Advanced Corporate

 Finance Exercises Session 4 « Options (financial and real)»
Professor Kim Oosterlinck

E-mail: koosterl@ulb.ac.be

Teaching assistants:

Nicolas Degive (ndegive@ulb.ac.be)
Laurent Frisque (laurent.frisque @ gmail.com)
Frederic Van Parijs (vpfred@hotmail.com)

This session

Options

1. Life is not black and white!
$>$ You have options
2. Not always need to make final decision today
> Understand the existence of options

- Waiting is also an option, and often practiced in reality
- Strong CEO's understand options well
$>$ Example in portfolio management: (future) rebalancing

3. The opposite of thinking in options is static and myopic behaviour.
$>$ Static behaviour tends to deliver poor results

This session's Questions

Q1: Option Valuation: European call, binomial tree

- Starting without debt
- Introducing debt

Q2: Option Valuation: American put, binomial tree
Q3: Option valuation: Arbitrage
Q4: Option valuation (Black and Scholes)
Q5: Real Options

Q1 Option Valuation (European call, binomial tree)

Q1:

-Reminder: European call option: "Option that gives you the right to buy an asset at a determined price at a determined date"

UTB

Q1: data

-European call
-Maturity: 1 year

- Strike price K: $190 €$
- Spot price S: 200€
-Variance: 70% prob. to double, 30% prob. divided by 2
$>\mathrm{U}=2$ and $\mathrm{d}=0,5$
-Risk free rate $\mathrm{rf}=4 \%$

UTB

SolvayBrusselsSchool

Q1.a) what is risk neutral probality?

- Risk neutral probability:
* "Probability that the stock rises in a risk neutral world" and
* "where the expected return is equal to the risk free rate.
\Rightarrow In a risk neutral world : $\mathrm{p} \times \mathrm{uS}+(1-\mathrm{p}) \times \mathrm{dS}=(1+\mathrm{r} \Delta \mathrm{t}) \times \mathrm{S} \quad \Rightarrow \quad \operatorname{Prob}_{R N}=\frac{(1+r f-d)}{u-d}$
- Solving: with $\mathrm{u}=2$ and $\mathrm{d}=0.5$

$$
\begin{gathered}
\operatorname{Prob}_{\mathrm{RN}}=\frac{(1+0,04-0,5)}{2-0,5}=\frac{0,54}{1,50}=36 \% \\
\mathbf{t}=\mathbf{0} \quad \mathbf{t}=\mathbf{1} \quad \begin{array}{l}
\text { Risk neutral } \\
\text { probability }
\end{array}
\end{gathered}
$$

- Or in a binomial tree

Q1.b) value of the call (use a one year binomial tree)?

- Binomial tree:

Draw binomial tree of possible spot prices $\Rightarrow>\quad \begin{gathered}\text { Draw NPV tree } \\ \mathbf{t}=\mathbf{0}\end{gathered}$

Note: Direction of Arrows

- for S (underlying) from left to right
- for C (option) from right to left

- Solution

Call Value $=$ PV of Expected Cash flow

$$
>\mathrm{C}=(210 * 36 \%) /(1+0,04)=72,69
$$

$$
\mathrm{C}=\left[\mathrm{p} \times \mathrm{C}_{\mathrm{u}}+(1-\mathrm{p}) \times \mathrm{C}_{\mathrm{d}}\right] /(1+\mathrm{r} \Delta \mathrm{t})
$$

Note: I dropped C_{d} because here $\mathrm{C}_{\mathrm{d}}=0$

Q1.c) how to replicate the call?

- Put-Call Parity:

$>$ A call is equivalent to a purchase of stock and a put financed by borrowing the $\mathrm{PV}(\mathrm{K})$

$$
\mathbf{C}=\mathbf{S}+\mathbf{P}-\mathbf{P V}(\mathbf{K}) \quad \text { OR } \quad \mathbf{C}=\text { Delta } \times \mathbf{S}-\mathbf{B}
$$

[with $P V(K)=$ present value of the striking price]

- Solution:
$>$ Value of the call replicating the cash flows

What	$\underline{\text { Price }}$	$\underline{\mathbf{u}}$	$\underline{\mathbf{d}}$
Goy Bonds	0.9615	1	1
Stock	200	400	100
Call	72.69	210	0

$>$ How to constitute a portfolio that replicates the CF of a call
$>$ step 1 : calculate Delta (using Su and Cu) $\quad \Delta * 400+B=210 \quad \Longrightarrow \quad \Delta=0,7 \quad$ Delta $u S-(1+r \Delta t) B=C_{u}$
$>$ step 2 :use Delta to calculate B $\Delta * 100+B=0 \quad \Rightarrow \quad B=-70 \quad$ Delta $d S-(1+r \Delta t) B=C_{d}$
$>$ step 3 :use B in formula to calculate C

$$
C=0,7 * 200-70 * 0,9615=72,69 \Rightarrow \mathrm{C}=0,7 \text { Stock }-67,30 \text { euro }
$$

$>$ So buy 0,7 shares and borrow 67,30 EUR

Q1.c) how to replicate the call? CHECK \& d)

- Checking the solution
$>$ Using the binomial tree

	$t=0$		$t=1$	
Replication				
Delta shares	0,7			
Borrow Beta	67,31			
			up	
			210	$=0,7 * 400-67,31$ * (1+4\%)
Check value in 0	72,69	and in 1		
	OK!			
			down	
			0	$=0,7 * 100-67,31$ * (1+4\%)

-Q1.d) You have 200 EUR: what can you buy?

* Shares = 200 EUR @ Spot price of 200 EUR $=1$
* 200 EUR calls @ 72,69 EUR a piece $=200 / 72,69=2,75$ calls

Q2. Option Valuation (American put, binomial tree)

Q2.a): Is an American put worth more than an European one? Don't crunch numbers!

* Owners of American-style options may exercise at any time before the option expires, while owners of European-style options may exercise only at expiration.
> Answer: Intuitively American option should be worth more!
\Rightarrow Theoretically, the American option will be worth more, as you have more opportunity to exercise the option
\Rightarrow In some cases however, early exercise is never interesting in this case the value is the same bur in any case American option can never be worth less than European ones

Q2.b. European put vs American put

Q2.b): He then would like to compute the value of :
b.1. a three months European put.
b.2. and a three months American put.

* Data
- spot rice $S=100 €$
- strike price $K=100 €$
- $\mathrm{U}=1,10$ (per period!) and $\mathrm{D}=0,909$
- The continuous (!) risk free rate is worth 0.5% per month
$>$ How to solve?
Step 1: calculate risk-neutral probabilities (same for European and American)
Step 2: draw binomial tree of possible spot prices in different period \& solve
$>$ Repeat for American option

Q2.b: Step1: calculate risk neutral probability

-Compute risk-neutral Probability S 100
$\operatorname{Prob}_{R N}=\frac{(1+r f-d)}{u-d}=0,502=>1-\mathrm{p}=0,498$ K 100

- Draw binomial tree of possible spot prices
Rfm 0.50\%
u 1.1
d 0.91
> CAUTION: continuous rate
* Use $\mathrm{e}^{0,5}$, for discounting use $\mathrm{e}^{-0,5}$
* Or calculate monthly equivalent and then use $1+r f$ and $1 / 1+r f$

Q2 b.1. Value of European Put

Q3 Option Valuation Arbitrage (Call)

Q3: How can one seize an arbitrage opportunity for the following?

- Spot price=52\$
- Strike price $=45 \$$
- Maturity one year
- European call price $=53 \$$
- Approach: calculate bounds

1. Call value (53\$) should be higher than Spot (52\$) - Strike (45\$) $=7 \$$:
$>$ IF NOT: Buy call and short share
2. Call value (53\$) should be lower Spot (52\$)
$>$ IF NOT: Sell call and buy share
$>$ Here: case $2=$ call is overvalued so sell it
$=>$ Sell a call at $53 \$$ and buy a share at $52 \$$: your arbitrage (immediate cash flow $=1 \$$)
\Rightarrow If not exercised at maturity $\mathrm{CF}=1$ (+interests) + Spot price $=$ immediate $\mathrm{CF}+$ future sale @ spot
$=>$ If exercised at maturity $\mathrm{CF}=1$ (+interests) + Strike price $=1$ (+interests) $+45 \$$ due to exercising

Q4: Option valuation (Black and Sholes)

- Data
- share price is $120 \$=(\mathrm{S})$
- the strike price $100 \$=(\mathrm{K})$
- the maturity one year $=>\mathrm{T}=1$
- the annual volatility of the share is $40 \% \Rightarrow U=1,4$ and $D=0,6$
- the continuous risk free rate is worth $5 \%=(\mathrm{Rf})$
$>$ Reminder: continuous rate
* B\&S uses the cumulative distribution function of the standard normal distribution
* And thus also a continuous rate for discounting
a) What would be the value of a call on the MekWhisky Cy

1. Use first a one year binomial tree and
2. then the Black and Scholes formula.
b) How can you explain the difference? (between binomial and B\&S)
c) What would happen if you chose a binomial tree with 6 months steps (instead of one year)?

Q4 a. 1 one-year binomial tree

$\left.\begin{array}{lccr}1+r_{\text {yearly }}=\exp \left(r_{\text {cont }}\right) & \mathrm{S} & 120 \\ r_{\text {yearly }}=5,127 \%\end{array}\right)$

Remarks

$>$ We have done this at start of session!
$>$ Irrelevant whether American or European as only 1 period

Q4 a. 2 using B\&S formula

- Black and Scholes Formula

S 120

- $C=S * N\left(d_{1}\right)-\mathrm{PV}(\mathrm{K}) * N\left(d_{2}\right)$

K

- $d_{1}=\frac{\ln \left(\frac{S}{P V(K)}\right)}{\sigma \sqrt{T}}+0,5 \sigma \sqrt{T}$
- $d_{2}=d 1-\sigma \sqrt{T}$
r(continued)
$\sigma_{\text {yearly }}$
$\mathrm{r}_{\text {yearly }}$
- $\mathrm{d}_{1}=0,781$
- $\mathrm{d}_{2}=0,381$

Step2: Lookup $\mathbf{N}(\mathbf{d})$'s in \mathbf{N}-table on next page

- $N\left(d_{1}\right)=0,783$
- $N\left(d_{2}\right)=0,647$ Correct $\mathrm{N}(\mathrm{d} 2)=0,6483$, or table approx $=0,648$
- $C=32,234 \quad$ Step3: Calculate $P V(K) \&$ Plug everything in B\&S formula and calculate

$$
\mathrm{PV}(\mathrm{~K})=100 * \mathrm{e}^{-0,05}=95,12 \Rightarrow \quad \mathrm{C}=32,234=(120 * 0,782)-(95,12 * 0,648)
$$

Q4 a． 2 using B\＆S Table

Table lookup：steps：

－ $\mathrm{d}_{1}=0,781$
－ $\mathrm{d}_{2}=0,381$
1 decimal in row（select）
2 hundreths in colum（cross）
Theoretically you can calculate it yourself without table．．．
－$N\left(d_{1}\right)=0,783$
－$N\left(d_{2}\right)=0,643$ Correct $N(d 2)=0,6483$ ，or table approx $=0,648$

	0	0，01	0，02	0，03	0，04	0，0．5	0，06	0，07	0， 0 ，	0，09
0	ロ，50ロロ	－5040	ロ，590	ロ，5120	－1，516	0，5199	0,5239	ロ，5279	0,5319	0，5359
0，1	0,5398	0.5438	0.5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0，2	0,5793	0,5832	0,5871	0,5910	0,5948	0.5987	0.6026	0.6064	－，	0.6141
0， 3	0,6179	0.6217	0.625	0.6293	0,6351	0.6368	0.6406	0.6443	0.648	0.6517
0，4	0.6554	0.6591	0,6629	0,6664	0,6700	0.6736	0,6772	$\square .6808$	0,604	0.6879
0， 5	0.6915	0.6950	0，6985	0,7019	0,7054	0,7089	0,7123	0.7157	0.7190	0,7224
0， 6	0,7257	0.7291	0.7324	－，7357	0,7369	0.7422	0,7454	0.7486	0，7517	0.7549
0,7	－，7590	－，7611	0.7642	0,7673	0,7703	0,7734	0,7764	0.7793	0,7823	0,7852
0， 8	0，78日1	ロ，フ91ロ	ロ，7939	0,7967	0，7995	0,8023	ロ，8051	口， 8078	－1，810	0,8133
0，9	0，8159	O，8186	ロ，B212	－1， 2×8	0,8264	0，8289	0，8315	O， 8340	0，8365	0，8389

UTB

Q4 c) 6-month Binomial tree

$>$ We will first solve c and then b

Solvay Brussels of Economics and Management

Q4 b. Comparing Black and Scholes and Binomial trees

Call price Compared to BS value

B\&S	32.23	-
1 step	34.86	$+8 \%$
2 steps	33.26	$+3 \%$

Answer:

-Binomial converges with number of steps towards $B \& S$, but in early steps moves around B\&S

Remarks:

- $\mathrm{B} \& \mathrm{~S}$ is lower here in both cases
-But 2 steps is lower than 1 step
- Maybe a $3^{\text {rd }}$ step could be lower than BS, depending on variables

Q5: Real Options

- Story
- The move from volatile but tax haven Tongoland to the more stable but taxing Bobland resulted in a lower market cap (2,325,000 \$) for Freshwater (see Session 3).
$>$ Following the move, the stock traded at 23.25 \$. => \# shares $=100 \mathrm{k}$
- R\&D partnership financing agreement with Bobland's main university Ewing State related to the potential development of a new energy drink 'Spirit of Southfork' => option value
- The forecasts are very sensitive to a number of uncertain factors

Q5: Real Options

- Data
- Agreement
- a 2 year agreement (option)
- Freshwater finances 100% of the partnership.
- Every year Freshwater can terminate the partnership if they wish.
- CF schemes

\mathbf{t}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	\mathbf{t}	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Investment	25,00	75,00	225,00	Net profits	50,00	55,00	60,00

$>$ The volatility of the future business value is estimated to be 50%.

- Other: Freshwater capital structure will remain constant \& no change in working capital
- Capital costs:
o The project WACC is 17%
o Freshwater WACC is 12%
o The risk free rate is 2%

UTB

Solvay Brussels School

Q5: Real Options

- Questions

Stock finally lost 10% and closed down at $20.9 \$$.
$>$ The same evening John Ross III E. a well-known local investor and major Freshwater investor contacted you to know you what he should do with his participation.
a) calculate NPV of partnership
b) Calculate NPV of option value
c) Is the stock slide justified? Shareholder Ross asked you what to do!
(D) \quad D

Q5: Real Options: Step 2: Binomial tree

Step 2.1: Calculate binomial parameters:

$$
\text { vol }=0,5 \quad \Rightarrow>\begin{aligned}
& u=1,65=e^{0,5} \\
& d=0,61=1 / d
\end{aligned} \Rightarrow p=0,40 \quad \quad \operatorname{Prob}_{R N}=\frac{(1+r f-d)}{u-d}
$$

Step 2.2: Build trees

Real option NPV	Value at each node $=$		
$\mathbf{t}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\operatorname{Max}\{0,[p \mathrm{pu}+(1-\mathrm{p}) \mathrm{Vd}] /(1+\mathrm{rDt})-S T R I K E\}$

$$
1 / 1+r D t=0,98
$$

Step 1: Draw binomial tree of possible spot prices $\quad \Rightarrow \quad$ Step 2: Draw NPV Option tree

Q5: Real Options: Step 3: Evaluate \& Answer

Step3: Evaluate pricing:

Real Option NPV
\# shares
per share
original share price
theoretical price
actual closing price

35,76 k \$
100000
0,358 \$ / share
23,2500 \$ / share
23,6076 \$ / share
20,9250 \$ / share
theoretical increase $\quad 1,54 \%$
current mispricing -11,36\%

Answer: Buy extra Freshwater shares as the option is mispriced / undervalued
$>10 \%$ stock price decline is not justified,
$>$ based on the 'real option NPV' approach the stock price should have modestly $(+1,5 \%)$ increased
$>$ The current mispricing is $-11,3 \%$ (too low)
$>$ The NPV is effectively negative but ignores the option value

Concluding remarks

Wider context

-Scot Fitzgerald
$>$ More than 60 years ago, F. Scott Fitzgerald saw "the ability to hold two opposing ideas in mind at the same time and still retain the ability to function" as the sign of a truly intelligent individual.
-Integrative thinking

- Succesfull leaders tend to share a somewhat unusual trait:
o They have the predisposition and the capacity to hold in their heads two opposing ideas at once.
o And then, without panicking or simply settling for one alternative or the other, they're able to creatively resolve the tension between those two ideas by generating a new one that contains elements of the others but is superior to both.
- This process of consideration and synthesis can be termed integrative thinking.
- It is this discipline-not superior strategy or faultless execution-that is a defining characteristic of most exceptional businesses and the people who run them. The focus on what a leader does is often misplaced.
$>$ Evaluating Options is an essential part of Integrative Thinking

