Advanced Corporate Finance

2. Financial Planning, from Accounting to Free Cash Flows

SolvayBrusselsSchool

Objectives of the session

1. Show how to use accounting information to compute cash flows
2. Understand and compute "free cash flows" (FCF)
3. Introduce financial forecasting (income statement, statement of cash flows, balance sheet)
4. Introduce the sustainable growth rate of a company

Summarized balance sheet

SolvayBrusselsSchool

Assets

Fixed assets (FA)
Working capital requirement (WCR)

Liabilities

Stockholders' equity (SE)
Interest-bearing debt (D)

Cash (Cash)

$$
\mathrm{FA}+\mathrm{WCR}+\mathrm{Cash}=\mathrm{SE}+\mathrm{D}
$$

Working capital requirement: definition

+ Accounts receivable
+ Inventories
+ Prepaid expenses
- Account payable
- Accrued payroll and other expenses

Interest-bearing debt: definition

+ Long-term debt
+ Current maturities of long term debt
+ Notes payable to banks

SolvayBrusselsSchool

Net Working Capital

- Net working capital can be understood in two ways:
- as an investment to be funded: Current Assets - Current Liabilities
- as a source of financing=Stockholders' equity + LT debt - Fixed Assets

Current ratio: a measure of NWC
Current ratio $=$
Current assets / Current liabilites

Net working capital =
Current assets - Current liabilites

Current ratio > 1
\Leftrightarrow NWC >0

Notations

- Income statement
- REV Revenue
- CGS Cost of goods sold
- SGA Selling, general and administrative expenses
- Dep Depreciation
- EBIT Earnings before interest and taxes
- Int Interest expenses
- TAX Taxes
- T_{c} Tax rate
- NI Net income
- Balance sheet
- FA Fixed assets, net
- AR Accounts receivable
- INV Inventories
- CASHCash \& cash equivalents
- SE Equity capital
- LTD Long term debt
- AP Accounts payable
- $\mathrm{STD}_{\text {fin }}$ Short-term borrowing
- Statement of retained income
- DIV Dividends

Net Working Capital vs Working Capital Requirement

- Summarized balance sheet identity:
- FA + WCR + CASH = SE + LTD + STD
- can be written as:
- $\mathrm{WCR}+\left(\mathrm{CASH}-\mathrm{STD}_{\mathrm{fin}}\right)=(\mathrm{SE}+\mathrm{LTD}-\mathrm{FA})$

- WCR + NLB = NWC

SolvayBrusselsSchool

Sources of Cash In and Out flows

Example (Dour Music Festival Balance Sheet, 2009, Assets)

Assets

Fixed Assets (FA)
Financial Fixed assets.
2.037.080
377.637
62.229

TOTAL

2008
598
598
2009 198

Current Assets

Accounts receivable < one year

Cash and cash equivalents
1.659 .443
2.104.340
2.037.678
2.166 .767

Example (Dour Music Festival Balance Sheet, 2009, Liabilities)

Liabilities	$\mathbf{2 0 0 9}$	$\mathbf{2 0 0 8}$	
Equity	$\mathbf{8 1 7 . 3 4 3}$	$\mathbf{7 7 7 . 5 7 2}$	
Equity	30.987	30.987	
Reserves	3.099	3.099	
Reported P\&L	783.257	743.486	
Debts	$\mathbf{1 . 2 2 0 . 3 3 5}$	$\mathbf{1 . 3 8 9 . 1 9 5}$	
LT debts			
ST Debts	$\mathbf{1 . 2 2 0 . 3 3 5}$	$\mathbf{1 . 3 8 9 . 1 9 5}$	
Financial debts			
Accounts payable	368.752	171.279	
Social security and wages due	447.528	576.555	
Other current liabilities	404.055	641.361	
TOTAL	$\mathbf{2 . 0 3 7 . 6 7 8}$	$\mathbf{2 . 1 6 6 . 7 6 7}$	

WCR, NWC, Cash...

- $\mathrm{NWC}=\mathrm{SE}+\mathrm{LTD}-\mathrm{FA}=817,343+0-598=816,745$
- $\mathrm{NLB}=\mathrm{CASH}-\mathrm{STD}_{\text {fin }}=1,659,443$
- $\mathrm{WCR}=(2,037,080-1,659,443)-1,220,335=-842,698$
- Check: NLB $=$ NWC - WCR $=816,745-(-842,698)$
= 1,659,443
- But what about Free Cash Flows?

Example (Dour Music Festival income statement, 2009)

2009
 2008

Operating Profit	$\mathbf{5 3 1 . 4 1 0}$	$\mathbf{1 . 7 2 7 . 5 6 9}$
Interest received	147.305	154.872
Interest paid	3.028	2.523
Current Gain/Losses	$\mathbf{6 7 5 . 6 8 7}$	$\mathbf{1 . 8 7 9 . 9 1 8}$
Extraordinary Income		
Extraordinary expenses	13.344	
Profit (loss) before taxes	$\mathbf{6 6 2 . 3 4 3}$	$\mathbf{1 . 8 7 9 . 9 1 8}$
Taxes	222.572	674.918
Tc	$33,60 \%$	$35,90 \%$
Profit (loss) after taxes	$\mathbf{4 3 9 . 7 7 1}$	$\mathbf{1 . 2 0 5 . 0 0 0}$
Dividend	$\mathbf{4 0 0 . 0 0 0}$	$\mathbf{7 5 0 . 0 0 0}$

Income statement and balance sheet

- Income statement
- EBIT $=$ REV - CGS - SGA - Dep $=531,410-13,344=518,066$
- $\mathrm{TAX}=\mathrm{T}_{\mathrm{c}}($ EBIT - Int $)=33,6 \% \times(518,066+144,277)=222,572$
- NI = EBIT - Int - TAX $=518,066+144,277-222,572=439,771$
- Balance sheet equation
- $\mathrm{FA}+\mathrm{AR}+\mathrm{INV}+\mathrm{CASH}=\mathrm{SE}+\mathrm{LTD}+\mathrm{AP}+\mathrm{STD}$
- $598+377,637+0+1,659,443=817,343+0+1,220,335+0$

Working capital requirement: WCR \equiv AR + INV - AP

$$
=(\text { Current assets }- \text { CASH })-(\text { Current liabilities }- \text { STD })=-842,698
$$

Summarised balance sheet:

$$
\begin{aligned}
& \mathrm{FA}+\mathrm{WCR}+\mathrm{CASH}=\mathrm{SE}+\mathrm{D} \quad\left(\mathrm{D}=\mathrm{LTD}+\mathrm{STD}_{\text {fin }}\right) \\
& 598-842,698+1,659,443=817,343+0=817,343
\end{aligned}
$$

SolvayBrusselsSchool

Cash flow statement : indirect method

$$
\begin{aligned}
& \Delta \mathrm{FA}+\Delta \mathrm{WCR}+\Delta \mathrm{CASH}=\Delta \mathrm{SE}+\Delta \mathrm{D} \\
& \Delta \mathrm{FA}=\mathrm{AQ}-\mathrm{AMO} \\
& \quad \mathrm{AQ}=\text { Acquisitions }- \text { Disposals (investing \& divesting) } \\
& =598-198=400
\end{aligned} \quad \begin{gathered}
\Delta \mathrm{WCR}=-842,698-(-1,326,966)=484,268 \\
\Delta \mathrm{Cash}=2,104,340-1,659,443=-444,897 \\
\Delta \mathrm{SE}=\mathrm{NI}-\mathrm{DIV}+\Delta \mathrm{K}=439,771-400,000+0=39,771 \\
\quad \Delta \mathrm{~K}=\text { New issuance of capital }
\end{gathered}
$$

SolvayBrusselsSchool

Cash flow statement : indirect method

Cash flow from
operating
activities
:---:
investing
activities
:---:
from
financing
activities

- $439,771+0-484,268+(-400)+(-400,000)=-444,897$
- -44,497

$$
+(-400) \quad-400,000 \quad=-444,897
$$

Statement of cash flows: direct method

+ Cash collection from customers
- Cash payment to suppliers and employees
- Cash paid for interest
- Cash paid for taxes
= Cash flow from operating activities

+ Cash flow from investing activities
-AQ
+ Cash flow from financing activity

$$
\Delta \mathrm{K}+\Delta \mathrm{D}-\mathrm{DIV}
$$

$=\Delta \mathrm{CASH}$

$$
(\mathrm{NI}+\mathrm{Dep}-\Delta \mathrm{WCR})+(-\mathrm{AQ})+(\Delta \mathrm{K}+\Delta \mathrm{D}-\mathrm{DIV})=\Delta \mathrm{CASH}
$$

Free Cash Flow

- Several definitions...
- Free Cash Flow $=$ Cash flow from operating activities + Cash flow from investing activities
- Calculating free cash flows of all equity firm:

$$
\text { Free Cash Flow }=\operatorname{EBIT}\left(1-\mathrm{T}_{\mathrm{C}}\right)+\text { Dep }-\Delta \mathrm{WCR}-\mathrm{AQ}
$$

- Statement of cash flows for all-equity firm:

Free Cash Flow $=$ DIV $-\Delta \mathrm{K}+\Delta$ Cash

Free Cash Flow to Equity

- Free Cash Flow to Equity = Cash the company can afford to return to its stockholders
- $(\mathrm{NI}+\mathrm{Dep}-\Delta \mathrm{WCR})+(-\mathrm{AQ})+(\Delta \mathrm{K}+\Delta \mathrm{D}-\mathrm{DIV})=\Delta \mathrm{CASH}$
- Calculating free cash flows to equity:
- Free Cash Flow to Equity $=\mathrm{NI}-(\mathrm{AQ}-\mathrm{Dep})-\Delta \mathrm{WCR}+\Delta \mathrm{D}$
- Amount which may be used to buyback shares or pay dividends
Since Free Cash Flow to Equity $=-\Delta \mathrm{K}+$ DIV $+\Delta \mathrm{CASH}$

SolvayBrusselsSchool

Financial Forecasting

EBITDA
-Depreciation
=EBIT
-Taxes
$=$ Net Income

CF from operating activities CF from investing activities CF from financing activities

Financial Planning

- Based on Δ Revenues
- Assumptions on key ratios relating Δ Revenues to:
- Gross margin: $m=$ EBITDA /Revenues
- Working capital requirement: $w=\Delta$ WCR / Δ Revenues
- Net fixed assets: $a=\Delta$ NFA / Δ Revenues
- Financial policy:
- Payout ratio $p=$ DIV/Net Income
- Depreciation $d=$ Depreciation / Fixed Assets ${ }_{-1}$
- Environment:
- Tax rate T_{C}
- Cost of debt i

Data

- Revenues year 0: 2,000
- Growth rate year $1: 25 \%$
- Balance sheet end year 0

Net Fixed Assets	600
Working Capital Requirement	400
Cash	0
Total Assets	1,000
Book Equity	600
Debt (financial)	400
Total Liabilities + Stockholders' equity	

Gross margin: $m=30 \%$
WCR: $w=20 \%$
Net fixed assets: $a=30 \%$
Payout ratio $p=50 \%$
Depreciation $d=10 \%$
Tax rate $T_{C}=40 \%$
Cost of debt $i=10 \%$

Step 1: Income statement

	Year 0	Year 1	
Sales	2,000	2,500	$\operatorname{Rev}_{-1}(1+g)$
EBITDA		750	$m \times \operatorname{Rev}$
Depreciation		60	$d \times \mathrm{NFA}_{-1}$
EBIT		690	
Interests		40	$\mathrm{i} \times \mathrm{D}_{-1}$
Taxes		390	
Net Income			

SolvayBrusselsSchool

Step 2: Statement of Cash Flows

	Year 0	Year 1	
Net Income		390	From Income Stat.
Depreciation		60	From Income Stat.
Δ WCR	100	$w \times \Delta$ Revenues	
CF from operations		$\mathbf{3 5 0}$	
Δ NFA	150	$a \times \Delta$ Revenues	
Depreciation	60		
CF from investing		$\mathbf{- 2 1 0}$	
Div	195	$p \times$ Net Income	
Stock Issues/buy back		$\mathbf{0}$	Assumption
Δ Debt	$\mathbf{- 1 4 0}$	Plug	
CF from financing		$\mathbf{0}$	
Δ Cash			

Solvay.Bruselsschool Step 3: Update balance sheet

	Year 0	Year 1	
Net Fixed Assets	600	750	NFA $_{-1}+$ Inv - Dep
Working Capital	400	500	WCR $_{-1}+\Delta$ WCR
Cash	0	0	Cash $_{-1}+\Delta$ Cash
	1,000	1,250	
Book Equity	600	795	BEq DIV
Debt + NI -			
	1,000	400	$\mathrm{D}_{-1}+\Delta \mathrm{D}$

Solvay Brussels of Economics and Management

Financial planning	
Sales growth rate	25%
Gross margin	30%
Depreciation rate	10%
Cost of debt	10%
Tax rate	40%
Payout	50%
WC/Sales	20%
NFA/Sales	30%

The Full Model

	Year 0	Year 1	Year 2	Year 3	Year 4
Income Statement					
Sales	2,000	2,500	3,125	3,906	4,883
EBITDA		750	938	1,172	1,465
Depreciation		60	75	94	117
EBIT		690	863	1,078	1,348
Interest Expenses		40	46	52	61
Taxes		260	327	410	515
Net Income		390	490	616	772
Statement of Cash Flows					
Earnings		390	490	616	772
Depreciation		60	75	94	117
Var WCR		100	125	156	195
Operating Cash Flow		350	440	553	694
Var Net Fixed Assets		150	188	234	293
Depreciation		60	75	94	117
Cash Flow from Invest		-210	-263	-328	-410
Dividends		195	245	308	386
Var Book Equity		0	0	0	0
Var Debt		55	67	83	102
CF from Financing		-140	-178	-225	-284
Var Cash		0	0	0	0
Balance Sheet					
Fixed assets	600	750	938	1,172	1,465
Working Capital	400	500	625	781	977
Cash	0	0	0	0	0
	1,000	1,250	1,563	1,953	2,441
Book Equity	600	795	1,040	1,348	1,734
Debt (Financial)	400	455	522	605	707
	1,000	1,250	1,563	1,953	2,441

Sustainable growth

- What growth rate can a company achieve without requirement additional external equity?
- Δ Assets $=(a+w) \Delta$ Revenues
- Δ Assets $=\Delta$ Book Equity $+\Delta$ Debt
$=\Delta$ Book Equity $+\lambda \Delta$ Book Equity
$=$ Net Income $(1-$ Payout $)(1+\lambda)$
$=($ Revenues $)($ Profit Margin $)(1-$ Payout $)(1+\lambda)$
- $g=\Delta$ Revenues / Revenues
$=($ Profit Margin $)(1-$ Payout $)(1+\lambda) /(a+w)$

Sustainable Growth: example

- Back to previous example:
- $a+w=0.50$
- Net Profit margin $=15,60 \%$
- Payout ratio $=50 \%$
- $\lambda=\Delta$ Debt $/ \Delta$ Book Equity $=28.2 \%$
- $g=[15 \%(1-0.50)(1+28.2 \%)] / 0.50=20 \%$

