

Advanced Corporate Finance

6. Using Options in Corporate Finance

Objectives of the session

- 1. Underlying assumptions of NPV rule
- 2. Valuing option to launch
- 3. Valuing option to abandon (compound option)
- 4. Determining the optimal timing of investment
- 5. Valuing option on dividend paying stocks

Valuing a company

- Standard approach: V = PV(Expected Free Cash Flows)
 - Free Cash Flow = CF from operation Investment
 - Risk adjusted discount rate
- Another approach: V = NOPAT/r + PVGO
 - NOPAT : net operating profit after taxes
 - PVGO: present value of growth opportunities
 - = present value of future NPV
- Does it apply to Yahoo or Amazon.com?

3

13

Making Investment Decisions: NPV rule

- NPV : a measure of value creation
- NPV = V-I with V=PV(Additional free cash flows)
- NPV rule: invest whenever NPV>0
- Underlying assumptions:
 - one time choice that cannot be delayed
 - single roll of the dices on cash flows
- But:
 - delaying the investment might be an option
 - what about flexibility?

Portlandia Ale: an example

(based on Amram & Kulatilaka Chap 10 Valuing a Start-up)

- New microbrewery
- Business plan:
 - €4 million needed for product development (€0.5/quarter for 2 years)
 - €12 million to launch the product 2 years later
 - Expected sales € 6 million per year
 - Value of established firm: €22 million (based on market value-to-sales ratio of 3.66)

DCF value calculation

Time	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00
Investment	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-12.0
Terminal value									+22.0
PV(Investment) r = 5% PV(TermValue) r = 21,5%	-0.50	-0.49	-0.49	-0.48	-0.48	-0.47	-0.46	-0.46	-10.86 +14.47
NPV	-0.22								

Would you abandon the project?

But there is no obligation to launch the product

- The decision to launch the product is like a call option
- By spending on product development, Portlandia Ale acquires
 - a right (not an obligation)
 - to launch the product in 2 years
- They will launch if, in 2 years, the value of the company is greater than the amount to spend to launch the product (€12 m)
- They have some flexibility
- How much is it worth?

ullet

Valuing the option to launch

- Let use the Black-Scholes formula (for *European* options)
 - 5 inputs needed:
 <u>Call option on a stock</u>
 Stock price
 Exercise price
 Exercise date
 Risk-free interest rate
 Standard deviation of
 return on the stock

Option to launch Current value of established firm Cost of launch Launch date Risk-free interest rate Volatility of value

Volatility

• Volatility of value means that the value of the established firm in 2 years might be very different from the expected value

Using Black Scholes

•	Current value of established firm =	14.46
•	Cost of launch =	12.00
•	Launch date =	2 years
•	Risk-free interest rate =	5%
•	Volatility of value =	40% ← 🖑

• And, ... magic, magic, ... value of option = $\notin 4.97$

The value of Portlandia Ale

(all numbers in \in millions)

	Traditional NPV	- 0.22
	PV(Terminal value)	+14.47
	PV(Launch)	- 10.86
	PV(Investment before launch)	- 3.83
•	Traditional NPV calculation	

Real option calculation
 PV(Investment before launch) - 3.83
 Value of option to launch + 4.96
 Real option NPV + 1.13

Let us add an additional option

- Each quarter, Portlandia can abandon the project
- This is an *American* option (can be exercised at any time)
- Valuation using numerical methods (more on this later)
- Traditional NPV calculation
 Traditional NPV 0.22
- Real option calculation
 PV(Investment before launch)
 Value of options to launch and
 to abandon
 + 5.57
 Real option NPV
 + 1.74

Real option vs DCF NPV

- Where does the additional value come from?
- Flexibility
- Changes of the investment schedule in response to market uncertainty
- Option to launch
- Option to continue development
- Option to liquidate

Back to Portlandia Ale

- Portlandia Ale had 2 different options:
 - the option to launch (a 2-year European call option)
 - \rightarrow value can be calculated with BS
 - the option to abandon (a 2-year American option)
- How to value this American option?
 - No closed form solution
 - Numerical method: use recursive model based on binomial evolution of value
 - At each node, check whether to exercice or not.
 - Option value = Max(option exercised, option alive)

Valuing a compound option (step 1)

- Each quarterly payment (€ 0.5 m) is a call option on the option to launch the product. This is a compound option.
- To value this compound option:
- 1. Build the binomial tree for the value of the company

0	1	2	3	4	5	6	7	8
14.47	17.68	21.59	26.37	32.21	39.34	48.05	58.69	71.68
	11.85	14.47	17.68	21.59	26.37	32.21	39.34	48.05
		9.70	11.85	14.47	17.68	21.59	26.37	32.21
			7.94	9.70	11.85	14.47	17.68	21.59
n = 1.22	2, d=0.82			6.50	7.94	9.70	11.85	14.47
V# 1122	, a 0.02				5.32	6.50	7.94	9.70
			up			4.36	5.32	6.50
							3.57	4.36
		down	↓ ↓					2.92

Valuing a compound option (step 2)

- 2. Value the option to launch at maturity
- 3. Move back in the tree. Option value at a node is:

Max{ $0,[pV_u + (1-p)V_d]/(1+r\Delta t) - 0.5$ }

When to invest?

- Traditional NPV rule: invest if NPV>0
- Is it always valid?
- Suppose that you have the following project:
 - Cost I = 100
 - Present value of future cash flows V = 120
 - Volatility of V = 69.31%
 - Possibility to mothball the project
- Should you start the project?
- If you choose to invest, the value of the project is:
- Traditional NPV = 120 100 = 20 >0
- What if you wait?

To mothball or not to mothball

- Let analyse this using a binomial tree with 1 step per year
- As volatility = .6931, u=2, d=0.5. Also, suppose *r* = .10 => p=0.40
- Consider waiting one year

V=240 =>invest NPV=140

V=120

V= 60 =>do not invest NPV=0

- Value of project if started in 1 year = $0.40 \times 140 / 1.10 = 51$
- This is greater than the value of the project if done now (20)
- Wait
- NB: you now have an American option

Waiting how long to invest?

• What if opportunity to mothball the project for 2 years?

- This leads us to a general result: it is never optimal to exercise an American call option on a non dividend paying stock before maturity.
- Why? 2 reasons
 - better paying later than now
 - keep the insurance value implicit in the put alive (avoid regrets)

Why invest now then?

- Up to now, we have ignored the fact that by delaying the investment, we do not receive the cash flows that the project might generate
- In option's parlance, we have a call option on a dividend paying stock
- Suppose cash flow is a constant percentage per annum δ of the value of the underlying asset
- We can still use the binomial tree recursive valuation with: $p = [(1+r\Delta t)/(1+\delta\Delta t)-d]/(u-d)$
- A (very) brief explanation: in a risk neutral world, the expected return r (say 6%) is sum of capital gains + cash payments
- So: $1+r \Delta t = pu(1+\delta\Delta t) + (1-p)d(1+\delta\Delta t)$

Options and risky debt

- Options may also be used in other contexts...
- Many insights (even though beware of « optionitis »)
- One major application => risky debt!

Risky debt: Merton model

• Limited liability: rules out negative equity

- Asset value $\Rightarrow 100$
- Decision to issue a debt (face value) = 70 (zero coupon bond payable in exactly a year)
- Other parameters
 - Sigma of asset variations (per year): 40%
 - Risk-free rate: 5%
- Value of the debt? And Equity?

Merton Model: example using binomial pricing

Data: Market Value of Unlevered Firm: 100,000 Risk-free rate per period: 5% $\sigma = 40\%$	Company issues 1-year zero-coupon Face value = 70,000 Proceeds used to pay dividend or to buy back shares
Binomial option pricing: review Up and down factors: $u = e^{\sigma \sqrt{\Delta t}} = 1.492$	$d = \frac{1}{u} = .670$ $V = 149,182$ $E = 79,182$ $D = 70,000$
Risk neutral probability : $p = \frac{1 + r_f - d}{u - d} = \frac{1.0567}{1.492 - 0.670} = .462$	V = 100,000 E = 34,854 D = 65,146 V = 67,032
1-period valuation formula $E = \frac{0.462 \times 79,182 + 1.05}{1.05}$	
$D = \frac{0.462 \times 70,000 - 1.000}{1.000}$	$\Delta t = 1$

25

Calculating the cost of borrowing

- Spread = Borrowing rate Risk-free rate
 - Borrowing rate = Yield to maturity on risky debt
 - For a zero coupon (using annual compounding):

$$D = \frac{F}{\left(1 + y\right)^T}$$

• In our example:

$$65,\!146 = \frac{70,\!000}{1+y}$$

• => y =
$$7.45\%$$

• Spread = 7.45% - 5% = 2.45%

Decomposing the value of the risky debt

In our simplified model:

$$D = \frac{F}{1 + r_f} \times p + \frac{V_d}{1 + r_f} \times (1 - p)$$

$$D = \frac{F}{1 + r_f} - \frac{(1 - p)(F - V_d)}{1 + r_f}$$

$$D = \frac{70,000}{1.05} \times 0.462 + \frac{67,032}{1.05} \times .538$$
$$= 66,667 \times 0.462 + 63,840 \times .538$$
$$= 65,146$$

$$D = \frac{70,000}{1.05} - \frac{70,000 - 67,032}{1.05} \times .538$$
$$= 66,667 - 2,827 \times .538$$
$$= 65,146$$

F: Face value of the bond

 V_d : recovery if default

 $F - V_d$: loss given default

(1-p): risk-neutral probability of default