Advanced Corporate Finance (GEST S 410)

1. Introduction

Professor Kim Oosterlinck

E-mail: koosterl@ulb.ac.be

Course Outline (1/4)

- Theory (24h) + Exercises (12h) + Textbooks and references
- Material available on
- http://homepages.ulb.ac.be/~koosterl/
- Prerequisites: Accounting, Microeconomics and Finance 101
- => Familiar with PV, Bonds and Stocks Valuation, NPV, IRR rules, portfolio theory, CAPM and option pricing (binomial model)

Course Outline (2/4)

Reference books:
David Hillier, Stephen Ross, Jeffrey Jaffe, Randolph
Westerfield, (2013), Corporate Finance European edition, $2^{\text {nd }}$ edition.

Berk, J. and P. DeMarzo, (2013), Corporate Finance, $3^{\text {rd }}$ ed.
Pearson,
Bodie Zvi, Kane Alex, Marcus Alan J., (2011), Investments and
Portfolio Management, Global Edition, McGraw Hill,
Brealey, R., Myers, S. and Allen, F. (2008), Principle of
Corporate Finance, $9^{\text {th }}$ ed., McGraw-Hill.

Course Outline (3/4)

- Second course in finance. Objectives, understand:
$>$ How to move from accounting to cash-flows
$>$ The impact of capital structure on investment decisions
$>$ The Value of the Firm (Modigliani-Miller)
$>$ Optimal capital structure
$>$ Raising Capital and Going Public (IPO, SEO)
$>$ Mergers and Acquisitions
$>$ Risky Debt

Course Outline (4/4)

- Exam
- Theory and Exercises
- No help allowed...
- The Course is in ENGLISH => no dictionary, you should have a sufficiently good knowledge NOW
- Exam is HARD be precise when answering
- Erasmus no exam outside the normal sessions

Roadmap

1. Introduction and Review of supposedly known concepts
2. From Accounting to Cash Flows
3. Capital Structure
4. Project valuation using the wacc
5. Financial Options
6. Real Options
7. Market efficiency
8. Raising capital and going public
9. Long Term Bonds
10. Alternative Investments

Beware, Beware, Beware

- This session will provide a short wrap-up of what I believe should be known...
- If you never had a finance class before: WORK
- To help you here are the hillier et al.(2013) chapters I assume you have seen BEFORE this class:
- At least chapters: $1,2,4,5,6,7,10$ and 22
- If not it is up to YOU to make up for this

A short review

- Financial valuation most of the time relies on the discounting concept
- Decisions to invest or not in a project are then made based on the NPV rule (invest if NPV >0). Even though other methods exist (IRR, Payback etc) they do not always yield a proper result => stick to NPV!!!
- Choosing the proper interest rate to use is not easy (more on this later). Besides one must take into account compounding intervals

SolvayBrusselsSchool

A short review

- One may also wish to benefit from shortcut formulas to compute PV
- Discounting future cash flows is also at the basis of bonds and equity valuation
- The discount rate should take risk into account
- Capital Asset Pricing Model (CAPM)

Discounting: Time value of Money

0 1

UTB
SolvayBrusselsSchool of Economics and Management

The discount factor

- How much would an investor pay today to receive $€ \mathrm{C}_{\mathrm{t}}$ in t years given market interest rate r_{t} ?
- We know that

$$
\begin{array}{ll}
\text { - We know that } & 1 \epsilon_{0} \rightarrow\left(1+r_{t}\right)^{\mathrm{t}} €_{t} \\
\text { - Hence } & P V \times\left(1+r_{t}\right)^{\mathrm{t}}=C_{t} \rightarrow \mathrm{PV}=C_{t} /\left(1+r_{t}\right)^{\mathrm{t}}=C_{t} \times D F_{t}
\end{array}
$$

- The process of calculating the present value of future cash flows is called discounting.
- The present value of a future cash flow is obtained by multiplying this cash flow by a discount factor (or present value factor) $D F_{t}$
- The general formula for the t -year discount factor is:

$$
D F_{t}=\frac{1}{\left(1+r_{t}\right)^{t}}
$$

Net Present Value

- Decide whether it is worth investing in a project
- Rule $=>$ it should bring money. To compare the cash flows arriving at \neq dates $=>$ discount the cash flows
- Cash flows: $C_{0} C_{1} C_{2} \ldots C_{\mathrm{t}} \ldots C_{\mathrm{T}}$
- t-year discount factor: $D F_{t}=1 /(1+r)^{t}$
- $\mathrm{NPV}=C_{0}+C_{1} D F_{1}+\ldots+C_{t} D F_{t}+\ldots+C_{T} D F_{T}$
- Usually $C_{0}<0$ since it often represents the investment made for the project

Example...

- Suppose $r=10 \%$

t	0	1	2	3
Cash flow	-100	30	60	40
Discount Factor	1	0.9091	0.8264	0.7513
PresentValue	-100.0	27.3	49.6	30.1
NPV	6.9			

- In this case the investment is worth undertaking
- NB: an alternative method could have been to compute the Net Future Value (NFV)

ULB
Solvay BrusselsSchool

Internal Rate of Return

- The Internal Rate of Return is the discount rate such that the NPV is equal to zero.

- In a multiple period setting
- Reinvestment assumption: the IRR calculation assumes that all future cash flows are reinvested at the IRR
- Disadvantages:
- Does not distinguish between investing and financing
- IRR may not exist or there may be multiple IRR
- Problems with mutually exclusive investments
- Advantages:
- Easy to understand and communicate

Compounding Interval

- Up to now, interest paid annually
- If n payments per year, compounded value after 1 year :
- Example: Monthly payment :
$-r=12 \%, n=12$
- Compounded value after 1 year : $(1+0.12 / 12)^{12}=1.1268$
- Effective Annual Interest Rate : 12.68%
- Continuous compounding:
$-[1+(r / n)]^{n} \rightarrow e^{r n}(\mathrm{e}=2.7183)$
- Example : $r=12 \% \quad e^{12}=1.1275$
- Effective Annual Interest Rate : 12.75\%

Shortcut Formulas...

- Constant perpetuity: $C_{t}=C$ for all t
- Growing perpetuity: $C_{t}=C_{t-1}(1+g)$

$$
\text { (} r>g \quad t=1 \text { to } \infty
$$

$$
P V=\frac{C_{1}}{r-g}
$$

- Constant annuity: $C_{t}=C \quad t=1$ to T

$$
P V=\frac{C}{r}\left(1-\frac{1}{(1+r)^{T}}\right)
$$

- Growing annuity: $C_{t}=C_{t-1}(1+g)$

$$
t=1 \text { to } T
$$

$$
P V=\frac{C_{1}}{r-g}\left(1-\frac{(1+g)^{T}}{(1+r)^{T}}\right)
$$

Bond valuation

- Zero-Coupon \Leftrightarrow one bullet payment at maturity T

$$
P V=\frac{1}{(1+r)^{T}}
$$

- Level coupon bond, paying a yearly coupon C

$$
P_{0}=\frac{C}{1+r}+\frac{C}{(1+r)^{2}}+\ldots+\frac{C}{(1+r)^{T}}+\frac{100}{(1+r)^{T}}=C \times A_{r}^{T}+100 \times d_{T}
$$

- With A the annuity factor
- NB: Inverse relationship between interest rate r and Bond Price!

Stock (Equity) valuation

- Dividend Discount Model (DDM): 1-year horizon

$$
P_{0}=\frac{d i v_{1}+P_{1}}{1+r} \longleftarrow \quad \begin{aligned}
& \quad \begin{array}{l}
r=\text { expected return on shareholders' } \\
\text { equity }
\end{array} \\
& \\
& \\
& \begin{array}{l}
\text { e Risk-free interest rate }+ \text { risk } \\
\text { premium }
\end{array}
\end{aligned}
$$

- Example. Assume $r=10 \%$, expected dividend $=2$ and expected price $=50$

$$
P_{0}=\frac{2+50}{1+0.10}=47.27 \quad \text { Dividend yield }=2 / 47.27=4.23 \%
$$

DDM: where does the expected stock price come from?

- Expected price at forecasting horizon depends on expected dividends and expected prices beyond forecasting horizon
- To find P_{2}, use 1-year valuation formula again:

$$
P_{1}=\frac{d i v_{2}+P_{2}}{1+r}
$$

- Current price can be expressed as:

$$
P_{0}=\frac{d i v_{1}}{1+r}+\frac{d i v_{2}}{(1+r)^{2}}+\frac{P_{2}}{(1+r)^{2}}
$$

- General formula:

$$
P_{0}=\frac{d i v_{1}}{1+r}+\frac{d i v_{2}}{(1+r)^{2}}+\ldots+\frac{d i v_{T}}{(1+r)^{T}}+\frac{P_{T}}{(1+r)^{T}}
$$

DDM - general formula

- With infinite forecasting horizon:

$$
P_{0}=\frac{d i v_{1}}{(1+r)}+\frac{d i v_{2}}{(1+r)^{2}}+\frac{d i v_{3}}{(1+r)^{3}}+\ldots+\frac{d i v_{t}}{(1+r)^{t}}+\ldots
$$

- Forecasting dividends up to infinity is not an easy task. So, in practice, simplified versions of this general formula are used. One widely used formula is the Gordon Growth Model base on the assumption that dividends grow at a constant rate.
- DDM with constant growth g
- Note: $g<r$

$$
P_{0}=\frac{d i v_{1}}{r-g}
$$

Risk-Return and diversification

- Risk linked to return
- Benefits from diversification, let us consider a portfolio of two stocks (A,B)
- Characteristics:
- Expected returns: \bar{R}_{A}, \bar{R}_{B}
- Standard deviations: σ_{A}, σ_{B}
- Covariance : $\quad \sigma_{A B}=\rho_{A B} \sigma_{A} \sigma_{B}$
- Portfolio: defined by fractions invested in each stock X_{A}, X_{B}

$$
X_{A}+X_{B}=1
$$

- Expected return on portfolio:

$$
\bar{R}_{P}=X_{A} \bar{R}_{A}+X_{B} \bar{R}_{B}
$$

- Variance of the portfolio's return: $\sigma_{P}^{2}=X_{A}^{2} \sigma_{A}^{2}+2 X_{A} X_{B} \sigma_{A B}+X_{B}^{2} \sigma_{B}^{2}$

Covariance and correlation

- Statistical measures of the degree to which random variables move together
- Covariance

$$
\sigma_{A B}=\operatorname{cov}\left(R_{A}, R_{B}\right)=E\left[\left(R_{A}-\bar{R}_{A}\right)\left(R_{B}-\bar{R}_{B}\right)\right]
$$

- Like variance figure, the covariance is in squared deviation units.
- Not too friendly ...
- Correlation

$$
\rho_{A B}=\operatorname{Corr}\left(R_{A}, R_{B}\right)=\frac{\operatorname{Cov}\left(R_{A}, R_{B}\right)}{\sigma_{A} \sigma_{B}}
$$

- Covariance divided by product of standard deviations
- Covariance and correlation have the same sign
- Positive : variables are positively correlated
- Zero : variables are independent
- Negative : variables are negatively correlated
- The correlation is always between -1 and +1

Portfolio with many assets

- Portfolio composition :
- $\left(X_{1}, X_{2}, \ldots, X_{i}, \ldots, X_{N}\right)$
- $X_{1}+X_{2}+\ldots+X_{i}+\ldots+X_{N}=1$
- Expected return:

$$
\bar{R}_{P}=X_{1} \bar{R}_{1}+X_{2} \bar{R}_{2}+\ldots+X_{N} \bar{R}_{N}
$$

- Risk:

$$
\sigma_{P}^{2}=\sum_{j} X_{j}^{2} \sigma_{j}^{2}+\sum_{i} \sum_{j \neq i} X_{i} X_{j} \sigma_{i j}=\sum_{i} \sum_{j} X_{i} X_{j} \sigma_{i j}
$$

- Note:
- N terms for variances
- $\mathrm{N}(\mathrm{N}-1)$ terms for covariances
- Covariances dominate

Covariance domination...

Var	Cov	Cov	Cov	Cov
Cov	Var	Cov	Cov	Cov
Cov	Cov	Var	Cov	Cov
Cov	Cov	Cov	Var	Cov
Cov	Cov	Cov	Cov	Var

Equally weighted portfolio

- Consider the risk of an equally weighted portfolio of N "identical« stocks:

$$
\bar{R}_{j}=\bar{R}, \sigma_{j}=\sigma, \operatorname{Cov}\left(R_{i}, R_{j}\right)=\operatorname{cov}
$$

- Equally weighted: $\quad X_{j}=\frac{1}{N}$
- Variance of portfolio:

$$
\sigma_{P}^{2}=\frac{1}{N} \sigma^{2}+\left(1-\frac{1}{N}\right) \operatorname{cov}
$$

- If we increase the number of securities ?:
- Variance of portfolio:

$$
\begin{aligned}
& \sigma_{P}^{2} \rightarrow \operatorname{cov} \\
& N \rightarrow \infty
\end{aligned}
$$

In practice

Diversification gains already close to maximum with $\mathrm{n}=20$

Risk and CAPM

- Discount rate should take risk into account
- Concept of opportunity cost
- Risk usually measured as the standard deviation of returns
- Part of the risk may be reduced thanks to diversification
- The market only rewards the risk which cannot be diversified
- Capital-Asset Pricing Model (CAPM)

$$
\bar{R}=R_{F}+\left(\bar{R}_{M}-R_{F}\right) \times \beta
$$

- with $\beta_{i}=\frac{\operatorname{Cov}\left(R_{i}, R_{M}\right)}{\sigma^{2}\left(R_{M}\right)}=\frac{\sigma_{i M}}{\sigma_{M}^{2}}$

This course...

- Many questions remain unanswered
=> How do we determine the Cash Flows to Discount?
\Rightarrow CAPM provides some insights regarding the discount rate but how is it affected by the capital structure (\% debts versus equity)?
\Rightarrow Is there such a thing as an optimal capital structure?
\Rightarrow How do we move from project valuation to company valuation?
\Rightarrow How do companies raise funds? Or go Public?
\Rightarrow How do we value options in a broader setting?
\Rightarrow Are equity prices affected by behavioral elements?
\Rightarrow How do we deal with risky debt?

