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Abstract. We introduce a new approach to justify mean-field
limits for first- and second-order particle systems with singular
interactions. It is based on a duality approach combined with the
analysis of linearized dual correlations, and it allows to cover for the
first time arbitrary square-integrable interaction forces at possibly
vanishing temperature. In case of first-order systems, it allows
to recover in particular the mean-field limit to the 2d Euler and
Navier–Stokes equations. We postpone to a forthcoming work the
development of quantitative estimates and the extension to more
singular interactions.
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1. Introduction

Consider the classical Newton dynamics forN indistinguishable point-
particles with pairwise interactions. Letting d ≥ 1 be the space dimen-
sion, we denote by Xi,N ∈ Ω and Vi,N ∈ Rd the positions and velocities
of the particles, labeled by 1 ≤ i ≤ N , where the space domain Ω ⊂ Rd

stands either for the whole space Rd or for the periodic torus Td. The
evolution of the particle system is given by the following ODEs,

d

dt
Xi,N = Vi,N ,

d

dt
Vi,N =

1

N − 1

N∑
j:j 6=i

K(Xi,N −Xj,N),

1
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where K : Ω→ Rd is an interaction force kernel with K ∈ L1
loc(Ω;Rd)

and with the action-reaction condition K(x − y) = −K(y − x), and
where the mean-field scaling is considered.1 As the upcoming results
apply identically to stochastic models, we rather consider more gen-
erally the following system of SDEs including the effects of Brownian
forces,

(1)


dXi,N = Vi,Ndt,

dVi,N =
1

N − 1

N∑
j:j 6=i

K(Xi,N −Xj,N) dt+
√

2α dBi,N ,

where {Bi,N}1≤i≤N are N independent Brownian motions and where
the temperature 0 ≤ α < ∞ is a fixed parameter. We take α inde-
pendent of N for simplicity, but easy extensions would allow to have
α = αN with for example αN → 0.

Taking a statistical perspective, we consider a probability density FN
on the N -particle phase space DN := (Ω × Rd)N , and Newton’s equa-
tions (1) are then equivalent to the following Liouville equation,

(2) ∂tFN +
N∑
i=1

(
vi · ∇xiFN +

1

N − 1

N∑
j:j 6=i

K(xi − xj) · ∇viFN

)

= α
N∑
i=1

∆viFN .

The exchangeability of the particles amounts to assuming that FN is
symmetric with respect to its different entries

zi = (xi, vi) ∈ D := Ω× Rd, for 1 ≤ i ≤ N .

More precisely, we shall assume that at initial time t = 0 particles are
f ◦-chaotic in the sense of

(3) FN |t=0 = (f ◦)⊗N ,

for some probability density f ◦ ∈ P(D)∩L∞(D). This exact chaoticity
assumption could be partly relaxed in our argument, but we do not
pursue in that direction here.

In the macroscopic limit N ↑ ∞, we aim at an averaged description
of the system, describing the evolution of a typical particle as given by

1We use the prefactor 1
N−1 instead of the usual 1

N for mere convenience, but it

of course does not change anything in the sequel.
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first marginal

FN,1(z) :=

∫
DN−1

FN(z, z2, . . . , zN) dz2 . . . dzN .

As is well known, formally neglecting particle correlations, we are led to
expect that FN,1 remains close to a solution f ∈ L∞(R+;P(D)∩L∞(D))
of the following mean-field Vlasov equation,

(4) ∂tf + v · ∇xf + (K ∗ f) · ∇vf = α∆vf, f |t=0 = f ◦,

where K ∗ f(x) :=
∫
DK(x − x′)f(x′, v′) dx′dv′. More generally, the

following propagation of chaos is expected: for all k ≥ 0, the kth
marginal

(5) FN,k(z1, . . . , zk) :=

∫
DN−k

FN(z1, . . . , zN) dzk+1 . . . dzN

is expected to remain close to the tensor product f⊗k of the mean-field
Vlasov solution.

In the present contribution, we introduce a new dual approach to
justify the mean-field limit, which allows to cover for the first time ar-
bitrary square-integrable interaction forces at possibly vanishing tem-
perature. We postpone to a forthcoming work the development of quan-
titative estimates and the extension to even more singular interactions
taking advantage of the explicit hierarchy in Lemma 14 in Appendix B.
The result holds for arbitrary ‘weak duality solutions’ of the Liouville
equation in the sense introduced in Appendix A: this notion of solu-
tion does not require the existence of renormalized solutions and can
be checked to exist whenever K ∈ L1

loc(Ω;Rd).

Theorem 1. Let 0 ≤ α < ∞, let K ∈ L2
loc(Ω;Rd), and assume for

convenience K ∈ L∞loc(|x| > 1). Consider a global weak duality solution
FN ∈ L∞loc(R+;L1(DN) ∩ L∞(DN)) of the Liouville equation (2), in the
sense of Appendix A, with f ◦-chaotic initial data (3) for some density
f ◦ ∈ P(D)∩L∞(D). Let f ∈ L∞(R+;P(D)∩L∞(D)) be a bounded weak
solution of the Vlasov equation (4) with initial data f ◦, and assume that
for some T > 0 it has bounded Fisher information∫ T

0

(∫
D
|∇v log f |2f

) 1
2
< ∞.

Then, the following propagation of chaos holds: for all k ≥ 0, the kth
marginal FN,k, given by (5), converges to f⊗k as N ↑ ∞ in the sense
of distributions on [0, T ]× Dk.

The method can also be adapted to first-order dynamics: the corre-
sponding result that we obtain in this way takes on the following guise.
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As the adaptation is straightforward, we omit the detail for shortness.
Compared to previous work on mean field for first-order dynamics, it
allows to treat for the first time quite singular interactions that have no
specific energy structure. As explained at the end of the statement, by
symmetry, the local squared integrability of the interaction force can
be slightly relaxed up to assuming more regularity for the mean-field
solution, so that this result covers in particular the well-known case of
the 2d Euler and Navier–Stokes equations.

Theorem 2. Let 0 ≤ α < ∞, let K ∈ L2
loc(Ω;Rd) with div(K) ∈

L2
loc(Ω), and assume for convenience K ∈ W 1,∞(|x| > 1). Consider a

global weak duality solution FN ∈ L∞loc(R+;L1(ΩN) ∩ L∞(ΩN)), in the
sense of Appendix A, of the Liouville equation

(6) ∂tFN +
1

N − 1

N∑
i 6=j

divxi
(
K(xi − xj)FN

)
= α

N∑
i=1

∆xiFN ,

with f ◦-chaotic initial data FN |t=0 = (f ◦)⊗N for some density f ◦ ∈
P(Ω) ∩ L∞(Ω). Let f ∈ L∞(R+;P(Ω) ∩ L∞(Ω)) be a bounded weak
solution of the McKean–Vlasov equation

∂tf + div
(
(K ∗ f)f

)
= α∆f, f |t=0 = f ◦,

and assume that for some T > 0 it has controlled Fisher information∫ T

0

(∫
Ω

|∇ log f |2f
) 1

2
< ∞.

Then, the following propagation of chaos holds: for all k ≥ 0, the
kth marginal FN,k of FN converges to f⊗k as N ↑ ∞ in the sense of
distributions on [0, T ]× Dk.

In addition, in this result, the condition K ∈ L2
loc(Ω;Rd) can be partly

relaxed up to assuming more regularity for f : more precisely, it can be
replaced by the following weaker condition,∫ T

0

(∫
Ω2

∣∣K(x− y) ·
(
∇ log f(x)−∇ log f(y)

)∣∣2f(x)f(y) dxdy
) 1

2
<∞,

which holds for instance whenever the kernel satisfies |x|K ∈ L2
loc(Rd)

and assuming ∇ log f ∈ L1(0, T ;W 1,∞(Ω)).

Duality methods have been first developed in [17] around renormal-
ized solutions of the 2d Euler equations, following an earlier idea of [18]
for the transport equation, and they have been further developed later
on to construct Eulerian and Lagrangian solutions to the continuity
and Euler equations with L1 vorticity [16] and to show that smooth ap-
proximation is not a selection principle for the transport equation with
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rough vector field [15]. To be complete, we can cite for instance [48]
and references therein (for instance [6]) for definitions of dual solutions
related to transport type equations.

To the authors’ knowledge, duality methods have however never been
used for mean-field limit purposes. In order to study mean-field limits
by duality methods, dual marginals of observables and their correlation
structure will be considered and analyzed. In a nutshell, we shall derive
a hierarchy of equations on linearized dual correlations and show that
the limiting hierarchy has a unique solution: assuming that dual cor-
relations vanish initially in the macroscopic limit, we then deduce by
uniqueness that this property propagates over time, which can be used
to conclude the desired mean-field limit result. Note that correlation
functions associated with the joint N -particle density FN , as well as
their evolution equations, were first used in the framework of kinetic
theory in [27, 41, 50, 2, 42] in form of so-called cumulant expansions.
Linearized correlations close to an initial equilibrium have been used
in particular in [2, 3, 4] for problems related to dilute gases of hard
spheres, and they have also been strongly used in recent papers such
as [20, 22] and more recently in [21] for mean-field limit problems. Yet,
the perspective followed here is different as we study correlations of the
dual equations far from any notion of equilibrium.

Comparison to previous results. In recent years, mean-field limit
problems with singular interactions have been largely investigated for
specific kernels. At vanishing temperature, the mean-field limit for
first-order systems was classically obtained for example in [28, 29]
or [52, 53] for 2d Euler, and it was remarkably extended in [54] to
essentially any Riesz interaction kernel by means of modulated energy
techniques. For the corresponding first-order setting with positive tem-
perature, we refer in particular to [23, 44, 39] for the mean-field limit to
2d Navier–Stokes, to [9, 10, 24, 14] for singular attractive kernels, and
to [49] for multiplicative noise. Uniform-in-time propagation of chaos
was even recently obtained in [31, 51, 13].

In the case of second-order systems, on the contrary, much less is
known. The mean-field limit was classically obtained in [7, 19] for
Lipschitz kernels K, see also [55]. In dimension d = 1, the mean-field
limit to the Vlasov–Poisson–Fokker–Planck system was derived in [30,
35]. In dimension d ≥ 2, the only results for unbounded interaction
kernels were obtained in [33, 34], but those are valid only for vanishing
temperature and for mildly singular interaction kernels with |K(x)| .
|x|−γ and |∇K(x)| . |x|−γ−1 for some γ < 1. In [38], the mean-field
limit was derived for any K ∈ L∞(Rd) without needing control on ∇K.
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We also mention [11], where the mean-field limit is derived for bounded
but discontinuous interactions based on so-called vision cones.

The case of singular interaction kernels K with N -dependent trun-
cation is much better understood: given |K(x)| . |x|−γ, one can con-
sider the mean-field limit problem with K replaced instead by a trun-
cated kernel |KN(x)| . |x + εN |−γ with some regularizing parameter
εN → 0 as N → ∞. This was classically considered for example
in [25, 26, 56, 57], and we refer to the more recent works [46, 47] where
the conditions on the regularization parameter εN are further weak-
ened. The mean-field limit for such truncated kernels is also studied in
case of positive temperature, see for example [12, 36].

In the special case of the Cucker–Smale flocking model, it is possible
to take advantage of some dispersion properties of the dynamics in
order to prove the mean-field limit result for some range of singular
interaction kernels; we refer for instance to [43].

Recently, new hierarchical approaches have been introduced to bound
marginals for particle systems with appropriate non-degenerate dif-
fusion. Using relative entropy, [45] was the first to derive the opti-
mal quantitative estimates for the convergence of the marginals to the
limiting tensorized solution (obtaining optimal rates O(1/N) instead

of O(1/
√
N) for marginals, as first obtained for smooth interactions

in [20]). While formulated for first-order systems, the method of [45],
as noted by the author, also applies to second-order systems with diffu-
sion in velocity. It takes advantage of the regularization provided by the
diffusion to avoid “losing” a derivative in the hierarchy estimates. The
use of the relative entropy however imposes that the interaction kernel
belongs to an exponential Orlicz space. More recently, a novel hierar-
chical approach has been developed in [8], starting from the BBGKY
hierarchy and allowing to justify the mean-field limit of interacting par-
ticle systems with positive temperature with interaction kernel deriving
from a potential, leading to the first ever derivation of the mean-field
limit to the Vlasov–Poisson–Fokker–Planck system in 2d, as well as to
a partial result in 3d.

Here we propose the first method allowing to consider possible van-
ishing temperature parameter covering first- and second-order systems
with a singular kernel K in L2

loc(Ω;Rd). Unfortunately, in its present
form, our method does not allow to consider more general singular ker-
nels for instance to justify the mean-field limit to the Vlasov–Poisson–
Fokker–Planck equation, even in 2d. We postpone to a forthcoming
work the development of quantitative estimates and the extension to
more singular interactions.
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2. A dual approach to mean field

Henceforth, we let the space domain Ω be either the whole space Rd

or the periodic torus Td in dimension d ≥ 1, we let 0 ≤ α <∞ be fixed,
we consider an interaction force kernel K ∈ L1

loc(Ω;Rd) ∩ L∞(|x| > 1)
with the action-reaction condition K(x − y) = −K(y − x), and we
consider an initial density f ◦ ∈ P(D)∩L∞(D) on phase space D := Ω×
Rd. Our approach starts with the following observation, which provides
some sort of a dual reformulation for mean-field limit questions. Note
that the notion of weak duality solutions for the Liouville equation as
introduced in Appendix A is precisely designed for the present result
to hold, while the rest of the argument will hold for an arbitrary weak
solution of the backward Liouville equation.

Proposition 3. Let FN be a global weak duality solution of the Liou-
ville equation (2) in the sense of Appendix A, with f ◦-chaotic initial
data (3). Let f ∈ L∞loc(R+;P(D) ∩ L∞(D)) be a weak solution of the
corresponding mean-field Vlasov equation (4) with initial data f ◦, and
assume ∇vf ∈ L1

loc(R+;L1(D)). Given k ≥ 1, T > 0, and ψ ∈ C∞c (D),
further consider a bounded weak solution ΦN ∈ L∞([0, T ]×DN) of the
corresponding backward Liouville equation

(7) ∂tΦN +
N∑
i=1

(
vi · ∇xiΦN +

1

N − 1

N∑
j:j 6=i

K(xi − xj) · ∇viΦN

)
= −α

N∑
i=1

∆viΦN ,

with final condition

(8) ΦN(z1, . . . , zN)|t=T =

(
N

k

)−1 ∑
1≤i1<...<ik≤N

ψ(zi1) . . . ψ(zik),

for which FN is a global weak duality solution in the sense of Appen-
dix A. Then there holds

(9)

∫
Dk
ψ⊗kFN,k(T )

N↑∞−−−→
(∫

D
ψf(T )

)k
if and only if we have

(10) N

∫ T

0

(∫
DN
Vf (z1, z2) ΦN f

⊗N
)
dt

N↑∞−−−→ 0,

where we have defined

(11) Vf (zi, zj) :=
(
K(xi − xj)−K ∗ f(xi)

)
· (∇vi log f)(zi).
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Proof. We start by comparing the equations for ΦN and FN : as they
are taken to be in duality in the sense of Appendix A, we get∫

DN
ΦN(T )FN(T ) =

∫
DN

ΦN(0)FN(0),

and thus, inserting the final condition (8) for ΦN and the f ◦-chaotic
initial data (3) for FN ,

(12)

∫
Dk
ψ⊗kFN,k(T ) =

∫
DN

ΦN(0) (f ◦)⊗N .

The right-hand side can be further decomposed as∫
DN

ΦN(0)(f ◦)⊗N =

∫
DN

ΦN(T )f(T )⊗N −
∫ T

0

(
∂t

∫
DN

ΦN(t)f(t)⊗N
)
dt,

and thus, recalling again the final condition (8) and using the equations
for ΦN and for f ,∫

DN
ΦN(0)(f ◦)⊗N =

∫
Dk
ψ⊗kf(T )⊗k

− 1

N − 1

N∑
i 6=j

∫ T

0

(∫
DN
Vf (zi, zj) ΦN f

⊗N
)
dt,

where Vf is defined in the statement. This identity is easily justified by
an approximation argument for bounded weak solutions ΦN and f , pro-
vided that ∇vf ∈ L1([0, T ] × D). Note that this assumption precisely
ensures that the last right-hand side term makes sense in this iden-
tity. Combining this with (12), and recalling that ΦN is a symmetric
function in its N variables, this concludes the proof. �

3. Dual linearized correlations

Given k ≥ 1, T > 0, and ψ ∈ C∞c (D), and given a bounded
weak solution ΦN ∈ L∞([0, T ] × DN) of the backward Liouville equa-
tion (7)–(8), we aim to prove the dual convergence property (10). For
that purpose, we analyze correlations of the dual solution ΦN with re-
spect to the mean-field density f⊗N , somehow showing that the special
structure of the final condition (8) is approximately preserved. We first
define the marginals {MN,n}0≤n≤N of ΦN with respect to f⊗N : for all
0 ≤ n ≤ N , we let

(13) MN,n(z1, . . . , zn)

:=

∫
(Rd)N−n

ΦN(z1, . . . , zN) f⊗N−n(zn+1, . . . , zN) dzn+1 . . . dzN .
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As ΦN is a bounded symmetric function in its N variables, the mar-
ginal MN,n is also bounded and symmetric in its n variables. Next,
corresponding linearized correlation functions {CN,n}0≤n≤N (also some-
times called cumulants) are defined to satisfy the following cluster ex-
pansion,

(14) ΦN(z1, . . . , zN) =
N∑
n=0

∑
σ∈PNn

CN,n(zσ),

where PN
n denotes the set of all subsets of [N ] := {1, . . . , N} with n

elements, and where for an index subset σ = {i1, . . . , ik} we write
zσ := (zi1 , . . . , zik). Further requiring CN,n to be a symmetric function
in its n variables and to satisfy

(15)

∫
D
CN,n(z1, . . . , zn) f(zj) dzj = 0, for all 1 ≤ j ≤ n,

the above relation (14) uniquely defines the linearized dual correla-
tions {CN,n}0≤n≤N .

Equivalently, the cluster expansion (14) can be inverted and correla-
tions can be defined explicitly in terms of marginals: for all 0 ≤ n ≤ N ,

(16) CN,n(z1, . . . , zn) =
n∑
k=0

(−1)n−k
∑
σ∈Pnk

MN,k(zσ).

Note that, restricting the cluster expansion (14) to k particles, we have
for all 0 ≤ k ≤ N ,

(17) MN,k(z1, . . . , zk) =
k∑
l=0

∑
τ∈Pkl

CN,l(zτ ).

In terms of these correlation functions, the quantity in (10) that we
aim to estimate takes the form

(18) N

∫ T

0

(∫
DN
Vf (z1, z2) ΦN f

⊗N
)
dt = N

∫ T

0

(∫
D2

Vf CN,2 f
⊗2
)
dt,

where we have used the fact that the definition (11) of Vf satisfies

(19)

∫
D
Vf (z1, z2) f(zj) dzj = 0 for j = 1, 2.

This identity (18) leads us to the following straightforward consequence
of Proposition 3; we formulate it here in the L2 setting of Theorem 1,
but it can be adapted to an arbitrary Lp setting.
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Proposition 4. Further assume that K ∈ L2
loc(Ω;Rd) and that f sat-

isfies ∫ T

0

(∫
D
|∇v log f |2f

) 1
2
<∞.

If we can show

(20) NCN,2
∗
⇀ 0 weakly-* in L∞(0, T ;L2(D2, f⊗2)),

then we have
∫
Dk ψ

⊗kFN,k(T )→ (
∫
D ψf(T ))k in the setting of Proposi-

tion 3.

Proof. The assumptions on K and f ensure that Vf belongs to L1(0, T ;
L2(D2, f⊗2)). The convergence property (20) would then precisely en-
sure that (18) tends to 0 as N ↑ ∞. By Proposition 3, this implies (9)
and the conclusion follows. �

This indicates the importance of dual correlations. In order to prove
the desired convergence (20), we start with the following a priori esti-
mates on correlations, which are inspired from [2, Proposition 4.2] and
simply follow from symmetry considerations. In particular, for n = 2,
this proves the (weighted) L2 boundedness of NCN,2.

Lemma 5. For all 0 ≤ n ≤ N , we have uniformly on [0, T ],(∫
Dn
|CN,n|2f⊗n

) 1
2 ≤

(
N

n

)− 1
2

‖ψ‖L∞(D).

Proof. From the cluster expansion (14) and the orthogonality prop-
erty (15) of cumulants, we find∫

DN
|ΦN |2f⊗N =

N∑
n=0

(
N

n

)∫
Dn
|CN,n|2f⊗n.

The left-hand side is bounded by ‖ΦN‖L∞(DN ), which is controlled
on [0, T ] by the final value ‖ΦN(T )‖L∞(DN ) for bounded weak solu-
tions of the backward Liouville equation, cf. Definition 10. Recalling
the final condition (8), we deduce on [0, T ],∫

DN
|ΦN |2f⊗N ≤ ‖ΦN‖2

L∞(DN ) ≤ ‖ΦN(T )‖2
L∞(DN ) ≤ ‖ψ‖

2
L∞(D),

and the conclusion follows. �

For n = 2, the above estimate only yields the boundedness of NCN,2,
which is certainly not enough to show the desired convergence prop-
erty (20). Yet, by weak compactness, it at least provides the following
convergence result that will be used later on.
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Lemma 6. Up to extraction of a subsequence as N ↑ ∞, we have the
following weak convergences for rescaled correlations, for all n ≥ 0,

(21) N
n
2CN,n

∗
⇀ n!

1
2 C̄n in L∞(0, T ;L2(Dn, f⊗n)),

for some C̄n ∈ L∞(0, T ;L2(Dn, f⊗n)). In addition,

(22) sup
0≤t≤T

sup
n≥0

∫
Dn
|C̄n(t)|2f(t)⊗n ≤ ‖ψ‖2

L∞(D).

Proof. Consider the rescaled correlation

C̄N,n :=

(
N

n

) 1
2

CN,n, 0 ≤ n ≤ N.

For all n ≥ 0, Lemma 5 implies that C̄N,n is bounded as N ↑ ∞ in
L∞(0, T ;L2(Dn, f⊗n)). Up to extraction of a subsequence, we thus

have C̄N,n
∗
⇀ C̄n for some C̄n in that space, which is equivalent to (21).

In addition, the a priori estimates on the extracted limit follow from
Lemma 5 by weak lower semicontinuity. �

In these terms, the desired convergence (20) is equivalent to C̄2 = 0.
To prove this, a finer analysis of dual correlations is required. Arguing
as in [20], following characteristics, it is in fact possible to check

(23) CN,n(t) = O(eCtN−n)

provided that the force kernel K is smooth, which then shows that the
a priori estimates of Lemma 5 are strongly suboptimal (at least for
t = O(1), cf. [21]): in particular, we could deduce in that case C̄n = 0
for all n ≥ 1. However, in case of a singular kernel K, as considered
here, the analysis is much more delicate to handle.

We shall proceed by examining the hierarchy of equations satisfied
by correlation functions {CN,n}n. For that purpose, we first note that
by definition for all t the correlation CN,n(t) belongs to the following
subspace of L2(Dn, f(t)⊗n),

Hn(t) :=
{
g ∈ L2(Dn, f(t)⊗n) : g is symmetric in its n variables,

and

∫
D
g(z1, . . . , zn) f(t, zj) dzj = 0 for all 1 ≤ j ≤ n

}
.

The cluster expansion (17) then yields the following relation between
marginals and correlations: for all 1 ≤ n ≤ N and gn ∈ Hn(t),

(24)

∫
Dn
gnMN,n(t) f(t)⊗n =

∫
Dn
gnCN,n(t) f(t)⊗n,
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which shows that CN,n(t) is in fact the orthogonal projection of MN,n(t)
onto Hn(t) for the L2 space weighted by f(t)⊗n. In this spirit, instead
of deriving a complete equation for CN,n, it is enough to derive its weak
formulation on L∞([0, T ];Hn), that is, to derive an equation up to a
remainder term RN,n(t) ∈ Hn(t)⊥. For the sake of completeness, we
include in Appendix B the complete equations with explicit expressions
for remainders, which requires more involved combinatorial computa-
tions but will be useful for future purposes.

Proposition 7. Assume ∇vf ∈ L1([0, T ] × D). For all 0 ≤ n ≤ N ,
we have in the distributional sense on [0, T ]× Dn,

∂tCN,n +
n∑
i=1

vi · ∇xiCN,n + α
n∑
i=1

∆viCN,n

− N − n
N − 1

n∑
j=1

∫
D
Vf (z∗, zj)CN,n(z[n]\{j}, z∗) f(z∗) dz∗

+
N − n
N − 1

n∑
i=1

(K ∗ f)(xi) · ∇viCN,n +
1

N − 1

n∑
i 6=j

K(xi − xj) · ∇viCN,n

− (N − n)(N − n− 1)

N − 1

∫
D2

Vf (z∗, z
′
∗)CN,n+2(z[n], z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗

+
N − n
N − 1

n∑
i=1

∇vi ·
∫
D

(
K(xi − x∗) −K ∗ f(xi)

)
Cn+1(z[n], z∗) f(z∗) dz∗

− N − n
N − 1

n∑
j=1

∫
D
Vf (z∗, zj)CN,n+1(z[n], z∗) f(z∗) dz∗

+
1

N − 1

n∑
i 6=j

K(xi − xj) · ∇viCN,n−1(z[n]\{j}) = RN,n,

(25)

for some remainder term RN,n ∈ W−2,1
loc ([0, T ]×Dn) that is orthogonal

to Hn in the following weak sense,∫ T

0

∫
Dn
hnRN,n = 0 for all hn ∈ C∞c ([0, T ]× Dn)

such that

∫
D
hn(t, z[n]) dzj = 0 a.e. for all 1 ≤ j ≤ n.

Proof. Note that the assumption ∇vf ∈ L1([0, T ] × D) precisely en-
sures that z 7→

∫
D |Vf (·, z)|f is locally integrable. We start by deriving

the BBGKY-type hierarchy of equations satisfied by dual marginals:
by definition (13), combining the equation for ΦN and the mean-field
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equation for f , we find for all 0 ≤ n ≤ N ,

(26) ∂tMN,n +

n∑
i=1

vi · ∇xiMN,n + α

n∑
i=1

∆viMN,n

= − 1

N − 1

n∑
i 6=j

K(xi − xj) · ∇viMN,n

+
N − n
N − 1

n∑
j=1

∫
D
Vf (z∗, zj)MN,n+1(z[n], z∗) f(z∗) dz∗

− N − n
N − 1

n∑
i=1

∫
D
K(xi − x∗) · ∇viMN,n+1(z[n], z∗) f(z∗) dz∗

+
(N − n)(N − n− 1)

N − 1

×
∫
D2

Vf (z∗, z
′
∗)MN,n+2(z[n], z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗,

where we have set MN,N+1,MN,N+2 = 0 for notational simplicity. We
now turn to corresponding equations for correlations. For that purpose,
we appeal to identity (24). More precisely, by an approximation argu-
ment, setting hn = gnf

⊗n and recalling MN,n, CN,n ∈ L∞([0, T ]× Dn),
we note that (24) can be upgraded as follows: for all 1 ≤ n ≤ N ,
t ∈ [0, T ], and pn ∈ L1(Dn), we have

(27)

∫
Dn
pnMN,n(t) =

∫
Dn
pnCN,n(t)

provided that

∫
D
pn(z[n]) dzj = 0 a.e. for all 1 ≤ j ≤ n.

(Note that, by symmetry of both MN,n and CN,n, the test function pn
does indeed not need to be taken symmetric.) Now consider a smooth
test function hn ∈ C∞c ([0, T ]× Dn) that satisfies

(28)

∫
D
hn(t, z[n]) dzj = 0 a.e. for all 1 ≤ j ≤ n.

In the weak sense on [0, T ], we can decompose

d

dt

(∫
Dn
hnCN,n −

∫
Dn
hnMN,n

)
=

(∫
Dn
hn∂tCN,n −

∫
Dn
hn∂tMN,n

)
+

(∫
Dn
CN,n∂thn −

∫
Dn
MN,n∂thn

)
.
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By (27) and by the choice (28) of hn, both the left-hand side and the
second right-hand side term vanish, hence∫

Dn
hn∂tCN,n =

∫
Dn
hn∂tMN,n.

Inserting equation (26), we get

(29)

∫
Dn
hn∂tCN,n

= T1 + T2 +
N − n
N − 1

(T3 + T4) +
(N − n)(N − n− 1)

N − 1
T5,

where we have set for abbreviation

T1 :=

∫
Dn
MN,n

( n∑
i=1

vi · ∇xi +
1

N − 1

n∑
i 6=j

K(xi − xj) · ∇vi
)
hn,

T2 := −α
n∑
i=1

∫
Dn
MN,n ∆vihn,

T3 :=

n∑
j=1

∫
Dn+1

Vf (zn+1, zj)hn(z[n])MN,n+1(z[n+1])f(zn+1) dz[n+1],

T4 :=

n∑
i=1

∫
Dn+1

K(xi − xn+1) · ∇vihn(z[n])

×MN,n+1(z[n+1]) f(zn+1) dz[n+1],

T5 :=

∫
Dn+2

Vf (zn+1, zn+2)hn(z[n])MN,n+2(z[n+2]) f(zn+1)f(zn+2) dz[n+2].

In order to derive the desired equation for CN,n, it remains to ex-
press these five quantities {Tj}1≤j≤5 in terms of correlations instead of
marginals. For the first two terms T1 and T2, noting that the choice (28)
of hn yields∫

D

( n∑
i=1

vi · ∇xihn +
1

N − 1

n∑
i 6=j

K(xi − xj) · ∇vihn

)
dzj = 0,

∫
D

( n∑
i=1

∆vihn

)
dzj = 0, for all 1 ≤ j ≤ n,

we immediately get from (27),

T1 =

∫
Dn
CN,n

( n∑
i=1

vi · ∇xi +
1

N − 1

n∑
i 6=j

K(xi − xj) · ∇vi

)
hn,
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T2 = −α
n∑
i=1

∫
Dn
CN,n ∆vihn.

We turn to the third term T3 and decompose it as

T3 =

∫
Dn+1

Ln+1MN,n+1

+
n∑
j=1

∫
Dn+1

W j
n(z[n+1]\{j})MN,n+1(z[n+1]) f(zj) dz[n+1],

in terms of

Ln+1(z[n+1]) :=
n∑
j=1

(
Vf (zn+1, zj)hn(z[n])f(zn+1)

−W j
n(z[n+1]\{j})f(zj)

)
,

W j
n(z[n+1]\{j}) := f(zn+1)

∫
D
Vf (zn+1, zj)hn(z[n]) dzj.

For all 1 ≤ j ≤ n, by definition of marginals, we have∫
Dn+1

W j
n(z[n+1]\{j})MN,n+1(z[n+1]) f(zj) dz[n+1] =

∫
Dn
W j
nMN,n.

Recalling the properties (19) of Vf , we note that
∫
D Ln+1(z[n+1]) dzl = 0

for all 1 ≤ l ≤ n+1 and
∫
DW

j
n(z[n]) dzl = 0 for all 1 ≤ l ≤ n. Appealing

again to (27), we are led to

T3 =

∫
Dn+1

Ln+1CN,n+1 +
n∑
j=1

∫
Dn
W j
nCN,n,

that is, by definition of Ln+1 and W j
n,

T3 =
n∑
j=1

∫
Dn
hn(z[n])

(∫
D
Vf (z∗, zj)CN,n+1(z[n], z∗) f(z∗) dz∗

+

∫
D
Vf (z∗, zj)CN,n(z[n]\{j}, z∗) f(z∗) dz∗

)
dz[n].

We turn to the fourth term T4. Adding and subtracting K ∗ f(xi)
to the interaction kernel K(xi − xn+1), and recalling the definition of
marginals, we can decompose this term T4 as

T4 =
n∑
i=1

∫
Dn+1

(
K(xi − xn+1)−K ∗ f(xi)

)
· ∇vihn(z[n])

×MN,n+1(z[n+1]) f(zn+1) dz[n+1]
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+
n∑
i=1

∫
Dn

(K ∗ f)(xi) · ∇vihn(z[n])MN,n(z[n]) dz[n].

We are now again in position to appeal to (27), leading us to

T4 =
n∑
i=1

∫
Dn+1

(
K(xi − xn+1)−K ∗ f(xi)

)
· ∇vihn(z[n])

× CN,n+1(z[n+1]) f(zn+1) dz[n+1]

+
n∑
i=1

∫
Dn

(K ∗ f)(xi) · ∇vihn(z[n])CN,n(z[n]) dz[n].

Finally, for the last term T5, by the choice (28) of hn and the proper-
ties (19) of Vf , we can directly appeal to (27) to find

T5 =

∫
Dn+2

Vf (zn+1, zn+2)hn(z[n])CN,n+2(z[n+2]) f(zn+1)f(zn+2) dz[n+2].

Collecting the above identities for the different terms {Tl}1≤l≤5, com-
bining them together into (29), and letting RN,n be defined as the
left-hand side in (25), we obtain∫

Dn
hnRN,n = 0.

As this holds for any test function hn satisfying (28), the conclusion
follows. By definition of RN,n as the left-hand side in (25), given that
correlation functions are uniformly bounded as ΦN ∈ L∞([0, T ]×DN),
we note that RN,n belongs to W−2,1([0, T ]× Dn) as stated. �

Using Lemma 6 to pass to the limit in the above hierarchy of equa-
tions for correlations, we are led to the following limit system. Note
that the remainder term RN,n orthogonal to Hn vanishes in the limit
N ↑ ∞ as the obtained limit system (30) is seen to naturally propagate
the structure of Hn.

Proposition 8. Let K ∈ L2
loc(Ω;Rd), assume that f satisfies∫ T

0

(∫
D
|∇v log f |2f

) 1
2
<∞,

and denote by {C̄n}n the limit rescaled correlations extracted in Lemma 6,
with C̄n ∈ L∞(0, T ;L2(Dn, f⊗n)). For all n ≥ 0, we have in the distri-
butional sense on [0, T ]× Dn,

(30) ∂tC̄n +
n∑
i=1

vi · ∇xiC̄n +
n∑
i=1

(K ∗ f)(xi) · ∇viC̄n + α

n∑
i=1

∆viC̄n
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=

n∑
j=1

∫
D
Vf (z∗, zj) C̄n(z[n]\{j}, z∗) f(z∗) dz∗

+
√
n+ 1

√
n+ 2

∫
D2

Vf (z∗, z
′
∗) C̄n+2(z[n], z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗,

with final conditions

(31) C̄n|t=T =

{
(
∫
D ψf(T ))k, for n = 0,

0, for n ≥ 1

Proof. As assumptions on K and f ensure Vf ∈ L1(0, T ;L2
loc(D2, f⊗2)),

we can pass to the limit in the weak formulation of equations for cor-
relations given in Proposition 7 along the limit extracted in Lemma 6.
We deduce that this limit {C̄n}n satisfies the following hierarchy: for
all n ≥ 0, we have in the distributional sense on [0, T ]× Dn,

(32) ∂tC̄n +
n∑
i=1

vi · ∇xiC̄n +
n∑
i=1

(K ∗ f)(xi) · ∇viC̄n + α
n∑
i=1

∆viC̄n

−
n∑
j=1

∫
D
Vf (z∗, zj) C̄n(z[n]\{j}, z∗) f(z∗) dz∗

−
√
n+ 1

√
n+ 2

∫
D2

Vf (z∗, z
′
∗) C̄n+2(z[n], z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗ = R̄n,

for some remainder term R̄n ∈ W−2,1
loc ([0, T ]×Dn) that is again orthog-

onal to Hn in the following weak sense,

(33)

∫ T

0

∫
Dn
hnR̄n = 0 for all hn ∈ C∞c ([0, T ]× Dn)

such that

∫
D
hn(t, z[n]) dzj = 0 a.e. for all 1 ≤ j ≤ n.

To obtain the prefactor in the last left-hand side term in (32), we have
simply noted that

(N − n)(N − n− 1)

N − 1

(
N

n

) 1
2
(

N

n+ 2

)− 1
2

→
√
n+ 1

√
n+ 2.

From here, we split the proof into two steps.

Step 1: proof of (30).
In order to establish equation (30), it remains to show that the re-
mainder term in (32) actually vanishes, R̄n = 0. Up to an approxima-
tion argument, we may assume for convenience that f further satisfies
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0

∫
D |v|f <∞, and we shall show in that setting

(34)

∫ T

0

∫
Dn
gnR̄nf

⊗n = 0, for all gn ∈ C∞c ([0, T ]× Dn).

With the additional assumption on f , we first emphasize that the prod-

uct
∫ T

0

∫
Dn gnR̄nf

⊗n makes perfect sense for all gn ∈ C2
b ([0, T ] × Dn):

indeed, for R̄n defined as the left-hand side in (32), testing with gnf
⊗n,

using the mean-field equation for f , and recognizing in the first line
of (32) the dual of the mean-field operator, we obtain up to an approx-
imation argument, for all gn ∈ C2

b ([0, T ]× Dn),∫ T

0

∫
Dn
gnR̄nf

⊗n =

∫
Dn

(gnC̄nf
⊗n)(T )−

∫
Dn

(gnC̄nf
⊗n)(0)

−
∫ T

0

∫
Dn

(
∂tgn+

n∑
i=1

vi ·∇xign+
n∑
i=1

(K∗f)(xi)·∇vign−α
n∑
i=1

∆vign

)
C̄nf

⊗n

+ 2α

∫ T

0

∫
Dn
C̄n

n∑
i=1

∇vign · ∇vif⊗n

−
n∑
j=1

∫ T

0

∫
Dn+1

Vf (zn+1, zj) gn(z[n]) C̄n(z[n+1]\{j}) f
⊗n+1(z[n+1]) dz[n+1]

−
√
n+ 1

√
n+ 2

∫ T

0

∫
Dn+2

Vf (zn+1, zn+2) gn(z[n])

× C̄n+2(z[n+2]) f
⊗n+2(z[n+2]) dz[n+2],

where all the terms make sense by the assumptions on f and K and
by the uniform boundedness of correlation functions. In particular,
from this identity, recalling that just like C̄N,n the limit correlation C̄n
satisfies

∫
D C̄n(z[n]) f(zj) dzj = 0 for all 1 ≤ j ≤ n, and using the

cancellation properties (19) for Vf , we find in the distributional sense

(35)

∫
D
R̄n(z[n]) f(zj) dzj = 0, for all 1 ≤ j ≤ n.

Now, given a fixed test function gn ∈ C∞c ([0, T ]×Dn) that is symmetric
in its n variables, we can define its marginals, for 1 ≤ l ≤ n,

gn,l(z1, . . . , zl) :=

∫
Dn−l

gn(z1, . . . , zn) f⊗(n−l)(zl+1, . . . , zn) dzl+1 . . . dzn,

as well as the corresponding correlations

cn,l(z1, . . . , zl) :=
l∑

j=0

(−1)l−n
∑
σ∈P lj

gn,l(zσ).
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As in (17), we note that these correlations satisfy the following cluster
expansion,

gn(z1, . . . , zn) =
n∑
l=0

∑
σ∈Pnl

cn,l(zσ).

From this decomposition, the cancellation properties (35) for R̄n lead
us to ∫ T

0

∫
Dn
gnR̄nf

⊗n =

∫ T

0

∫
Dn
cn,nR̄nf

⊗n.

Now by definition we find that cn,n satisfies
∫
D cn,n(t, z[n]) f(zj) dzj = 0

a.e. for all 1 ≤ j ≤ n, and the orthogonality property (33) then yields
the claim (34).

Step 2: proof of final condition (31).
From the final condition (8), we find for marginals

(36) MN,n(T, z1, . . . , zn)

=

(
N

k

)−1 k∧n∑
l=0

(
N − n
k − l

)(∫
D
ψf(T )

)k−l ∑
σ∈Pnl

ψ⊗l(zσ).

Recalling (27), given pn ∈ C∞c (Dn) with
∫
D pn(z[n]) dzj = 0 for all j, we

find∫
Dn
pnCN,n(T ) =

∫
Dn
pnMN,n(T )

= 1k≥n

(
N

k

)−1(
N − n
k − n

)(∫
D
ψf(T )

)k−n ∫
Dn
pnψ

⊗n.

After rescaling, letting N ↑ ∞ along the limit extracted in Lemma 6,
we get

C̄N,0(T ) =
(∫

D
ψf(T )

)k
,

∫
Dn
pnC̄N,n(T ) = 0, for all n ≥ 1,

and the claim (31) follows. �

Next, we show that the limiting hierarchy (30) for correlations allows
for a unique solution.

Lemma 9. Let K ∈ L2
loc(Ω;Rd) and assume that f satisfies∫ T

0

(∫
D
|∇v log f |2f

) 1
2
<∞.
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If {Cn}n satisfies the limiting hierarchy (30) in the distributional sense
on [0, T ] with vanishing final condition Cn|t=T = 0 for all n and with
the a priori estimate

(37) sup
0≤t≤T

sup
n≥0

∫
Dn
|Cn(t)|2f(t)⊗n < ∞,

then we have Cn ≡ 0 for all n.

Proof. Let {Cn}n be as in the statement. As it satisfies the hierar-
chy (30) in the weak sense, we can compute

1

2

d

dt

∫
|Cn|2f⊗n = α

n∑
i=1

∫
|∇viCn|2f⊗n

+ n

∫
Vf (z, z′)Cn(z[n−1], z)Cn(z[n−1], z

′) f⊗(n+1)(z[n−1], z, z
′) dz[n−1]dzdz

′

+ (n+ 2)

∫
Vf (zn+1, zn+2)Cn(z[n])Cn+2(z[n+2]) f

⊗(n+2)(z[n+2]) dz[n+2],

and thus, by the Cauchy–Schwarz inequality,

d

dt

(∫
|Cn|2f⊗n

) 1
2

≥ −nΛf

(∫
|Cn|2f⊗n

) 1
2 − (n+ 2)Λf

(∫
|Cn+2|2f⊗(n+2)

) 1
2
,

where we have set Λf := (
∫
D2 |Vf |2f⊗2)

1
2 for abbreviation. In terms of

the generating function

Z(t, r) :=
∞∑
n=0

rn
(∫
|Cn|2f⊗n

) 1
2
,

which is well-defined for all t ∈ [0, T ] and r ∈ [0, 1) by the a priori
estimate (37), we get

∂tZ(t, r) ≥ −Λf (t)
(
r∂rZ(t, r) + 1

r
∂rZ(t, r)

)
≥ −2Λf (t)

1
r
∂rZ(t, r).

Solving this differential inequality by the method of characteristics,
with the final condition Z(T, ·) = 0, we deduce for all r ∈ [0, 1) and

T0 ∈ [0, T ], provided that r2 + 4
∫ T
T0

Λf < 1,

0 ≤ Z(T0, r) ≤ Z
(
T,
(
r2 + 4

∫ T
T0

Λf

) 1
2

)
= 0.

Recall that the assumptions on K and f ensure
∫ T

0
Λf <∞, so that we

can find T0 < T with
∫ T
T0

Λf <
1
8
. For this choice of T0, the above yields

Z(t, r) = 0 for all t ∈ [T0, T ] and r ∈ [0, 1
2
], which means Cn(t) = 0
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for all n and t ∈ [T0, T ]. Iterating this argument over successive time
intervals, we conclude Cn(t) = 0 for all n and t ∈ [0, T ]. �

Combining the above different observations, we are now in position
to conclude the proof of Theorem 1.

Proof of Theorem 1. By Proposition 8, the limit rescaled correlations
{C̄n}n extracted in Lemma 6 satisfy the limit hierarchy (30) as well
as the a priori estimates (22). Now, using the cancellation proper-
ties (19) for Vf , a trivial solution of the hierarchy (30) with the same
final condition (31) is actually given by the constant

Cn(t) := C̄n|t=T =

{
(
∫
D ψf(T ))k, for n = 0,

0, for n ≥ 1.

The uniqueness result of Lemma 9 then entails that the extracted
limit {C̄n}n is necessarily equal to this trivial solution. In particu-
lar, this means C̄2 ≡ 0, thus proving the convergence (20) indepen-
dently of extractions. By Proposition 4, this entails

∫
Dk ψ

⊗kFN,k(T )→
(
∫
D ψf(T ))k. By the arbitrariness of k ≥ 1 and ψ ∈ C∞c (D), this

concludes the proof. �
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Appendix A. Weak duality solutions

In this appendix, we introduce a new notion of “weak duality so-
lutions” for the Liouville equation, which is the relevant one for our
duality approach to mean field. In a nutshell, weak duality solutions
are defined to be in duality with some, but possibly not all, bounded
weak solutions of the backward equation with given final condition.
We shall see below that weak duality solutions always exist whenever
K ∈ L1

loc(Ω;Rd) and F ◦N ∈ L1 ∩ Lp(DN) for some p > 1, cf. Propo-
sition 11. We emphasize that weak duality solutions do not need to
be actual weak solutions of the Liouville equation, as in particular the
product K(xi − xj)FN might not be defined. In addition, bounded

2Views and opinions expressed are however those of the authors only and do not
necessarily reflect those of the European Union or the European Research Council
Executive Agency. Neither the European Union nor the granting authority can be
held responsible for them.
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renormalized solutions for the backward equation are not required to
exist either, so that in particular no uniqueness is guaranteed in gen-
eral. To be complete, we can cite for instance [48] and references cited-
therein (for intance [6]) for dual solutions definitions related to trans-
port type equations. Of course, weak duality solutions coincide with
renormalized solutions whenever the latter exist: for α = 0, this is
known to be the case for instance if K ∈ BVloc(Ω;Rd), cf. [5], or if
K ∈ L1

loc(Ω;Rd) ∩ BVloc(Ω \ {0};Rd) takes the form K = −∇V with
V (x) ≥ −C(1 + |x|2), cf. [32], and we refer to [40] for the case α > 0.

Definition 10. Let K ∈ L1
loc(Ω;Rd).

(i) Given T > 0 and ΦT
N ∈ L∞(DN), we consider the following back-

ward Liouville equation on (−∞, T ],

(38) ∂tΦN +

N∑
i=1

(
vi · ∇xiΦN +

1

N − 1

N∑
j:j 6=i

K(xi − xj) · ∇viΦN

)
= −α

N∑
i=1

∆viΦN ,

with final data ΦN |t=T = ΦT
N . We say that ΦN ∈ L∞(−∞, T ;

L∞(DN)) is a global bounded weak solution of this backward Li-
ouville equation with final data ΦT

N if it belongs to Cloc(−∞, T ;
w∗L∞(DN)) with ‖ΦN‖L∞((−∞, T ]×DN ) ≤ ‖ΦT

N‖L∞(DN ), and if it

satisfies (38) in the weak sense: for all G ∈ C∞c ((−∞, T ]× DN),∫ T

−∞

∫
DN

(∂tG)ΦN −
∫
DN

G(T ) ΦT
N

+
N∑
i=1

∫ T

−∞

∫
DN

(
vi · ∇xiG+

1

N − 1

∑
j:j 6=i

K(xi − xj) · ∇viG
)

ΦN

= α
N∑
i=1

∫ T

−∞

∫
DN

(∆viG)ΦN .

(ii) Given F ◦N ∈ L1(DN), we say that FN ∈ L∞loc(R+;L1(DN)) is a
global weak duality solution of the Liouville equation (2) with
initial data F ◦N if it belongs to Cloc(R+;wL1

loc(DN)) and if, for any
T > 0 and any ΦT

N ∈ L∞(DN) that tends to 0 at infinity, there
exists a global bounded weak solution ΦN ∈ L∞(−∞, T ;L∞(DN))
of the backward Liouville equation (38) on (−∞, T ] with final data
ΦT
N , in the sense of (i) above, such that we have the duality formula∫

DN
ΦT
NFN(T ) =

∫
DN

ΦN(0)F ◦N .
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(Note that both sides of this formula make pointwise sense thanks
to the time continuity of FN and ΦN .)

As the following result shows, global bounded weak duality solutions
always exist whenever K ∈ L1

loc(Ω;Rd) and F ◦N ∈ L1(DN)∩Lp(DN) for
some p > 1.

Proposition 11. Let K ∈ L1
loc(Ω;Rd) and F ◦N ∈ L1(DN) ∩ Lp(DN)

for some 1 < p ≤ ∞. Then there exists a global weak duality solution
FN ∈ L∞(R+;L1(DN) ∩ Lp(DN)) of the Liouville equation (2) with

initial data F ◦N . If in addition K ∈ Lp
′

loc(Ω;Rd) with 1/p+1/p′ = 1, then
there exists such a global weak duality solution that further satisfies (2)
in the weak sense.

Proof. We proceed by approximation: let Kε ∈ C∞b (Ω;Rd) and F ◦N,ε ∈
L1(DN) ∩ L∞(DN) such that Kε → K in L1

loc(Ω;Rd) and F ◦N,ε → F ◦N
in L1(DN) ∩ Lp(DN) as ε → 0. For fixed ε, by regularity of Kε and
uniform boundedness of F ◦N,ε, it is well-known that there exists a unique

global weak solution FN,ε ∈ L∞(R+;L1(DN)∩L∞(DN)) of the Liouville
equation (2) with kernel K replaced by Kε and with initial data F ◦N
replaced by F ◦N,ε, cf. e.g. [18], and it satisfies the a priori estimate

(39) ‖FN,ε‖L∞(R+;L1(DN )∩Lp(DN )) ≤ ‖F ◦N,ε‖L1(DN )∩Lp(DN ).

By weak compactness, up to a subsequence as ε ↓ 0, we deduce that
FN,ε converges weakly-* to some FN in L∞(R+;L1(DN) ∩ Lp(DN)). In

the particular case when we have in addition K ∈ Lp
′

loc(Ω;Rd), we can
pass to the limit in the weak formulation of the equation for FN,ε and
conclude that FN actually satisfies the weak formulation of the Liouville
equation (2) with initial data F ◦N .

We turn to the duality property. Given T > 0 and given ΦT
N ∈

L∞(DN), by regularity of Kε, there exists a unique global weak solution
ΦN,ε ∈ L∞(−∞, T ;L∞(DN)) of the backward Liouville equation (38)
on (−∞, T ] with kernel K replaced by Kε and with final data ΦT

N , and
it satisfies the a priori estimate

(40) ‖ΦN,ε‖L∞(−∞,T ;L∞(DN )) ≤ ‖ΦT
N‖L∞(DN ).

By weak compactness, up to a subsequence as ε ↓ 0, we deduce that ΦN,ε

converges weakly-* to some ΦN in L∞(−∞, T ;L∞(DN)) and that the
latter satisfies the weak formulation of the backward Liouville equa-
tion (38) with final data ΦT

N . From (40) and from the equation for ΦN,ε,
we find that the time derivatives (∂tΦN,ε)ε are bounded in L∞(−∞, T ;

W−2,1
loc (DN)). By the Aubin–Lions–Simon lemma, this entails that

(ΦN,ε)ε is precompact e.g. in Cloc(−∞, T ;W−1,∞
loc (DN)). As W−1,∞ =
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(W 1,1)∗ and as W 1,1(DN) is dense in L1(DN), we conclude that (ΦN,ε)ε
is actually precompact in Cloc(−∞, T ;w∗L∞(DN)). This proves the de-
sired time continuity of the limit ΦN , which is thus by definition a
global bounded weak solution of the backward Liouville equation.

For fixed ε, by regularity of Kε, the bounded weak solutions FN,ε
and ΦN,ε can be shown to satisfy the following duality formula, cf. [18,
Section II.4], for all t ≥ 0,

(41)

∫
DN

ΦT
NFN,ε(t) =

∫
DN

ΦN,ε(T − t)F ◦N,ε.

Recalling that (ΦN,ε)ε is precompact in Cloc(−∞, T ;w∗L∞(DN)), that
(F ◦N,ε)ε converges strongly to F ◦N in L1(DN), that (FN,ε)ε converges

weakly-* to FN in L∞(R+;L1(DN) ∩ Lp(DN)), and that the choice of
ΦT
N ∈ L∞(DN) is arbitrary, this identity entails that (FN,ε)ε is precom-

pact in Cloc(R+;wLp(DN)). We may now pass to the pointwise limit
in (41) and conclude that FN is a weak duality solution. �

We emphasize that a weak duality solution FN in the above sense
may not remain a probability density, even if F 0

N was one. If DN is
unbounded, the proof does not ensure that we do not lose mass at
infinity in finite time: FN is only tested against ΦN , which vanishes
at infinity, so that we cannot take ΦN = 1. This issue can correspond
to a possible blow-up in the original many-particle system. With the
assumptions of the proposition above, there is indeed no reason to
expect strong solutions to exist globally in time for the trajectories of
the particles. Of course if trajectories go to infinity in finite time with
a positive probability, then the corresponding configurations have to
vanish from FN leading to a loss of mass.

We can also introduce a corresponding notion of weak duality solu-
tions for the Liouville equation (6) associated to first-order systems as
considered in Theorem 2. We state below a corresponding existence
result; details are omitted for shortness. Note that the assumption
divK ∈ L1

loc(Ω) is needed to make sense of the weak formulation of
the backward equation. Again, weak duality solutions coincide with
renormalized solutions when the latter exist: for α = 0, this is known
to be the case for instance if K ∈ BVloc(Ω;Rd) with divK ∈ L∞loc(Ω),
cf. [1], and we refer to [40] for the case α > 0.
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Definition 12. Let K ∈ L1
loc(Ω;Rd) with divK ∈ L1

loc(Ω).

(i) Given T > 0 and ΦT
N ∈ L∞(ΩN), we consider the following back-

ward Liouville equation on (−∞, T ],

(42) ∂tΦN +
1

N − 1

N∑
i 6=j

K(xi − xj) · ∇xiΦN = −α
N∑
i=1

∆xiΦN ,

with final data ΦN |t=T = ΦT
N . We say that ΦN ∈ L∞(−∞, T ;

L∞(ΩN)) is a global bounded weak solution of this backward equa-
tion with final data ΦT

N if it belongs to Cloc(−∞, T ;w∗L∞(ΩN))
with ‖ΦN‖L∞((−∞, T ]×ΩN ) ≤ ‖ΦT

N‖L∞(ΩN ), and if it satisfies (42)
in the weak sense.

(ii) Given F ◦N ∈ L1(ΩN), we say that FN ∈ L∞loc(R+;L1(ΩN)) is a
global weak duality solution of the Liouville equation (6) with
initial data F ◦N if it belongs to Cloc(R+;wL1

loc(Ω
N)) and if, for any

T > 0 and any ΦT
N ∈ L∞(ΩN) that converges to 0 at infinity, there

exists a global bounded weak solution ΦN ∈ L∞(−∞, T ;L∞(ΩN))
of the backward Liouville equation (42) on (−∞, T ] with final data
ΦT
N , in the sense of (i) above, such that we have the duality formula∫

ΩN
ΦT
NFN(T ) =

∫
ΩN

ΦN(0)F ◦N .

Proposition 13. Let K ∈ L1
loc(Ω;Rd) with divK ∈ L1

loc(Ω), and let
F ◦N ∈ L1(ΩN) ∩ Lp(ΩN) for some p > 1. Then there exists a global
weak duality solution FN ∈ L∞(R+;L1(ΩN) ∩ Lp(ΩN)) of the Liouville
equation (6) with initial data F ◦N .

Appendix B. Explicit hierarchy

In this appendix, we derive the full hierarchy of equations for lin-
earized dual correlations {CN,n}0≤n≤N without focusing on their weak
formulation on Hn: in other words, we derive the expression for the
remainder RN,n in Proposition 7. For that purpose, we start from the
equations (26) for marginals, we appeal to (16) and (17) to transform
them into equations for correlations, and we work out the combina-
torics. Note that from equation (43) below it is now straightforward
to recover the result of Proposition 8 after rescaling and passing to the
limit.

Lemma 14. For all 0 ≤ n ≤ N , we have in the distributional sense
on [0, T ]× Dn,

(43) ∂tCN,n +
n∑
i=1

vi · ∇xiCN,n + α
n∑
i=1

∆viCN,n
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=
1

N − 1
Sn,+N CN,n−1 + Sn,◦N CN,n + Sn,−N CN,n+1 +NSn,=N CN,n+2,

where we have set CN,−1, CN,N+1, CN,N+2 ≡ 0 for notational simplicity,
and where we have defined the following operators

Sn,+N CN,n−1 :=

n∑
i 6=j

(K ∗ f)(xi) · ∇viCN,n−1(z[n]\{j})

−
n∑
i 6=j

∫
D
Vf (z∗, zj)CN,n−1(z[n]\{i,j}, z∗) f(z∗) dz∗

−
n∑
i 6=j

K(xi − xj) · ∇viCN,n−1(z[n]\{j}),

Sn,◦N CN,n := − N − n
N − 1

n∑
i=1

(K ∗ f)(xi) · ∇viCN,n

+
N − n
N − 1

n∑
j=1

∫
D
Vf (z∗, zj)CN,n(z[n]\{j}, z∗) f(z∗) dz∗

− 1

N − 1

n∑
i 6=j

K(xi − xj) · ∇viCN,n(z[n])

+
1

N − 1

n∑
i 6=j

∫
D
K(xi − x∗) · ∇viCN,n(z[n]\{j}, z∗) f(z∗) dz∗

− 1

N − 1

n∑
i 6=j

∫
D
Vf (z∗, zj)CN,n(z[n]\{i}, z∗) f(z∗) dz∗

+
1

N − 1

n∑
i 6=j

∫
D2

Vf (z∗, z
′
∗)CN,n(z[n]\{i,j}, z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗,

Sn,−N CN,n+1 :=
N − n
N − 1

n∑
j=1

∫
D
Vf (z∗, zj)CN,n+1(z[n], z∗) f(z∗) dz∗

− N − n
N − 1

n∑
i=1

∫
D
K(xi − x∗) · ∇viCN,n+1(z[n], z∗) f(z∗) dz∗

− 2
N − n
N − 1

n∑
i=1

∫
D2

Vf (z∗, z
′
∗)CN,n+1(z[n]\{i}, z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗,

Sn,=N CN,n+2 :=
(N − n)(N − n− 1)

N(N − 1)

×
∫
D2

Vf (z∗, z
′
∗)CN,n+2(z[n], z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗.



DUALITY METHOD AND MEAN FIELD LIMITS 27

Moreover, the final condition (8) for correlations at time t = T takes
the form

(44) CN,n(T, z1, . . . , zn)

= 1n≤k

(
N

n

)−1(
k

n

) n∑
l=0

(−1)n+l
∑
τ∈Pnl

(∫
D
ψf
)k−l

ψ⊗l(zτ ).

Proof. We first recall the BBGKY-type hierarchy (26) of equations
satisfied by dual marginals. In order to derive corresponding equations
for correlations, we start from (16), writing for all 0 ≤ n ≤ N ,

∂tCN,n =
n∑
k=0

(−1)n−k
∑
σ∈Pnk

∂tMN,k(zσ).

Inserting the equations (26) for marginals, we are led to

∂tCN,n +
n∑
i=1

vi · ∇xiCN,n + α
n∑
i=1

∆viCN,n = T1 + T2 + T3 + T4,

where we have set

Ti :=
n∑
k=0

(−1)n−k
∑
σ∈Pnk

T ′i,k(zσ),

in terms of

T ′1,k(zσ) := − 1

N − 1

∑
i,j∈σ
i 6=j

K(xi − xj) · ∇viMN,k(zσ),

T ′2,k(zσ) :=
N − k
N − 1

∑
j∈σ

∫
D
Vf (z∗, zj)MN,k+1(zσ, z∗) f(z∗) dz∗,

T ′3,k(zσ) := −N − k
N − 1

∑
i∈σ

∫
D
K(xi − x∗) · ∇viMN,k+1(zσ, z∗) f(z∗) dz∗,

T ′4,k(zσ) :=
(N − k)(N − k − 1)

N − 1

×
∫
D2

Vf (z∗, z
′
∗)MN,k+2(zσ, z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗.

We consider the different contributions {Ti}1≤i≤4 separately and use the
cluster expansion (14) to express each of them in terms of correlations
instead of marginals. First, for T1, reorganizing the sums, we find

T1 = − 1

N − 1

n∑
k=0

(−1)n−k
∑
σ∈Pnk

∑
i,j∈σ
i 6=j

K(xi − xj) · ∇viMN,k(zσ)
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= − 1

N − 1

n∑
k=0

(−1)n−k
∑
σ∈Pnk

∑
i,j∈σ
i 6=j

K(xi − xj) · ∇vi
k∑
l=0

∑
τ∈Pσl

CN,l(zτ )

= − 1

N − 1

n∑
i 6=j

K(xi − xj) · ∇vi
n∑
l=0

∑
τ∈Pnl

CN,l(zτ )

×
n∑
k=l

(−1)n−k]
{
σ ∈ Pnk : σ ⊃ τ ∪ {i, j}

}
,

and thus, distinguishing the cases whether j ∈ τ or j /∈ τ , noting that
the contribution vanishes if i /∈ τ , and computing the cardinalities,

T1 = − 1

N − 1

n∑
i 6=j

K(xi − xj) · ∇vi

×
( n∑

l=0

∑
τ∈Pn

l
τ3j

CN,l(zτ )
n∑
k=l

(−1)n−k
(
n− l
k − l

)

+
n∑
l=0

∑
τ∈Pn

l
τ 63j

CN,l(zτ )
n∑
k=l

(−1)n−k
(
n− l − 1

k − l − 1

))
.

Now using the binomial identity

(45)

p∑
k=0

(−1)p−k
(
p

k

)
= 1p=0,

we deduce

T1 = − 1

N − 1

n∑
i 6=j

K(xi − xj) · ∇vi

(
CN,n(z[n]) + CN,n−1(z[n]\{j})

)
.

Next, for the second term T2, using that
∫
Rd×Rd Vf (z∗, z) f(z∗) dz∗ = 0,

we can similarly write

T2 =
n∑
k=0

(−1)n−k
∑
σ∈Pnk

N − k
N − 1

∑
j∈σ

∫
D
Vf (z∗, zj)MN,k+1(zσ, z∗) f(z∗) dz∗

=
n∑
k=0

(−1)n−k
∑
σ∈Pnk

N − k
N − 1

∑
j∈σ

∫
D
Vf (z∗, zj)

×
k∑
l=0

∑
τ∈Pσl

CN,l+1(zτ , z∗) f(z∗) dz∗
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=

n∑
j=1

n∑
l=0

∑
τ∈Pnl

∫
D
Vf (z∗, zj)CN,l+1(zτ , z∗) f(z∗) dz∗

×
n∑
k=l

(−1)n−k
N − k
N − 1

]
{
σ ∈ Pnk : σ ⊃ τ ∪ {j}

}
,

and thus, distinguishing the cases whether j ∈ τ or j /∈ τ , computing
the cardinalities, and using again the binomial identity (45), now in
form of

n∑
k=l

(−1)n−k
N − k
N − 1

(
n− l
k − l

)
= 1l=n

N − n
N − 1

− 1l=n−1
1

N − 1
,

we obtain

T2 =
N − n
N − 1

n∑
j=1

∫
D
Vf (z∗, zj)CN,n+1(z[n], z∗) f(z∗) dz∗

− 1

N − 1

n∑
i 6=j

∫
D
Vf (z∗, zj)CN,n(z[n]\{i}, z∗) f(z∗) dz∗

+
N − n
N − 1

n∑
j=1

∫
D
Vf (z∗, zj)CN,n(z[n]\{j}, z∗) f(z∗) dz∗

− 1

N − 1

n∑
i 6=j

∫
D
Vf (z∗, zj)CN,n−1(z[n]\{i,j}, z∗) f(z∗) dz∗.

Similar computations for T3 and T4 easily yield

T3 = −N − n
N − 1

n∑
i=1

∫
D
K(xi − x∗) · ∇viCN,n+1(z[n], z∗) f(z∗) dz∗

+
1

N − 1

n∑
i 6=j

∫
D
K(xi − x∗) · ∇viCN,n(z[n]\{j}, z∗) f(z∗) dz∗

−N − n
N − 1

n∑
i=1

K ∗ f(xi) · ∇viCN,n(z[n])

+
1

N − 1

n∑
i 6=j

K ∗ f(xi) · ∇viCN,n−1(z[n]\{j}),

and

T4 =
1

N − 1

n∑
i 6=j

∫
D2

Vf (z∗, z
′
∗)CN,n(z[n]\{i,j}, z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗
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− 2
N − n
N − 1

n∑
i=1

∫
D2

Vf (z∗, z
′
∗)CN,n+1(z[n]\{i}, z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗

+
(N − n)(N − n− 1)

N − 1

×
∫
D2

Vf (z∗, z
′
∗)CN,n+2(z[n], z∗, z

′
∗) f(z∗)f(z′∗) dz∗dz

′
∗.

Combining these different computations, we are precisely led to the
claimed equations (43) for correlation functions.

It remains to derive the final condition (44) for correlations. We
recall that from (8) we find (36) as the final condition for marginals.
Inserting this into the definition (16) of correlation functions, and using
the combinatorial identity3

n∑
r=l

(−1)n−r
(
N − r
k − l

)(
n− l
r − l

)
= (−1)n+l

(
N − n
k − n

)
,

the claim (44) follows after straightforward computations. �
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