Functions with constant mean on similar countable subsets of \mathbb{R}^{2}

Cédric De Groote and Mitia Duerinckx

Abstract

We prove the following generalization of a problem proposed at the 70th William Lowell Putnam Mathematical Competition. Given a nonempty finite set E of n points in \mathbb{R}^{2} and a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{d}$ such that the arithmetic mean of the values of f at the n points of every image of E by a direct similarity is equal to a constant, then f is constant on \mathbb{R}^{2}. This result is extended to nonempty countable sets, and its validity is discussed in a more general context.

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function that satisfies $f(a)+f(b)+f(c)+f(d)=0$ whenever a, b, c, and d are the four vertices of a square, then f is the null function. This problem, proposed at the 70th William Lowell Putnam Mathematical Competition [1], can be solved by a very simple geometric argument, which can easily be adapted to all regular n-gons for a given $n \geq 3$ in \mathbb{R}^{2}. We prove here a more general result.

Two nonempty subsets A and B of \mathbb{R}^{2} are said to be directly similar (denoted by $A \sim B$) if there exists a direct similarity σ of \mathbb{R}^{2} such that $\sigma(A)=B$.

Theorem 1. If $E=\left\{p_{1}, \ldots, p_{n}\right\}$ is a nonempty finite set of n points in \mathbb{R}^{2} and if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{d}$ is a function such that the arithmetic mean of the values of f at the points of every set $E^{\prime} \sim E$ is equal to $c \in \mathbb{R}^{d}$, then $f(x)=c$ for all $x \in \mathbb{R}^{2}$.

Proof. Since the case $n=1$ is trivial, we may assume that $n \geq 2$. In order to prove that $f(x)=c$ for every point $x \in \mathbb{R}^{2}$, it suffices to prove that $f\left(p_{1}\right)=c$. Indeed, if E^{\prime} is the image of E under the translation mapping p_{1} onto x, the orbits of E and E^{\prime} in the group of all direct similarities of \mathbb{R}^{2} are exactly the same, and so there is no loss of generality in assuming that $x=p_{1}$.

Let o be a point of \mathbb{R}^{2} such that $o \notin E$. For every $j=2, \ldots, n$, let σ_{j} be a direct similarity of \mathbb{R}^{2} fixing o such that $\sigma_{j}\left(p_{1}\right)=p_{j}$, and let σ_{1} be the identity, so that we can write $E=\left\{\sigma_{1}\left(p_{1}\right), \sigma_{2}\left(p_{1}\right), \ldots, \sigma_{n}\left(p_{1}\right)\right\}$. Every σ_{j} is the product of a rotation with a homothecy, both with center o.

If τ is the translation mapping o onto p_{1}, we define, for each $j=2, \ldots, n$,

$$
\begin{aligned}
F_{j} & =\left\{\sigma_{1}^{\tau}\left(p_{j}\right), \sigma_{2}^{\tau}\left(p_{j}\right), \ldots, \sigma_{n}^{\tau}\left(p_{j}\right)\right\} \\
\text { and } \quad G_{j} & =\left\{\sigma_{j}^{\tau}\left(p_{1}\right), \sigma_{j}^{\tau}\left(p_{2}\right), \ldots, \sigma_{j}^{\tau}\left(p_{n}\right)\right\} .
\end{aligned}
$$

Note that σ_{j}^{τ}, i.e. σ_{j} conjugated by τ, is a direct similarity fixing p_{1}.
Clearly $G_{j} \sim E$ for all $j=2, \ldots, n$, because $G_{j}=\sigma_{j}^{\tau}(E)$. Moreover, $F_{j} \sim E$ since

$$
F_{j}=\tau\left(\left\{\sigma_{1}\left(\tau^{-1}\left(p_{j}\right)\right), \ldots, \sigma_{n}\left(\tau^{-1}\left(p_{j}\right)\right)\right\}\right)=\tau\left(\left\{\sigma_{1}\left(\sigma_{j}^{*}\left(p_{1}\right)\right), \ldots, \sigma_{n}\left(\sigma_{j}^{*}\left(p_{1}\right)\right)\right\}\right)
$$

(where σ_{j}^{*} is the direct similarity of \mathbb{R}^{2} fixing o and mapping p_{1} onto $\tau^{-1}\left(p_{j}\right)$), and so, by using the commutativity of the group of all direct similarities of \mathbb{R}^{2} fixing o,

$$
F_{j}=\left(\tau \circ \sigma_{j}^{*}\right)\left(\left\{\sigma_{1}\left(p_{1}\right), \ldots, \sigma_{n}\left(p_{1}\right)\right\}\right) \sim E .
$$

By definition of f, we have, for every $j=2, \ldots, n$,

$$
\begin{array}{ll}
\frac{1}{n}\left[f\left(p_{j}\right)+\sum_{k=2}^{n} f\left(\sigma_{k}^{\tau}\left(p_{j}\right)\right)\right]=c & \left(\text { because } F_{j} \sim E\right), \\
\frac{1}{n}\left[f\left(p_{1}\right)+\sum_{k=2}^{n} f\left(\sigma_{j}^{\tau}\left(p_{k}\right)\right)\right]=c & \quad\left(\text { because } G_{j} \sim E\right), \tag{2}
\end{array}
$$

and moreover

$$
\begin{equation*}
\frac{1}{n}\left[\sum_{k=1}^{n} f\left(p_{k}\right)\right]=c \tag{3}
\end{equation*}
$$

By adding equality (3) to the sum of the $n-1$ equalities (2) and subtracting the $n-1$ equalities (1), we get

$$
\begin{array}{r}
\frac{1}{n}\left[\sum_{k=1}^{n} f\left(p_{k}\right)\right]+\sum_{j=2}^{n} \frac{1}{n}\left[f\left(p_{1}\right)+\sum_{k=2}^{n} f\left(\sigma_{j}^{\tau}\left(p_{k}\right)\right)\right]-\sum_{j=2}^{n} \frac{1}{n}\left[f\left(p_{j}\right)+\sum_{k=2}^{n} f\left(\sigma_{k}^{\tau}\left(p_{j}\right)\right)\right] \\
=c+(n-1) c-(n-1) c
\end{array}
$$

which reduces to

$$
\frac{1}{n} f\left(p_{1}\right)+\frac{n-1}{n} f\left(p_{1}\right)=c,
$$

and so $f\left(p_{1}\right)=c$.
It is tempting to try to extend this result to weighted averages, E being a nonempty ordered collection of n points. However, the fact that the weights are not necessarily equal breaks the symmetry between the points and our method of proof no longer works.

Note that Theorem 1 can be naturally extended to nonempty countable sets as follows:

Theorem 2. If $E=\left\{p_{i} \mid i \in \mathbb{N}\right\} \subset \mathbb{R}^{2}$ is a nonempty countable set and if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{d}$ is a function such that, for all $E^{\prime}=\left\{q_{i} \mid i \in \mathbb{N}\right\} \sim E$, the series $\sum_{i=0}^{\infty} f\left(q_{i}\right)$ is absolutely convergent and equal to 0 , then $f(x)=0$ for all $x \in \mathbb{R}^{2}$.

This can be proven by exactly the same argument as the one given above, since the absolute convergence of the series $\sum_{i=0}^{\infty} f\left(q_{i}\right)$ allows us to rearrange its terms freely.

The above theorems motivate many further questions. What can be said if we consider, rather than direct similarities, another subgroup of the group $A G L(2, \mathbb{R})$ of all affine transformations of \mathbb{R}^{2}, or if we replace \mathbb{R}^{2} by \mathbb{R}^{p} or even by K^{p} for any field K ? More precisely, for any subgroup G of $A G L(p, K)$, if $E=\left\{p_{1}, \ldots, p_{n}\right\}$ is a nonempty finite set of n points in K^{p} and if $f: K^{p} \rightarrow \mathbb{R}^{d}$ is a function such that the arithmetic mean of the values of f at the points of every set $E^{\prime}=g(E)$ (where $g \in G$) is equal to $c \in \mathbb{R}^{d}$, does this imply that f is a constant function?

It is straightforward to see that the above proof can be directly adapted to give a positive answer to this general question only if G contains a transitive subgroup H such that the stabilizer of any point is transitive and abelian; in other words, G has to contain a 2-transitive subgroup H such that the stabilizer of the origin is abelian. Such subgroups H of $A G L(p, K)$ can be determined in general [2]: H exists if and only if K admits a field extension K^{\prime} of degree p, and then H is isomorphic to $A G L\left(1, K^{\prime}\right)$. In particular, when $K=\mathbb{R}$, no such subgroup exists if $p \geq 3$ (as a consequence of Hurwitz's theorem), whereas H is the subgroup of direct similarities for $p=2$. When $K=\mathbb{Q}$, such subgroups H exist for every dimension p.

However, when there is no such subgroup H in G, our argument cannot be extended and the problem is open.

Acknowledgments. We thank Prof. Jean Doyen for his kind and helpful support, and the two referees for their useful remarks.

References

[1] The 70th William Lowell Putnam Mathematical Competition, Amer. Math. Monthly 117 (2010) 714-721.
[2] F. Buekenhout, private communication, 2011.

Department of Mathematics, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium
mitia.duerinckx@ulb.ac.be
Department of Mathematics, Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium
cedric.de.groote@ulb.ac.be

