

Advanced Corporate Finance Exercises Session 1 « Pre-requisites: a reminder»

Professor Kim Oosterlinck

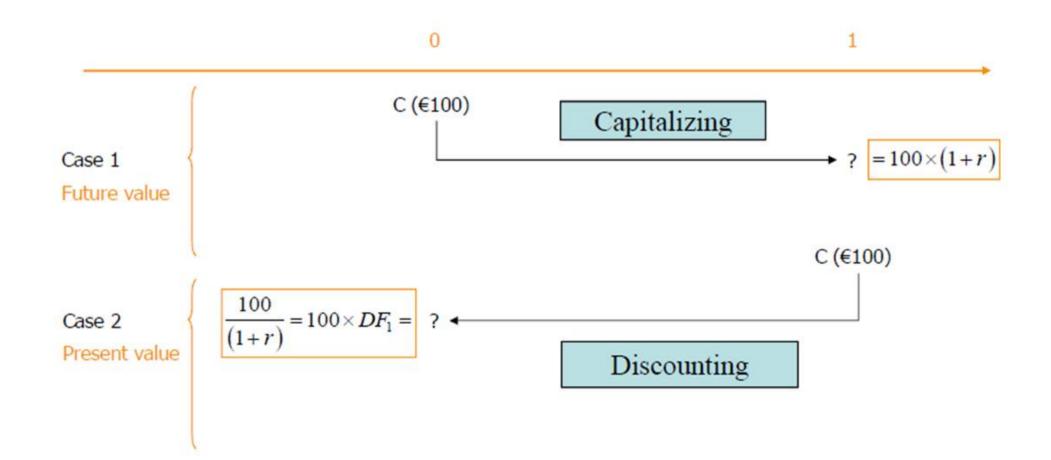
E-mail: koosterl@ulb.ac.be

Teaching assistants:

Nicolas Degive (<u>ndegive@ulb.ac.be</u>) Laurent Frisque (<u>laurent.frisque@gmail.com</u>) Frederic Van Parijs (<u>vpfred@hotmail.com</u>)

- Course Material:
 - <u>http://homepages.ulb.ac.be/~koosterl/GESTS410.html</u> (Theory + Exercises)
 - Reference Books:
 - David Hillier, Stephen Ross, Jeffrey Jaffe, Randolph Westerfield, (2013), Corporate Finance European edition, 2nd edition.
 - Berk, J. and P. DeMarzo, (2013), *Corporate Finance*, 3rd ed.
 - Pearson, Bodie Zvi, Kane Alex, Marcus Alan J., (2011), *Investments and Portfolio Management, Global Edition*, McGraw Hill,
 - Brealey, R., Myers, S. and Allen, F. (2008), Principle Corporate Finance, 9th ed., McGraw-Hill,
- Exercises Agenda:
 - 6 Sessions (5 Exercises + 1 Past Exam)

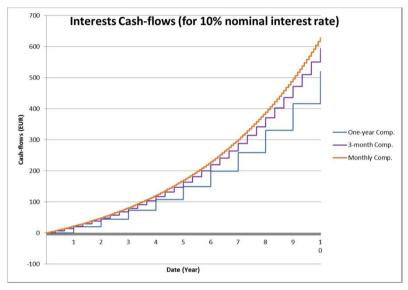
Session 1: A reminder


« Time value of Money, annuities »

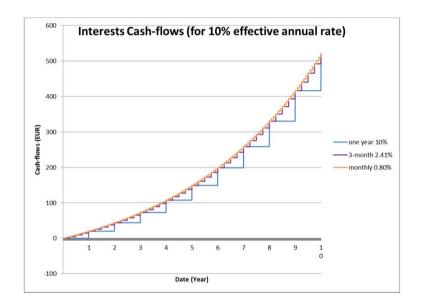
« Bond & Equity Valuation »

« CAPM & Beta »

« Time value of Money, annuities »



Shortcut formulas


- Constant perpetuity $(t = 1 \rightarrow \infty)$: $C_t = C$ $PV = \frac{C}{r}$
- Growing perpetuity $(t = 1 \rightarrow \infty)$: $C_t = C_{t-1} * (1 + g)$ $PV = \frac{C_1}{r-g}$
- Constant annuity $(t = 1 \rightarrow T)$: $C_t = C$ $PV = \frac{C}{r} * \left(1 \frac{1}{(1+r)^T}\right)$
- Growing annuity $(t = 1 \to T)$: $C_t = C_{t-1} * (1 + g)$ $PV = \frac{C_1}{r-g} * (\frac{(1+g)^T}{(1+r)^T})$

Compounding Interest Rates

Compounding Interest rate

- $1 + r_{yearly} = (1 + r_{\frac{year}{n}})^n$ $1 + r_{yearly} = e^{r_{cont}}$

- Ability to repay = 1500 € month
- Monthly rate= 0,3% per month (for 30-year horizon)
- How much are you able to borrow today?

- Constant Annuity
- $PV = \frac{C}{r} * \left(1 \frac{1}{(1+r)^T}\right)$
- Solving with:
 - C=1500€
 - r = 0,3%
 - T=12*30=360
- PV=329.927,5€

Time value of money, annuities Q2 Debating with your brother

- Your bank rate: 0,3% /month
- Your brother suggestion: 3,6% / year
- Should you do so?
- What is the yearly equivalent of 0,3%/month?
- How much can you borrow with your brother's rate?

ULB

SolvayBrusselsSchool

Time value of money, annuities Q2 Debating with your brother

- Should you change bank?
 - $-1 + r_{yearly} = (1 + r_{year})^n$
 - Solving for:
 - n=12
 - $r_{\underline{year}} = 0,3\%$
 - $r_{yearly} = 3,66\% > 3,6\%$
- How much can you borrow now?
 - Solving for
 - *r_{yearly}=3,6%*
 - n=12
 - $r_{\underline{year}} = 0,295\% =$ > using the constant annuity formula, PV= 332.307,9€

Time value of money, annuities Q3 Continuous rate

- What is the quarterly equivalent of a continuous rate of 3%?
 - $-1 + r_{yearly} = e^{r_{cont}}$
 - $-1 + r_{yearly} = (1 + r_{\frac{year}{n}})^n$
 - $r_{yearly} = 3,05\%$
 - $r_{\underline{year}} = 0,75\%$

« Time value of Money, annuities »

« Bond & Equity Valuation »

« CAPM & Beta »

Bond & Equity Valuation Q4 Tongolville

- Existing bonds:
 - Bond 1:
 - FV: 5.000.000\$
 - Coupon: 5%
 - Maturity: Perpetuity
 - Price: 95% of par
- What are their YTM?
- What would be the rate of bond 3?
- What is the new bond price

- Bond 2:
 - FV: 1.000.000\$
 - Coupon: 4%
 - Maturity: 5 years
 - Prices: traded at par

• Yield to maturity (YTM) is the Discount rate at which the sum of the future cash flows = the price of the bond

• Price =
$$\sum_{t=1}^{T} \frac{C_t}{(1+YTM)^t} + \frac{FV}{(1+YTM)^T}$$

- Bond 1:perpetuity => $Price = \frac{C}{YTM} => YTM = 5,26\%$
- Bond 2 is traded at par => YTM = coupon rate = 4,00%
- The issue of Bond 3 is not affecting the rating of the company => its YTM is the same as Bond 2

Bond and Equity Valuation Q4 New bond price

- One year later the company can borrow at 3,5%. What is the new bond price?
- $Price = \sum_{t=1}^{T} \frac{C_t}{(1+r)^t} + \frac{FV}{(1+r)^T}$
- Solving for:
 - C_t=4€
 - r=3,5%
 - FV=100€
 - T=4
- Price=101,84€

Bond and Equity Valuation Q5-1&2 Total

- DDM value in 2007?
 - Dividend (2008)=2,1€
 - ROE=16%
 - Payout ratio=50%
 - Expected return for levered shares=9%
- Under DDM: $Price = \frac{Dividend}{(r_e-g)}$
- g=ROE*Retention rate
- Solving for
 - Div=2,1€
 - $r_e = 9\%$
 - g=8%
- Price=210 => not realistic

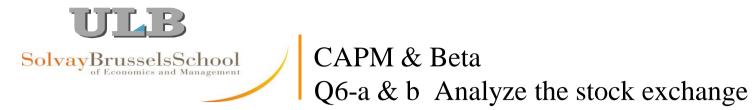
Bond and Equity Valuation Q5-3&4 Total

- Historical dividend growth rate=4%
- Expected return are more likely to be worth 8%
- Under DDM: $Price = \frac{Dividend}{(r_e g)}$
- Solving for
 - Div=2,1€
 - $r_{e} = 8\%$
 - g=4%
- Price=52,5 => looks more like 2007 price
- Can the dividend be paid out of earnings? YES

Period	Shar	re price
20	07	58
2010 & 20	11	46
July 20	11	32
Jan 20	12	42
2011	2012	201.

Core figures	2011	2012	2013
EPS	4,64	5,17	5,34
DPS	2,310	2,300	2,360
Ev/Ebitda	3,91	3,3	3,24
Adj P/E	8,35	7,49	7,25
Divi yield	5,96	5,94	6,09

« Time value of Money, annuities »


« Bond & Equity Valuation »

« CAPM & Beta »

• If you were to invest in only one security which one would you never pick?

	Vinamelk	Vinawine	Vinacoff	VinaT
Expected return (r _e)	8%	12%	13%	14%
σ _e	20%	27%	26%	35%

- Vinawine is inefficient: more risk for a lower return than vinacoff
- To compare different stocks based on return and variance => Build Sharpe Ratios

	Vinamelk	Vinawine	Vinacoff	VinaT
re	8%	12%	13%	14%
sigma e	20%	27%	26%	35%
Sharpe ratio	0,10	0,22	0,27	0,23

CAPM & Beta Q6-c Analyze the stock exchange

- $Return_{pf} = \sum_{i=1}^{I} Weight_i * Return_i$
- Solve for:
 - $w_1 = w_2 = 0,5$
 - r₁=6%
 - r₂=13%
- Return of portfolio=9,5%
- How to have a portfolio expected return of 14%?
- Solve for:
 - $w_1 + w_2 = 1$
 - r₁=6%
 - r₂=13%
 - $r_{pf} = 14\%$
- w₁=-0,14 w₂=1,14

- Intuitively, why would you want to invest in the market portfolio?
- r_m=15%
- σ_m=30%
- Show that it is possible to obtain the same expected return as above for a lower risk.
- $Return_{pf} = \sum_{i=1}^{I} Weight_i * Return_i$
- Solve for:
 - $w_1 + w_2 = 1$
 - r₁=6%
 - $r_2 = 15\%$
 - $r_{pf} = 14\%$
- w₁₌11% w₂=89%

$$\sigma_{pf} = \sqrt{\sum_{i=1}^{I} w_i^2 * \sigma_i^2 + \sum_{i=1}^{I} \sum_{j \neq i}^{J} w_i w_j \sigma_i \sigma_j \rho_{ij}}$$

$\underline{\sigma_{pf1}}$ (rf bond + vinacoff)

- Solve for:
 - $w_1 = -14\%$
 - w₂=114%
 - $\sigma_1 = 0\%$
 - σ₂=26%
 - r₁=6%
 - $r_2 = 13\%$
 - ρ_{ij}=0
- σ_{pf}=29,71%

- $\underline{\sigma_{pf2}}$ (rf bond + mkt pf)
- Solve for:
 - w₁=11%
 - w₂=89%
 - σ₁=0%
 - $\sigma_2 = 30\%$
 - r₁=6%
 - $r_2 = 15\%$
 - ρ_{ij}=0
- $\sigma_{pf}=27\%$

 $\begin{array}{l} \text{CAPM} \\ r_i = r_f + \beta_i * (r_m - r_f) \end{array}$

a) What does the Beta represent?

« The expected percent change in the excess return of the market portfolio »

- b) What is the Beta of the market pf? 1!
- c) What are the Beta of the different companies?

d) What is the Beta of the portfolio previously made?0,89