## Advanced Corporate

 Finance Exercises Session 3 «Valuing levered companies, the WACC»
## Professor Kim Oosterlinck

E-mail: koosterl@ulb.ac.be

## Teaching assistants:

Nicolas Degive (ndegive@ulb.ac.be)
Laurent Frisque (laurent.frisque@gmail.com)
Frederic Van Parijs (vpfred @ hotmail.com)

## This session

## Corporate Valuation \& Financing

1. Reaching end goal: Converting Cash Flows into corporate valuation:
$>$ What is the firm worth?
2. Financing:
$>$ how is the company financed
$>$ Discussion on capital strucuture and use of debt in particular

## Start with recap of Modigliani Miller!

- MMI: "The market value of any firm is independent of its capital structure" (Assumptions perf. K market, no taxes, no transaction costs)
- Company Value Unlevered $=$ Equity Value $=$ Asset Value
- MMII: "The weighted average cost of capital is independent of its capital structure" (Assumptions perf. K market, no taxes, no transaction costs)
$-r_{\text {WACC }}=r_{a}$
$>$ Key \& unrealistic assumption $=$ no taxes
$>$ Note: market value is independent $=$ Assets $=\mathbf{V}=\mathbf{E}+\mathbf{D}$
$\Rightarrow$ You only shift between $E$ and $D$ : V itself does not change


## This session

Q1: Modigliani Miller I : no taxes

- Starting without debt
- Introducing debt

Q2: introduction of taxes to Q1 (same input data)
Q3: use of marginal, not average tax rate
Q4: Leveraging and deleveraging beta + APV: M\&A example
Q5: APV with changing debt level (rebalancing \& target debt levels)

## Q1 Modigliani Miller I: No Taxes!

Q1: To value: Freshwater Corp.

INPUT

- No taxes and perfectly efficient markets.
- Currently the company is not levered all.
- EBIT per year: $500.000 \$$ and should remain the same perpetually.
- The cost of equity of the company is worth $\mathbf{1 2 \%}=\mathbf{R e}$.

Q1.a: In this case what is the value of the company?

## UTB

## Q1.a $V_{\text {unlevered }}$

Q1: In this case what is the value of the company?

- The cost of equity of the company is worth $12 \%=\mathrm{Re}=\mathrm{Ra}$ (no leverage).
$>$ Only 1 step as no leverage
$\mathbf{V}_{\text {levered }}=\mathbf{V}_{\text {unlevered }}$
$V_{\text {unlevered }}=\frac{E B I T}{r_{a}}$
$\mathrm{V}_{\text {unlevered }}=500.000 \$ / 12 \%$
$=4.166 .667 \$>$ Reminder $:$ EBIT $=\underline{\text { Earnings }} \underline{\text { Before }} \underline{\underline{I}} \boldsymbol{\text { nterest }}$ and $\underline{T a x e s}$


## Q1.b $\mathbf{V}_{\text {levered }}$ : introducing debt \& 2nd step

Q1: To value: Freshwater Corp.

- Plan to issue a perpetual debt for which you pay $30.000 \$$, to buy back shares.
- Interest each year (the borrowing rate of the company is 3\%)

Q1.b.1: What would then be the market value of the company?
$\Rightarrow$ Note: $\mathrm{D}=$ not given, you need to calculate
Interests $=\quad 30.000$
$\mathrm{Rd}=3 \%$
=> D $=\quad 1.000 .000$ Remember bond valuation! $\mathrm{P}=$ Coupon / Discount rate
$\mathrm{Vu}=4.166 .667$
$\Rightarrow \mathrm{E} \quad=\quad 3.166 .667 \quad(\mathrm{E}+\mathrm{D}=\mathrm{Vu})$
$>$ 2nd step: leverage introduced

## Step1 $=V_{\text {unlevered }}$

 Step2 $=\mathbf{E}=\mathbf{V u}-\mathbf{D}$$\Rightarrow \mathrm{Vu}=\mathrm{E}+\mathrm{D}=\mathrm{Vu}+\mathrm{D}$

## Q1.b. 2 the different r's after introducing debt

Q1: What are the value of $r_{a}$, the $r_{\text {WACC }}$, and re?
$r_{a} \quad=12 \% \quad$ Unchanged by definition

$$
\begin{aligned}
r_{a}=r e * \frac{\text { Equity }}{V_{\text {unlevered }}} & +r d * \frac{D e b t}{V_{\text {unlevered }}} \\
> & \text { Note: } \mathbf{r}_{\mathbf{e}}>\mathbf{r}_{\mathbf{a}} \text { and } \mathbf{r}_{\mathbf{d}}<\mathbf{r}_{\mathbf{a}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{r}_{\mathrm{e}} \quad & =\left(\mathrm{Ra}^{*} \mathrm{Vu}-\mathrm{Rd} * \mathrm{D}\right) / \mathrm{E} \\
& =14,84 \%=(0,12 * 4.166-0,03 * 1.000) / 3.166
\end{aligned}
$$

Or $r_{e}=(E B I T-\operatorname{Int}) / E=(500-30) / 3.166$
Or if $r_{a}$ stable, lower introduced $r_{d}=>$ higher $r_{e}$
$=$ Alternative calculation via P\&L
$>1$ st calculation was via Ra
$\mathrm{r}_{\mathrm{WACC}}=12 \% \quad$ (because NO taxes)

## Q2 Valuing levered Companies in a world with taxes

Q2: Bobland, not a perfect world: Corporate tax rates: $25 \%$ (Tc)

- Same capital structure and revenues as in Tongoland.


## $>\mathbf{Q 2}=\mathbf{Q 1}+$ Taxes

Q2.a.: What would then be the market value of the company?
Tax intro $=>\quad V_{\text {unlevered }}=\left(\frac{(E B I T *(1-T c)}{r a} \quad\right.$ Tax Shield $=T C *$ Debt
$>$ step 1 : calculate $\mathrm{V}_{\text {unlevered }}$
$\operatorname{EBIT}(1-\mathrm{Tc})=500 *(1-25 \%)=375.000$
Vunlevered $=375.000 / 12 \%=3.125 .000$

## UTB

## Q2.a step 2

$>$ step 2 : calculate $\mathbf{V}_{\text {levered }}$

```
Interests \(=30.000\)
\(\mathrm{r}_{\mathrm{d}} \quad=3 \%\)
D \(\quad=\mathrm{Int} / \mathrm{r}_{\mathrm{d}}=1.000 .000\)
Tax Shield \(=T c * D=250.000\)
V levered \(=V u+\) Tax Shield \(=3.375 .000\)
```

$$
\begin{aligned}
& \quad \boldsymbol{V}_{\text {levered }}=\boldsymbol{V}_{\text {unlevered }}+\text { Tax Shield } \\
& \boldsymbol{V}_{\boldsymbol{L}}=\boldsymbol{V}_{\boldsymbol{U}}+\boldsymbol{T}_{\boldsymbol{C}} \boldsymbol{D} \\
& P V(\text { TaxShield })=\frac{T_{C} \times r_{D} D}{r_{\mathrm{D}}}=T_{C} D \\
& \text { Tax rate }=\mathrm{Tc}=25 \% \\
& \mathrm{Vu}=3.125 .000 \text { see Step } 1
\end{aligned}
$$

## $>$ Note:

1. value increase through leverage, via the tax shield (here $8 \%$ )
2. BUT V levered does not equal $E$ (Equity) $=>$ you need step 3
3. In Q1 Step = Step 2, because no value creation through tax shield ( $\mathrm{Tc}=\mathbf{0}$ )

## Q2.b step 3 (=Equity) \& r's: $\mathbf{r}_{\text {wacc }}$

Q2: And of ra, the wacc, and re?
$\mathbf{r}_{\mathrm{a}}=12 \% \quad$ Unchanged by definition
$\mathbf{r}_{\mathrm{WACC}}=\mathrm{EBIT} *(1-\mathrm{Tc}) / \mathrm{VL}=\mathbf{1 1 , 1 1 \%}$ via P\&L $=500.000(1-25 \%) / 3375000=375 \mathrm{k} / 3375 \mathrm{k}$
Alternative calculation via Ra:

$$
\begin{array}{ll}
\mathrm{L}=\mathrm{D} / \mathrm{VL} & =1000000 / 3375000=0,3 \\
\text { Wacc }=\mathrm{Ra} *(1-\mathrm{Tc} * \mathrm{~L}) & =12 \%(1-0,25 * 0,30)=11,11 \%
\end{array}
$$

$>$ Note: $\mathrm{r}_{\text {wacc }}<\mathrm{r}_{\mathrm{a}}$
$=$ cost of capital lowered through tax shield

P Luckily you were not asked to calculate via NOPLAT
$=\underline{\mathbf{N}}$ et $\underline{\mathbf{O}}$ perating $\underline{\text { Profit }} \underline{\text { Less }} \underline{\text { Adjusted }} \underline{\text { Taxes }}$
NOPLAT $=$ Net Income + Interest + Tax Shield
$V_{L}=N O P L A T / W A C C$

## Шひロ

## Q2.b step 3 (ctd): Equity \& Re

Q2: And of ra, the wacc, and re?

Step 3:

$$
\mathrm{E}=\mathrm{VL}-\mathrm{D}=2.375 .000
$$

See Step 2

Net Earnings $=($ EBIT -I$) *(1-\mathrm{Tc})=(500.000-30.000) *(1-25 \%)$
$\mathbf{R e}=$ Net Earnings $/ E=\mathbf{1 4 , 8 4 \%}$
Alternative calculation via Ra:

$$
\begin{aligned}
& \operatorname{Re}=\operatorname{Ra}+(\mathrm{Ra}-\mathrm{Rd}) *(1-\mathrm{Tc}) * \mathrm{D} / \mathrm{E} \\
& =0,12+(0,12-0,03) *(1-0,25) * 1000000 / 2375000
\end{aligned}
$$

## Q3 Marginal versus Average Tax RateValuing

Q3 data: The subsidiary has an EBIT of $250.000 \$$.
The tax structure in Sloland:

- the first $100.000 \$$ are tax exempt
- the following $100.000 \$$ taxed at $20 \%$
- any amount above that is taxed at $30 \%$.


## SITUATION:

YOU: want to Issue a perpetual debt $75000 \$$ to benefit from the tax shield.
CFO : Skeptical

1. Based up current average tax rate.
$>$ Cost of debt (= risk free rate: 4\%), he values the tax shield at $10.500 \$$
2. Hardly interesting in view of the costs associated with a debt issue.

## QUESTIONS:

A. Is he right?
B. What would have been the tax shield if the debt had been reimbursed after two years?

## Q3.a Is he right?

Approach: Compare PV calculations of Tax Shields= average tax vs. marginal tax Debt $=75.000 \$$ @ cost of debt $=4 \%(=$ RFR $)$

## Tax Shield 1: CFO = average (=constant tax rate)

Tax shield assuming perpetuity with constant tax rate

$$
P V \text { Tax Shield }=D * r d * \frac{T c}{r_{d}} \quad=\mathrm{D} * \text { Tax rate }=\text { Discounted tax on interest paid }
$$

Debt $=75.000 \$$ \& Tax rate $=$ Tax $/$ EBIT
Step 1: current tax paid $=100.000 \times 0 \%+100.000 \times 20 \%+50.000 \times 30 \%=35.000 \$$
Step 2: tax rate $=\mathrm{Tc}=35.000 / 250.000=14,00 \%$
Step 3: PV Tax Shield CFO = D * Tc $=75.000 * 14 \%=10.500 \$$
Step 4: in relative terms of bond, saving is Tc $=14 \%$, is much higher than normal issuing costs associated,
but in absolute terms costs maybe high (imagine lawyers!)

## Q3.a Is he right?

## Tax Shield 1: YOU (=marginal tax rate)

Approach: you will calculate actual tax saving based upon marginal tax scheme
Debt $=75.000 \$ \&$ Reminder of the tax structure in Sloland:

- the first $100.000 \$$ are tax exempt
- the following $100.000 \$$ taxed at $20 \%$
- any amount above that is taxed at $30 \%$.

Step 1: current tax paid $=100.000 \times 0 \%+100.000 \times 20 \%+50.000 \times 30 \%=35.000 \$$
Step 2: introduce debt and interest payment $=\mathrm{D} * \mathrm{Rd}=75.000 * 4 \%=3.000 \$$
Step 3: calculate Profit before tax $($ PBT $)=$ EBIT - Interest $=250.000-3.000=247.000$
Step 4: calculate tax to pay= PBT * Tax scheme $=100.000 \times 0 \%+100.000 \times 20 \%+47.000 \times 30 \%=34.100$
Step 5: annual tax saving = current tax expected tax $=35.000-34.100=900 \$$ per year, perpetual
Step 6: PV Tax Shield You $=\mathbf{P V}$ of Tax Savings $=900 / 4 \%=\mathbf{2 2 . 5 0 0}$ using Rd as discount rate*
$>$ Conlusion: your CFO is wrong!

* Tax shield= certain so discount @ Rd


## Q3.b What if perpetual is reimbursed in 2 years?

tax savings year 1 and $2=900+900=1.800 \$$

PV Tax Shield You $=\mathbf{P V}$ of Tax Savings $=900 /(1,04)+900 /(1,04)^{2}$

$$
=1697,49 \$
$$

## Q4 Leveraging and deleveraging beta

SITUATION: GE wants to buy Wellstream (WSM), a higher beta bizz active in oil industry

## Q4 data:

- Data for WSM
- Cash flow next year $=50$ million $\$$
- Growth rate $=g=1,5 \%$
- Debt $=50$ million $\$(=$ now $)$
- M\&A data
- Target $\mathrm{D} / \mathrm{E}=0,4=\mathrm{L}$
- Marginal tax rate $=20 \%$
- Market Data
- $\mathrm{RFR}=\mathrm{Rd}=2 \%$
- Exp Return market port= $\mathrm{Rm}=7 \%$
- Industry data

| Comparison | $\beta_{\mathrm{e}}$ | $\mathrm{D} / \mathrm{E}$ | Tax rate |
| :--- | :---: | :---: | :---: |
| GE | 1,16 | $61 \%$ | $15 \%$ |
| WSM |  | 1,30 | $15 \%$ |
| Technip |  | 1,35 | $0 \%$ |
| Prysmian |  | 1,32 | $15 \%$ |

## Q4 Leveraging and deleveraging beta

$$
r=r_{f}+\beta * r_{p}
$$

| $\beta_{e}=\beta_{a} *\left(1+\frac{D}{E} *\left(1-T_{c}\right)\right)$ |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Comparison Be D/E* Tax <br> rate $=\mathbf{1 - T}$ $=(1-\mathrm{T}) \times \mathrm{D} / \mathrm{E}$ $=\mathbf{B a}$ <br> GE 1,16 0,61 $15 \%$ $85 \%$ 0,52 0,77 <br> WSM 1,30 0,15 $25 \%$ $75 \%$ 0,11 1,17 <br> Technip 1,35 0,00 $33 \%$ $67 \%$ 0,00 1,35 <br> Prysmian 1,32 0,15 $30 \%$ $70 \%$ 0,11 1,19 |  |  |  |  |  |

$>$ Step 1:
calculate Ba via 1-Tax rate

$$
\beta_{e}=\beta_{a} *\left(1+\frac{D}{E} *\left(1-T_{c}\right)\right)
$$

$$
r_{W A C C}=r_{\text {Equity }} * \frac{E}{V_{\text {levered }}}+r_{\text {Debt }} *\left(1-T_{c}\right) * D / V_{\text {levered }}
$$

a) What is operating beta?
$\mathrm{Ba}=\mathbf{1 , 1 8}=$ an adjusted mean $=(1,17+1,19) / 2=$ not exact science

- Use common science!

\author{

* @ Market Values, not Book Values
}


## Q4 a) b) c) Leveraging and deleveraging beta

b) What is the WACC?

$$
\begin{aligned}
& \mathrm{Be}=1,56=1,18 *(1+0.4 *(1-20 \%))=1,18 * 1,32 \\
& \mathrm{RFR}=2 \% \quad \mathrm{Rm}=7 \% \quad \Rightarrow>\text { Market Risk premium }=\mathrm{Rp}=7 \%-2 \%=5 \%
\end{aligned}
$$

$$
r_{e}=2 \%+1,56 * 5 \%=9,79 \%
$$

$$
\mathbf{r}_{\text {wacc }}=7,45 \% \quad \quad \Rightarrow \text { see table }
$$

c) What is the value of the acquisition?

|  | Ri | Wi * Ri | Tgt wght\% | Tgt wght |
| :--- | ---: | ---: | ---: | ---: |
| Re | $9,79 \%$ | $6,99 \%$ | $71 \%$ | 1,00 |
| Rd | $1,60 \%$ | $0,46 \%$ | $29 \%$ | 0,40 |
|  | Rwacc | $\mathbf{7 , 4 5 \%}$ | $100 \%$ | 1,40 |

INPUTS: Debt $=50$ million $\$ \&$ Next Cash Flow $=50$ million $\$$
$\mathrm{V}_{1}=\mathrm{CF} 1 /(\mathrm{R}$ wacc -g$)=50 \mathrm{Mln} \$ /(7,45 \%-1,50 \%)=840,5 \mathrm{Mln} \$$
$\Rightarrow \mathbf{E}=\mathrm{V}_{1}-\mathrm{D}=\mathbf{7 9 0 , 5} \mathrm{mln} \$$
$>$ Real world check: WSM market cap 515 Mln \$, GE paid 830\$: well done!

## Q4 d) Leveraging and deleveraging beta

d) Determine the value of Wellstream with GE's WACC?

## Step 1: GE's WACC

$$
\begin{aligned}
& \mathrm{Be}=1,16 \quad \Rightarrow>\text { see table } \\
& \begin{array}{l|l|l|l|l|l|c|}
\hline \mathrm{r}_{\mathrm{e}}=2 \%+1,16 * 5 \%=7,8 \% & & & \text { Ri } & \mathrm{Wi}^{*} \text { Ri } & \begin{array}{c}
\text { Tgt } \\
\text { Tght }
\end{array} & \begin{array}{c}
\text { Tgt } \\
\text { wght }
\end{array} \\
\mathbf{r}_{\text {wacc }}=\mathbf{5 , 4 5 \%}=>\text { see table } & \text { Cost of equity } & =0,02+1,16^{*} 0,05 & 7,80 \% & 4,84 \% & 62 \% & 1,00 \\
& & \text { After tax cost of debt }=0,02 *(1-0,20) & 1,60 \% & 0,61 \% & 38 \% & 0,61 \\
& \text { GE WACC } & & & \mathbf{5 , 4 5 \%} & & 1,61
\end{array}
\end{aligned}
$$

Step 2: Value using GE's WACC => similar as in Q4 c)
INPUTS: $\quad$ Debt $=50$ million $\$ \&$ Next Cash Flow $=50$ million $\$$

$$
\mathrm{V}_{1}=\mathrm{CF} 1 /(\mathrm{R} \text { wacc }-\mathrm{g})=50 \mathrm{Mln} \$ /(5,45 \%-1,5 \%)=\mathbf{1} \mathbf{2 6 6} \mathrm{Mln} \$ \text { and } \mathrm{E}=\mathbf{1 2 1 6}
$$

$>$ Real world check: GE paid 830\$, a bit too much, but assuming people would forget this small decision quickly in the bigger picture of GE its was a great decision

## Q4 e) Adjusted Present Value (APV)

e) Apply the APV method to value Welstream's acquisition

Reminder:
The APV Approach: adjust the NPV

1. Compute a base case NPV,
2. add to it the NPV of the financing decision ensuing from project acceptance
=> APV $=$ Base-case NPV + NPV(FinancingDecision)
whereas Adjusted Cost of Capital Approach = adjust discount rate, not NPV
> APV hardly used in real world

## Q4 e) Adjusted Present Value (APV)

## Step 1 : calculate base case NPV (=unlevered = all equity)

Note: Cost of capital is different from Q4 d, where we were using GE's own wacc for fun

Step 1.A.: calculate cost of capital
$\mathrm{Ba}=1,18 \Rightarrow$ see $\mathrm{Q} 4 . \mathrm{a})$
Cost of capital $=0,02+1,18 * 0,05=7,90 \%$

$$
r=r_{f}+\beta * r_{p}
$$

Step 1.B.: calculate base $\mathbf{N P V}=\mathrm{V}$ unlevered

$$
\mathrm{V}_{\text {unlevered }}=\mathrm{CF} 1 /(\mathrm{R}-\mathrm{g})=50 \mathrm{M} \ln \$ /(7,9 \%-1,5 \%)=781,25 \mathrm{M} \ln \$
$$

## Q4 e) Adjusted Present Value (APV): Step 2

## Step 2 : adjust for the NPV of the financing decisions

Step 2.A.: NPV of financing decision
what is target debt? = Target debt weight (Q4.b) * value of Acquisition (Q4.c)

$$
=29 \% * 841 \mathrm{Mln}=240,2 \operatorname{Mln} \$
$$

=> calculating target debt is tricky here (iterative calculation, so I used Q4.b and c), it could also be given
PV of Tax Shield from financing $=($ Marginal $)$ Tax Rate $* \mathrm{D}=20 \% * 240,2=48,03 \mathrm{Mln} \$$
Step 2.B.: calculate APV: add NPV of financing to base NPV NPV = base NPV + NPV financing = 781,25 Mln \$ + 48,03 Mln \$ = 829 mln \$

## Q5 : APV \& rebalancing

SITUATION: Analyze a 5 year project

## Q5 data:

- Project
- Capex = 10 Mln EURO
- Extra FCF: 750 k EURO
- Growth rate $=4 \% \mathrm{pa}$
- Parameters
- Tax rate (marginal) $=35 \%$
- Target $\mathrm{D} / \mathrm{E}^{*}=0,4=40 \%$ AND no reblalncing: debt is stable
- R's
- $\operatorname{Re}=11,3 \%$

$$
\text { * } \mathrm{L}=\mathrm{D} / \mathrm{V} \text { not } \mathrm{D} / \mathrm{E}=>\mathrm{D} / \mathrm{V}=0,5 \sim \mathrm{D} / \mathrm{E}=1
$$

- $\mathrm{Rd}=\mathrm{Rfr}=5 \%$


## Q5 : APV

## QUESTIONS:

a) NPV ?
$>$ What is the NPV of the new product line (including any tax shields from leverage)?
b) How much Debt?
$>$ How much debt will Markum initially take on as a result of launching this product line?
c) PV (Tax Shield) ?
$>$ How much of the product line's value is attributable to the present value of interest tax shields?

## Q5 a) and b) : APV

a) NPV

$$
W A C C=r_{E} \times \frac{E}{V_{L}}+r_{D}\left(1-T_{C}\right) \times \frac{D}{V_{L}}
$$

Step1: WACC $=(1 / 1.4) *(11.3 \%)+(0.4 / 1.4) *(5 \%)(1-0.35)=9 \%$
Step 2: $\mathrm{V}_{\mathrm{L}}=0.75 /(9 \%-4 \%)=\$ 15$ million
Step3: NPV $=-10+15=\$ 5$ million
b) How much Debt?
$>$ Step 1: You need to calculate $\mathrm{D} / \mathrm{V}$ from $\mathrm{D} / \mathrm{E}$ :
Debt-to-Value ratio is $(0.4) /(1.4)=28.57 \%=(\mathrm{D} / \mathrm{E}) /[1+(\mathrm{D} / \mathrm{E})]$
$>$ Step 2: Therefore Debt is $28.57 \% \times \$ 15$ million $=\$ 4.29$ million

## Q5 c) APV: PV (Tax Shield)

c) PV (Tax Shield) ?

$$
\text { DON'T'USE } \Rightarrow P V(\text { TaxShield })=\frac{T_{C} \times r_{D} D}{r_{D}}=T_{C} D
$$

## Approach

> You can not use direct calculation because target debt ratio, so debt is not stable:
$>$ You need to calculate indirectly via base NPV and APV
> Discounting at Ra gives unlevered value:
Step 1: You don't have Ra, so calculate:
$>\mathbf{R a}=(1 / 1.4) * 11.3 \%+(.4 / 1.4) * 5 \%=\mathbf{9 . 5 \%}$

Step 2: calculate base NPV Vu
> $\mathbf{V u}=0.75 /(9.5 \%-4 \%)=\$ \mathbf{1 3 . 6 4}$ million
> excludes tax shield: because you want Ra, and PV(Tax Shield separately)

Step 3: calculate PV (Tax Shield) = APV - Base NPV
$>$ Tax shield value is therefore $15-13.64=\$ \mathbf{1 . 3 6}$ million

## Adjusting WACC for debt ratio or business risk

- Step 1: unlever the WACC

$$
r=r_{E} \frac{E}{V}+r_{D} \frac{D}{V}
$$

- Step 2: Estimate cost of debt at new debt ratio and calculate cost of equity

$$
r_{E}=r+\left(r-r_{D}\right) \frac{D}{E}
$$

- Step 3: Recalculate WACC at new financing weights
- Step 1: Unlever beta of equity

$$
\beta_{\text {asset }}=\beta_{\text {equity }} \frac{E}{V}+\beta_{\text {debt }} \frac{D}{V}
$$

- Step 2: Relever beta of equity and calculate cost of equity

$$
\beta_{\text {equity }}=\beta_{\text {asset }}+\left(\beta_{\text {asset }}-\beta_{\text {debt }}\right) \frac{D}{E}
$$

- Step 3: Recalculate WACC at new financing weights

Reminder: comparison

|  | Modigliani Miller | Miles Ezzel | Harris-Pringle |
| :--- | :---: | :---: | :---: |
| Operating CF | Perpetuity | Finite or Perpetual | Finite of <br> Perpetual |
| Debt level | Certain | Uncertain | Uncertain |
| First tax shield | Certain | Certain | Uncertain |
| WACC <br> $L=D / V$ | $r_{A}\left(1-T_{C} L\right)$ | $r_{A}(E / V)+r_{D}\left(1-T_{C}\right)(D / V)$ |  |
| Cost of equity | $r_{A}+\left(r_{A}-r_{D}\right)\left(1-T_{C}\right)(D / E)$ | $r_{a}+\left(r_{a}-r_{d} \times\left(1+T_{c} \times\left(\frac{r_{a}-r_{d}}{1+r_{d}}\right)\right) \times \frac{L}{1-L}\right.$ | $r_{A}+\left(r_{A}-r_{D}\right)(D / E)$ |
| Beta equity | $\beta_{A}+\left(\beta_{A}-\beta_{D}\right)\left(1-T_{C}\right)(D / E)$ | $\beta_{a} \times\left(1+\frac{D}{E}\right) \times\left(\frac{1+r_{d}\left(1-T_{c}\right)}{1+r_{d}}\right)$ | $\beta_{A}+\left(\beta_{A}-\beta_{D}\right)(D / E)$ |

Source: Taggart - Consistent Valuation and Cost of Capital Expressions With Corporate and Personal Taxes Financial Management Autumn 1991

## Concluding remarks

## Corporate Valuation field check

- DCF used but still overwhelmed by multiples
- DCF better reveals dynamics between valuation and financing
- APV hardly used, M-E Wacc and H-P Wacc either, even if some use of variable wacc per year. But variable wacc is very useful tool as it reveals contradictions in modelling


## Use of leverage

- Less than you would expect (20-40\%)
$>$ Extraordinary: despite ultra low rates, corporates in developed markets have not taken real advantage of this, except for refinancing.
$>$ But it seems Emerging Markets have increased leverage
- Still it can work: see private equity or some M\&A of last years

