

Advanced Corporate Finance Exercises Session 6 « Review Exam 2012» / Q&A

Professor Kim Oosterlinck

E-mail: koosterl@ulb.ac.be

Teaching assistants:

Nicolas Degive (<u>ndegive@ulb.ac.be</u>) Laurent Frisque (<u>laurent.frisque@gmail.com</u>) Frederic Van Parijs (<u>vpfred@hotmail.com</u>)

Review Exam 2012

- **1. Company Valuation**
- 2. Bond Valuation: Risky bond

Extra Question

3. Bond Valuation: Callable bond

Q&A

- Story
 - You
 - You graduated from SBS, hired by the famous Belgian Big Bank.
 - Your job = valuation IPO's
 - The first company you need to analyze is the Huge Bakery of Special Cakes (HSBC).

Q1: Company and Project valuation

DATA

□ Company HSBC

- EBIT is perpetuity = $2.500.000 \in$
- marginal tax rate = 30%.
- perpetual debt valued at $6.000.000 \in @$ yearly coupon of 3%.

□ Market data

- RFR = 3%
- Similar unlevered Re = 8%

EBIT	€ 2 500 000
Debt	€ 6 000 000
Тс	30%
r _a	8,00%
r _f	3,00%
r _d	3,00%

Q1: Company and Project valuation

- Questions
 - a) What is value of the **unlevered** company?
 - b) What is then the value of the **levered** company and of its equity?
 - c) What are the **expected return on equity** and the **wacc** worth?

d) What would the company be worth if it had a clear policy regarding leverage and wished to **rebalance the debt continuously** so as to reach the target leverage of 25%? What is then the value of the wacc ?

e) How can you **explain the difference in value** for the company between b and d? Give the intuition.

UCCE
SolvayBrusselsSchool
Q1.a &b: Company valuation: Theory
> step 1: calculate V unlevered
Tax intro =>
$$V_{unlevered} = EBIT * \frac{1 - Tc}{R_a}$$

> step 2: calculate V levered
 $V_{levered} = V_U + Tax Shield$
 $V_L = V_U + T_C D$
PV (TaxShield) = $\frac{T_C x r_R D}{r_R} = T_C D \Rightarrow Tax Shield = T_C * Debt$
> step 3: calculate E
 $V_L = E + D \Rightarrow E = V_L - D$

Q1.c expected return on equity and the wacc

c.1

=>	VL	23 675 000		
	Debt	6 000 000	D/V =	25,3%
	Е	17 675 000	E/V =	74,7%
			D/E=	33,9%

 $r_e = r_a + [(r_a - r_f)^* (1 - T_c)^* (D/E)]$ 8,00% **r**_a = 3,00% **r**_f = $=> (r_a - r_f) = r_p = 5,00\%$ Tc = 30%=> 1 - Tc = 70% $\mathbf{r}_{e} = 8\% + (5\% * 70\% * 33,9\%)$ 9,19% **r**_ = wacc = $[(r_{d}^{*}Debt^{*}(1-Tc) + (r_{e}^{*}E)] / VL$ c.2 OR wacc = $(r_d * (1-Tc)* (D/V) + (r_e * E) * (E/V)$ 3,00% **r**_d = wacc = [(3%*6000*70%) + (9,19%*17675)] / 23675=(3%*70%*25,3%)+(9,19%*74,7%)7,39% wacc =

Q1.d continuously rebalanced debt: theory

	Modigliani Miller	Harris-Pringle		
Debt level (Absolute)	Certain	Uncertain		
First tax shield	Certain	Uncertain		
WACC	$r_{a} (1 - T_{C} L)$	$r_a - r_d T_C L$		

Main point to understand, since debt is adjusted annually, tax shield will change, the value of the shield willbe unknown and thus risky and should be discounted at r_a

- \succ The risk of the tax shield is equal to the risk of the unlevered firm
- The value of the tax shield will decrease and the WACC will get closer to to r_a (WACC of the unlevered firm)

Q1.d continuously rebalanced debt

➤ step 1 : calculate new WACC

Wacc = ra-rd*Tc*Target L

25%	Tc =	30%
8,00%		
3,00%		
7,78%		= 8% - 3% *30%* 25%
	25% 8,00% 3,00% 7,78%	25% Tc = 8,00% 3,00% 7,78%

➤ step 2: calculate new V levered

$$V_{levered, rebalanced} = EBIT \ge \frac{1 - \text{Tc}}{\text{WACC}} = 2\ 500\ 000 \in \mathbb{X} \quad \frac{1 - 0.30}{7.78\%} = \frac{1\ 750\ 000 \in \mathbb{X}}{7.78\%} = 22\ 508\ 039 \in \mathbb{X}$$

Q1.e continuously rebalanced debt

≻new V _{levered}

 $V_{levered, rebalanced} = EBIT \ge \frac{1 - Tc}{WACC} = 2\ 500\ 000 \in x \ \frac{1 - 0.30}{7.78\%} = \frac{1\ 750\ 000 \in \varepsilon}{7.78\%} = 22\ 508\ 039 \in \varepsilon$

➤ step 3: compared with

> <u>ANSWER</u>:

- Levering up adds value through tax shield (= $1\,800\,000$ €)
- Rebalancing through target debt level introduces uncertainty to tax shield and thus reduces value again, but value remains above unlevered value. Details on next slide

ULB

SolvayBrusselsSchool

Q1.e continuously rebalanced debt: EXTRA

➤ step 2: new V levered

- > <u>ANSWER</u>:
 - The Tax Shield drops by 65% from 1 800 000€ to 633 039€
 - Is this through the change in debt level itself or the introduced risk on the tax shield, that implies a higher discount rate)?
 - Keep target level equal to current L, and thus keeping risk on Tax Shield same only reduces Tax Shield by 8 945 € barely 1%
 - Thus the main source of the lower Tax Shield comes from the higher discount rate used r_a (8%) instead of r_d (3%)

$V_{L, rebalanced}$	22 508	3 039
PV Tax shield	$= V_L - V_U$	
	= 22 508 03	9 - 21 875 000
Rebalanced Tax Shield	633	3 039
MM Tax Shield	1 800	000 = 6.000.000 * 30%
Rebalanced Tax Shield - MM Tax Shield	-1 166	961 = -65%
L initial (=current)	25,3%	
given Target L	25,0%	
if target L equal current L		
=>Wacc =	7,77%	
V _{L, rebalanced} through different L through risk on Tax Shield Total change in Tax Shield	22 516 984 -8 945 -1 158 016 -1 166 961	-0,8% -99,2% 12

Q2: Bond valuation

Story

- you have been asked to work on risky debt valuation.
- Apply Merton Model

DATA

□ Company

- market value of 1.000.000€
- highly volatile sector, with yearly volatility equal to 50%!
- Implicit assumption: no dividends
- □ Callable Bond features
 - Coupon = 0 (ok = Merton Model)
 - T = 2 years
 - Amount = 500.000€

□ Market

• risk-free rate (annual equivalent rate) = 5%.

Value =	€1 000 000
volatility =	50%
Face value =	€500 000
$r_f =$	5,00%
Τ=	2,0
C =	0,00

Q2: Value of the bond: steps

- Step 1: Risk neutral probability
 - > Unless if interest tree needed: p = 0,5 = 1-p
 - 1. Calculate U based on sigma
 - 2. Calculate D
 - 3. Calculate Risk Neutral Probability
- Step 2: Draw binomial trees
 - 1. Tree of company value or interest rates:
 - 2. Tree of debt (and if applicable):
 - a) Callable debt
 - b) Option-free bond value
- Step 3: Analyse results
 - Option Value = Option-free bond value Optional bond value
 - ✤ Calculate yield and risk premium

left to right right to left right to left right to left

Q2.b. Step 1: what is risk neutral probability?

• Risk neutral probability:

- \clubsuit "Probability that the stock rises in a risk neutral world" and
- \clubsuit "where the expected return is equal to the risk free rate.

 $= > \text{ In a risk neutral world} : p \times uS + (1-p) \times dS = (1+r\Delta t) \times S \implies Prob_{RN} = \frac{(1+rf-d)}{u-d}$ $volatility = 50\% \qquad u = e^{\sigma\sqrt{\Delta t}}$ $r_f = 5,00\% \implies d = 0,607 = 1/u$

•Solving: with u = 2,028 and d = 0,493

Prob_{RN} = p = $\frac{1 + \text{rf} - d}{u - d} = \frac{(1 + 0.05 - 0.607)}{1.649 - 0.607} = \frac{0.443}{1.042} = 0.426 => 1 - p = 0.574$

Q2.b. Step2: Binomial tree of the bond

drawing binomial trees

Tree 1: possible company values

=> Tree 2: possible debt values

Every T: you weigh next period by probability and you discount

ULB

SolvayBrusselsSchool

Q2.c: yield & risk premium and rating

(c) What is the risk premium of the company?

> Step 1: yield
$$y = 9,90\%$$

> Step 2: risk premium : yield – risk free rate = 9,90% - 5% = 4,90% = **490 bps**

Q3: EXTRA QUESTION: Callable bond

DATA

□ Callable Bond features

- Coupon = 0,00%
- T = 3 years
- Amount => Face value = $107 \in$
- Callable in year 1&2 @ 100 €

□ Market

- 1 Yr rate = 5,5% and its variance = 4%
 - ➢ Binomial Node 1 in T1: try 4,85%
 - \Rightarrow lower so bottom node
 - ➤ Binomial Node 2 in T1: try 4,00%

STORY

 $\hfill\square$ Need cash

 \Box Equity needed, but can't / won't => issue bond, but think IR will fall => issue callable bond

	Data					
		$\sigma^2 =$	4,00%		= variance	
	current	t 1Y rate =	5,50%	=> Try	4,85%	4,00%
- \		K =	100			
-/		T =	3			
		F @ T3=	107			
		C=	0,00			

- Questions
- ➢ Based upon Binomial tree
 - (a) Construct interest rate tree
 - No need to check tree with on the run
 - Just build tree with 2 nodes given
 - (b) What would be the value of an option-free bond taking into account your interest rate binomial tree?
 - (c) What is the value of the **callable bond**?
 - (d) What is the value of the **embedded call option**?

Q3.a: Construction of Binomial interest tree

For IR tree you need volatility, not the variance, that was given!

≻ THEORY:

- If σ = assumed volatility of the one-year forward rate
- Then $r_{1,H} = r_{1,L}(e^{2\sigma})$
- ⇒ The one-year forward rate is assumed to follow a lognormal random walk,

ULB

SolvayBrusselsSchool

Q3.b: Binomial tree of Option-free Bond (straight bond)

 Risk neutral probability is assumed p= 0.50, so no need to calculate

Year	0	1	2	3		Comment
				107		Face
						Coupon Yr 3
	n= 0	50 =>	\checkmark			
	x 0,5	5 / (1+r)	98,25	= 107 / 1,0	<i>)89</i>	PV in T=2 of the weighted bond V expected V in T=3 $$
			\uparrow			
	\mathbf{n}	\checkmark		107		Face
		92,89 ←				Coupon Yr 3
		= (0,5x98,26	0,5x100,97)	1,0724		
	\checkmark		\checkmark			
	90,09		100,97	= 107 / 1,0)597	PV in T=2 of the weighted bond V expected V in T=3 $$
= (0,	5x92,89+0	,5x97,21)/1,05	5			
	\uparrow	= (0,5x100,97	' +∫0,5x102,88) Ì	1,0485		
		— 97,21 <i><</i> ∕∕		107		Face
	\langle	1				Coupon Yr 3
		0.50	\downarrow			
	x 0,5	/ (1+r)	102,88	= 107 / 1,0)4	PV in T=2 of the weighted bond V expected V in T=3 $$
			1			
			(107		Essa
				107		Face

Q3.c: Binomial tree of Callable bond & d. Option Value

<u>c) Callab</u>	le bond v	<u>alue</u>		K =	100		
	Year	0	1	2	3		Comment
					107		Face
							Coupon Yr 3
		- 0.50		\checkmark	= 107 / 1,	089	PV in T=2 of the weighted bond V expected V in T=3
		p= 0,50 x 0,5 / (*	=> 1+r)	- 98,25	> don't c	all	=Min (Call price,Bond value)
		/		\uparrow	= 98 ,25 < 1	100	=Min (100; 98,25)
			\checkmark		107		Face
		\backslash	- 92,44	\supset			Coupon Yr 3
		Y	= (0,5x98,26	→0,5x100)//1,0	724		
		\checkmark		\searrow	= 107 / 1,	0597	PV in T=2 of the weighted bond V expected V in T=3 $$
		89,01		100,00	> call		=Min (Call price,Bond value)
	= (0)	,5 x92 ,44+	0,5x95,37)/1,0	55 (= 100,97 >	100	=Min (100; 100,97)
		\uparrow	= (0,5x100 + 0,	.5x100) / 1,048	5		
		\rightarrow	_ 95,37 <		107		Face
			\uparrow				Coupon Yr 3
		\backslash		\checkmark	= 107 / 1,	04	PV in T=2 of the weighted bond V expected V in T=3 $$
		1-p= 0	,50 =>	100,00	> call		=Min (Call price,Bond value)
		x 0,0 /	(111)	\uparrow	= 102,88 >	100	=Min (100; 102,88)
					107		
					0		
<u>d)</u>	Call option	1,08	= Option-free bon	d value - Callabl	e bond value		= 90,09 - 89,01