

Advanced Corporate Finance Exercises Session 3 « Valuing levered companies, the WACC»

Professor Kim Oosterlinck

E-mail: koosterl@ulb.ac.be

Teaching assistants:

Nicolas Degive (<u>ndegive@ulb.ac.be</u>) Laurent Frisque (<u>laurent.frisque@gmail.com</u>) Frederic Van Parijs (<u>vpfred@hotmail.com</u>)

Corporate Valuation & Financing

- 1. Reaching end goal: Converting Cash Flows into corporate valuation:
 - > What is the firm worth?
- 2. Financing:
 - \succ how is the company financed
 - Discussion on capital structure and use of debt in particular

Start with recap of Modigliani Miller!

• MMI: "The market value of any firm is independent of its capital structure" (Assumptions perf. K market, no taxes, no transaction costs)

- Company Value Unlevered = Equity Value = Asset Value

•MMII: "The weighted average cost of capital is independent of its capital structure" (Assumptions perf. K market, no taxes, no transaction costs)

 $- r_{WACC} = r_a$

>Key & unrealistic assumption = no taxes

\succ Note: market value is independent = Assets = V = E + D

 \Rightarrow You only shift between E and D: V itself does not change

Q1: Modigliani Miller I : no taxes

- Starting without debt
- Introducing debt

Q2: introduction of taxes to Q1 (same input data)

Q3: use of marginal, not average tax rate

Q4: Leveraging and deleveraging beta + APV: M&A example

Q5: APV with changing debt level (rebalancing & target debt levels)

Q1 Modigliani Miller I: No Taxes!

Q1: To value: Freshwater Corp.

INPUT

- <u>No taxes</u> and perfectly efficient markets.
- Currently the company is **<u>not levered all</u>**.
- EBIT per year: 500.000 \$ and should remain the same perpetually.
- The cost of equity of the company is worth 12% = Re.

Q1.a: In this case what is the value of the company?

Q1: In this case what is the value of the company?

• The cost of equity of the company is worth 12% = Re= Ra (no leverage).

> Only 1 step as no leverage

 $V_{unlevered} = rac{EBIT}{r_a}$

 $\mathbf{V}_{levered} = \mathbf{V}_{unlevered}$

 $V_{unlevered} = 500.000\$ / 12\%$ = 4.166.667\$

> Reminder: EBIT = <u>Earnings</u> <u>B</u>efore <u>I</u>nterest and <u>T</u>axes

Q1.b V levered : introducing debt & 2nd step

Q1: To value: Freshwater Corp.

- Plan to issue a perpetual debt for which you pay 30.000\$, to buy back shares.
- Interest each year (the borrowing rate of the company is 3%)

Q1.b.1: What would then be the market value of the company?

⇔Note	e: D = n	ot given, you need to	o calculate	2nd step: leverage introduced
Interes	sts =	30.000		
Rd	=	3%		Step1 = V _{unlevered}
=> D	=	1.000.000 Reme	mber bond valuation!	
		$\mathbf{P} = \mathbf{C}$	oupon / Discount rate	Step 2 = E = Vu - D
Vu	=	4.166.667		$\mathbf{Y}_{\mathbf{U}} - \mathbf{F} + \mathbf{D} - \mathbf{V}_{\mathbf{U}} + \mathbf{D}$
=> E	=	3.166.667	$(\mathbf{E} + \mathbf{D} = \mathbf{V}\mathbf{u})$	$\mathbf{F} \mathbf{v}\mathbf{u} = \mathbf{E} + \mathbf{D} = \mathbf{v}\mathbf{u} + \mathbf{D}$

Q1.b.2 the different r's after introducing debt

Q1: What are the value of r_a , the r_{WACC} , and re?

 $r_{a} = 12\% \text{ Unchanged by definition}$ $r_{a} = re * \frac{Equity}{V_{unlevered}} + rd * \frac{Debt}{V_{unlevered}}$ $r_{e} = (\text{Ra*Vu - Rd*D})/\text{E}$ $= 14,84\% = (0,12*4.166 - 0,03*1.000)/3.166 \text{ Or if } \mathbf{r}_{a} \text{ stable, lower introduced } \mathbf{r}_{d} =>\text{higher } \mathbf{r}_{e}$ $Or r_{e} = (\text{EBIT - Int})/\text{E} = (500-30)/3.166 \text{ Or if } \mathbf{r}_{a} \text{ stable, lower introduced } \mathbf{r}_{d} =>\text{higher } \mathbf{r}_{e}$ = Alternative calculation via P&L > 1st calculation was via Ra

 $r_{WACC} = 12\%$ (because NO taxes)

Q2 Valuing levered Companies in a world with taxes

Q2: Bobland, not a perfect world: Corporate tax rates: 25% (Tc)

• Same capital structure and revenues as in Tongoland.

$$>$$
 Q2 = Q1 + Taxes

<u>Q2.a.: What would then be the market value of the company?</u> **Tax intro =>** $V_{unlevered} = (\frac{(EBIT * (1 - Tc))}{ra}$ Tax Shield = TC * Debt

>step 1 : calculate V unlevered

EBIT (1-Tc) = 500*(1-25%) = 375.000

Vunlevered = 375.000 / 12% = 3.125.000

Interests = 30.000 $r_d = 3\%$ D = Int/ $r_d = 1.000.000$ Tax Shield = Tc*D = 250.000 V levered = Vu + Tax Shield = 3.375.000 $V_{levered} = V_{unlevered} + Tax Shield$ $V_L = V_U + T_C D$ $PV (TaxShield) = \frac{T_c \times r_D D}{r_X} = T_c D$ Tax rate = Tc = 25% $V_U = 3.125.000 \text{ see Step 1}$

> Note:

- **1.** value increase through leverage, via the tax shield (here 8%)
- 2. BUT V levered does not equal E (Equity) => <u>you need step 3</u>
- **3.** In Q1 Step = Step 2, because no value creation through tax shield (Tc=0)

Q2.b step 3 (=Equity) & r's: r_{wacc}

Q2: And of ra, the wacc, and re?

 $\mathbf{r_a} = 12\%$ Unchanged by definition

 $\mathbf{r}_{WACC} = EBIT * (1-Tc) / VL = 11,11\%$ via P&L

Alternative calculation via Ra:

L = D/VLWacc = Ra * (1 - Tc*L)

 \succ Note: $r_{wacc} < r_a$

= cost of capital lowered through tax shield

= 500.000 (1-25%) / 3 375 000 = 375k / 3 375 k

 $= 1\ 000\ 000\ /\ 3\ 375\ 000 = 0,3$ $= 12\%\ (1-0,25\ *\ 0,30) = 11,11\%$

Luckily you were not asked to calculate via NOPLAT = <u>Net Operating Profit Less Adjusted Taxes</u> NOPLAT = Net Income + Interest + Tax Shield

 $V_L = NOPLAT / WACC$

Q2.b step 3 (ctd): Equity & Re

Q2: And of ra, the wacc, and re?

<u>Step 3:</u> E = VL - D = 2.375.000 See Step 2

Net Earnings = (EBIT-I) * (1-Tc) = (500.000 - 30.000) * (1-25%)

Re = Net Earnings / E = **14,84%**

Alternative calculation via Ra:

Re = Ra + (Ra - Rd) * (1-Tc)* D/E

= 0,12 + (0,12 - 0,03) * (1 - 0,25) * 1000000 / 2375000

Q3 Marginal versus Average Tax RateValuing

Q3 data: The subsidiary has an EBIT of 250.000\$.

The tax structure in Sloland:

- the first 100.000\$ are tax exempt
- the following 100.000\$ taxed at 20%
- any amount above that is taxed at 30%.

SITUATION:

YOU: want to Issue a perpetual debt 75000\$ to benefit from the tax shield.

CFO : Skeptical

- 1. Based up current average tax rate.
 - \succ Cost of debt (= risk free rate: 4%), he values the tax shield at 10.500\$
- 2. Hardly interesting in view of the costs associated with a debt issue.

QUESTIONS:

- A. Is he right?
- B. What would have been the tax shield if the debt had been reimbursed after two years?

Q3.a Is he right?

Approach:Compare PV calculations of Tax Shields= average tax vs. marginal taxDebt = 75.000 @ cost of debt = 4% (=RFR)

<u>Tax Shield 1: CFO</u> = average (=constant tax rate)

SolvayBrusselsSchool

Tax shield assuming perpetuity with constant tax rate

PV Tax Shield =
$$D * rd * \frac{Tc}{r_d}$$
 = D * Tax rate = Discounted tax on interest paid

Debt = 75.000 \$ & **Tax rate** = Tax / EBIT

Step 1: current tax paid = $100.000 \ge 0\% + 100.000 \ge 20\% + 50.000 \ge 30\% = 35.000$

Step 2: tax rate = Tc = 35.000 / 250.000 = 14,00%

Step 3: PV Tax Shield CFO = D * Tc = 75.000 * 14% = 10.500\$

Step 4: in relative terms of bond, saving is Tc = 14%, is much higher than normal issuing costs associated, but in absolute terms costs maybe high (imagine lawyers!)

Tax Shield 1: YOU (=marginal tax rate)

Approach: you will calculate actual tax saving based upon marginal tax scheme

Debt = 75.000 \$ & Reminder of the tax structure in Sloland:

- the first 100.000\$ are tax exempt
- the following 100.000\$ taxed at 20%
- any amount above that is taxed at 30%.

Step 1: current tax paid = $100.000 \times 0\% + 100.000 \times 20\% + 50.000 \times 30\% = 35.000$ \$

Step 2: introduce debt and interest payment = D * Rd = 75.000 * 4% = 3.000\$

Step 3: calculate Profit before tax (PBT) = EBIT – Interest = 250.000 - 3.000 = 247.000

Step 4: calculate tax to pay= PBT * Tax scheme = $100.000 \times 0\% + 100.000 \times 20\% + 47.000 \times 30\% = 34.100$

Step 5: annual tax saving = current tax – expected tax = 35.000 - 34.100 = 900\$ per year, perpetual

Step 6: **PV Tax Shield You = PV of Tax Savings** = 900 / 4% = 22.500\$ <u>using Rd as discount rate</u>*

Conlusion: your CFO is wrong!

* Tax shield= certain so discount @ Rd

Q3.b What if perpetual is reimbursed in 2 years?

tax savings year 1 and 2 = 900 + 900 = 1.800 \$

PV Tax Shield You = **PV** of Tax Savings = $900 / (1,04) + 900 / (1,04)^2$

= 1697,49 \$

Q4 Leveraging and deleveraging beta

SITUATION: GE wants to buy Wellstream (WSM), a higher beta bizz active in oil industry

Q4 data:

- Data for WSM
 - Cash flow next year = 50 million \$
 - Growth rate = g = 1,5%
 - Debt = 50 million \$ (=now)
- M&A data
 - Target D/E = 0,4 = L
 - Marginal tax rate = 20%
- Market Data
 - RFR = Rd = 2%
 - Exp Return market port= Rm = 7%

• Industry data

Comparison	β _e	D/E	Tax rate	
GE	1,16	61%	15%	
WSM	1,30	15%	25%	
Technip	1,35	0%	33%	
Prysmian	1,32	15%	30%	

Q4 Leveraging and deleveraging beta

$$r = r_f + \beta * r_p$$

➢ Step 1:

SolvayBrusselsSchool

calculate Ba via 1-Tax rate

$$\beta_e = \beta_a * (1 + \frac{D}{E} * (1 - T_c))$$

Comparison	Be	D/E*	Tax rate	= 1-T	= (1-T) x D/E	= Ba
GE	1,16	0,61	15%	85%	0,52	0,77
WSM	1,30	0,15	25%	75%	0,11	1,17
Technip	1,35	0,00	33%	67%	0,00	1,35
Prysmian	1,32	0,15	30%	70%	0,11	1,19

$$r_{WACC} = r_{Equity} * \frac{E}{V_{levered}} + r_{Debt} * (1 - T_c) * D/V_{levered}$$

a) What is operating beta?

Ba=1,18 = an adjusted mean = (1,17+1,19) / 2 = not exact science

➤ Use common science!

* @ Market Values, not Book Values

Q4 a) b) c) Leveraging and deleveraging beta

b) What is the WACC?

Be = 1,56 = 1,18 * (1+0.4 * (1 - 20%)) = 1,18 * 1,32

 $RFR = 2\% \qquad Rm = 7\% \qquad => Market Risk premium = Rp = 7\% - 2\% = 5\%$

$$r_e = 2\% + 1,56 *5\% = 9,79\%$$

 $r_{wacc} = 7,45\% \implies see table$

	Ri	Wi * Ri	Tgt wght%	Tgt wght
Re	9,79%	6,99%	71%	1,00
Rd	1,60%	0,46%	29%	0,40
	Rwacc	7,45%	100%	1,40

c) What is the value of the acquisition?

INPUTS: Debt = 50 million \$ & Next Cash Flow = 50 million \$ $V_1 = CF1 / (R wacc - g) = 50 Mln $ / (7,45\% - 1,50\%) = 840,5 Mln $$ $=> E = V_1 - D =$ **790,5 mln \$**

➤ Real world check: WSM market cap 515 Mln \$, GE paid 830\$: well done!

Q4 d) Leveraging and deleveraging beta

d) Determine the value of Wellstream with GE's WACC?

Step 1: GE's WACC

Be = 1,16 => see table

$r_e = 2\% + 1,16 * 5\% = 7,8\%$				Ri	Wi * Ri	Tgt wght%	Tgt wght
$\mathbf{r}_{wave} = 5.45\% => see table$	Cost of equity	=0,02 + 1,16*	* 0,05	7,80%	4,84%	62%	1,00
wacc	After tax cost of debt	=0,02 * (1 - 0),20)	1,60%	0,61%	38%	0,61
	GE WACC				5,45%		1,61

Step 2: Value using GE's WACC => similar as in Q4 c)

INPUTS: Debt = 50 million \$ & Next Cash Flow = 50 million \$

 $V_1 = CF1 / (R wacc - g) = 50 Mln \$ / (5,45\% - 1,5\%) = 1 266 Mln \$ and E = 1216$

➢ Real world check: GE paid 830\$, a bit too much, but assuming people would forget this small decision quickly in the bigger picture of GE its was a great decision

Q4 e) Adjusted Present Value (APV)

e) Apply the APV method to value Welstream's acquisition

Reminder:

The APV Approach: adjust the NPV

- 1. Compute a base case NPV,
- 2. add to it the NPV of the financing decision ensuing from project acceptance

=> APV = Base-case NPV + NPV(FinancingDecision)

whereas Adjusted Cost of Capital Approach = adjust discount rate, not NPV

> APV hardly used in real world

Q4 e) Adjusted Present Value (APV)

Step 1 : calculate base case NPV (=unlevered = all equity)

Note: Cost of capital is different from Q4 d, where we were using GE's own wacc for fun

Step 1.A.: calculate cost of capital

Ba = 1,18 => see Q4.a) Cost of capital = 0,02 + 1,18* 0,05 = 7,90%

$$r = r_f + \beta * r_p$$

Step 1.B.: calculate base NPV = V unlevered

 $V_{unlevered} = CF1 / (R - g) = 50 Mln \$ / (7,9\%-1,5\%) = 781,25 Mln \$$

Q4 e) Adjusted Present Value (APV): Step 2

Step 2 : adjust for the NPV of the financing decisions

Step 2.A.: NPV of financing decision

what is target debt? = Target debt weight (Q4.b) * value of Acquisition (Q4.c) = 29% * 841 Mln = 240,2 Mln \$

=> calculating target debt is tricky here (iterative calculation, so I used Q4.b and c), it could also be given

PV of Tax Shield from financing = (Marginal) Tax Rate * D = 20% * 240,2 = 48,03 Mln\$

Step 2.B.: calculate APV: add NPV of financing to base NPV NPV = base NPV + NPV financing = 781,25 Mln \$ + 48,03 Mln \$ = 829 mln \$

Q5 : APV & rebalancing

<u>SITUATION</u>: Analyze a 5 year project

Q5 data:

- Project
 - Capex = 10 Mln EURO
 - Extra FCF: 750 k EURO
 - Growth rate = 4% pa
- Parameters
 - Tax rate (marginal) = 35%
 - Target $D/E^* = 0.4 = 40\%$ <u>AND no reblaincing: debt is stable</u>
- R's
 - Re = 11,3%

* L = D/V not D/E => D/V=0,5 ~ D/E = 1

• Rd = Rfr = 5%

- a) NPV?
 - > What is the NPV of the new product line (including any tax shields from leverage)?
- b) How much **Debt?**
 - ➢ How much debt will Markum initially take on as a result of launching this product line?
- c) PV (Tax Shield) ?
 - ➤ How much of the product line's value is attributable to the present value of interest tax shields?

a) NPV

$$WACC = r_E \times \frac{E}{V_L} + r_D (1 - T_C) \times \frac{D}{V_L}$$

Step1: WACC = (1 / 1.4) * (11.3%) + (0.4 / 1.4) * (5%)(1 - 0.35) = 9%Step 2: V_L = 0.75 / (9%-4%) = \$15 million Step3: NPV = -10 + 15 = \$5 million

b) How much **Debt?**

 ➢ Step 1: You need to calculate D/V from D/E: Debt-to-Value ratio is (0.4) / (1.4) = 28.57% = (D/E) / [1 + (D/E)]
 ➢ Step 2: Therefore Debt is 28.57% × \$15 million = \$4.29 million

Q5 c) APV: PV (Tax Shield)

c) PV (Tax Shield) ?

DON'T'USE => $PV(TaxShield) = \frac{T_C \times r_D D}{r_D} = T_C D$

Approach

- > You can not use direct calculation because target debt ratio, so debt is not stable:
- > You need to calculate indirectly via base NPV and APV
- Discounting at Ra gives unlevered value:

Step 1: You don't have Ra, so calculate:

> $\mathbf{Ra} = (1 / 1.4) * 11.3\% + (.4 / 1.4) * 5\% = 9.5\%$

Step 2: calculate base NPV Vu

 \blacktriangleright Vu = 0.75 / (9.5% - 4%) = \$13.64 million

Step 3: calculate PV (Tax Shield) = APV – Base NPV

> Tax shield value is therefore 15 - 13.64 =**\$1.36 million**

 excludes tax shield: because you want Ra, and PV(Tax Shield separately) ULB

SolvayBrusselsSchool

Adjusting WACC for debt ratio or business risk

• Step 1: unlever the WACC

$$r = r_E \frac{E}{V} + r_D \frac{D}{V}$$

 Step 2: Estimate cost of debt at new debt ratio and calculate cost of of equity

$$r_E = r + (r - r_D) \frac{D}{E}$$

 Step 3: Recalculate WACC at new financing weights • Step 1: Unlever beta of equity

$$\beta_{asset} = \beta_{equity} \frac{E}{V} + \beta_{debt} \frac{D}{V}$$

• Step 2: Relever beta of equity and calculate cost of equity

$$\beta_{equity} = \beta_{asset} + (\beta_{asset} - \beta_{debt}) \frac{D}{E}$$

 Step 3: Recalculate WACC at new financing weights

Reminder: comparison

	Modigliani Miller	Miles Ezzel	Harris-Pringle
Operating CF	Perpetuity	Finite or Perpetual	Finite of Perpetual
Debt level	Certain	Uncertain	Uncertain
First tax shield	Certain	Certain	Uncertain
WACC	7	$r_E(E/V) + r_D(1 - T_C)(D/V)$	
L = D/V	$r_A \left(1 - T_C L\right)$	$r_A - LT_C r_D \frac{1 + r_A}{1 + r_D}$	$r_A - r_D T_C L$
Cost of equity	$r_A + (r_A - r_D)(1 - T_C)(D/E)$	$r_a + (r_a - r_d \times (1 + T_c \times (\frac{r_a - r_d}{1 + r_d})) \times \frac{L}{1 - L}$	$r_A + (r_A - r_D) (D/E)$
Beta equity	$\beta_A + (\beta_A - \beta_D) (1 - T_C) (D/E)$	$\beta_a \times (1 + \frac{D}{E}) \times (\frac{1 + r_d(1 - T_c)}{1 + r_d})$	$\beta_A + (\beta_A - \beta_D) (D/E)$

Source: Taggart – Consistent Valuation and Cost of Capital Expressions With Corporate and Personal Taxes Financial Management Autumn 1991

|29

24

Concluding remarks

Corporate Valuation field check

- DCF used but still overwhelmed by multiples
- DCF better reveals dynamics between valuation and financing
- APV hardly used, M-E Wacc and H-P Wacc either, even if some use of variable wacc per year. But variable wacc is very useful tool as it reveals contradictions in modelling

Use of leverage

- Less than you would expect (20-40%)
 - Extraordinary: despite ultra low rates, corporates in developed markets have not taken real advantage of this, except for refinancing.
 - ≻ But it seems Emerging Markets have increased leverage
- Still it can work: see private equity or some M&A of last years