Lie algebroids, groupoids and Hopf algebroids: A brief introduction.

Laiachi El Kaoutit

Universidad de Granada. Spain.
Emall: kaoutit@ugr.es
URL: https://www.ugr.es/~kaoutit/

Louvain-La-neuve, February 19 ${ }^{\text {th }}, 2020$.

Contents

Definitions, examples and basic properties.
Abstract groupoids
Definitions and examples of groupoids
Finite dimensional linear representations.
Lie algebroids
Definition and example of Lie algebroids
Representations of Lie algebroids and differential modules
Hopf algebroids
Definition and example of Hopf algebroids
Comodules over Hopf algebroids

Contents

Definitions, examples and basic properties.
Abstract groupoids
Definitions and examples of groupoids
Finite dimensional linear representations.
Lie algebroids
Definition and example of Lie algebroids
Representations of Lie algebroids and differential modules
Hopf algebroids
Definition and example of Hopf algebroids
Comodules over Hopf algebroids
The representative function functor and geometric Hopf algebroids
Geometric Hopf algebroids
Representative functions on a groupoid
Contravariant adjunction between groupoids and Hopf algebroids

Contents

Definitions, examples and basic properties.
Abstract groupoids
Definitions and examples of groupoids
Finite dimensional linear representations.
Lie algebroids
Definition and example of Lie algebroids
Representations of Lie algebroids and differential modules
Hopf algebroids
Definition and example of Hopf algebroids
Comodules over Hopf algebroids
The representative function functor and geometric Hopf algebroids
Geometric Hopf algebroids
Representative functions on a groupoid
Contravariant adjunction between groupoids and Hopf algebroids
Formal differentiation and formal integrations
The differentiation functor
The integrations functors
Contravariant adjunctions between Hopf algebroids and Lie algebroids

Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an isomorphism.

Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an isomorphism.Thus, a groupoid is a diagram of sets and maps:

where $\mathcal{G}_{2}:=\mathcal{G}_{1 s} \times_{t} \mathcal{G}_{1} \longrightarrow \rightarrow \mathcal{G}_{1}$ is the multiplication (opposite to the composition) and the $\operatorname{map} \mathcal{G}_{1} \rightarrow \mathcal{G}_{1}$ assigns to each arrow its inverse.

Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an isomorphism.Thus, a groupoid is a diagram of sets and maps:

where $\mathcal{G}_{2}:=\mathcal{G}_{1 s} \times_{t} \mathcal{G}_{1} \longrightarrow \rightarrow \mathcal{G}_{1}$ is the multiplication (opposite to the composition) and the map $\mathcal{G}_{1} \rightarrow \mathcal{G}_{1}$ assigns to each arrow its inverse.

Whenever a category admits a pull-backs, a groupoid construction can be performed:

Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an isomorphism.Thus, a groupoid is a diagram of sets and maps:

where $\mathcal{G}_{2}:=\mathcal{G}_{1 s} \times_{t} \mathcal{G}_{1} \longrightarrow \rightarrow \mathcal{G}_{1}$ is the multiplication (opposite to the composition) and the $\operatorname{map} \mathcal{G}_{1} \rightarrow \mathcal{G}_{1}$ assigns to each arrow its inverse.

Whenever a category admits a pull-backs, a groupoid construction can be performed:

Category | Groupoid Object

Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an isomorphism.Thus, a groupoid is a diagram of sets and maps:

where $\mathcal{G}_{2}:=\mathcal{G}_{1 s} \times{ }_{t} \mathcal{G}_{1} \longrightarrow \rightarrow \mathcal{G}_{1}$ is the multiplication (opposite to the composition) and the $\operatorname{map} \mathcal{G}_{1} \rightarrow \mathcal{G}_{1}$ assigns to each arrow its inverse.

Whenever a category admits a pull-backs, a groupoid construction can be performed:

Category	Groupoid Object
Tops	topological groupoids

Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an isomorphism.Thus, a groupoid is a diagram of sets and maps:

where $\mathcal{G}_{2}:=\mathcal{G}_{1 s} \times{ }_{t} \mathcal{G}_{1} \longrightarrow \rightarrow \mathcal{G}_{1}$ is the multiplication (opposite to the composition) and the $\operatorname{map} \mathcal{G}_{1} \rightarrow \mathcal{G}_{1}$ assigns to each arrow its inverse.

Whenever a category admits a pull-backs, a groupoid construction can be performed:

Category	Groupoid Object
Tops	topological groupoids
Smooth manifolds	"Lie Groupoids"

Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an isomorphism.Thus, a groupoid is a diagram of sets and maps:

where $\mathcal{G}_{2}:=\mathcal{G}_{1 s} \times{ }_{t} \mathcal{G}_{1} \longrightarrow \rightarrow \mathcal{G}_{1}$ is the multiplication (opposite to the composition) and the $\operatorname{map} \mathcal{G}_{1} \rightarrow \mathcal{G}_{1}$ assigns to each arrow its inverse.

Whenever a category admits a pull-backs, a groupoid construction can be performed:

Category	Groupoid Object
Tops	topological groupoids
"Lie Groupoids"	
Smooth manifolds	
Algebraic varieties	Algebraic groupoids

Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an isomorphism.Thus, a groupoid is a diagram of sets and maps:

where $\mathcal{G}_{2}:=\mathcal{G}_{1 s} \times{ }_{t} \mathcal{G}_{1} \longrightarrow \rightarrow \mathcal{G}_{1}$ is the multiplication (opposite to the composition) and the map $\mathcal{G}_{1} \rightarrow \mathcal{G}_{1}$ assigns to each arrow its inverse.

Whenever a category admits a pull-backs, a groupoid construction can be performed:

Category	Groupoid Object
Tops	topological groupoids
"Lie Groupoids"	
Smooth manifolds	
Algebraic varieties	Algebraic groupoids
Groups	Crossed modules

Groupoids: Definitions and examples.

A (small) groupoid is a small category, where every morphism is an isomorphism.Thus, a groupoid is a diagram of sets and maps:

where $\mathcal{G}_{2}:=\mathcal{G}_{1 s} \times{ }_{t} \mathcal{G}_{1} \longrightarrow \rightarrow \mathcal{G}_{1}$ is the multiplication (opposite to the composition) and the map $\mathcal{G}_{1} \rightarrow \mathcal{G}_{1}$ assigns to each arrow its inverse.

Whenever a category admits a pull-backs, a groupoid construction can be performed:

Category	Groupoid Object
Tops	topological groupoids
"Lie Groupoids"	
Smooth manifolds	Algebraic groupoids
Algebraic varieties	Crossed modules
Groups	(pre) Stacks

Groupoids: Definitions and examples.

Some examples of groupoids.

Groupoids: Definitions and examples.

Some examples of groupoids.

- Any set can be considered as a discrete category (the only arrows are identities), known as a trivial groupoid.

Groupoids: Definitions and examples.

Some examples of groupoids.

- Any set can be considered as a discrete category (the only arrows are identities), known as a trivial groupoid.
- Any group is a groupoid with one object. The multiplication is that of the group. Thus every arrow is a loop.

Groupoids: Definitions and examples.

Some examples of groupoids.

- Any set can be considered as a discrete category (the only arrows are identities), known as a trivial groupoid.
- Any group is a groupoid with one object. The multiplication is that of the group. Thus every arrow is a loop.
- The groupoid of pairs is a groupoid of the form $(X \times X, X)$ with source an target the first and second projection.

Groupoids: Definitions and examples.

Some examples of groupoids.

- Any set can be considered as a discrete category (the only arrows are identities), known as a trivial groupoid.
- Any group is a groupoid with one object. The multiplication is that of the group. Thus every arrow is a loop.
- The groupoid of pairs is a groupoid of the form $(X \times X, X)$ with source an target the first and second projection.
- Any equivalence relation $\mathcal{R} \subseteq X \times X$ defines what is known as the equivalence relation groupoid whose structure is analogue to the previous one.

Groupoids: Definitions and examples.

Some examples of groupoids.

- Any set can be considered as a discrete category (the only arrows are identities), known as a trivial groupoid.
- Any group is a groupoid with one object. The multiplication is that of the group. Thus every arrow is a loop.
- The groupoid of pairs is a groupoid of the form $(X \times X, X)$ with source an target the first and second projection.
- Any equivalence relation $\mathcal{R} \subseteq X \times X$ defines what is known as the equivalence relation groupoid whose structure is analogue to the previous one.
- The action groupoid is a groupoid of the form $(X \times G, X)$ where X a right G-set. The source is the action while the target is the first projection.

Groupoids: Definitions and examples.

Some examples of groupoids.

- Any set can be considered as a discrete category (the only arrows are identities), known as a trivial groupoid.
- Any group is a groupoid with one object. The multiplication is that of the group. Thus every arrow is a loop.
- The groupoid of pairs is a groupoid of the form $(X \times X, X)$ with source an target the first and second projection.
- Any equivalence relation $\mathcal{R} \subseteq X \times X$ defines what is known as the equivalence relation groupoid whose structure is analogue to the previous one.
- The action groupoid is a groupoid of the form $(X \times G, X)$ where X a right G-set. The source is the action while the target is the first projection.
- Given any set X and any group G, then the pair $(X \times G \times X, X)$ is a transitive groupoid whose source and target are the third and the first projections, respectively. Here G is the isotropy type group.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
This is a game which consist in a 2×2 chessboard with positions numbered from 1 to 4 , and with 3 square pieces that can be moved at each step of the game to a nearest position, provided that is empty. Hence, each "move" represents the "state of the game", it is reversible and it can be undone in the next step.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
This is a game which consist in a 2×2 chessboard with positions numbered from 1 to 4 , and with 3 square pieces that can be moved at each step of the game to a nearest position, provided that is empty. Hence, each "move" represents the "state of the game", it is reversible and it can be undone in the next step.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
This is a game which consist in a 2×2 chessboard with positions numbered from 1 to 4 , and with 3 square pieces that can be moved at each step of the game to a nearest position, provided that is empty. Hence, each "move" represents the "state of the game", it is reversible and it can be undone in the next step.

Let us give to each position of the empty square a number in $\{1,2,3,4\}$, that is, the state of the game, is represented as a matrix, and mark the boxes with letters $\{a, b, c\}$:

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
This is a game which consist in a 2×2 chessboard with positions numbered from 1 to 4 , and with 3 square pieces that can be moved at each step of the game to a nearest position, provided that is empty. Hence, each "move" represents the "state of the game", it is reversible and it can be undone in the next step.

Let us give to each position of the empty square a number in $\{1,2,3,4\}$, that is, the state of the game, is represented as a matrix, and mark the boxes with letters $\{a, b, c\}$:

the move of the piece b leads to the sate

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
This is a game which consist in a 2×2 chessboard with positions numbered from 1 to 4 , and with 3 square pieces that can be moved at each step of the game to a nearest position, provided that is empty. Hence, each "move" represents the "state of the game", it is reversible and it can be undone in the next step.

Let us give to each position of the empty square a number in $\{1,2,3,4\}$, that is, the state of the game, is represented as a matrix, and mark the boxes with letters $\{a, b, c\}$:

the move of the piece b leads to the sate

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
There are then four states $\left\{\mathfrak{s}_{1}, \mathfrak{F}_{2}, \mathfrak{F}_{3}, \mathfrak{s}_{4}\right\}$ and each one of them has three configurations:

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
There are then four states $\left\{\mathfrak{s}_{1}, \mathfrak{s}_{2}, \mathfrak{F}_{3}, \mathfrak{s}_{4}\right\}$ and each one of them has three configurations:

The configurations of states one and two are as follows:

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
There are then four states $\left\{\mathfrak{s}_{1}, \mathfrak{F}_{2}, \mathfrak{F}_{3}, \mathfrak{s}_{4}\right\}$ and each one of them has three configurations:

The configurations of states one and two are as follows:

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
There are then four states $\left\{\mathfrak{s}_{1}, \mathfrak{F}_{2}, \mathfrak{F}_{3}, \mathfrak{s}_{4}\right\}$ and each one of them has three configurations:

The configurations of states one and two are as follows:

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
The configurations of the third and fourth states are as follows:

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
The configurations of the third and fourth states are as follows:

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
The configurations of the third and fourth states are as follows:

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
Set $\mathcal{G}_{0}=\left\{\mathfrak{s}_{1}, \mathfrak{s}_{2}, \mathfrak{s}_{3}, \mathfrak{s}_{4}\right\}$ the set of all states of the game and \mathcal{G}_{1} the set of all moves from a state to another one including the configurations and the action of no-moves.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
Set $\mathcal{G}_{0}=\left\{\mathfrak{s}_{1}, \mathfrak{s}_{2}, \mathfrak{s}_{3}, \mathfrak{s}_{4}\right\}$ the set of all states of the game and \mathcal{G}_{1} the set of all moves from a state to another one including the configurations and the action of no-moves.
Each move depends on its initial and final states and it is determined by a certain permutation of $\{1,2,3,4\}$. Thus, we have that $\mathcal{G}_{1} \subseteq \mathcal{G}_{0} \times S_{4} \times \mathcal{G}_{0}$. The resulting move out of two consecutive moves in the game is in fact the composition of the corresponding two arrows in the groupoid $\left(\mathcal{G}_{0} \times S_{4} \times \mathcal{G}_{0}, \mathcal{G}_{0}\right)$. The pair $\left(\mathcal{G}_{1}, \mathcal{G}_{0}\right)$ is the clearly a transitive sub-groupoid of $\left(\mathcal{G}_{0} \times S_{4} \times \mathcal{G}_{0}, \mathcal{G}_{0}\right)$.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
Set $\mathcal{G}_{0}=\left\{\mathfrak{s}_{1}, \mathfrak{s}_{2}, \mathfrak{s}_{3}, \mathfrak{s}_{4}\right\}$ the set of all states of the game and \mathcal{G}_{1} the set of all moves from a state to another one including the configurations and the action of no-moves.
Each move depends on its initial and final states and it is determined by a certain permutation of $\{1,2,3,4\}$. Thus, we have that $\mathcal{G}_{1} \subseteq \mathcal{G}_{0} \times S_{4} \times \mathcal{G}_{0}$. The resulting move out of two consecutive moves in the game is in fact the composition of the corresponding two arrows in the groupoid $\left(\mathcal{G}_{0} \times S_{4} \times \mathcal{G}_{0}, \mathcal{G}_{0}\right)$. The pair $\left(\mathcal{G}_{1}, \mathcal{G}_{0}\right)$ is the clearly a transitive sub-groupoid of $\left(\mathcal{G}_{0} \times S_{4} \times \mathcal{G}_{0}, \mathcal{G}_{0}\right)$.
The isotropy type group of $\left(\mathcal{G}_{0}, \mathcal{G}_{1}\right)$ is the abelian group of alternating three elements \mathcal{A}_{3}. For instance,

$$
\mathcal{G}^{s_{1}}=\left\{\left(1, i d_{3}, 1\right),(1,(234), 1),(1,(243), 1)\right\} \text {, }
$$

which corresponds to the three configurations of the state \mathfrak{s}_{1}.

Groupoids: Definitions and examples

The four square Loyld's Puzzle: The groupoid \mathcal{L}_{2}.
Set $\mathcal{G}_{0}=\left\{\mathfrak{s}_{1}, \mathfrak{s}_{2}, \mathfrak{s}_{3}, \mathfrak{s}_{4}\right\}$ the set of all states of the game and \mathcal{G}_{1} the set of all moves from a state to another one including the configurations and the action of no-moves.
Each move depends on its initial and final states and it is determined by a certain permutation of $\{1,2,3,4\}$. Thus, we have that $\mathcal{G}_{1} \subseteq \mathcal{G}_{0} \times S_{4} \times \mathcal{G}_{0}$. The resulting move out of two consecutive moves in the game is in fact the composition of the corresponding two arrows in the groupoid $\left(\mathcal{G}_{0} \times S_{4} \times \mathcal{G}_{0}, \mathcal{G}_{0}\right)$. The pair $\left(\mathcal{G}_{1}, \mathcal{G}_{0}\right)$ is the clearly a transitive sub-groupoid of $\left(\mathcal{G}_{0} \times S_{4} \times \mathcal{G}_{0}, \mathcal{G}_{0}\right)$.
The isotropy type group of $\left(\mathcal{G}_{0}, \mathcal{G}_{1}\right)$ is the abelian group of alternating three elements \mathcal{A}_{3}. For instance,

$$
\mathcal{G}^{s_{1}}=\left\{\left(1, i d_{3}, 1\right),(1,(234), 1),(1,(243), 1)\right\} \text {, }
$$

which corresponds to the three configurations of the state \mathfrak{s}_{1}.
The rest of arrow from state to a state can be all computed and they are in total 48. For example, the set of arrows from \mathfrak{s}_{2} to \mathfrak{s}_{4} is

$$
\mathcal{G}\left(\mathfrak{s}_{2}, \mathfrak{s}_{4}\right)=\{(4,(24), 2),(4,(1342), 2),(4,(1423), 2)\} .
$$

Groupoids: Definitions and examples

More examples of groupoids: The Hydrogen Electron Transition.

Groupoids: Definitions and examples

More examples of groupoids: The Hydrogen Electron Transition.

Groupoids: Definitions and examples

More examples of groupoids: The Hydrogen Electron Transition.

Spectral lines of the Hydrogen Atom

Groupoids: Definitions and examples

Groupoid and the birth of non-commutative geometry.

Groupoids: Definitions and examples

Groupoid and the birth of non-commutative geometry.

Electron transitions for the Hydrogen atom

The different levels of energies $E(n)_{1 \leq n \leq 7}$, form a groupoids of pairs. It seems that Alain Connes was the first who observed this, and this was perhaps one of his motivation to formulate his non commutative geometry.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. Consider the space of motions of Carbon Tetrachloride. At equilibrium the carbon atom lies at the center, and the four chlorine atoms at the vertices of a regular tetrahedron.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. Consider the space of motions of Carbon Tetrachloride. At equilibrium the carbon atom lies at the center, and the four chlorine atoms at the vertices of a regular tetrahedron.

Figure: Molecular model of Carbon Tetrachloride.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. Consider the space of motions of Carbon Tetrachloride. At equilibrium the carbon atom lies at the center, and the four chlorine atoms at the vertices of a regular tetrahedron.

Figure: Molecular model of Carbon Tetrachloride.
In a small displacement from equilibrium, each of the atoms moves in its own three-dimensional vector space: $E_{1}, E_{2}, E_{3}, E_{4}$ and E_{c}.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. A displacement of the molecule as a whole moves each of the atoms, and so is a function f such that $f(C) \in E_{C}$ and $f(i) \in E_{i}$, for $i=1,2,3,4$, which tells how each atom has been displaced from its equilibrium.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. A displacement of the molecule as a whole moves each of the atoms, and so is a function f such that $f(C) \in E_{C}$ and $f(i) \in E_{i}$, for $i=1,2,3,4$, which tells how each atom has been displaced from its equilibrium.
Now, let us see how the group S_{4} acts on the set of displacements. Consider, for example, the action of the element (123) $\in S_{4}$. On the molecule itself, at equilibrium, (123) leaves C fixed, rotates the chlorine atoms 1, 2 and 3 and leaves 4 fixed:

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. A displacement of the molecule as a whole moves each of the atoms, and so is a function f such that $f(C) \in E_{C}$ and $f(i) \in E_{i}$, for $i=1,2,3,4$, which tells how each atom has been displaced from its equilibrium.
Now, let us see how the group S_{4} acts on the set of displacements. Consider, for example, the action of the element (123) $\in S_{4}$. On the molecule itself, at equilibrium, (123) leaves C fixed, rotates the chlorine atoms 1, 2 and 3 and leaves 4 fixed:

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. A displacement of the molecule as a whole moves each of the atoms, and so is a function f such that $f(C) \in E_{C}$ and $f(i) \in E_{i}$, for $i=1,2,3,4$, which tells how each atom has been displaced from its equilibrium.
Now, let us see how the group S_{4} acts on the set of displacements. Consider, for example, the action of the element (123) $\in S_{4}$. On the molecule itself, at equilibrium, (123) leaves C fixed, rotates the chlorine atoms 1,2 and 3 and leaves 4 fixed:

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. A displacement of the molecule as a whole moves each of the atoms, and so is a function f such that $f(C) \in E_{C}$ and $f(i) \in E_{i}$, for $i=1,2,3,4$, which tells how each atom has been displaced from its equilibrium.
Now, let us see how the group S_{4} acts on the set of displacements. Consider, for example, the action of the element (123) $\in S_{4}$. On the molecule itself, at equilibrium, (123) leaves C fixed, rotates the chlorine atoms 1,2 and 3 and leaves 4 fixed:

Figure: The action of the element $(123) \in S_{4}$ on the displacements of Carbon Tetrachloride.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. Set $M=\{1,2,3,4, C\}$ to be the set of atoms. Then (\mathcal{E}, π), where $E=\biguplus_{x \in M} E_{x}$ and $\pi: E \rightarrow M$ is the obvious maps, is an S_{4}-equivariant vector bundle, or homogeneous vector bundle, whose associated module of global sections:

$$
\Gamma(\mathcal{E}):=\{\sigma: M \rightarrow E \mid \pi \circ \sigma=\text { identity }\}
$$

is the space of displacements of the molecule as a whole, and the action of S_{4} on $\Gamma(\mathcal{E})$ might be considered as the action of the symmetry group on the space of displacements.

Groupoids: Definitions and examples

Molecular vibrations and vector bundle. Set $M=\{1,2,3,4, C\}$ to be the set of atoms. Then (\mathcal{E}, π), where $E=\biguplus_{x \in M} E_{x}$ and $\pi: E \rightarrow M$ is the obvious maps, is an S_{4}-equivariant vector bundle, or homogeneous vector bundle, whose associated module of global sections:

$$
\Gamma(\mathcal{E}):=\{\sigma: M \rightarrow E \mid \pi \circ \sigma=\text { identity }\}
$$

is the space of displacements of the molecule as a whole, and the action of S_{4} on $\Gamma(\mathcal{E})$ might be considered as the action of the symmetry group on the space of displacements.

As we will see below, in general if we assume that a group G is acting on set M and consider it associated action groupoid $\mathcal{G}:=(G \times M, M)$; then any G-equivariant vector bundle over M leads to a linear representation on \mathcal{G}. The converse also holds true, thus, any finite-dimensional (having the same dimension at each fibre) linear representation of \mathcal{G}, gives rise to a \mathcal{G}-equivariant vector bundle.

Groupoids: Finite dimensional representations.

Homogeneous vector bundles.

Groupoids: Finite dimensional representations.

Homogeneous vector bundles. Let \mathbb{k} denotes a ground base field, Vect t_{k} its category of vector spaces, and vect t_{k} the full subcategory of finite dimensional ones.

Groupoids: Finite dimensional representations.

Homogeneous vector bundles. Let \mathbb{k} denotes a ground base field, Vect t_{k} its category of vector spaces, and vect the full subcategory of finite dimensional ones.
For a given groupoid

$$
\mathcal{G}: \mathcal{G}_{1} \stackrel{s}{\rightleftarrows} \stackrel{S}{\rightleftarrows} \mathcal{G}_{0},
$$

we consider the category of all \mathcal{G}-representations as the symmetric monoidal \mathbb{k}-linear abelian category of functors $\left[\mathcal{G}\right.$, Vect $\left._{k}\right]$ with identity object $1: \mathcal{G}_{0} \rightarrow$ Vect $_{\mathfrak{k}}, x \rightarrow \mathbb{k}, g \rightarrow 1_{\mathbb{k}}$.

Groupoids: Finite dimensional representations.

Homogeneous vector bundles. Let \mathbb{k} denotes a ground base field, Vect t_{k} its category of vector spaces, and vect the full subcategory of finite dimensional ones.
For a given groupoid

$$
\mathcal{G}: \mathcal{G}_{1} \rightleftarrows \stackrel{s}{\leftrightarrows} \mathcal{G}_{0},
$$

we consider the category of all \mathcal{G}-representations as the symmetric monoidal \mathbb{k}-linear abelian category of functors $\left[\mathcal{G}\right.$, Vect $\left._{k}\right]$ with identity object $1: \mathcal{G}_{0} \rightarrow$ Vect $_{\mathfrak{k}}, x \rightarrow \mathbb{k}, g \rightarrow 1_{\mathbb{k}}$.

For any \mathcal{G}-representation \mathcal{V} the image of an object $x \in \mathcal{G}_{0}$ is denoted by \mathcal{V}_{x}, and referred to as the fibre of \mathcal{V} over x.

Groupoids: Finite dimensional representations.

Homogeneous vector bundles. Let \mathbb{k} denotes a ground base field, Vect t_{k} its category of vector spaces, and vect the full subcategory of finite dimensional ones.
For a given groupoid

$$
\mathcal{G}: \mathcal{G}_{1} \rightleftarrows \stackrel{s}{\rightleftarrows} \stackrel{\mathcal{G}_{0}}{\rightleftarrows}
$$

we consider the category of all \mathcal{G}-representations as the symmetric monoidal \mathbb{k}-linear abelian category of functors $\left[\mathcal{G}\right.$, Vect $\left._{k}\right]$ with identity object $1: \mathcal{G}_{0} \rightarrow$ Vect $_{\mathfrak{k}}, x \rightarrow \mathbb{k}, g \rightarrow 1_{\mathbb{k}}$.

For any \mathcal{G}-representation \mathcal{V} the image of an object $x \in \mathcal{G}_{0}$ is denoted by \mathcal{V}_{x}, and referred to as the fibre of \mathcal{V} over x.

The disjoint union of all the fibres of a \mathcal{G}-representation \mathcal{V} is denoted by $\overline{\mathcal{V}}=\bigcup_{x \in G_{0}} \mathcal{V}_{x}$ and the canonical projection by $\pi_{V}: \overline{\mathcal{V}} \rightarrow \mathcal{G}_{0}$. This called the associated vector \mathcal{G}-bundle of the representation \mathcal{V}.

Groupoids: Finite dimensional representations.

Homogeneous vector bundles. Let \mathbb{k} denotes a ground base field, Vect t_{k} its category of vector spaces, and vect the full subcategory of finite dimensional ones.
For a given groupoid

$$
\mathcal{G}: \mathcal{G}_{1} \rightleftharpoons \stackrel{s}{\leftrightarrows} \stackrel{\mathcal{G}_{0}}{\leftrightarrows}
$$

we consider the category of all \mathcal{G}-representations as the symmetric monoidal \mathbb{k}-linear abelian category of functors $\left[\mathcal{G}\right.$, Vect $\left._{k}\right]$ with identity object $1: \mathcal{G}_{0} \rightarrow$ Vect $_{\mathfrak{k}}, x \rightarrow \mathbb{k}, g \rightarrow 1_{\mathbb{k}}$.

For any \mathcal{G}-representation \mathcal{V} the image of an object $x \in \mathcal{G}_{0}$ is denoted by \mathcal{V}_{x}, and referred to as the fibre of \mathcal{V} over x.

The disjoint union of all the fibres of a \mathcal{G}-representation \mathcal{V} is denoted by $\overline{\mathcal{V}}=\bigcup_{x \in G_{0}} \mathcal{V}_{x}$ and the canonical projection by $\pi_{V}: \overline{\mathcal{V}} \rightarrow \mathcal{G}_{0}$. This called the associated vector \mathcal{G}-bundle of the representation \mathcal{V}.

If $\mathcal{G}=(G \times M, M)$ is an action groupoid, then there is an equivalence of (symmetric monoidal) categories between the category of \mathcal{G}-equivariant vector bundles over M and that of linear representations of \mathcal{G}.

Groupoids: Finite dimensional representations.

The dimensional function.

Groupoids: Finite dimensional representations.

The dimensional function. Let \mathcal{V} be a \mathcal{G}-representation in $\left[\mathcal{G}\right.$, vect $\left.{ }_{\mathrm{k}}\right]$, we define its dimension function as the map

$$
d_{v}: \mathcal{G}_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right)
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathcal{G}) \rightarrow \mathbb{N}$.

Groupoids: Finite dimensional representations.

The dimensional function. Let \mathcal{V} be a \mathcal{G}-representation in $\left[\mathcal{G}\right.$, vect $\left.{ }_{\mathrm{k}}\right]$, we define its dimension function as the map

$$
d_{v}: \mathcal{G}_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right)
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathcal{G}) \rightarrow \mathbb{N}$.
A \mathcal{G}-representation \mathcal{V} in $\left[\mathcal{G}\right.$, vect $\left._{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(\mathcal{G}_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}.

Groupoids: Finite dimensional representations.

The dimensional function. Let \mathcal{V} be a \mathcal{G}-representation in $\left[\mathcal{G}\right.$, vect $\left.{ }_{\mathrm{k}}\right]$, we define its dimension function as the map

$$
d_{v}: \mathcal{G}_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right)
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathcal{G}) \rightarrow \mathbb{N}$.
A \mathcal{G}-representation \mathcal{V} in $\left[\mathcal{G}\right.$, vect $\left._{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(\mathcal{G}_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}.
We denote by $\operatorname{rep}_{k}(\mathcal{G})$ the category of finite dimensional representation over \mathcal{G}. Clearly, we have that

$$
\operatorname{rep}_{\mathbb{k}}(\mathcal{G})=\left[\mathcal{G}, \operatorname{vect}_{\mathrm{k}}\right] \text {, when } \pi_{0}(\mathcal{G}) \text { is a finite set. }
$$

Groupoids: Finite dimensional representations.

The dimensional function. Let \mathcal{V} be a \mathcal{G}-representation in $\left[\mathcal{G}\right.$, vect $\left.{ }_{\mathrm{k}}\right]$, we define its dimension function as the map

$$
d_{v}: \mathcal{G}_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right)
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathcal{G}) \rightarrow \mathbb{N}$.
A \mathcal{G}-representation \mathcal{V} in $\left[\mathcal{G}\right.$, vect $\left.t_{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(\mathcal{G}_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}.
We denote by $\operatorname{rep}_{k}(\mathcal{G})$ the category of finite dimensional representation over \mathcal{G}. Clearly, we have that

$$
\operatorname{rep}_{\mathfrak{k}}(\mathcal{G})=\left[\mathcal{G}, \text { vect }_{k}\right], \text { when } \pi_{0}(\mathcal{G}) \text { is a finite set. }
$$

Let \mathcal{V} and \mathcal{W} be two representations in $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. Then

$$
d_{v \oplus w}=d_{v}+d_{w}, \quad d_{\mathcal{D} v}=d_{v}, \quad \text { and } \quad d_{v \otimes W}=d_{v} d_{w} .
$$

Groupoids: Finite dimensional representations.

The dimensional function. Let \mathcal{V} be a \mathcal{G}-representation in $[\mathcal{G}$, vect $]$, we define its dimension function as the map

$$
d_{v}: \mathcal{G}_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right),
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathcal{G}) \rightarrow \mathbb{N}$.
A \mathcal{G}-representation \mathcal{V} in $\left[\mathcal{G}\right.$, vect $\left._{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(\mathcal{G}_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}. We denote by $\operatorname{rep}_{\mathrm{k}}(\mathcal{G})$ the category of finite dimensional representation over \mathcal{G}. Clearly, we have that

$$
\operatorname{rep}_{\mathbb{k}}(\mathcal{G})=\left[\mathcal{G}, \text { vect } t_{\mathbb{k}}\right] \text {, when } \pi_{0}(\mathcal{G}) \text { is a finite set. }
$$

Let \mathcal{V} and \mathcal{W} be two representations in $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. Then

$$
d_{v \oplus w}=d_{v}+d_{w}, \quad d_{D v}=d_{v}, \quad \text { and } \quad d_{v \otimes w}=d_{v} d_{w} .
$$

Therefore, the category $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$ is a symmetric rigid monoidal \mathbb{k}-linear abelian category.

Groupoids: Finite dimensional representations.

The dimensional function. Let \mathcal{V} be a \mathcal{G}-representation in $[\mathcal{G}$, vect $]$, we define its dimension function as the map

$$
d_{v}: \mathcal{G}_{0} \longrightarrow \mathbb{N}, \quad\left(x \longmapsto \operatorname{dim}_{k}\left(\mathcal{V}_{x}\right)\right),
$$

which clearly extends to a map $d_{v}: \pi_{0}(\mathcal{G}) \rightarrow \mathbb{N}$.
A \mathcal{G}-representation \mathcal{V} in $\left[\mathcal{G}\right.$, vect $\left._{k}\right]$ is called a finite dimensional representation, provided that the dimension function d_{v} has a finite image, that is, $d_{v}\left(\mathcal{G}_{0}\right)$ is a finite subset of the set of positive integers \mathbb{N}.
We denote by $\operatorname{rep}_{\mathrm{k}}(\mathcal{G})$ the category of finite dimensional representation over \mathcal{G}. Clearly, we have that

$$
\operatorname{rep}_{\mathbb{k}}(\mathcal{G})=\left[\mathcal{G}, \text { vect } t_{\mathbb{k}}\right] \text {, when } \pi_{0}(\mathcal{G}) \text { is a finite set. }
$$

Let \mathcal{V} and \mathcal{W} be two representations in $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. Then

$$
d_{v \oplus w}=d_{v}+d_{w}, \quad d_{D v}=d_{v}, \quad \text { and } \quad d_{v \otimes w}=d_{v} d_{w} .
$$

Therefore, the category rep $\mathbb{p}_{k}(\mathcal{G})$ is a symmetric rigid monoidal \mathbb{k}-linear abelian category. But NOT locally finite, in general.

Groupoids: Finite dimensional representations.

Example of representations.

Groupoids: Finite dimensional representations.

Example of representations.
Consider the set $X=\{1,2\}$ and denote by $\mathcal{G}^{\{1,2\}}$ the associated groupoid of pairs. Thus $\mathcal{G}_{0}=\{1,2\}$ and
$\mathcal{G}_{1}=\{(1,1),(1,2),(2,1),(2,2)\}$.

Groupoids: Finite dimensional representations.

Example of representations.
Consider the set $X=\{1,2\}$ and denote by $\mathcal{G}^{\{1,2\}}$ the associated groupoid of pairs. Thus $\mathcal{G}_{0}=\{1,2\}$ and
$\mathcal{G}_{1}=\{(1,1),(1,2),(2,1),(2,2)\}$.
An object in $\operatorname{rep}_{\mathbb{k}}\left(\mathcal{G}^{\{1,2\}}\right)$ is then a pair (n, N), where n is a positive integer, and $N \in G L_{n}(\mathbb{k})$.

Groupoids: Finite dimensional representations.

Example of representations.

Consider the set $X=\{1,2\}$ and denote by $\mathcal{G}^{\{1,2\}}$ the associated groupoid of pairs. Thus $\mathcal{G}_{0}=\{1,2\}$ and
$\mathcal{G}_{1}=\{(1,1),(1,2),(2,1),(2,2)\}$.
An object in $\operatorname{rep}_{\mathbb{k}}\left(\mathcal{G}^{\{1,2\}}\right)$ is then a pair (n, N), where n is a positive integer, and $N \in G L_{n}(\mathbb{k})$.
The vector spaces of homomorphisms are given by

$$
\operatorname{rep}_{\mathbb{k}}\left(\mathcal{G}^{\{1,2\}}\right)((n, N),(m, M))=M_{m, n}(\mathbb{k})
$$

the \mathbb{k}-vector space of $m \times n$ matrices with matrix multiplication.

Groupoids: Finite dimensional representations.

Example of representations.

Consider the set $X=\{1,2\}$ and denote by $\mathcal{G}^{\{1,2\}}$ the associated groupoid of pairs. Thus $\mathcal{G}_{0}=\{1,2\}$ and
$\mathcal{G}_{1}=\{(1,1),(1,2),(2,1),(2,2)\}$.
An object in $\operatorname{rep}_{\mathbb{k}}\left(\mathcal{G}^{\{1,2\}}\right)$ is then a pair (n, N), where n is a positive integer, and $N \in G L_{n}(\mathbb{k})$.
The vector spaces of homomorphisms are given by

$$
\operatorname{rep}_{\mathbb{k}}\left(\mathcal{G}^{\{1,2\}}\right)((n, N),(m, M))=M_{m, n}(\mathbb{k}),
$$

the \mathbb{k}-vector space of $m \times n$ matrices with matrix multiplication.
The other operations in $\operatorname{rep}_{\mathbb{k}}\left(\mathcal{G}^{\{1,2\}}\right)$ are

$$
\begin{gathered}
(n, N) \oplus(m, M)=\left(n+m,\left(\begin{array}{cc}
N & 0 \\
0 & M
\end{array}\right)\right), \quad \mathcal{D}(n, N)=\left(n, N^{t}\right) \\
(n, N) \otimes(m, M)=\left(n m,\left(N b_{i j}\right)_{1 \leq i, j \leq m}\right), \text { where } M=\left(b_{i j}\right), \text { and } \mathbf{1}=(1,1) . \\
\operatorname{Tr}(n, N)=n .
\end{gathered}
$$

Groupoids: Finite dimensional representations.

The transitive case.

Groupoids: Finite dimensional representations.

The transitive case. Recall that a groupoid \mathcal{G} is said to be transitive if for any two objects $x, y \in \mathcal{G}_{0}$, there is an arrow $g \in \mathcal{G}_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathcal{G})$ is a singleton.

Groupoids: Finite dimensional representations.

The transitive case. Recall that a groupoid \mathcal{G} is said to be transitive if for any two objects $x, y \in \mathcal{G}_{0}$, there is an arrow $g \in \mathcal{G}_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathcal{G})$ is a singleton.
Let \mathcal{G} be a transitive groupoid. Then, the category $\operatorname{rep}_{\mathrm{k}}(\mathcal{G})$ is a symmetric rigid monoidal locally finite \mathbb{k}-linear abelian category.

Groupoids: Finite dimensional representations.

The transitive case. Recall that a groupoid \mathcal{G} is said to be transitive if for any two objects $x, y \in \mathcal{G}_{0}$, there is an arrow $g \in \mathcal{G}_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathcal{G})$ is a singleton.
Let \mathcal{G} be a transitive groupoid. Then, the category $\operatorname{rep}_{\mathrm{k}}(\mathcal{G})$ is a symmetric rigid monoidal locally finite \mathbb{k}-linear abelian category.
Moreover, rep $\mathrm{p}_{\mathbb{k}}(\mathcal{G})$ admits a non trivial fibre functor to the category of finite dimensional vector spaces. Namely, fix an object $x \in \mathcal{G}_{0}$, and consider the functor

$$
\boldsymbol{\omega}_{x}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{vect}_{\underline{k}}, \quad\left(\mathcal{V} \longrightarrow \mathcal{V}_{x}\right)
$$

Then $\boldsymbol{\omega}_{x}$ is a non trivial fibre functor, and $\boldsymbol{\omega}_{x} \cong \boldsymbol{\omega}_{y}$, for any $x, y \in \mathcal{G}_{0}$.

Groupoids: Finite dimensional representations.

The transitive case. Recall that a groupoid \mathcal{G} is said to be transitive if for any two objects $x, y \in \mathcal{G}_{0}$, there is an arrow $g \in \mathcal{G}_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathcal{G})$ is a singleton.
Let \mathcal{G} be a transitive groupoid. Then, the category $\operatorname{rep}_{\mathrm{k}}(\mathcal{G})$ is a symmetric rigid monoidal locally finite \mathbb{k}-linear abelian category.
Moreover, $\operatorname{rep}_{\mathrm{k}}(\mathcal{G})$ admits a non trivial fibre functor to the category of finite dimensional vector spaces. Namely, fix an object $x \in \mathcal{G}_{0}$, and consider the functor

$$
\boldsymbol{\omega}_{x}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{vect}_{\underline{k}}, \quad\left(\mathcal{V} \longrightarrow \mathcal{V}_{x}\right)
$$

Then $\boldsymbol{\omega}_{x}$ is a non trivial fibre functor, and $\boldsymbol{\omega}_{x} \cong \omega_{y}$, for any $x, y \in \mathcal{G}_{0}$.
Furthermore, we have that $\mathbb{k} \cong E n d_{r e p_{\mathbb{k}}(\mathcal{G})}(\mathbf{1})$, where $\mathbf{1}$ is the identity \mathcal{G}-representation.

Groupoids: Finite dimensional representations.

The transitive case. Recall that a groupoid \mathcal{G} is said to be transitive if for any two objects $x, y \in \mathcal{G}_{0}$, there is an arrow $g \in \mathcal{G}_{1}$ such that $s(g)=x$ and $t(g)=y$, or equivalently, $\pi_{0}(\mathcal{G})$ is a singleton.
Let \mathcal{G} be a transitive groupoid. Then, the category $\operatorname{rep}_{\mathrm{k}}(\mathcal{G})$ is a symmetric rigid monoidal locally finite \mathbb{k}-linear abelian category.
Moreover, $\operatorname{rep}_{\mathrm{k}}(\mathcal{G})$ admits a non trivial fibre functor to the category of finite dimensional vector spaces. Namely, fix an object $x \in \mathcal{G}_{0}$, and consider the functor

$$
\boldsymbol{\omega}_{x}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{vect}_{\underline{k}}, \quad\left(\mathcal{V} \longrightarrow \mathcal{V}_{x}\right)
$$

Then $\boldsymbol{\omega}_{x}$ is a non trivial fibre functor, and $\boldsymbol{\omega}_{x} \cong \boldsymbol{\omega}_{y}$, for any $x, y \in \mathcal{G}_{0}$.
Furthermore, we have that $\mathbb{k} \cong E n d_{r e p_{\mathbb{k}}(\mathcal{G})}(\mathbf{1})$, where $\mathbf{1}$ is the identity \mathcal{G}-representation.
Summarizing $\left(\operatorname{rep}_{\mathbb{k}}(\mathcal{G}), \omega_{x}\right)$ is a (neutral) Tannakian category in the sense of Saavedra-Rivano, Deligne and Milne.

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$.

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. Let \mathcal{G} be a groupoid and denote by $A_{0}(\mathcal{G}):=\mathbb{K}^{\mathcal{G}_{0}}$ its base algebra and by $A_{1}(\mathcal{G}):=\mathbb{K}^{\mathcal{G}_{1}}$ its total algebra. By reflecting the groupoid structure of \mathcal{G}, we have a diagram of algebras:

$$
A_{0}(\mathcal{G}) \underset{c^{*}}{s^{*}}=A_{1}(\mathcal{G}) \cdots \cdots
$$

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. Let \mathcal{G} be a groupoid and denote by $A_{0}(\mathcal{G}):=\mathbb{K}^{\mathcal{G}_{0}}$ its base algebra and by $A_{1}(\mathcal{G}):=\mathbb{K}^{\mathcal{G}_{1}}$ its total algebra. By reflecting the groupoid structure of \mathcal{G}, we have a diagram of algebras:

$$
A_{0}(\mathcal{G}) \underset{t}{s^{*}}{ }^{*}=\Longrightarrow A_{1}(\mathcal{G}) \cdots \cdots
$$

Let \mathcal{V} be a finite dimensional \mathcal{G}-representation and denote by $d_{v}\left(\mathcal{G}_{0}\right):=\left\{n_{1}, n_{2}, \cdots, n_{N}\right\}$ ordered as $n_{1}<n_{2}<\cdots<n_{N}$ (where obviously the maximal and minimal indices depend upon \mathcal{V}).

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. Let \mathcal{G} be a groupoid and denote by $A_{0}(\mathcal{G}):=\mathbb{K}^{\mathcal{G}_{0}}$ its base algebra and by $A_{1}(\mathcal{G}):=\mathbb{K}^{\mathcal{G}_{1}}$ its total algebra. By reflecting the groupoid structure of \mathcal{G}, we have a diagram of algebras:

$$
A_{0}(\mathcal{G}) \varlimsup_{t}^{s^{*}}=A_{1}(\mathcal{G}) \cdots \cdots
$$

Let \mathcal{V} be a finite dimensional \mathcal{G}-representation and denote by $d_{v}\left(\mathcal{G}_{0}\right):=\left\{n_{1}, n_{2}, \cdots, n_{N}\right\}$ ordered as $n_{1}<n_{2}<\cdots<n_{N}$ (where obviously the maximal and minimal indices depend upon \mathcal{V}).

The set of objects \mathcal{G}_{0} is then a disjoint union $\mathcal{G}_{0}=\bigcup_{i=1}^{N} G_{\gamma}^{i}$, where each of the G_{v}^{i} 's is the inverse image $G_{v}^{i}:=d_{v}^{-1}\left(\left\{n_{i}\right\}\right)$, for any $i=1, \cdots, N$.

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. Let \mathcal{G} be a groupoid and denote by $A_{0}(\mathcal{G}):=\mathbb{K}^{\mathcal{G}_{0}}$ its base algebra and by $A_{1}(\mathcal{G}):=\mathbb{K}^{\mathcal{G}_{1}}$ its total algebra. By reflecting the groupoid structure of \mathcal{G}, we have a diagram of algebras:

$$
A_{0}(\mathcal{G}) \varlimsup_{t}^{s^{*}}=A_{1}(\mathcal{G}) \cdots \cdots
$$

Let \mathcal{V} be a finite dimensional \mathcal{G}-representation and denote by $d_{v}\left(\mathcal{G}_{0}\right):=\left\{n_{1}, n_{2}, \cdots, n_{N}\right\}$ ordered as $n_{1}<n_{2}<\cdots<n_{N}$ (where obviously the maximal and minimal indices depend upon \mathcal{V}).

The set of objects \mathcal{G}_{0} is then a disjoint union $\mathcal{G}_{0}=\bigcup_{i=1}^{N} G_{\gamma}^{i}$, where each of the G_{v}^{i} 's is the inverse image $G_{v}^{i}:=d_{v}^{-1}\left(\left\{n_{i}\right\}\right)$, for any $i=1, \cdots, N$.
This leads to a decomposition of the base algebra $A_{0}(\mathcal{G})$:

$$
A_{0}(\mathcal{G})=B_{1} \times \cdots \cdots \times B_{N},
$$

where each of B_{i} 's is the algebra of functions on G_{v}^{i}.

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$.

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. We can then define the functor which acts on objects by:

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathcal{G})\right), \quad \mathcal{V} \longrightarrow P_{v}=B_{1}^{n_{1}} \times \cdots \times B_{N}^{n_{N}}
$$

an $A_{0}(\mathcal{G})$-module which corresponds to the above decomposition.

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. We can then define the functor which acts on objects by:

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathcal{G})\right), \quad \mathcal{V} \longrightarrow P_{v}=B_{1}^{n_{1}} \times \cdots \times B_{N}^{n_{N}}
$$

an $A_{0}(\mathcal{G})$-module which corresponds to the above decomposition. Now, by considering the associated vector \mathcal{G}-bundle of \mathcal{V}, we can perform the \mathbb{k}-vector space of "global sections":

$$
\Gamma(\overline{\mathcal{V}}):=\left\{s: \mathcal{G}_{0} \rightarrow \overline{\mathcal{V}} \mid \pi_{v} \circ s=i d_{s_{0}}\right\} .
$$

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. We can then define the functor which acts on objects by:

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathcal{G})\right), \quad \mathcal{V} \longrightarrow P_{v}=B_{1}^{n_{1}} \times \cdots \times B_{N}^{n_{N}}
$$

an $A_{0}(\mathcal{G})$-module which corresponds to the above decomposition. Now, by considering the associated vector \mathcal{G}-bundle of \mathcal{V}, we can perform the \mathbb{k}-vector space of "global sections":

$$
\Gamma(\overline{\mathcal{V}}):=\left\{s: \mathcal{G}_{0} \rightarrow \overline{\mathcal{V}} \mid \pi_{v} \circ s=i d_{s_{0}}\right\} .
$$

It turns out that both functors $\boldsymbol{\omega}$ and Γ are symmetric monoidal faithful functors, and there is a tensorial natural isomorphism $\boldsymbol{\omega} \cong \Gamma$.

Groupoids: Finite dimensional representations.

The fibre functor on $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$. We can then define the functor which acts on objects by:

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathcal{G})\right), \quad \mathcal{V} \longrightarrow P_{v}=B_{1}^{n_{1}} \times \cdots \times B_{N}^{n_{N}}
$$

an $A_{0}(\mathcal{G})$-module which corresponds to the above decomposition. Now, by considering the associated vector \mathcal{G}-bundle of \mathcal{V}, we can perform the \mathbb{k}-vector space of "global sections":

$$
\Gamma(\overline{\mathcal{V}}):=\left\{s: \mathcal{G}_{0} \rightarrow \overline{\mathcal{V}} \mid \pi_{v} \circ s=i d_{\mathcal{S}_{0}}\right\} .
$$

It turns out that both functors $\boldsymbol{\omega}$ and Γ are symmetric monoidal faithful functors, and there is a tensorial natural isomorphism $\boldsymbol{\omega} \cong \Gamma$.

The functor ω is a non trivial exact, faithful and symmetric monoidal functor. It is termed the fibre functor of $\operatorname{rep}_{\mathbb{k}}(\mathcal{G})$.

Lie algebroids: Definition and examples

Lie algebroids: Definition and examples

Let \mathcal{M} be a connected smooth real (or almost complex) manifold and $A:=C^{\infty}(\mathcal{M})$. Consider $(\mathcal{L}, \mathcal{M})$ a locally trivial vector bundle with a constant rank. Denote by $L:=\Gamma(\mathcal{L})$ its A-module of smooth global sections. In this case, this is a finitely generated and projective module with a constant rank.

Lie algebroids: Definition and examples

Let \mathcal{M} be a connected smooth real (or almost complex) manifold and $A:=C^{\infty}(\mathcal{M})$. Consider $(\mathcal{L}, \mathcal{M})$ a locally trivial vector bundle with a constant rank. Denote by $L:=\Gamma(\mathcal{L})$ its A-module of smooth global sections. In this case, this is a finitely generated and projective module with a constant rank.
The pair $(\mathcal{L}, \mathcal{M})$ is called a Lie algebroid, provided that there exist a morphism of vector bundles $\varphi: \mathcal{L} \rightarrow T \mathcal{M}$ and a structure of Lie algebra on L, such that $\Gamma(\varphi): L \rightarrow \Gamma(T \mathcal{M})$ is a Lie algebras morphisms satisfying:

$$
[X, f Y]=f[X, Y]+\Gamma(\varphi)(X)(f) Y
$$

for any pair of sections $X, Y \in L$ and any smooth function $f \in A$.

Lie algebroids: Definition and examples

Let \mathcal{M} be a connected smooth real (or almost complex) manifold and $A:=C^{\infty}(\mathcal{M})$. Consider $(\mathcal{L}, \mathcal{M})$ a locally trivial vector bundle with a constant rank. Denote by $L:=\Gamma(\mathcal{L})$ its A-module of smooth global sections. In this case, this is a finitely generated and projective module with a constant rank.
The pair $(\mathcal{L}, \mathcal{M})$ is called a Lie algebroid, provided that there exist a morphism of vector bundles $\varphi: \mathcal{L} \rightarrow T \mathcal{M}$ and a structure of Lie algebra on L, such that $\Gamma(\varphi): L \rightarrow \Gamma(T \mathcal{M})$ is a Lie algebras morphisms satisfying:

$$
[X, f Y]=f[X, Y]+\Gamma(\varphi)(X)(f) Y
$$

for any pair of sections $X, Y \in L$ and any smooth function $f \in A$.
In a more general fashion, a Lie-Rinehart algebra, is a pair (L, A) consisting of an algebra A and an A-module L with a Lie algebra (over \mathbb{k}) structure together with a Lie algebras map $\phi: L \rightarrow \operatorname{Der}_{\underline{k}}(A)$ (the anchor) which is A-linear and satisfies:

$$
[X, a Y]=a[X, Y]+\phi(X)(a) Y
$$

for every pair of elements $X, Y \in L$ and every element $a \in A$.

Lie algebroids: Definition and examples

Lie algebroids: Definition and examples

Some examples:

Lie algebroids: Definition and examples

Some examples:

- (Atiyah Lie algebroid) Let M be an A-module with action $\mathrm{I}: A \rightarrow E n d_{\mathrm{k}}(M)$. The Atiyah's algebra (also known as linear Lie algebroid) associated to M, is the Lie-Rinehart algebra $\mathcal{A}(M)$ whose elements are pairs of the form (ϕ, ∂) with $\phi \in \operatorname{End}_{\underline{k}}(M)$ and $\partial \in \operatorname{Der}_{k}(A$,$) such that \phi(a m)-a \phi(m)=\partial(a) m$, for every $a \in A$, $m \in M$. The Lie bracket is $\left[(\phi, \partial),\left(\phi^{\prime}, \partial^{\prime}\right)\right]=\left(\left[\phi, \phi^{\prime}\right],\left[\partial, \partial^{\prime}\right]\right)$, and the anchor is the second projection.

Lie algebroids: Definition and examples

Some examples:

- (Atiyah Lie algebroid) Let M be an A-module with action $\mathrm{I}: A \rightarrow E n d_{\mathrm{k}}(M)$. The Atiyah's algebra (also known as linear Lie algebroid) associated to M, is the Lie-Rinehart algebra $\mathcal{A}(M)$ whose elements are pairs of the form (ϕ, ∂) with $\phi \in \operatorname{End}_{\underline{k}}(M)$ and $\partial \in \operatorname{Der}_{\mathfrak{k}}(A$,$) such that \phi(a m)-a \phi(m)=\partial(a) m$, for every $a \in A$, $m \in M$. The Lie bracket is $\left[(\phi, \partial),\left(\phi^{\prime}, \partial^{\prime}\right)\right]=\left(\left[\phi, \phi^{\prime}\right],\left[\partial, \partial^{\prime}\right]\right)$, and the anchor is the second projection.
- (Poisson manifold) A smooth manifold \mathcal{M} is a Poisson manifold, if and only if, its co-tangent vector bundle has a structure of Lie algebroid over \mathcal{M}.

Lie algebroids: Definition and examples

Some examples:

- (Atiyah Lie algebroid) Let M be an A-module with action $\mathfrak{I}: A \rightarrow \operatorname{End}_{\mathbb{k}}(M)$. The Atiyah's algebra (also known as linear Lie algebroid) associated to M, is the Lie-Rinehart algebra $\mathcal{A}(M)$ whose elements are pairs of the form (ϕ, ∂) with $\phi \in E n d_{\mathbb{k}}(M)$ and $\partial \in \operatorname{Der}_{k}(A$,$) such that \phi(a m)-a \phi(m)=\partial(a) m$, for every $a \in A$, $m \in M$. The Lie bracket is $\left[(\phi, \partial),\left(\phi^{\prime}, \partial^{\prime}\right)\right]=\left(\left[\phi, \phi^{\prime}\right],\left[\partial, \partial^{\prime}\right]\right)$, and the anchor is the second projection.
- (Poisson manifold) A smooth manifold \mathcal{M} is a Poisson manifold, if and only if, its co-tangent vector bundle has a structure of Lie algebroid over \mathcal{M}.
- (The Lie algebroid of a Lie groupoid) Let us consider a Lie groupoid

$$
\mathcal{G}: \mathcal{G}_{1} \rightleftarrows \mathrm{~s} \leftrightarrows \mathcal{G}_{0}
$$

where \mathcal{G}_{1} is assumed to be a connected smooth real manifold and s, t are surjective submersions. Consider the following vector bundle $\mathcal{E}=\cup_{x \in \mathcal{G}_{0}} \mathcal{E}_{x}$, where each fibre \mathcal{E}_{x} is the \mathbb{R}-vector space $\mathcal{E}_{x}=\operatorname{Der}_{\mathbb{R}}^{s^{*}}\left(C^{\infty}\left(\mathcal{G}_{1}\right), \mathbb{R}_{\iota(x)}\right) \cong \operatorname{Der}_{\mathbb{R}}\left(C^{\infty}\left(\mathcal{G}_{x}\right), \mathbb{R}_{\iota(x)}\right)$. Then $\left(\Gamma(\mathcal{E}), C^{\infty}\left(\mathcal{G}_{0}\right)\right)$ has a structure of Lie-Rinehart algebra.

Lie algebroids: representations and fibre functor

Lie algebroids: representations and fibre functor
Let (L, A) be a Lie-Rinehart algebra. An L-representation is a pair (M, ρ), where M is an A-module and $\rho: L \rightarrow E n d_{k}(M)$ is simultaneously a morphism of A-modules and Lie algebras such that

$$
\rho(X)(a m)=\phi_{x}(a) m+a \rho(X)(m), \text { for all } a \in A, m \in M, X \in L .
$$

Lie algebroids: representations and fibre functor

Let (L, A) be a Lie-Rinehart algebra. An L-representation is a pair (M, ρ), where M is an A-module and $\rho: L \rightarrow \operatorname{End}_{\mathbb{k}}(M)$ is simultaneously a morphism of A-modules and Lie algebras such that

$$
\rho(X)(a m)=\phi_{x}(a) m+a \rho(X)(m), \text { for all } a \in A, m \in M, X \in L .
$$

A morphism $f:(M, \rho) \rightarrow\left(M^{\prime}, \rho^{\prime}\right)$ between two L-representations, is an A-linear map $f: M \rightarrow M^{\prime}$ satisfying $\rho^{\prime}(X) \circ f=f \circ \rho(X)$, for all $X \in L$.

Lie algebroids: representations and fibre functor

Let (L, A) be a Lie-Rinehart algebra. An L-representation is a pair (M, ρ), where M is an A-module and $\rho: L \rightarrow \operatorname{End}_{\mathbb{k}}(M)$ is simultaneously a morphism of A-modules and Lie algebras such that

$$
\rho(X)(a m)=\phi_{x}(a) m+a \rho(X)(m), \text { for all } a \in A, m \in M, X \in L .
$$

A morphism $f:(M, \rho) \rightarrow\left(M^{\prime}, \rho^{\prime}\right)$ between two L-representations, is an A-linear map $f: M \rightarrow M^{\prime}$ satisfying $\rho^{\prime}(X) \circ f=f \circ \rho(X)$, for all $X \in L$. We denote by $\operatorname{rep}_{\mathrm{k}}(L)$ the full subcategory of L-representations with finitely generated and projective underlying A-modules. The forgetful functor, leads then to a functor $\omega: \operatorname{rep}_{k}(L) \rightarrow \operatorname{proj}(A)$.

Lie algebroids: representations and fibre functor

Let (L, A) be a Lie-Rinehart algebra. An L-representation is a pair (M, ρ), where M is an A-module and $\rho: L \rightarrow \operatorname{End}_{\mathbb{k}}(M)$ is simultaneously a morphism of A-modules and Lie algebras such that

$$
\rho(X)(a m)=\phi_{\chi}(a) m+a \rho(X)(m), \text { for all } a \in A, m \in M, X \in L .
$$

A morphism $f:(M, \rho) \rightarrow\left(M^{\prime}, \rho^{\prime}\right)$ between two L-representations, is an A-linear map $f: M \rightarrow M^{\prime}$ satisfying $\rho^{\prime}(X) \circ f=f \circ \rho(X)$, for all $X \in L$. We denote by $\operatorname{rep}_{\mathrm{k}}(L)$ the full subcategory of L-representations with finitely generated and projective underlying A-modules. The forgetful functor, leads then to a functor $\omega: \operatorname{rep}_{k}(L) \rightarrow \operatorname{proj}(A)$.
The category $\operatorname{rep}_{k}(L)$ is a \mathbb{k}-linear symmetric and rigid monoidal category with identity object $\mathbb{I}=(A, \phi)$, whose endomorphism ring coincides with the sub-algebra $A^{c} \subset A$ of L-constants elements:

$$
A^{c}=\left\{a \in A \mid \phi_{x}(a)=0, \forall X \in L\right\}
$$

Lie algebroids: representations and fibre functor

Let (L, A) be a Lie-Rinehart algebra. An L-representation is a pair (M, ρ), where M is an A-module and $\rho: L \rightarrow E n d_{\mathfrak{k}}(M)$ is simultaneously a morphism of A-modules and Lie algebras such that

$$
\rho(X)(a m)=\phi_{x}(a) m+a \rho(X)(m), \text { for all } a \in A, m \in M, X \in L .
$$

A morphism $f:(M, \rho) \rightarrow\left(M^{\prime}, \rho^{\prime}\right)$ between two L-representations, is an A-linear map $f: M \rightarrow M^{\prime}$ satisfying $\rho^{\prime}(X) \circ f=f \circ \rho(X)$, for all $X \in L$. We denote by $\operatorname{rep}_{\mathrm{k}}(L)$ the full subcategory of L-representations with finitely generated and projective underlying A-modules. The forgetful functor, leads then to a functor $\omega: \operatorname{rep}_{k}(L) \rightarrow \operatorname{proj}(A)$.
The category $\operatorname{rep}_{k}(L)$ is a \mathbb{k}-linear symmetric and rigid monoidal category with identity object $\mathbb{I}=(A, \phi)$, whose endomorphism ring coincides with the sub-algebra $A^{c} \subset A$ of L-constants elements:

$$
A^{c}=\left\{a \in A \mid \phi_{x}(a)=0, \forall X \in L\right\}
$$

In the particular case $\left(L=\mathbb{C} . \partial_{z}, \mathbb{C}[z]\right)$, we have that rep (L) coincides with the category of differential $\mathbb{C}[z]$-modules (i.e., linear differential matrix equations).

Hopf Algebroids: Definition and examples

Hopf Algebroids: Definition and examples

Commutative Hopf algebroids:

Hopf Algebroids: Definition and examples
Commutative Hopf algebroids: A commutative Hopf algebroid over \mathbb{k} is an affine groupoid \mathbb{k}-scheme: that is a functor

$$
\mathbb{H}: \mathcal{A} f f_{k} \longrightarrow \text { Grpd }
$$

with image in groupoids and such that

Hopf Algebroids: Definition and examples
Commutative Hopf algebroids: A commutative Hopf algebroid over \mathbb{k} is an affine groupoid \mathbb{k}-scheme: that is a functor

$$
\mathbb{H}: \mathcal{A} f f_{k} \longrightarrow \operatorname{Grpd}
$$

with image in groupoids and such that

Hopf Algebroids: Definition and examples

Commutative Hopf algebroids: A commutative Hopf algebroid over \mathbb{k} is an affine groupoid \mathbb{k}-scheme: that is a functor

$$
\mathbb{H}: \mathcal{A} f f_{\underline{k}} \longrightarrow \text { Grpd }
$$

with image in groupoids and such that

Thus, we are considering a pair of objects (A, \mathcal{H}) in $\mathcal{A l f} f_{k}$ such that, for any other object C, we have, in a funtorial, way a structure of groupoid (over the fibres)

$$
\mathcal{H}(C):=A g_{k}(\mathcal{H}, C) \rightleftarrows A l_{k}(A, C):=A(C)
$$

Hopf Algebroids: Definition and examples

Commutative Hopf algebroids: A commutative Hopf algebroid over \mathbb{k} is an affine groupoid \mathbb{k}-scheme: that is a functor

$$
\mathbb{H}: \mathcal{A} f f_{\underline{k}} \longrightarrow \text { Grpd }
$$

with image in groupoids and such that

Thus, we are considering a pair of objects (A, \mathcal{H}) in $\mathcal{A l f} f_{k}$ such that, for any other object C, we have, in a funtorial, way a structure of groupoid (over the fibres)

$$
\mathcal{H}(C):=A l g_{k}(\mathcal{H}, C) \rightleftarrows A l g_{k}(A, C):=A(C)
$$

Thus we are considering a co-groupoid object in the category $\mathrm{Alg}_{\mathfrak{k}}$:

$$
A \underset{=}{\leftrightarrows} \mathcal{H}, \quad \mathcal{H} \xrightarrow{\Delta} \mathcal{H} \otimes_{A} \mathcal{H}, \quad{ }_{s} \mathcal{H}_{t} \xrightarrow{\mathcal{S}} \mathcal{H}_{s} .
$$

Hopf Algebroids: Definition and examples.

Hopf Algebroids: Definition and examples.
Basic examples:

Hopf Algebroids: Definition and examples.
Basic examples:

- For every commutative algebra A, the pair (A, A) admits a trivial Hopf algebroid structure over \mathbb{k}.

Hopf Algebroids: Definition and examples.
Basic examples:

- For every commutative algebra A, the pair (A, A) admits a trivial Hopf algebroid structure over \mathbb{k}.
- Each algebra extension $A \rightarrow B$ induces a Hopf algebroid of the form ($B, B \otimes_{A} B$).

Hopf Algebroids: Definition and examples.

Basic examples:

- For every commutative algebra A, the pair (A, A) admits a trivial Hopf algebroid structure over \mathbb{k}.
- Each algebra extension $A \rightarrow B$ induces a Hopf algebroid of the form ($B, B \otimes_{A} B$).
- If H is an Hopf \mathbb{k}-algebra and A is an H-comodule algebra, then the pair $\left(A, A \otimes_{\nwarrow} H\right)$ admits, in a natural way, a structure of Hopf algebroid.

Hopf Algebroids: Definition and examples.

Basic examples:

- For every commutative algebra A, the pair (A, A) admits a trivial Hopf algebroid structure over \mathbb{k}.
- Each algebra extension $A \rightarrow B$ induces a Hopf algebroid of the form ($B, B \otimes_{A} B$).
- If H is an Hopf \mathbb{k}-algebra and A is an H-comodule algebra, then the pair $\left(A, A \otimes_{\nwarrow} H\right)$ admits, in a natural way, a structure of Hopf algebroid.
- Again if H is a Hopf \mathbb{k}-algebra, then for every algebra A the pair of algebras $\left(A, A \otimes_{\nwarrow} H \otimes_{\nwarrow} A\right)$ is a Hopf algebroid.

Hopf Algebroids: Definition and examples.

Basic examples:

- For every commutative algebra A, the pair (A, A) admits a trivial Hopf algebroid structure over \mathbb{k}.
- Each algebra extension $A \rightarrow B$ induces a Hopf algebroid of the form ($B, B \otimes_{A} B$).
- If H is an Hopf \mathbb{k}-algebra and A is an H-comodule algebra, then the pair $\left(A, A \otimes_{\nwarrow} H\right)$ admits, in a natural way, a structure of Hopf algebroid.
- Again if H is a Hopf \mathbb{k}-algebra, then for every algebra A the pair of algebras $\left(A, A \otimes_{k} H \otimes_{\nwarrow} A\right)$ is a Hopf algebroid.
- In particular, $\left(A,\left(A \otimes_{C} A\right)[X]\right)$ and $\left(A,\left(A \otimes_{C} A\right)\left[X, X^{-1}\right]\right)$ are Hopf algebroids over \mathbb{C}, by using respectively, \mathbb{G}_{a} and \mathbb{G}_{m} the additive and the multiplicative \mathbb{C}-groups.

Morphism of Hopf algebroids:

Hopf Algebroids: Definition and examples.

Basic examples:

- For every commutative algebra A, the pair (A, A) admits a trivial Hopf algebroid structure over \mathbb{k}.
- Each algebra extension $A \rightarrow B$ induces a Hopf algebroid of the form ($B, B \otimes_{A} B$).
- If H is an Hopf \mathbb{k}-algebra and A is an H-comodule algebra, then the pair $\left(A, A \otimes_{\nwarrow} H\right)$ admits, in a natural way, a structure of Hopf algebroid.
- Again if H is a Hopf \mathbb{k}-algebra, then for every algebra A the pair of algebras $\left(A, A \otimes_{\nwarrow} H \otimes_{\nwarrow} A\right)$ is a Hopf algebroid.
- In particular, $\left(A,\left(A \otimes_{C} A\right)[X]\right)$ and $\left(A,\left(A \otimes_{C} A\right)\left[X, X^{-1}\right]\right)$ are Hopf algebroids over \mathbb{C}, by using respectively, \mathbb{G}_{a} and \mathbb{G}_{m} the additive and the multiplicative \mathbb{C}-groups.

Morphism of Hopf algebroids: A pair of algebra maps
$\left(\phi_{0}, \phi_{1}\right):(A, \mathcal{H}) \rightarrow(B, \mathcal{K})$ is said to be a morphism of Hopf algebroids, if ϕ_{0} and ϕ_{1} are compatible with both Hopf structures, that is, they induce a morphism $\Phi: \mathbb{K} \rightarrow \mathbb{H}$ between the associated presheaves of groupoids.

Hopf Algebroids: Definition and examples.

Hopf Algebroids: Definition and examples.
More examples: The coordinates algebras of Malgrange's D-groupoid:

Hopf Algebroids: Definition and examples.
More examples: The coordinates algebras of Malgrange's D-groupoid: Consider the complex algebra of polynomial with one indeterminate $A=\mathbb{C}[X]$ and the polynomial algebra $\mathcal{H}=\mathbb{C}\left[x_{0}, y_{0}, y_{1}, y_{2}, \cdots, \frac{1}{y_{1}}\right]$.

Hopf Algebroids: Definition and examples.
More examples: The coordinates algebras of Malgrange's D-groupoid: Consider the complex algebra of polynomial with one indeterminate $A=\mathbb{C}[X]$ and the polynomial algebra $\mathcal{H}=\mathbb{C}\left[x_{0}, y_{0}, y_{1}, y_{2}, \cdots, \frac{1}{y_{1}}\right]$. There two algebra maps

$$
s: A \rightarrow \mathcal{H},\left(X \mapsto x_{0}:=x\right) \quad \text { and } \quad t: A \rightarrow \mathcal{H},\left(X \mapsto y_{0}:=y\right)
$$

Hopf Algebroids: Definition and examples.
More examples: The coordinates algebras of Malgrange's D-groupoid:
Consider the complex algebra of polynomial with one indeterminate $A=\mathbb{C}[X]$ and the polynomial algebra $\mathcal{H}=\mathbb{C}\left[x_{0}, y_{0}, y_{1}, y_{2}, \cdots, \frac{1}{y_{1}}\right]$.
There two algebra maps

$$
s: A \rightarrow \mathcal{H},\left(X \mapsto x_{0}:=x\right) \quad \text { and } \quad t: A \rightarrow \mathcal{H},\left(X \mapsto y_{0}:=y\right)
$$

The comultiplication $\Delta:{ }_{s} \mathcal{H}_{t} \longrightarrow{ }_{s} \mathcal{H}_{t} \otimes_{A s} \mathcal{H}_{t}$ is given by:

$$
\begin{gathered}
\Delta(x)=x \otimes_{A} 1, \quad \Delta(y)=1 \otimes_{A} y, \text { and for } n \geq 1: \\
\Delta\left(y_{n}\right)=\sum_{\substack{\left(k_{1}, k_{2}, \cdots, k_{n}\right) \\
k_{1}+2 k_{2}+\cdots+n k_{n}=n}} \frac{n!}{k_{1}!\cdots k_{n}!}\left(\left(\frac{y_{1}}{1!}\right)^{k_{1}}\left(\frac{y_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{y_{n}}{n!}\right)^{k_{n}}\right) \otimes_{A} y_{k_{1}+k_{2}+\cdots+k_{n}},
\end{gathered}
$$

Hopf Algebroids: Definition and examples.
More examples: The coordinates algebras of Malgrange's D-groupoid:
Consider the complex algebra of polynomial with one indeterminate $A=\mathbb{C}[X]$ and the polynomial algebra $\mathcal{H}=\mathbb{C}\left[x_{0}, y_{0}, y_{1}, y_{2}, \cdots, \frac{1}{y_{1}}\right]$.
There two algebra maps

$$
s: A \rightarrow \mathcal{H},\left(X \mapsto x_{0}:=x\right) \quad \text { and } \quad t: A \rightarrow \mathcal{H},\left(X \mapsto y_{0}:=y\right)
$$

The comultiplication $\Delta:{ }_{s} \mathcal{H}_{t} \longrightarrow{ }_{s} \mathcal{H}_{t} \otimes_{A} \mathcal{H}_{t}$ is given by:

$$
\begin{gathered}
\Delta(x)=x \otimes_{A} 1, \quad \Delta(y)=1 \otimes_{A} y, \text { and for } n \geq 1: \\
\Delta\left(y_{n}\right)=\sum_{\substack{\left(k_{1}, k_{2}, \cdots, k_{n}\right) \\
k_{1}+2 k_{2}+\cdots+n k_{n}=n}} \frac{n!}{k_{1}!\cdots k_{n}!}\left(\left(\frac{y_{1}}{1!}\right)^{k_{1}}\left(\frac{y_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{y_{n}}{n!}\right)^{k_{n}}\right) \otimes_{A} y_{k_{1}+k_{2}+\cdots+k_{n}},
\end{gathered}
$$

The antipode $\mathcal{S}:{ }_{s} \mathcal{H}_{t} \longrightarrow{ }_{t} \mathcal{H}_{s}$ is given by:

$$
\begin{gathered}
\mathcal{S}(x)=y, \quad \mathcal{S}(y)=x, \quad \mathcal{S}\left(y_{1}\right)=y_{1}^{-1}, \quad \text { and for } n \geq 2: \\
\mathcal{S}\left(y_{n}\right)=\sum_{\substack{\left(k_{1}, k_{2}, \cdots, k_{n}\right) \neq(n, 0, \cdots, \cdots) \\
k_{1}+2 k_{2}+\cdots+n k_{n}=n}}-\frac{n!}{k_{1}!\cdots k_{n}!} \mathcal{S}\left(y_{k_{1}+k_{2}+\cdots+k_{n}}\right)\left(\left(\frac{y_{1}}{1!}\right)^{k_{1}-n}\left(\frac{y_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{y_{n}}{n!}\right)^{k_{n}}\right),
\end{gathered}
$$

Hopf Algebroids: Definition and examples.
More examples: The coordinates algebras of Malgrange's D-groupoid:
Consider the complex algebra of polynomial with one indeterminate $A=\mathbb{C}[X]$ and the polynomial algebra $\mathcal{H}=\mathbb{C}\left[x_{0}, y_{0}, y_{1}, y_{2}, \cdots, \frac{1}{y_{1}}\right]$.
There two algebra maps
$s: A \rightarrow \mathcal{H},\left(X \mapsto x_{0}:=x\right) \quad$ and $\quad t: A \rightarrow \mathcal{H},\left(X \mapsto y_{0}:=y\right)$.
The comultiplication $\Delta:{ }_{s} \mathcal{H}_{t} \longrightarrow{ }_{s} \mathcal{H}_{t} \otimes_{A} \mathcal{H}_{t}$ is given by:

$$
\begin{gathered}
\Delta(x)=x \otimes_{A} 1, \quad \Delta(y)=1 \otimes_{A} y \text {, and for } n \geq 1: \\
\Delta\left(y_{n}\right)=\sum_{\substack{\left(k_{1}, k_{2}, \cdots, k_{n}\right) \\
k_{1}+2 k_{2}+\cdots+n k_{n}=n}} \frac{n!}{k_{1}!\cdots k_{n}!}\left(\left(\frac{y_{1}}{1!}\right)^{k_{1}}\left(\frac{y_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{y_{n}}{n!}\right)^{k_{n}}\right) \otimes_{A} y_{k_{1}+k_{2}+\cdots+k_{n}},
\end{gathered}
$$

The antipode $\mathcal{S}:{ }_{s} \mathcal{H}_{t} \longrightarrow{ }_{t} \mathcal{H}_{s}$ is given by:

$$
\begin{gathered}
\mathcal{S}(x)=y, \quad \mathcal{S}(y)=x, \quad \mathcal{S}\left(y_{1}\right)=y_{1}^{-1}, \quad \text { and for } n \geq 2: \\
\mathcal{S}\left(y_{n}\right)=\sum_{\substack{\left(k_{1}, k_{2}, \cdots, k_{n}\right) \neq(n, 0, \cdots, \cdots) \\
k_{1}+2 k_{2}+\cdots+n k_{n}=n}}-\frac{n!}{k_{1}!\cdots k_{n}!} \mathcal{S}\left(y_{k_{1}+k_{2}+\cdots+k_{n}}\right)\left(\left(\frac{y_{1}}{1!}\right)^{k_{1}-n}\left(\frac{y_{2}}{2!}\right)^{k_{2}} \cdots\left(\frac{y_{n}}{n!}\right)^{k_{n}}\right),
\end{gathered}
$$

Lastly the counit $\varepsilon:{ }_{s} \mathcal{H}_{t} \longrightarrow A$ is:

$$
\varepsilon(x)=X, \quad \varepsilon(y)=X, \quad \varepsilon\left(y_{n}\right)=\delta_{1, n}, \quad \text { for every } n \geq 1 .
$$

Hopf algebroids: Their categories of comodules

Hopf algebroids: Their categories of comodules
Comodules over Hopf algebroids:

Hopf algebroids: Their categories of comodules

Comodules over Hopf algebroids: Given (A, \mathcal{H}) a Hopf algebroid, a (right) \mathcal{H}-comodule is a pair (M, ϱ) consisting of a (central) A-module M and an A-linear map $\varrho: M \rightarrow M \otimes_{A}{ }_{s} \mathcal{H}_{t}$ which is compatible with Δ and ε, known as co-action.

Hopf algebroids: Their categories of comodules

Comodules over Hopf algebroids: Given (A, \mathcal{H}) a Hopf algebroid, a (right) \mathcal{H}-comodule is a pair (M, ϱ) consisting of a (central) A-module M and an A-linear map $\varrho: M \rightarrow M \otimes_{A}{ }_{s} \mathcal{H}_{t}$ which is compatible with Δ and ε, known as co-action. A morphism of \mathcal{H}-comodules is an A-linear map which is compatible with co-actions.

Hopf algebroids: Their categories of comodules

Comodules over Hopf algebroids: Given (A, \mathcal{H}) a Hopf algebroid, a (right) \mathcal{H}-comodule is a pair (M, ϱ) consisting of a (central) A-module M and an A-linear map $\varrho: M \rightarrow M \otimes_{A}{ }_{s} \mathcal{H}_{t}$ which is compatible with Δ and ε, known as co-action. A morphism of \mathcal{H}-comodules is an A-linear map which is compatible with co-actions.
For instance, both $\left(\mathcal{H}_{t}, \Delta\right)$ and (A, s) are right \mathcal{H}-comodule.

Hopf algebroids: Their categories of comodules

Comodules over Hopf algebroids: Given (A, \mathcal{H}) a Hopf algebroid, a (right) \mathcal{H}-comodule is a pair (M, ϱ) consisting of a (central) A-module M and an A-linear map $\varrho: M \rightarrow M \otimes_{A}{ }_{s} \mathcal{H}_{t}$ which is compatible with Δ and ε, known as co-action. A morphism of \mathcal{H}-comodules is an A-linear map which is compatible with co-actions.
For instance, both $\left(\mathcal{H}_{t}, \Delta\right)$ and (A, s) are right \mathcal{H}-comodule. In general the category $\operatorname{Comod}_{\mathcal{H}}$ of right \mathcal{H}-comodules is a symmetric monoidal (closed) which posses co-kernels and inductive limits, and isomorphic (via the antipode) to the category of left \mathcal{H}-comodules.

Hopf algebroids: Their categories of comodules

Comodules over Hopf algebroids: Given (A, \mathcal{H}) a Hopf algebroid, a (right) \mathcal{H}-comodule is a pair (M, ϱ) consisting of a (central) A-module M and an A-linear map $\varrho: M \rightarrow M \otimes_{A}{ }_{s} \mathcal{H}_{t}$ which is compatible with Δ and ε, known as co-action. A morphism of \mathcal{H}-comodules is an A-linear map which is compatible with co-actions.
For instance, both $\left(\mathcal{H}_{t}, \Delta\right)$ and (A, s) are right \mathcal{H}-comodule.
In general the category $\operatorname{Comod}_{\mathcal{H}}$ of right \mathcal{H}-comodules is a symmetric monoidal (closed) which posses co-kernels and inductive limits, and isomorphic (via the antipode) to the category of left \mathcal{H}-comodules. If \mathcal{H} is a flat A-module via s or t, then \mathcal{H} is faithfully flat and $\operatorname{Comod}_{\mathcal{H}}$ becomes a Grothendieck category.

Hopf algebroids: Their categories of comodules

Comodules over Hopf algebroids: Given (A, \mathcal{H}) a Hopf algebroid, a (right) \mathcal{H}-comodule is a pair (M, ϱ) consisting of a (central) A-module M and an A-linear map $\varrho: M \rightarrow M \otimes_{A}{ }_{s} \mathcal{H}_{t}$ which is compatible with Δ and ε, known as co-action. A morphism of \mathcal{H}-comodules is an A-linear map which is compatible with co-actions.
For instance, both $\left(\mathcal{H}_{t}, \Delta\right)$ and (A, s) are right \mathcal{H}-comodule.
In general the category $\operatorname{Comod}_{\mathcal{H}}$ of right \mathcal{H}-comodules is a symmetric monoidal (closed) which posses co-kernels and inductive limits, and isomorphic (via the antipode) to the category of left \mathcal{H}-comodules. If \mathcal{H} is a flat A-module via s or t, then \mathcal{H} is faithfully flat and $\operatorname{Comod}_{\mathcal{H}}$ becomes a Grothendieck category.
We denote by $\operatorname{comod}_{\mathcal{H}}$ the full subcategory of $\operatorname{Comod}_{\mathcal{H}}$ of comodules with finitely generated and projective underlying A-module and by $O: \operatorname{comod}_{\mathcal{H}} \rightarrow \operatorname{proj}(A)$ the attached forgetful functor.

Hopf algebroids: Their categories of comodules

Comodules over Hopf algebroids: Given (A, \mathcal{H}) a Hopf algebroid, a (right) \mathcal{H}-comodule is a pair (M, ϱ) consisting of a (central) A-module M and an A-linear map $\varrho: M \rightarrow M \otimes_{A}{ }_{s} \mathcal{H}_{t}$ which is compatible with Δ and ε, known as co-action. A morphism of \mathcal{H}-comodules is an A-linear map which is compatible with co-actions.
For instance, both $\left(\mathcal{H}_{t}, \Delta\right)$ and (A, s) are right \mathcal{H}-comodule.
In general the category $\operatorname{Comod}_{\mathcal{H}}$ of right \mathcal{H}-comodules is a symmetric monoidal (closed) which posses co-kernels and inductive limits, and isomorphic (via the antipode) to the category of left \mathcal{H}-comodules. If \mathcal{H} is a flat A-module via s or t, then \mathcal{H} is faithfully flat and $\operatorname{Comod}_{\mathcal{H}}$ becomes a Grothendieck category.
We denote by $\operatorname{comod}_{\mathcal{H}}$ the full subcategory of $\operatorname{Comod}_{\mathcal{H}}$ of comodules with finitely generated and projective underlying A-module and by $O: \operatorname{comod}_{\mathcal{H}} \rightarrow \operatorname{proj}(A)$ the attached forgetful functor.
Any morphism $\phi:(A, \mathcal{H}) \rightarrow(B, \mathcal{K})$ of Hopf algebroids induces a symmetric monoidal functor (the induction functor):

$$
\phi^{*}: \operatorname{Comod}_{\mathcal{H}} \longrightarrow \operatorname{Comod}_{\mathcal{K}}
$$

Hopf algebroids: Geometric comodules

Hopf algebroids: Geometric comodules

Geometric comodules over Hopf algebroids:

Hopf algebroids: Geometric comodules
Geometric comodules over Hopf algebroids: Let A be a \mathbb{k}-algebra such that $A(\mathbb{k}) \neq \emptyset$ (i.e., A admits \mathbb{k}-points).

Hopf algebroids: Geometric comodules

Geometric comodules over Hopf algebroids: Let A be a \mathbb{k}-algebra such that $A(\mathbb{k}) \neq \emptyset$ (i.e., A admits \mathbb{k}-points). Assume further that A satisfies $\cap_{y \in A(H)} \operatorname{ker}(y)=0$, or equivalently, that the canonical map
is injective. $\quad \varsigma: A \longrightarrow \operatorname{Fun}(A(\mathbb{k})):=\operatorname{Functions}(A(\mathbb{k}), \mathbb{k})$

Hopf algebroids: Geometric comodules

Geometric comodules over Hopf algebroids: Let A be a \mathbb{k}-algebra such that $A(\mathbb{k}) \neq \emptyset$ (i.e., A admits \mathbb{k}-points). Assume further that A satisfies $\cap_{y \in A(H)} \operatorname{ker}(y)=0$, or equivalently, that the canonical map
is injective. $\quad \varsigma: A \longrightarrow \operatorname{Fun}(A(\mathbb{k})):=\operatorname{Functions}(A(\mathbb{k}), \mathbb{k})$
An object $P \in \operatorname{proj}(A)$ is said to be a geometric module, provided that

Hopf algebroids: Geometric comodules

Geometric comodules over Hopf algebroids: Let A be a \mathbb{k}-algebra such that $A(\mathbb{k}) \neq \emptyset$ (i.e., A admits \mathbb{k}-points). Assume further that A satisfies $\cap_{y \in A(H)} \operatorname{ker}(y)=0$, or equivalently, that the canonical map
is injective. $\quad \varsigma: A \longrightarrow \operatorname{Fun}(A(\mathbb{k})):=\operatorname{Functions}(A(\mathbb{k}), \mathbb{k})$
An object $P \in \operatorname{proj}(A)$ is said to be a geometric module, provided that

- $\cap_{y \in A(x)} P \operatorname{ker}(y)=0 ;$

Hopf algebroids: Geometric comodules

Geometric comodules over Hopf algebroids: Let A be a \mathbb{k}-algebra such that $A(\mathbb{k}) \neq \emptyset$ (i.e., A admits \mathbb{k}-points). Assume further that A satisfies $\cap_{y \in A(H)} \operatorname{ker}(y)=0$, or equivalently, that the canonical map
is injective. $\quad \varsigma: A \longrightarrow \operatorname{Fun}(A(\mathbb{k})):=\operatorname{Functions}(A(\mathbb{k}), \mathbb{k})$
An object $P \in \operatorname{proj}(A)$ is said to be a geometric module, provided that

- $\cap_{y \in A(l)} P \operatorname{ker}(y)=0 ;$
- $\operatorname{dim}_{k}\left(\frac{P}{P \operatorname{ker}(y)}\right)<\infty$, for every algebra map y, and there are finitely many type of these dimensions.

The full subcategory of geometric A-module is denotes by $\operatorname{Gproj}(A)$.

Hopf algebroids: Geometric comodules

Geometric comodules over Hopf algebroids: Let A be a \mathbb{k}-algebra such that $A(\mathbb{k}) \neq \emptyset$ (i.e., A admits \mathbb{k}-points). Assume further that A satisfies $\cap_{y \in A(H)} \operatorname{ker}(y)=0$, or equivalently, that the canonical map
is injective. $\quad \varsigma: A \longrightarrow \operatorname{Fun}(A(\mathbb{k})):=\operatorname{Functions}(A(\mathbb{k}), \mathbb{k})$
An object $P \in \operatorname{proj}(A)$ is said to be a geometric module, provided that

- $\cap_{y \in A(l)} P \operatorname{ker}(y)=0 ;$
- $\operatorname{dim}_{k}\left(\frac{P}{P \operatorname{ker}(y)}\right)<\infty$, for every algebra map y, and there are finitely many type of these dimensions.
The full subcategory of geometric A-module is denotes by $\operatorname{Gproj}(A)$. Let (A, \mathcal{H}) be a flat Hopf algebroid over \mathbb{k} with base algebra A as a above.

Hopf algebroids: Geometric comodules

Geometric comodules over Hopf algebroids: Let A be a \mathbb{k}-algebra such that $A(\mathbb{k}) \neq \emptyset$ (i.e., A admits \mathbb{k}-points). Assume further that A satisfies $\cap_{y \in A(k)} \operatorname{ker}(y)=0$, or equivalently, that the canonical map
is injective. $\quad \varsigma: A \longrightarrow \operatorname{Fun}(A(\mathbb{k})):=\operatorname{Functions}(A(\mathbb{k}), \mathbb{k})$
An object $P \in \operatorname{proj}(A)$ is said to be a geometric module, provided that

- $\cap_{y \in A(x)} P$ ker $(y)=0$;
- $\operatorname{dim}_{\mathrm{k}}\left(\frac{P}{P \operatorname{ker}(y)}\right)<\infty$, for every algebra map y, and there are finitely many type of these dimensions.

The full subcategory of geometric A-module is denotes by $\operatorname{Gproj}(A)$. Let (A, \mathcal{H}) be a flat Hopf algebroid over \mathbb{k} with base algebra A as a above. An \mathcal{H}-comodule (M, ϱ) is said to be a geometric module, provided that $O(M) \in \operatorname{Gproj}(A)$. We denote by $\operatorname{comod}_{\mathcal{H}}^{G}$ the category of all geometric \mathcal{H}-comodules.

Hopf algebroids: Geometric comodules

Geometric comodules over Hopf algebroids: Let A be a \mathbb{k}-algebra such that $A(\mathbb{k}) \neq \emptyset$ (i.e., A admits \mathbb{k}-points). Assume further that A satisfies $\cap_{y \in A(\xi)} \operatorname{ker}(y)=0$, or equivalently, that the canonical map
is injective. $\quad \varsigma: A \longrightarrow \operatorname{Fun}(A(\mathbb{k})):=\operatorname{Functions}(A(\mathbb{k}), \mathbb{k})$
An object $P \in \operatorname{proj}(A)$ is said to be a geometric module, provided that

- $\cap_{y \in A(E)} P \operatorname{ker}(y)=0$;
- $\operatorname{dim}_{\mathrm{k}}\left(\frac{P}{P \operatorname{ker}(y)}\right)<\infty$, for every algebra map y, and there are finitely many type of these dimensions.

The full subcategory of geometric A-module is denotes by $\operatorname{Gproj}(A)$.
Let (A, \mathcal{H}) be a flat Hopf algebroid over \mathbb{k} with base algebra A as a above. An \mathcal{H}-comodule (M, ϱ) is said to be a geometric module, provided that $O(M) \in \operatorname{Gproj}(A)$. We denote by $\operatorname{comod}_{\mathcal{H}}^{G}$ the category of all geometric \mathcal{H}-comodules.
(A, \mathcal{H}) is said to be a geometric Hopf algebroid, provided that \mathcal{H} is a flat
A-module and can be reconstructed from its category of geometric comodules via the forgetful functor O. In other words, (A, \mathcal{H}) is $\operatorname{comod}_{\mathcal{H}}^{G}$-Galois.

Contents

Definitions, examples and basic properties.
Abstract groupoids
Definitions and examples of groupoids
Finite dimensional linear representations.
Lie algebroids
Definition and example of Lie algebroids
Representations of Lie algebroids and differential modules
Hopf algebroids
Definition and example of Hopf algebroids
Comodules over Hopf algebroids

Contents

Definitions, examples and basic properties.
Abstract groupoids
Definitions and examples of groupoids
Finite dimensional linear representations.
Lie algebroids
Definition and example of Lie algebroids
Representations of Lie algebroids and differential modules
Hopf algebroids
Definition and example of Hopf algebroids
Comodules over Hopf algebroids
The representative function functor and geometric Hopf algebroids
Geometric Hopf algebroids
Representative functions on a groupoid
Contravariant adjunction between groupoids and Hopf algebroids

Contents

Definitions, examples and basic properties.
Abstract groupoids
Definitions and examples of groupoids
Finite dimensional linear representations.
Lie algebroids
Definition and example of Lie algebroids
Representations of Lie algebroids and differential modules
Hopf algebroids
Definition and example of Hopf algebroids
Comodules over Hopf algebroids
The representative function functor and geometric Hopf algebroids
Geometric Hopf algebroids
Representative functions on a groupoid
Contravariant adjunction between groupoids and Hopf algebroids
Formal differentiation and formal integrations
The differentiation functor
The integrations functors
Contravariant adjunctions between Hopf algebroids and Lie algebroids

Geometric Hopf algebropids: Examples

Geometric Hopf algebropids: Examples

Hopf \mathbb{k}-algebras are obviously geometric Hopf algebroids over \mathbb{k}.

Geometric Hopf algebropids: Examples

Hopf \mathbb{k}-algebras are obviously geometric Hopf algebroids over \mathbb{k}.
Recall that a flat Hopf algebroid (A, \mathcal{H}) with non empty character groupoid, is said to be geometrically transitive (GT for short) provided that the map (s, t) is a cover in the fpqc topology, or equivalently, the base space is not empty and every two objects are locally isomorphic w. r. t. this topology (i.e., the associated presheaf is actually a Gerbe).

Geometric Hopf algebropids: Examples

Hopf \mathbb{k}-algebras are obviously geometric Hopf algebroids over \mathbb{k}.
Recall that a flat Hopf algebroid (A, \mathcal{H}) with non empty character groupoid, is said to be geometrically transitive (GT for short) provided that the map (s, t) is a cover in the fpqc topology, or equivalently, the base space is not empty and every two objects are locally isomorphic w. r. t. this topology (i.e., the associated presheaf is actually a Gerbe). Algebraically, this is equivalent to say that $A(\mathbb{k}) \neq \emptyset$ (and $A \neq 0$) and the algebra map $s \otimes t: A \otimes A \rightarrow \mathcal{H}$ is faithfully flat.

Geometric Hopf algebropids: Examples

Hopf \mathbb{k}-algebras are obviously geometric Hopf algebroids over \mathbb{k}.
Recall that a flat Hopf algebroid (A, \mathcal{H}) with non empty character groupoid, is said to be geometrically transitive (GT for short) provided that the map (s, t) is a cover in the fpqc topology, or equivalently, the base space is not empty and every two objects are locally isomorphic w. r. t. this topology (i.e., the associated presheaf is actually a Gerbe). Algebraically, this is equivalent to say that $A(\mathbb{k}) \neq \emptyset$ (and $A \neq 0$) and the algebra map $s \otimes t: A \otimes A \rightarrow \mathcal{H}$ is faithfully flat.
Any GT Hopf algebroid is a geometric Hopf algebroid in the above sense.

Geometric Hopf algebropids: Examples

Hopf \mathbb{k}-algebras are obviously geometric Hopf algebroids over \mathbb{k}.
Recall that a flat Hopf algebroid (A, \mathcal{H}) with non empty character groupoid, is said to be geometrically transitive (GT for short) provided that the map (s, t) is a cover in the fpqc topology, or equivalently, the base space is not empty and every two objects are locally isomorphic w. r. t. this topology (i.e., the associated presheaf is actually a Gerbe). Algebraically, this is equivalent to say that $A(\mathbb{k}) \neq \emptyset$ (and $A \neq 0$) and the algebra map $s \otimes t: A \otimes A \rightarrow \mathcal{H}$ is faithfully flat.
Any GT Hopf algebroid is a geometric Hopf algebroid in the above sense.
This is deduced from the fact that, for GT Hopf algebroids, we always have that $\operatorname{comod}_{\mathcal{H}}=\operatorname{comod}_{\mathcal{H}}^{G}$ and of course from the fact that any GT Hopf algebroid is constructed out of its category of dualizable comodules $\operatorname{comod}_{\mathcal{H}}$, which is a locally finite abelian category in this case.

Geometric Hopf algebropids: Examples

Hopf \mathbb{k}-algebras are obviously geometric Hopf algebroids over \mathbb{k}.
Recall that a flat Hopf algebroid (A, \mathcal{H}) with non empty character groupoid, is said to be geometrically transitive (GT for short) provided that the map (s, t) is a cover in the fpqc topology, or equivalently, the base space is not empty and every two objects are locally isomorphic w. r. t. this topology (i.e., the associated presheaf is actually a Gerbe). Algebraically, this is equivalent to say that $A(\mathbb{k}) \neq \emptyset$ (and $A \neq 0$) and the algebra map $s \otimes t: A \otimes A \rightarrow \mathcal{H}$ is faithfully flat.
Any GT Hopf algebroid is a geometric Hopf algebroid in the above sense.
This is deduced from the fact that, for GT Hopf algebroids, we always have that $\operatorname{comod}_{\mathcal{H}}=\operatorname{comod}_{\mathcal{H}}^{G}$ and of course from the fact that any GT Hopf algebroid is constructed out of its category of dualizable comodules $\operatorname{comod}_{\mathcal{H}}$, which is a locally finite abelian category in this case.
Notaton: We denote by GHAlgd (resp. GTHAlgd) the 2-category of geometric (resp. geometrically transitive) Hopf algebroids over \mathbb{k}.

Geometric Hopf algebropids: Examples

Hopf \mathbb{k}-algebras are obviously geometric Hopf algebroids over \mathbb{k}.
Recall that a flat Hopf algebroid (A, \mathcal{H}) with non empty character groupoid, is said to be geometrically transitive (GT for short) provided that the map (s, t) is a cover in the fpqc topology, or equivalently, the base space is not empty and every two objects are locally isomorphic w. r. t. this topology (i.e., the associated presheaf is actually a Gerbe). Algebraically, this is equivalent to say that $A(\mathbb{k}) \neq \emptyset$ (and $A \neq 0$) and the algebra map $s \otimes t: A \otimes A \rightarrow \mathcal{H}$ is faithfully flat.
Any GT Hopf algebroid is a geometric Hopf algebroid in the above sense.
This is deduced from the fact that, for GT Hopf algebroids, we always have that $\operatorname{comod}_{\mathcal{H}}=\operatorname{comod}_{\mathcal{H}}^{G}$ and of course from the fact that any GT Hopf algebroid is constructed out of its category of dualizable comodules $\operatorname{comod}_{\mathcal{H}}$, which is a locally finite abelian category in this case.
Notaton: We denote by GHAlgd (resp. GTHAlgd) the 2-category of geometric (resp. geometrically transitive) Hopf algebroids over \mathbb{k}.
Next we will give another class of examples of geometric Hopf algebroids.

Representative functions on a groupoid.

Representative functions on a groupoid.

Let \mathcal{G} be a groupoid and $A_{0}(\mathcal{G})$ its base algebra. It is clear that A is a geometric algebra.

Representative functions on a groupoid.

Let \mathcal{G} be a groupoid and $A_{0}(\mathcal{G})$ its base algebra. It is clear that A is a geometric algebra. As we have seen before there is functor

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathcal{G})\right)
$$

Representative functions on a groupoid.

Let \mathcal{G} be a groupoid and $A_{0}(\mathcal{G})$ its base algebra. It is clear that A is a geometric algebra. As we have seen before there is functor

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathcal{G})\right)
$$

It turns out that this functor lands in the full subcategory of geometric A-modules. Thus, we have a commutative diagram

Representative functions on a groupoid.

Let \mathcal{G} be a groupoid and $A_{0}(\mathcal{G})$ its base algebra. It is clear that A is a geometric algebra. As we have seen before there is functor

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathcal{G})\right)
$$

It turns out that this functor lands in the full subcategory of geometric A-modules. Thus, we have a commutative diagram

Let us denote by $\left(A_{0}(\mathcal{G}), \mathscr{R}_{\mathfrak{k}}(\boldsymbol{\omega})\right)$ the Hopf algebroid constructed, using Tannaka reconstruction process, from the pair $\left(\operatorname{rep}_{\mathbb{k}}(\mathcal{G}), \boldsymbol{\omega}\right)$.

Representative functions on a groupoid.

Let \mathcal{G} be a groupoid and $A_{0}(\mathcal{G})$ its base algebra. It is clear that A is a geometric algebra. As we have seen before there is functor

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathcal{G})\right)
$$

It turns out that this functor lands in the full subcategory of geometric A-modules. Thus, we have a commutative diagram

Let us denote by $\left(A_{0}(\mathcal{G}), \mathscr{R}_{\mathbb{k}}(\boldsymbol{\omega})\right)$ the Hopf algebroid constructed, using Tannaka reconstruction process, from the pair $\left(\operatorname{rep}_{\mathbb{k}}(\mathcal{G}), \boldsymbol{\omega}\right)$.

The Hopf algebroid $\left(A_{0}(\mathcal{G}), \mathscr{R}_{\mathbb{k}}(\boldsymbol{\omega})\right)$ is geometric. We refer to it as the algebroid of representative functions, as there is $\zeta: \mathscr{R}_{\mathbb{k}}(\boldsymbol{\omega}) \rightarrow A_{1}(\mathcal{G})$ an $\left(A_{0}(\mathcal{G}) \otimes A_{0}(\mathcal{G})\right)$-algebra map.

Representative functions on a groupoid.

Let \mathcal{G} be a groupoid and $A_{0}(\mathcal{G})$ its base algebra. It is clear that A is a geometric algebra. As we have seen before there is functor

$$
\boldsymbol{\omega}: \operatorname{rep}_{\mathbb{k}}(\mathcal{G}) \longrightarrow \operatorname{proj}\left(A_{0}(\mathcal{G})\right)
$$

It turns out that this functor lands in the full subcategory of geometric A-modules. Thus, we have a commutative diagram

Let us denote by $\left(A_{0}(\mathcal{G}), \mathscr{R}_{\mathbf{k}}(\boldsymbol{\omega})\right)$ the Hopf algebroid constructed, using Tannaka reconstruction process, from the pair $\left(\operatorname{rep}_{\mathrm{k}}(\mathcal{G}), \boldsymbol{\omega}\right)$.

The Hopf algebroid $\left(A_{0}(\mathcal{G}), \mathscr{R}_{\mathbb{k}}(\boldsymbol{\omega})\right)$ is geometric. We refer to it as the algebroid of representative functions, as there is $\zeta: \mathscr{R}_{\mathbb{k}}(\boldsymbol{\omega}) \rightarrow A_{1}(\mathcal{G})$ an $\left(A_{0}(\mathcal{G}) \otimes A_{0}(\mathcal{G})\right)$-algebra map. If \mathcal{G} is transitive, then $\left(A_{0}(\mathcal{G}), \mathscr{R}_{\mathbb{k}}(\boldsymbol{\omega})\right)$ is a GT Hopf algebroid.

Representative functor.

Representative functor.

So far, we have construct a contravariant functor \mathscr{R}_{k} : Grpd \rightarrow GHAlgd, with a commutative diagram:

Representative functor.

So far, we have construct a contravariant functor \mathscr{R}_{k} : Grpd \rightarrow GHAlgd, with a commutative diagram:

In the other way around, we have the contravariant functor given by the character groupoid.

Representative functor.

So far, we have construct a contravariant functor \mathscr{R}_{k} : Grpd \rightarrow GHAlgd, with a commutative diagram:

In the other way around, we have the contravariant functor given by the character groupoid. More precisely, for a given (A, \mathcal{H}) an object in GHAlgd, we have the (non empty groupoid) $\chi_{\mathfrak{k}}:=(\mathcal{H}(\mathbb{k}), A(\mathbb{k}))$, which is transitive if (A, \mathcal{H}) is GT.

Representative functor.

So far, we have construct a contravariant functor \mathscr{R}_{k} : Grpd \rightarrow GHAlgd, with a commutative diagram:

In the other way around, we have the contravariant functor given by the character groupoid. More precisely, for a given (A, \mathcal{H}) an object in GHAlgd, we have the (non empty groupoid) $\chi_{\mathfrak{k}}:=(\mathcal{H}(\mathbb{k}), A(\mathbb{k}))$, which is transitive if (A, \mathcal{H}) is GT.
First result:

Representative functor.

So far, we have construct a contravariant functor \mathscr{R}_{k} : Grpd \rightarrow GHAlgd, with a commutative diagram:

In the other way around, we have the contravariant functor given by the character groupoid. More precisely, for a given (A, \mathcal{H}) an object in GHAlgd, we have the (non empty groupoid) $\chi_{k}:=(\mathcal{H}(\mathbb{k}), A(\mathbb{k}))$, which is transitive if (A, \mathcal{H}) is GT.
First result: Both functors establish contravariant adjuntions:

Contents

Definitions, examples and basic properties.
Abstract groupoids
Definitions and examples of groupoids
Finite dimensional linear representations.
Lie algebroids
Definition and example of Lie algebroids
Representations of Lie algebroids and differential modules
Hopf algebroids
Definition and example of Hopf algebroids
Comodules over Hopf algebroids

Contents

Definitions, examples and basic properties.
Abstract groupoids
Definitions and examples of groupoids
Finite dimensional linear representations.
Lie algebroids
Definition and example of Lie algebroids
Representations of Lie algebroids and differential modules
Hopf algebroids
Definition and example of Hopf algebroids
Comodules over Hopf algebroids
The representative function functor and geometric Hopf algebroids
Geometric Hopf algebroids
Representative functions on a groupoid
Contravariant adjunction between groupoids and Hopf algebroids

Contents

Definitions, examples and basic properties.
Abstract groupoids
Definitions and examples of groupoids
Finite dimensional linear representations.
Lie algebroids
Definition and example of Lie algebroids
Representations of Lie algebroids and differential modules
Hopf algebroids
Definition and example of Hopf algebroids
Comodules over Hopf algebroids
The representative function functor and geometric Hopf algebroids
Geometric Hopf algebroids
Representative functions on a groupoid
Contravariant adjunction between groupoids and Hopf algebroids
Formal differentiation and formal integrations
The differentiation functor
The integrations functors
Contravariant adjunctions between Hopf algebroids and Lie algebroids

Differentiations in Hopf algebroids context.

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid:

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Let (A, \mathcal{H}) be a Hopf algebroid over a ground field \mathbb{k} and denote by $I:=\operatorname{ker}(\varepsilon)$ its augmentation ideal. We consider A as an \mathcal{H}-module via the counit algebra map and denote this module by A_{ε}.

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Let (A, \mathcal{H}) be a Hopf algebroid over a ground field \mathbb{k} and denote by $I:=\operatorname{ker}(\varepsilon)$ its augmentation ideal. We consider A as an \mathcal{H}-module via the counit algebra map and denote this module by A_{ε}.
We consider the following two vector spaces:
$\operatorname{Der}_{\mathcal{H}}{ }^{s}(\mathcal{H}, \mathcal{H}):=\left\{\begin{array}{c}\delta \in \operatorname{Hom}_{\varepsilon}(\mathcal{H}, \mathcal{H}) \mid \delta \circ s=0, \delta(u v)=\delta(u) v+u \delta(v), \\ \Delta(\delta(u))=u_{1} \otimes_{A} \delta\left(u_{2}\right), \text { for all } u, v \in \mathcal{H}\end{array}\right\}$,

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Let (A, \mathcal{H}) be a Hopf algebroid over a ground field \mathbb{k} and denote by $I:=\operatorname{ker}(\varepsilon)$ its augmentation ideal. We consider A as an \mathcal{H}-module via the counit algebra map and denote this module by A_{ε}.
We consider the following two vector spaces:
$\operatorname{Der}_{\mathcal{H}}{ }^{s}(\mathcal{H}, \mathcal{H}):=\left\{\begin{array}{c}\delta \in \operatorname{Hom}_{\varepsilon}(\mathcal{H}, \mathcal{H}) \mid \delta \circ s=0, \delta(u v)=\delta(u) v+u \delta(v), \\ \Delta(\delta(u))=u_{1} \otimes_{A} \delta\left(u_{2}\right), \text { for all } u, v \in \mathcal{H}\end{array}\right\}$,
and

$$
\operatorname{Der}_{k}^{s}\left(\mathcal{H}, A_{\varepsilon}\right):=\left\{\begin{array}{c}
\\
\\
\delta \in \operatorname{Hom}_{\varepsilon}(\mathcal{H}, A) \mid \delta \circ s=0, \\
\delta(u v)= \\
\delta(u) \varepsilon(v)+\varepsilon(u) \delta(v), \text { for all } u, v \in \mathcal{H}\}
\end{array}\right\} .
$$

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Let (A, \mathcal{H}) be a Hopf algebroid over a ground field \mathbb{k} and denote by $I:=\operatorname{ker}(\varepsilon)$ its augmentation ideal. We consider A as an \mathcal{H}-module via the counit algebra map and denote this module by A_{ε}.
We consider the following two vector spaces:
$\operatorname{Der}_{\mathcal{H}}{ }^{s}(\mathcal{H}, \mathcal{H}):=\left\{\begin{array}{c}\delta \in \operatorname{Hom}_{\varepsilon}(\mathcal{H}, \mathcal{H}) \mid \delta \circ s=0, \delta(u v)=\delta(u) v+u \delta(v), \\ \Delta(\delta(u))=u_{1} \otimes_{A} \delta\left(u_{2}\right), \text { for all } u, v \in \mathcal{H}\end{array}\right\}$,
and

$$
\operatorname{Der}_{\underline{k}}^{s}\left(\mathcal{H}, A_{\varepsilon}\right):=\left\{\begin{array}{c}
\delta \in \operatorname{Hom}_{\underline{k}}(\mathcal{H}, A) \mid \delta \circ s=0, \\
\delta(u v)=\delta(u) \varepsilon(v)+\varepsilon(u) \delta(v), \text { for all } u, v \in \mathcal{H}\} .
\end{array} .\right.
$$

We have a commutative diagram of A-modules:

Differentiations in Hopf algebroids context.

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid:

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Moreover, the A-module $\operatorname{Der}_{\underline{k}}{ }^{s}\left(\mathcal{H}, A_{\varepsilon}\right)$ admits a structure of Lie \mathbb{k}-algebra with bracket

$$
\left[\delta, \delta^{\prime}\right]:=\delta * \delta^{\prime}-\delta^{\prime} * \delta: \mathcal{H} \longrightarrow A_{\varepsilon},\left(u \longmapsto \delta \left(u_{1} t\left(\delta^{\prime}\left(u_{2}\right)\right)-\delta^{\prime}\left(u_{1} t\left(\delta\left(u_{2}\right)\right)\right)\right.\right.
$$

and this structure can be transferred to * $\left(\frac{I}{T^{2}}\right)$ in a unique way.

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Moreover, the A-module $\operatorname{Der}_{\underline{k}}{ }^{s}\left(\mathcal{H}, A_{\varepsilon}\right)$ admits a structure of Lie \mathbb{k}-algebra with bracket

$$
\left[\delta, \delta^{\prime}\right]:=\delta * \delta^{\prime}-\delta^{\prime} * \delta: \mathcal{H} \longrightarrow A_{\varepsilon},\left(u \longmapsto \delta \left(u_{1} t\left(\delta^{\prime}\left(u_{2}\right)\right)-\delta^{\prime}\left(u_{1} t\left(\delta\left(u_{2}\right)\right)\right)\right.\right.
$$

and this structure can be transferred to * $\left(\frac{I}{I^{2}}\right)$ in a unique way.
The pair $\left(A, \operatorname{Der}_{k}{ }^{s}\left(\mathcal{H}, A_{\varepsilon}\right)\right)$ admits a structure of Lie-Rinehart algebra with anchor map:

$$
\omega: \operatorname{Der}_{r_{k}}^{s}\left(\mathcal{H}, A_{\varepsilon}\right) \longrightarrow \operatorname{Der}_{k}(A), \quad(\delta \longmapsto \delta \circ t) .
$$

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Moreover, the A-module $\operatorname{Der}_{k}{ }^{s}\left(\mathcal{H}, A_{\varepsilon}\right)$ admits a structure of Lie \mathbb{k}-algebra with bracket

$$
\left[\delta, \delta^{\prime}\right]:=\delta * \delta^{\prime}-\delta^{\prime} * \delta: \mathcal{H} \longrightarrow A_{s},\left(u \longmapsto \delta \left(u_{1} t\left(\delta^{\prime}\left(u_{2}\right)\right)-\delta^{\prime}\left(u_{1} t\left(\delta\left(u_{2}\right)\right)\right)\right.\right.
$$

and this structure can be transferred to * $\left(\frac{I}{I^{2}}\right)$ in a unique way.
The pair $\left(A, \operatorname{Der}_{\underline{k}}{ }^{s}\left(\mathcal{H}, A_{\varepsilon}\right)\right)$ admits a structure of Lie-Rinehart algebra with anchor map:

$$
\omega: \operatorname{Der}_{r_{k}^{s}}^{s}\left(\mathcal{H}, A_{\varepsilon}\right) \longrightarrow \operatorname{Der}_{k}(A), \quad(\delta \longmapsto \delta \circ t) .
$$

Fix an algebra A and denote by $\mathrm{HAlgd}_{\mathrm{A}}$ the category of all Hopf algebroids with base algebra A, and by $L i e R i n_{A}$ the category of all Lie-Rinehart algebras with base algebra A.

Differentiations in Hopf algebroids context.

The Lie-Rinehart algebra of a Hopf algebroid: Moreover, the A-module $\operatorname{Der}_{k}{ }^{s}\left(\mathcal{H}, A_{\varepsilon}\right)$ admits a structure of Lie \mathbb{k}-algebra with bracket

$$
\left[\delta, \delta^{\prime}\right]:=\delta * \delta^{\prime}-\delta^{\prime} * \delta: \mathcal{H} \longrightarrow A_{s},\left(u \longmapsto \delta \left(u_{1} t\left(\delta^{\prime}\left(u_{2}\right)\right)-\delta^{\prime}\left(u_{1} t\left(\delta\left(u_{2}\right)\right)\right)\right.\right.
$$

and this structure can be transferred to * $\left(\frac{I}{I^{2}}\right)$ in a unique way.
The pair $\left(A, \operatorname{Der}_{k}{ }^{s}\left(\mathcal{H}, A_{\varepsilon}\right)\right)$ admits a structure of Lie-Rinehart algebra with anchor map:

$$
\omega: \operatorname{Der}_{r_{k}^{s}}^{s}\left(\mathcal{H}, A_{\varepsilon}\right) \longrightarrow \operatorname{Der}_{k}(A), \quad(\delta \longmapsto \delta \circ t) .
$$

Fix an algebra A and denote by HAlgd_{A} the category of all Hopf algebroids with base algebra A, and by $\operatorname{LieRin}_{A}$ the category of all Lie-Rinehart algebras with base algebra A. We have then construct a contravariant functor:

$$
\operatorname{HAlgd}_{A} \xrightarrow{\mathscr{L}} \text { LieRin }_{A}
$$

referred to as the differentiation functor.

Differentiations in Hopf algebroids context.

Differentiations in Hopf algebroids context.

Example of Lie-Rinehart algebra of a given Hopf algebroid:

Differentiations in Hopf algebroids context.

Example of Lie-Rinehart algebra of a given Hopf algebroid:
(\bullet) Consider the Malgrange's Hopf algebroid (A, \mathcal{H}) over \mathbb{C} and with $A=\mathbb{C}[X]$.

Differentiations in Hopf algebroids context.

Example of Lie-Rinehart algebra of a given Hopf algebroid:

(•) Consider the Malgrange's Hopf algebroid (A, \mathcal{H}) over \mathbb{C} and with $A=\mathbb{C}[X]$. Then the Lie-Rinehart algebra $\mathscr{L}(\mathcal{H})$ of (A, \mathcal{H}) has underlying A-module the free module $A^{\mathbb{N}}$ whose anchor map is

$$
\omega: A^{\mathbb{N}} \longrightarrow \operatorname{Der}_{\mathrm{c}}(A), \quad\left(a:=\left(a_{n}\right)_{n \in \mathbb{N}} \longmapsto\left(p \mapsto a_{0} \partial p\right)\right)
$$

and the bracket is defined as follows.

Differentiations in Hopf algebroids context.

Example of Lie-Rinehart algebra of a given Hopf algebroid:
(•) Consider the Malgrange's Hopf algebroid (A, \mathcal{H}) over \mathbb{C} and with $A=\mathbb{C}[X]$. Then the Lie-Rinehart algebra $\mathscr{L}(\mathcal{H})$ of (A, \mathcal{H}) has underlying A-module the free module $A^{\mathbb{N}}$ whose anchor map is

$$
\omega: A^{\mathbb{N}} \longrightarrow \operatorname{Der}_{c}(A), \quad\left(a:=\left(a_{n}\right)_{n \in \mathbb{N}} \longmapsto\left(p \mapsto a_{0} \partial p\right)\right)
$$

and the bracket is defined as follows. For sequences \mathfrak{a} and \mathfrak{b} as above, the sequence $[\mathfrak{a}, \mathfrak{b}]$ is given by:

$$
\begin{aligned}
& {[\mathfrak{a}, \mathfrak{b}]_{0}=a_{0} \partial b_{0}-b_{0} \partial a_{0}, \quad[\mathfrak{a}, \mathfrak{b}]_{1}=a_{0} \partial b_{1}-b_{0} \partial a_{1},} \\
& \quad[\mathfrak{a}, \mathfrak{b}]_{2}=a_{2} b_{1}-b_{2} a_{1}+a_{0} \partial b_{2}-b_{0} \partial a_{2}, \\
& \quad[\mathfrak{a}, \mathfrak{b}]_{n}=\sum_{i=1}^{n}\binom{n}{i}\left(a_{i} b_{n-i+1}-b_{i} a_{n-i+1}\right)+\left(a_{0} \partial b_{n}-b_{0} \partial a_{n}\right), \quad \text { for } n \geq 3 .
\end{aligned}
$$

Differentiations in Hopf algebroids context.

Example of Lie-Rinehart algebra of a given Hopf algebroid:
(•) Consider the Malgrange's Hopf algebroid (A, \mathcal{H}) over \mathbb{C} and with $A=\mathbb{C}[X]$. Then the Lie-Rinehart algebra $\mathscr{L}(\mathcal{H})$ of (A, \mathcal{H}) has underlying A-module the free module $A^{\mathbb{N}}$ whose anchor map is

$$
\omega: A^{\mathbb{N}} \longrightarrow \operatorname{Der}_{c}(A), \quad\left(a:=\left(a_{n}\right)_{n \in \mathbb{N}} \longmapsto\left(p \mapsto a_{0} \partial p\right)\right)
$$

and the bracket is defined as follows. For sequences \mathfrak{a} and \mathfrak{b} as above, the sequence $[\mathfrak{a}, \mathfrak{b}]$ is given by:

$$
\begin{aligned}
& {[\mathfrak{a}, \mathfrak{b}]_{0}=a_{0} \partial b_{0}-b_{0} \partial a_{0}, \quad[\mathfrak{a}, \mathfrak{b}]_{1}=a_{0} \partial b_{1}-b_{0} \partial a_{1},} \\
& {\left[\begin{array}{l}
a, \mathfrak{b}
\end{array}\right]_{2}=a_{2} b_{1}-b_{2} a_{1}+a_{0} \partial b_{2}-b_{0} \partial a_{2},} \\
& {[\mathfrak{a}, \mathfrak{b}]_{n}=\sum_{i=1}^{n}\binom{n}{i}\left(a_{i} b_{n-i+1}-b_{i} a_{n-i+1}\right)+\left(a_{0} \partial b_{n}-b_{0} \partial a_{n}\right), \quad \text { for } n \geq 3 .}
\end{aligned}
$$

(•) Assume now, we are given an affine \mathbb{k}-group $\mathcal{G}:=A l g_{\mathfrak{k}}(H,-)$ acting on an affine \mathbb{k}-scheme $\mathcal{X}:=A / g_{k}(A,-)$. There is a well known anti-homomorphism of Lie algebras $L:=\operatorname{Lie}(\mathcal{G})(\mathbb{k}) \rightarrow \operatorname{Der}_{\mathfrak{k}}\left(\mathscr{O}_{\mathfrak{k}}(\mathcal{X})\right)$.

Differentiations in Hopf algebroids context.

Example of Lie-Rinehart algebra of a given Hopf algebroid:
(•) Consider the Malgrange's Hopf algebroid (A, \mathcal{H}) over \mathbb{C} and with $A=\mathbb{C}[X]$. Then the Lie-Rinehart algebra $\mathscr{L}(\mathcal{H})$ of (A, \mathcal{H}) has underlying A-module the free module $A^{\mathbb{N}}$ whose anchor map is

$$
\omega: A^{\mathbb{N}} \longrightarrow \operatorname{Der}_{\mathbb{C}}(A), \quad\left(\mathfrak{a}:=\left(a_{n}\right)_{n \in \mathbb{N}} \longmapsto\left(p \mapsto a_{0} \partial p\right)\right)
$$

and the bracket is defined as follows. For sequences \mathfrak{a} and \mathfrak{b} as above, the sequence $[\mathfrak{a}, \mathfrak{b}]$ is given by:

$$
\begin{aligned}
& {[\mathfrak{a}, \mathfrak{b}]_{0}=a_{0} \partial b_{0}-b_{0} \partial a_{0}, \quad[\mathfrak{a}, \mathfrak{b}]_{1}=a_{0} \partial b_{1}-b_{0} \partial a_{1},} \\
& {\left[\begin{array}{c}
a, b
\end{array}\right]_{2}=a_{2} b_{1}-b_{2} a_{1}+a_{0} \partial b_{2}-b_{0} \partial a_{2},} \\
& {[\mathfrak{a}, \mathfrak{b}]_{n}=\sum_{i=1}^{n}\binom{n}{i}\left(a_{i} b_{n-i+1}-b_{i} a_{n-i+1}\right)+\left(a_{0} \partial b_{n}-b_{0} \partial a_{n}\right), \quad \text { for } n \geq 3 .}
\end{aligned}
$$

(•) Assume now, we are given an affine \mathbb{k}-group $\mathcal{G}:=A / g_{k}(H,-)$ acting on an affine \mathbb{k}-scheme $\mathcal{X}:=A / g_{k}(A,-)$. There is a well known anti-homomorphism of Lie algebras $L:=\mathcal{L i e}(\mathcal{G})(\mathbb{k}) \rightarrow \operatorname{Der}_{\mathfrak{k}}\left(\mathscr{O}_{\mathfrak{k}}(\mathcal{X})\right)$. Then this Lie algebra map factors through the anchor map of the Lie-Rinehart algebra of the split Hopf algebroid $\left(A, H \otimes_{\S} A\right)$ and $\left(A, L \otimes_{k} A\right)$ becomes a Lie-Rinehart algebra.

Formal integration of Lie-Rinehart algebras.

Formal integration of Lie-Rinehart algebras.
The first integration functor:

Formal integration of Lie-Rinehart algebras.

The first integration functor: Fix a Lie-Rinehart algebra (A, L) and denote by $\mathcal{U}_{A}(L)$ its universal enveloping (right) Hopf algebroid. This is a co-commutative Hopf algebroid whose category of right $\mathcal{U}_{A}(L)$-modules with finitely generated and projective underlying A-modules coincides with the rigid and symmetric monoidal category $\operatorname{rep}_{A}(L)$ of L-representations.

Formal integration of Lie-Rinehart algebras.

The first integration functor: Fix a Lie-Rinehart algebra (A, L) and denote by $\mathcal{U}_{A}(L)$ its universal enveloping (right) Hopf algebroid. This is a co-commutative Hopf algebroid whose category of right $\mathcal{U}_{A}(L)$-modules with finitely generated and projective underlying A-modules coincides with the rigid and symmetric monoidal category $\operatorname{rep}_{A}(L)$ of L-representations.
The forgetful functor $O: \operatorname{rep}_{A}(L) \rightarrow \operatorname{proj}(A)$, leads then to a commutative Hopf algebroid, which we denote by $\mathcal{U}_{A}(L)^{\circ}$.

Formal integration of Lie-Rinehart algebras.

The first integration functor: Fix a Lie-Rinehart algebra (A, L) and denote by $\mathcal{U}_{A}(L)$ its universal enveloping (right) Hopf algebroid. This is a co-commutative Hopf algebroid whose category of right $\mathcal{U}_{A}(L)$-modules with finitely generated and projective underlying A-modules coincides with the rigid and symmetric monoidal category $\operatorname{rep}_{A}(L)$ of L-representations.
The forgetful functor $O: \operatorname{rep}_{A}(L) \rightarrow \operatorname{proj}(A)$, leads then to a commutative Hopf algebroid, which we denote by $\mathcal{U}_{A}(L)^{\circ}$.
For instance, if $A=\mathbb{k}$, that is, if L is an ordinary Lie algebra, then $\mathcal{U}_{A}(L)^{\circ}$ coincides with the finite dual of the universal Hopf algebra of L.

Formal integration of Lie-Rinehart algebras.

The first integration functor: Fix a Lie-Rinehart algebra (A, L) and denote by $\mathcal{U}_{A}(L)$ its universal enveloping (right) Hopf algebroid. This is a co-commutative Hopf algebroid whose category of right $\mathcal{U}_{A}(L)$-modules with finitely generated and projective underlying A-modules coincides with the rigid and symmetric monoidal category $\operatorname{rep}_{A}(L)$ of L-representations.
The forgetful functor $O: \operatorname{rep}_{A}(L) \rightarrow \operatorname{proj}(A)$, leads then to a commutative Hopf algebroid, which we denote by $\mathcal{U}_{A}(L)^{\circ}$.
For instance, if $A=\mathbb{k}$, that is, if L is an ordinary Lie algebra, then $\mathcal{U}_{A}(L)^{\circ}$ coincides with the finite dual of the universal Hopf algebra of L.
In this way we are lead to a contravariant functor:

$$
\operatorname{LieRin}_{A} \xrightarrow[I]{\mathscr{I}} \text { HAlgd }_{A}
$$

referred to as the first integration functor.

Formal integration of Lie-Rinehart algebras.

The first integration functor: Fix a Lie-Rinehart algebra (A, L) and denote by $\mathcal{U}_{A}(L)$ its universal enveloping (right) Hopf algebroid. This is a co-commutative Hopf algebroid whose category of right $\mathcal{U}_{A}(L)$-modules with finitely generated and projective underlying A-modules coincides with the rigid and symmetric monoidal category $\operatorname{rep}_{A}(L)$ of L-representations.
The forgetful functor $O: \operatorname{rep}_{A}(L) \rightarrow \operatorname{proj}(A)$, leads then to a commutative Hopf algebroid, which we denote by $\mathcal{U}_{A}(L)^{\circ}$.
For instance, if $A=\mathbb{k}$, that is, if L is an ordinary Lie algebra, then $\mathcal{U}_{A}(L)^{\circ}$ coincides with the finite dual of the universal Hopf algebra of L.
In this way we are lead to a contravariant functor:

$$
\operatorname{LieRin}_{A} \xrightarrow[I]{\mathscr{I}} \text { HAlgd }_{A}
$$

referred to as the first integration functor.
In general there is a $\operatorname{map} \zeta: \mathcal{U}_{A}(L)^{\circ} \rightarrow \mathcal{U}_{A}(L)^{*}$ of $(A \otimes A)$-algebras, to the convolution algebra, whose I-adic completion $\bar{\zeta}: \widehat{\mathcal{U}_{A}(L)}{ }^{\circ} \longrightarrow \mathcal{U}_{A}(L)^{*}$ is a morphism of complete topological Hopf algebroids.

Formal integration of Lie-Rinehart algebras.

The first integration functor: Fix a Lie-Rinehart algebra (A, L) and denote by $\mathcal{U}_{A}(L)$ its universal enveloping (right) Hopf algebroid. This is a co-commutative Hopf algebroid whose category of right $\mathcal{U}_{A}(L)$-modules with finitely generated and projective underlying A-modules coincides with the rigid and symmetric monoidal category $\operatorname{rep}_{A}(L)$ of L-representations.
The forgetful functor $O: \operatorname{rep}_{A}(L) \rightarrow \operatorname{proj}(A)$, leads then to a commutative Hopf algebroid, which we denote by $\mathcal{U}_{A}(L)^{\circ}$.
For instance, if $A=\mathbb{k}$, that is, if L is an ordinary Lie algebra, then $\mathcal{U}_{A}(L)^{\circ}$ coincides with the finite dual of the universal Hopf algebra of L.
In this way we are lead to a contravariant functor:

$$
\operatorname{LieRin}_{A} \xrightarrow[I]{\mathscr{I}} \text { HAlgd }_{A}
$$

referred to as the first integration functor.
In general there is a $\operatorname{map} \zeta: \mathcal{U}_{A}(L)^{\circ} \rightarrow \mathcal{U}_{A}(L)^{*}$ of $(A \otimes A)$-algebras, to the convolution algebra, whose l-adic completion $\widehat{\zeta}: \widehat{\mathcal{U}_{A}(L)}{ }^{\circ} \longrightarrow \mathcal{U}_{A}(L)^{*}$ is a morphism of complete topological Hopf algebroids. None of these maps is, in general, injective.

Formal integration of Lie-Rinehart algebras.

Formal integration of Lie-Rinehart algebras.

The first adjunction:

Formal integration of Lie-Rinehart algebras.

The first adjunction: For a fixed base algebra A, we denote by GaLHAlgd the category of all Galois Hopf algebroids with base algebra A. These are Hopf algebroids which can be re-constructible from their category of comodules with finitely generated and projective underlying A-modules. This class, of course, contains the class of GT Hopf algebroids with base A.

Formal integration of Lie-Rinehart algebras.

The first adjunction: For a fixed base algebra A, we denote by GaLHAlgd the category of all Galois Hopf algebroids with base algebra A. These are Hopf algebroids which can be re-constructible from their category of comodules with finitely generated and projective underlying A-modules. This class, of course, contains the class of GT Hopf algebroids with base A.
An algebra R satisfies property (Pzeta), provided that the canonical map $\zeta_{T}: T^{\circ} \rightarrow T^{*}$ is injective, for every R-ring T.

Formal integration of Lie-Rinehart algebras.

The first adjunction: For a fixed base algebra A, we denote by GaLHAlgd the category of all Galois Hopf algebroids with base algebra A. These are Hopf algebroids which can be re-constructible from their category of comodules with finitely generated and projective underlying A-modules. This class, of course, contains the class of GT Hopf algebroids with base A.
An algebra R satisfies property (Pzeta), provided that the canonical map $\zeta_{T}: T^{\circ} \rightarrow T^{*}$ is injective, for every R-ring T. For instance, any field satisfies this property, as well as any Dedekind domain (e.g., the coordinate ring of an irreducible smooth curve over an alg-closed field) or any hereditary algebra.

Formal integration of Lie-Rinehart algebras.

The first adjunction: For a fixed base algebra A, we denote by GaLHAlgd the category of all Galois Hopf algebroids with base algebra A. These are Hopf algebroids which can be re-constructible from their category of comodules with finitely generated and projective underlying A-modules. This class, of course, contains the class of GT Hopf algebroids with base A.
An algebra R satisfies property (Pzeta), provided that the canonical map $\zeta_{T}: T^{\circ} \rightarrow T^{*}$ is injective, for every R-ring T. For instance, any field satisfies this property, as well as any Dedekind domain (e.g., the coordinate ring of an irreducible smooth curve over an alg-closed field) or any hereditary algebra.

Second Result:

Formal integration of Lie-Rinehart algebras.

The first adjunction: For a fixed base algebra A, we denote by GaLHAlgd the category of all Galois Hopf algebroids with base algebra A. These are Hopf algebroids which can be re-constructible from their category of comodules with finitely generated and projective underlying A-modules. This class, of course, contains the class of GT Hopf algebroids with base A.
An algebra R satisfies property (Pzeta), provided that the canonical map $\zeta_{T}: T^{\circ} \rightarrow T^{*}$ is injective, for every R-ring T. For instance, any field satisfies this property, as well as any Dedekind domain (e.g., the coordinate ring of an irreducible smooth curve over an alg-closed field) or any hereditary algebra.

Second Result: Assume that A satisfies the property (Pzeta), then there is a contravariant adjunction

$$
\operatorname{LieRin}_{A} \stackrel{\mathscr{I}}{\mathscr{L}} \text { GalHAlgd }_{A}
$$

Formal integration of Lie-Rinehart algebras.

Formal integration of Lie-Rinehart algebras.

The second integration functor:

Formal integration of Lie-Rinehart algebras.

The second integration functor: Fix A as before to be a base algebra. By applying the Special Adjoint Functor Theorem (SAFT) to the category of A-rings, one can construct a contravariant functor:

$$
\operatorname{LieRin}_{A} \xrightarrow[\mathscr{I}^{\prime}]{\longrightarrow} \mathrm{HAlgd}_{A}
$$

Formal integration of Lie-Rinehart algebras.

The second integration functor: Fix A as before to be a base algebra. By applying the Special Adjoint Functor Theorem (SAFT) to the category of A-rings, one can construct a contravariant functor:

$$
\operatorname{LieRin}_{A} \xrightarrow[\mathscr{I}^{\prime}]{\longrightarrow} \mathrm{HAlgd}_{A}
$$

together with a natural transformation $\tilde{\zeta}_{L}: \mathcal{U}_{A}(L)^{\circ} \rightarrow \mathcal{U}_{A}(L)^{\bullet}:=\mathscr{I}^{\prime}(L)$ that fits in the following commutative diagram:

Formal integration of Lie-Rinehart algebras.

The second integration functor: Fix A as before to be a base algebra. By applying the Special Adjoint Functor Theorem (SAFT) to the category of A-rings, one can construct a contravariant functor:

$$
\operatorname{LieRin}_{A} \xrightarrow[\mathscr{I}^{\prime}]{ } \mathrm{HAlgd}_{A}
$$

together with a natural transformation $\tilde{\zeta}_{L}: \mathcal{U}_{A}(L)^{\circ} \rightarrow \mathcal{U}_{A}(L)^{\bullet}:=\mathscr{I}^{\prime}(L)$ that fits in the following commutative diagram:

The map $\tilde{\zeta}$ is an equality, when $A=\mathbb{k}$, and the whole diagram reduces to equalities when $\mathcal{U}_{A}(L)_{A}$ is finitely generated and projective module.

Formal integration of Lie-Rinehart algebras.

Formal integration of Lie-Rinehart algebras.

The second adjunction:

Formal integration of Lie-Rinehart algebras.
The second adjunction: Fix as before A a base algebra.

Formal integration of Lie-Rinehart algebras.
The second adjunction: Fix as before A a base algebra.
Third Result:

Formal integration of Lie-Rinehart algebras.
The second adjunction: Fix as before A a base algebra.
Third Result: Then, there is a contravariant adjunction

Formal integration of Lie-Rinehart algebras.

The second adjunction: Fix as before A a base algebra.
Third Result: Then, there is a contravariant adjunction

Moreover, for any Lie-Rinehart algebra (A, L) we have a commutative diagram of natural transformations:

Formal integration of Lie-Rinehart algebras.
The second adjunction: Fix as before A a base algebra.
Third Result: Then, there is a contravariant adjunction

Moreover, for any Lie-Rinehart algebra (A, L) we have a commutative diagram of natural transformations:

Integrating Lie-Rinehart algebras:

Formal integration of Lie-Rinehart algebras.

The second adjunction: Fix as before A a base algebra.
Third Result: Then, there is a contravariant adjunction

$$
\operatorname{LieRin}_{A} \frac{\mathscr{I}^{\prime}}{\stackrel{L}{L}} \text { HAlgd }_{A} .
$$

Moreover, for any Lie-Rinehart algebra (A, L) we have a commutative diagram of natural transformations:

Integrating Lie-Rinehart algebras: Now we can address the integration problem for Lie-Rinehart algebra in general and hence for Lie algebroids in particular.

Formal integration of Lie-Rinehart algebras.

The second adjunction: Fix as before A a base algebra.
Third Result: Then, there is a contravariant adjunction

Moreover, for any Lie-Rinehart algebra (A, L) we have a commutative diagram of natural transformations:

Integrating Lie-Rinehart algebras: Now we can address the integration problem for Lie-Rinehart algebra in general and hence for Lie algebroids in particular.
Given a Lie-Rinehart algebra (A, L) such that L_{A} is finitely generated and projective module with constant rank. Under which conditions (on both A and L), one can construct a Hopf algebroid (A, \mathcal{H}) such that $L \cong \mathscr{L}(\mathcal{H})$?

References

A．Ardizzoni，L．EL Kaoutit and P．Saracco，Differentiation and integration between Hopf algebroids and Lie algebroids．arXiv：1905．10288．（May 2019）．

J．J．Barbarán Sánchez and L．EL Kaoutit，Linear Representations and Frobenius Morphisms of Groupoids．SIGMA 15，（2019）， 019 （33 pp）．
五
L．El Kaoutit，On geometrically transitive Hopf algebroids，J．Pure Appl．Algebra， 222 （2018）3483－3520．
Representative functions on discrete groupoids and duality with Hopf algebroids． arXiv：1311．3109．（Upated version－In preparation）
R．El Kaoutit and N．Kowalzig，Morita theory for Hopf algebroids，principal bibundles， and weak equivalences．Documenta Math．，22，（2017）551－609．

L．EL Kaoutit and J．Gómez－Torrecillas，On the finite dual of a co－commutative Hopf algebroid．Application to linear differential matrix equations and Picard－Vessiot theory arXiv：1607．07633v3．（April 2018）

L．EL Kaoutit and P．Saracco，Topological tensor product of bimodules，complete Hopf Algebroids and convolution algebras．Comm．in Contemp．Math．21，No．6，（2019） 1850015 （53 pp）．
Comparing topologies on linearly recursive sequences．ARS Math．Contemp． 16 （2019）319－329．
A．Ibort and M．A．Rodríguez，Introduction to Groups，Groupoids and their Representations，Taylor \＆Francis Group，Boca Raton London New York（2020）．

A．Guay and B．Hepburn，Symmetry and Its Formalisms：Mathematical Aspects， Philosophy of Science， 76 （April 2009），160－178．

Thank you!

