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1. Define options (calls and puts)
2. Analyze terminal payoff

3. Define basic strategies

4. Binomial option pricing model

5. Black Scholes formula
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A call (put) contract gives to the owner

» the right :
— to buy (sell)
— an underlying asset (stocks, bonds, portfolios, ...)
— on or before some future date (maturity)
e on : "European" option

e before: "American" option
e ata price set in advance (the exercise price or striking price)

e Buyer pays a premium to the seller (writer)
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» Exercise option if, at maturity:
Stock price > Exercise price

ST > K Profit at maturity

e Call value at maturity
Cr=S;-Kif S;>K

otherwise: C; =0

e Cp=MAX(0, S;- K)

K St
- Premiu Striking Stock
price price
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Exercise option if, at maturity:

Stock price < Exercise price
St < K

Put value at maturity

P,=K-S; ifS;<K

otherwise: Py =

P, = MAX(0, K- S;)

Terminal Payoff: European put

Value / profit at maturity

Value

Premium

Striking
price price
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* A relationship between European put and call prices on the same stock

 Compare 2 strategies: Value at maturity

e Strategy 1. Buy 1 share + 1 put
At maturity T:  S<K S >K

Share value St St
Put value (K-Sp) 0 K
Total value K St

e Put = insurance contract
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e Consider an alternative strategy:

e Strategy 2: Buy call, invest PV(K) Value at maturity

Strategy 2
Cal
At maturity T:  S<K S >K
Call value 0 St-K
Investment K K K
Total value K St | Investme
e At maturity, both strategies lead to the sanje terminal! valye
I

e Stock + Put = Call + Exercise price K St
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 Two equivalent strategies should have the same cost
S +P=C+ PV(K)
where S  current stock price
P current put value
C  current call value
PV(K) present value of the striking price
e This is the put-call parity relation
* Another presentation of the same relation:
C=S+P-PV(K)

e A call is equivalent to a purchase of stock and a put financed by borrowing
the PV(K)
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e The intuition behind the option pricing formulas can be introduced in a
two-state option model (binomial model).

e Let S be the current price of a non-dividend paying stock.

* Suppose that, over a period of time (say 6 months), the stock price can
either increase (to uS, u>1) or decrease (to dS, d<1).

e Consider a K = 100 call with 1-period to maturity.

S=125 =25
S=100 /u c/cu
\dS=80 T
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» Itis possible to create a synthetic call that replicates the future value of the
call option as follows:

* Buy Delta shares

= Borrow B at the riskless rate r (5% per annum — simple interest over a
6-month period)

e Choose Delta and B so that the future value of this portfolio is equal to the
value of the call option.

* DeltauS-(1+rA) B=C, Delta 125 —1.025B =25
* DeltadS- (1+r Af) B=C, Delta 80— 1.025B =0

e (Atis the length of the time period (in years) e.g. : 6-month means At=0.5)

10
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» [In a perfect capital market, the value of the call should then be equal to the
value of its synthetic reproduction, otherwise arbitrage would be possible:

C=DeltaxS-B

e This is the Black Scholes formula

We now have 2 equations with 2 unknowns to solve.
 [Eql]-[Eq2] = Delta x (125 - 80) =25 = Delta = 0.556
» Replace Delta by its value in [Eq2] = B =43.36

e (all value:

e C=DeltaS-B=0.556x100-43.36 = C=12.20

111



- |l - |.I - r)

s o)
SolvayBrusselsSchool A closed form solution for the 1-period binomial
model

e C=[pxC,+(1-p)xC,l/(1+rAt) with p =(1+rAt - d)/(u-d)

e p is the probability of a stock price increase in a "risk neutral world" where
the expected return is equal to the risk free rate.

In a risk neutral world : p X uS + (1-p) XdS = (1+rAt) X S

* pXxC,+ (I-p) x C, 1s the expected value of the call option one period later
assuming risk neutrality

e The current value is obtained by discounting this expected value (in a risk
neutral world) at the risk-free rate.

12
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e In our example, the possible returns are:
+ 25% 1f stock up
- 20% if stock down
e In arisk-neutral world, the expected return for 6-month is
5%x 0.5=2.5%
e The risk-neutral probability should satisfy the equation:
p X (+0.25%) + (1-p) X (-0.20%) = 2.5%
e =p=0.50
e The call value 1s then: C=0.50x%25/1.025 =12.20

13
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e For European option, follow same procedure
e (1) Calculate, at maturity,
- the different possible stock prices;
- the corresponding values of the call option
- the risk neutral probabilities

e (2) Calculate the expected call value in a neutral world

* (3) Discount at the risk-free rate

14
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e Same data as before: S=100, K=100, r=5%, u =1.25, d=0.80
e (Call maturity = 1 year (2-period)

e Stock price evolution Risk-neutral proba. Call value
t=0 t=1 t=2
2 —_
125/156.25 p?>=0.25 56.25
100 / 00 2p(1-p)=0.50 0
T 64 (1-p2=025 0

e Current call value: C=0.25x56.25/(1.025)?=13.38

15
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e The value a call option, is a function of the following variables:
1. The current stock price S
2. The exercise price K
3. The time to expiration date T
4. The risk-free interest rate r
5. The volatility of the underlying asset o

* Note: In the binomial model, u and d capture the volatility (the standard
deviation of the return) of the underlying stock

e Technically, u and d are given by the following formulas:

116
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e The value of a call or of a put option is an increasing function of volatility
(for all other variables unchanged)

* Intuition: a larger volatility increases possible gains without affecting loss
(since the value of an option is never negative)

e Check: previous 1-period binomial example for different volatilities

e Volatility u d C P
0.20 1.152 0.868 8.19 5.75
0.30 1.236 0.809 11.66 9.22
0.40 1.327 0.754 15.10 12.66
0.50 1.424 0.702 1850 16.06

(S=100, K=100, r=5%, At=0.5)

17
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Consider:
— European option
— on non dividend paying stock
— constant volatility

— constant interest rate

Limiting case of binomial
model as At—0

From binomial to Black Scholes

Stock price

118

T Time
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Convergence of Binomial Model
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e For European call on non dividend paying stocks

e The limiting case of the binomial model for At very small
C = S N(d,) - PV(K) N(d,)

T T
Delta B
 In BS: PV(K) present value of K (discounted at the risk-free rate)
S
Delia = N(d) "oy k)
. elta =
1 d, = K)o 0504T

oT

e N(): cumulative probability of the standardized normal distribution

* B=PV(K)N(d,) d,=d, —oNT

120
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2 determinants of call value:

“Moneyness” : S/PV(K) “Cumulative volatility”: O ﬁ
e Example:
S =100, K =100, Maturity T =4, Volatility 6 =30% r=6%
“Moneyness”= 100/(100/1.06%) = 100/79.2=1.2625
Cumulative volatility = 30% x V4 = 60%

e d, =1n(1.2625)/0.6 + (0.5)(0.60) =0.688 — N(d,) =0.754
e d,=1n(1.2625)/0.6 - (0.5)(0.60) =0.089 —  N(d,) =0.535

e C=(100)(0.754) — (79.20) (0.535) = 33.05

121
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e This table shows
values for N(x) for
x>0.

e Forx<0,Nx)=1-
N(-x)

e Examples:

 N(1.22)=0.889,

e N(-0.60)=1-
N(0.60)

e =1-0.726=0.274

e In Excell, use
Normsdist()

e function to obtain
N(x)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

0.00
0.500
0.540
0.579
0.618
0.655
0.691
0.726
0.758
0.788
0.816
0.841
0.864
0.885
0.903
0.919
0.933
0.945
0.955
0.964
0.971
0.977
0.982
0.986
0.989
0.992
0.994
0.995
0.997
0.997
0.998
0.999

0.01
0.504
0.544
0.583
0.622
0.659
0.695
0.729
0.761
0.791
0.819
0.844
0.867
0.887
0.905
0.921
0.934
0.946
0.956
0.965
0.972
0.978
0.983
0.986
0.990
0.992
0.994
0.995
0.997
0.998
0.998
0.999

0.02
0.508
0.548
0.587
0.626
0.663
0.698
0.732
0.764
0.794
0.821
0.846
0.869
0.889
0.907
0.922
0.936
0.947
0.957
0.966
0.973
0.978
0.983
0.987
0.990
0.992
0.994
0.996
0.997
0.998
0.998
0.999

0.03
0.512
0.552
0.591
0.629
0.666
0.702
0.736
0.767
0.797
0.824
0.848
0.871
0.891
0.908
0.924
0.937
0.948
0.958
0.966
0.973
0.979
0.983
0.987
0.990
0.992
0.994
0.996
0.997
0.998
0.998
0.999

0.04
0.516
0.556
0.595
0.633
0.670
0.705
0.739
0.770
0.800
0.826
0.851
0.873
0.893
0.910
0.925
0.938
0.949
0.959
0.967
0.974
0.979
0.984
0.987
0.990
0.993
0.994
0.996
0.997
0.998
0.998
0.999

Cumulative normal distribution

0.05
0.520
0.560
0.599
0.637
0.674
0.709
0.742
0.773
0.802
0.829
0.853
0.875
0.894
0911
0.926
0.939
0.951
0.960
0.968
0.974
0.980
0.984
0.988
0.991
0.993
0.995
0.996
0.997
0.998
0.998
0.999

0.06
0.524
0.564
0.603
0.641
0.677
0.712
0.745
0.776
0.805
0.831
0.855
0.877
0.896
0.913
0.928
0.941
0.952
0.961
0.969
0.975
0.980
0.985
0.988
0.991
0.993
0.995
0.996
0.997
0.998
0.998
0.999

0.07
0.528
0.567
0.606
0.644
0.681
0.716
0.749
0.779
0.808
0.834
0.858
0.879
0.898
0915
0.929
0.942
0.953
0.962
0.969
0.976
0.981
0.985
0.988
0.991
0.993
0.995
0.996
0.997
0.998
0.999
0.999

0.08
0.532
0.571
0.610
0.648
0.684
0.719
0.752
0.782
0.811
0.836
0.860
0.881
0.900
0916
0.931
0.943
0.954
0.962
0.970
0.976
0.981
0.985
0.989
0.991
0.993
0.995
0.996
0.997
0.998
0.999
0.999

22

0.09
0.536
0.575
0.614
0.652
0.688
0.722
0.755
0.785
0.813
0.839
0.862
0.883
0.901
0918
0.932
0.944
0.954
0.963
0.971
0.977
0.982
0.986
0.989
0.992
0.994
0.995
0.996
0.997
0.998
0.999
0.999
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Value =

200

150

—_—
Upperbound

Stock price

100

50

Lowerbound
Intrinsic value Max(0,S-K)
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Underlying asset value
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