!

)k2

· · ·

(yn

n!

)kn )
,

Lastly the counit ε : sHt
// A is:

ε(x) = X , ε(y) = X , ε(yn) = δ1, n, for every n ≥ 1.
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Hopf algebroids: Their categories of comodules

Comodules over Hopf algebroids: Given (A ,H) a Hopf algebroid, a
(right) H-comodule is a pair (M, %) consisting of a (central) A -module M
and an A -linear map % : M → M ⊗A sHt which is compatible with ∆ and ε,
known as co-action. A morphism of H-comodules is an A -linear map
which is compatible with co-actions.

For instance, both (Ht ,∆) and (A , s) are right H-comodule.

In general the category ComodH of right H-comodules is a symmetric
monoidal (closed) which posses co-kernels and inductive limits, and
isomorphic (via the antipode) to the category of leftH-comodules. IfH is
a flat A -module via s or t , then H is faithfully flat and ComodH becomes
a Grothendieck category.

We denote by comodH the full subcategory of ComodH of comodules
with finitely generated and projective underlying A -module and by
O : comodH → proj(A) the attached forgetful functor.

Any morphism φ : (A ,H)→ (B ,K) of Hopf algebroids induces a
symmetric monoidal functor (the induction functor):

φ
∗ : ComodH −→ ComodK
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Hopf algebroids: Geometric comodules

Geometric comodules over Hopf algebroids: Let A be a k-algebra such
that A(k) , ∅ (i.e., A admits k-points). Assume further that A satisfies
∩y ∈A(k) ker(y) = 0, or equivalently, that the canonical map

ς : A −→ Fun(A(k)) := Functions(A(k), k)is injective.

An object P ∈ proj(A) is said to be a geometric module, provided that

I ∩y ∈A(k)P ker(y) = 0;

I dimk(
P

P ker(y) ) < ∞, for every algebra map y, and there are finitely
many type of these dimensions.

The full subcategory of geometric A -module is denotes by Gproj(A).

Let (A ,H) be a flat Hopf algebroid over k with base algebra A as a
above. An H-comodule (M, %) is said to be a geometric module,
provided that O(M) ∈ Gproj(A). We denote by comodG

H
the category of

all geometric H-comodules.

(A ,H) is said to be a geometric Hopf algebroid, provided that H is a flat
A -module and can be reconstructed from its category of geometric
comodules via the forgetful functor O. In other words, (A ,H) is
comodG

H
-Galois.
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Geometric Hopf algebropids: Examples

Hopf k-algebras are obviously geometric Hopf algebroids over k.

Recall that a flat Hopf algebroid (A ,H) with non empty character
groupoid, is said to be geometrically transitive (GT for short) provided
that the map (s, t) is a cover in the fpqc topology, or equivalently, the
base space is not empty and every two objects are locally isomorphic
w. r. t. this topology (i.e., the associated presheaf is actually a Gerbe).
Algebraically, this is equivalent to say that A(k) , ∅ (and A , 0) and the
algebra map s ⊗ t : A ⊗ A → H is faithfully flat.

Any GT Hopf algebroid is a geometric Hopf algebroid in the above sense.
This is deduced from the fact that, for GT Hopf algebroids, we always

have that comodH = comodG
H

and of course from the fact that any GT
Hopf algebroid is constructed out of its category of dualizable comodules
comodH , which is a locally finite abelian category in this case.

Notation: We denote by GHAlgd (resp. GTHAlgd) the 2-category of
geometric (resp. geometrically transitive) Hopf algebroids over k.

Next we will give another class of examples of geometric Hopf algebroids.
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Representative functions on a groupoid.

Let G be a groupoid and A0(G) its base algebra. It is clear that A is a
geometric algebra. As we have seen before there is functor

ω : repk(G) −→ proj(A0(G))

It turns out that this functor lands in the full subcategory of geometric
A -modules. Thus, we have a commutative diagram

repk(G)
ω //

ω ))

proj(A0(G))

Gproj(A0(G))
' �

44

Let us denote by (A0(G),Rk(ω)) the Hopf algebroid constructed, using
Tannaka reconstruction process, from the pair (repk(G),ω).

The Hopf algebroid (A0(G),Rk(ω)) is geometric. We refer to it as the
algebroid of representative functions, as there is ζ : Rk(ω)→ A1(G) an
(A0(G) ⊗ A0(G))-algebra map. If G is transitive, then (A0(G),Rk(ω)) is a
GT Hopf algebroid.
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Representative functor.

So far, we have construct a contravariant functor Rk : Grpd → GHAlgd,
with a commutative diagram:

Grpd
Rk // GHAlgd

TGrpd
?�

OO

Rk // GTHAlgd
?�

OO

In the other way around, we have the contravariant functor given by the

character groupoid. More precisely, for a given (A ,H) an object in
GHAlgd, we have the (non empty groupoid) χk := (H(k),A(k)), which is
transitive if (A ,H) is GT.

First result: Both functors establish contravariant adjuntions:

Grpd
Rk //
⊥ GHAlgd
χk

oo

TGrpd
?�

OO

Rk //
⊥ GTHAlgd
χk

oo
?�

OO
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Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Let (A ,H) be a Hopf
algebroid over a ground field k and denote by I := ker(ε) its
augmentation ideal. We consider A as an H-module via the counit
algebra map and denote this module by Aε.

We consider the following two vector spaces:

DerH s(H , H) :=
{
δ ∈ Homk (H ,H) | δ ◦ s = 0, δ(uv) = δ(u)v + uδ(v),

∆(δ(u)) = u1 ⊗A δ(u2), for all u, v ∈ H

}
,

and

Derks(H , Aε) :=
{

δ ∈ Homk (H ,A) | δ ◦ s = 0,
δ(uv) = δ(u)ε(v) + ε(u)δ(v), for all u, v ∈ H

}
.

We have a commutative diagram of A -modules:

∗H
� // EndH(H)

Derks(H , Aε)
� //?�

OO

DerH s(H , H).
?�

OO
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Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Moreover, the A -module
Derks(H , Aε) admits a structure of Lie k-algebra with bracket

[δ, δ′] := δ ∗ δ′ − δ′ ∗ δ : H −→ Aε,
(
u 7−→ δ

(
u1t(δ′(u2)

)
− δ′

(
u1t(δ(u2)

))
and this structure can be transferred to ∗

(
I

I2

)
in a unique way.

The pair (A ,Derks(H , Aε)) admits a structure of Lie-Rinehart algebra with
anchor map:

ω : Derks(H , Aε) −→ Derk(A),
(
δ 7−→ δ ◦ t

)
.

Fix an algebra A and denote by HAlgdA the category of all Hopf

algebroids with base algebra A , and by LieRinA the category of all
Lie-Rinehart algebras with base algebra A . We have then construct a
contravariant functor:

HAlgdA
L // LieRinA

referred to as the differentiation functor.
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Differentiations in Hopf algebroids context.

Example of Lie-Rinehart algebra of a given Hopf algebroid:
(•) Consider the Malgrange’s Hopf algebroid (A ,H) over C and with
A = C[X ]. Then the Lie-Rinehart algebra L (H) of (A ,H) has
underlying A -module the free module AN whose anchor map is

ω : AN −→ DerC(A),
(
a := (an)n ∈N 7−→

(
p 7→ a0∂p

))
and the bracket is defined as follows. For sequences a and b as above,
the sequence [a, b] is given by:[

a, b
]
0

= a0∂b0 − b0∂a0,
[
a, b

]
1

= a0∂b1 − b0∂a1,[
a, b

]
2

= a2b1 − b2a1 + a0∂b2 − b0∂a2,[
a, b

]
n

=
n∑

i=1

(
n
i

)(
aibn−i+1 − bian−i+1

)
+

(
a0∂bn − b0∂an

)
, for n ≥ 3.

(•) Assume now, we are given an affine k-group G := Algk (H,−) acting
on an affine k-scheme X := Algk (A ,−). There is a well known
anti-homomorphism of Lie algebras L := Lie(G)(k)→ Derk(Ok(X)).
Then this Lie algebra map factors through the anchor map of the
Lie-Rinehart algebra of the split Hopf algebroid (A ,H ⊗k A) and
(A , L ⊗k A) becomes a Lie-Rinehart algebra.
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Formal integration of Lie-Rinehart algebras.

The first integration functor: Fix a Lie-Rinehart algebra (A , L) and denote
byUA (L) its universal enveloping (right) Hopf algebroid. This is a
co-commutative Hopf algebroid whose category of rightUA (L)-modules
with finitely generated and projective underlying A -modules coincides
with the rigid and symmetric monoidal category repA (L) of
L -representations.

The forgetful functor O : repA (L)→ proj(A), leads then to a commutative
Hopf algebroid, which we denote byUA (L)◦.

For instance, if A = k, that is, if L is an ordinary Lie algebra, thenUA (L)◦

coincides with the finite dual of the universal Hopf algebra of L .

In this way we are lead to a contravariant functor:

LieRinA
I // HAlgdA

referred to as the first integration functor.

In general there is a map ζ : UA (L)◦ →UA (L)∗ of (A ⊗ A)-algebras, to
the convolution algebra, whose I-adic completion ζ̂ : ÛA (L)◦ −→ UA (L)∗

is a morphism of complete topological Hopf algebroids. None of these
maps is, in general, injective.
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Formal integration of Lie-Rinehart algebras.

The first adjunction: For a fixed base algebra A , we denote by
GaLHAlgdA the category of all Galois Hopf algebroids with base algebra
A . These are Hopf algebroids which can be re-constructible from their
category of comodules with finitely generated and projective underlying
A -modules. This class, of course, contains the class of GT Hopf
algebroids with base A .

An algebra R satisfies property (Pzeta), provided that the canonical map
ζT : T◦ → T ∗ is injective, for every R-ring T . For instance, any field
satisfies this property, as well as any Dedekind domain (e.g., the
coordinate ring of an irreducible smooth curve over an alg-closed field) or
any hereditary algebra.

Second Result: Assume that A satisfies the property (Pzeta), then there
is a contravariant adjunction

LieRinA

I //
⊥ GalHAlgdA

L
oo
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Formal integration of Lie-Rinehart algebras.

The second integration functor: Fix A as before to be a base algebra. By
applying the Special Adjoint Functor Theorem (SAFT) to the category of
A -rings, one can construct a contravariant functor:

LieRinA
I ′

// HAlgdA

together with a natural transformation ζ̃L : UA (L)◦ →UA (L)• := I ′(L)
that fits in the following commutative diagram:

UA (L)◦
ζ //

ζ̃ $$

UA (L)∗

UA (L)•
ξ

::

The map ζ̃ is an equality, when A = k, and the whole diagram reduces to
equalities whenUA (L)A is finitely generated and projective module.
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Formal integration of Lie-Rinehart algebras.

The second adjunction: Fix as before A a base algebra.

Third Result: Then, there is a contravariant adjunction

LieRinA

I ′

//
⊥ HAlgdA .
L

oo

Moreover, for any Lie-Rinehart algebra (A , L) we have a commutative
diagram of natural transformations:

L
ΘL //

Θ′L ((

L (UA (L)◦)

L (UA (L)•).

L (ζ̂)

OO

Integrating Lie-Rinehart algebras: Now we can address the integration
problem for Lie-Rinehart algebra in general and hence for Lie algebroids
in particular.

Given a Lie-Rinehart algebra (A , L) such that LA is finitely generated and
projective module with constant rank. Under which conditions (on both A
and L ), one can construct a Hopf algebroid (A ,H) such that L � L (H)?
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