SCALING LIMIT OF THE HOMOGENIZATION COMMUTATOR
FOR GAUSSIAN COEFFICIENT FIELDS
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ABsTRACT. Consider a linear elliptic partial differential equation in divergence form
with a random coefficient field. The solution-operator displays fluctuations around its
expectation. The recently-developed pathwise theory of fluctuations in stochastic ho-
mogenization reduces the characterization of these fluctuations to those of the so-called
standard homogenization commutator. In this contribution, we investigate the scaling
limit of this key quantity: starting from a Gaussian-like coefficient field with possibly
strong correlations, we establish the convergence of the rescaled commutator to a frac-
tional Gaussian field, depending on the decay of correlations of the coefficient field, and
we investigate the (non)degeneracy of the limit. This extends to general dimension d > 1
previous results so far limited to dimension d = 1, and to the continuum setting with
strong correlations recent results in the discrete iid case.
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1. INTRODUCTION

1.1. General overview. Let a be a stationary and ergodic random coefficient field that
satisfies the boundedness and ellipticity properties

la()¢[ <€, E-al@)é =N, forallz, & e RY (1.1)

for some A > 0. Given a deterministic vector field f € C°(R%)?, we consider the random
family (Vue)e>o of unique Lax-Milgram solutions (which henceforth means the unique
weak solutions in H'(R%)) to the following rescaled elliptic equations in R?,

— V- (a(:)Vu:) = V- f. (1.2)
1
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It is known since the pioneering work of Papanicolaou and Varadhan [36] and of Kozlov [25]
that, almost surely, Vu. converges weakly in L2(Rd) as € | 0 to the unique Lax-Milgram
solution % in R of

-V. (ELV?]) =V.-f
where a is a deterministic and constant matrix that only depends on the law of a and is
given for 1 <1 < d by

ae; = E [a(V(Z)l + 67,)] ’

in terms of the so-called corrector ¢; in the direction e; (cf. Lemma 2.3 below). Most
results on quantitative stochastic homogenization in the last decade focused on the accurate
description of the spatial oscillations of the solution operator for (1.2) (e.g. [20, 21, 17],
[4, 16, 3|, and the references therein). In this contribution we rather focus on the random
fluctuations of macroscopic observables of the form [pq9 - Vue or [pag - a(z)Vu. with
g € C*(R%)? and establish (quantitative) central limit theorems. More precisely, pursuing
the investigation of our previous works on the topic [11, 10, 12] (see also [31, 18, 23, 30, 2|),
and inspired by previous computations in the one-dimensional setting [5, 22, 26|, the present
contribution aims at analyzing the effects of strong correlations of the coefficient field a. For
simplicity and concreteness, we focus on the following Gaussian model family of coefficient
fields. This particular setting leads to significant simplifications since Malliavin calculus
then allows to systematically linearize the dependence on the randomness.

Definition 1.1. The coeflicient field a is said to be Gaussian with parameter 8 > 0 if it
has the form

a(z) = ag(G(x)),
where ag € CZ(R*)?? is such that the boundedness and ellipticity assumptions (1.1) are
satisfied pointwise, and where G is some R*-valued centered stationary Gaussian random

field on R? constructed on a probability space (2, F,P) (with expectation E), characterized
by its covariance function

c(z) = E[G(z) ® G(0)], c:RY — REXF

which is assumed to have f-algebraic decay at infinity in the following sense: there exists
Cp > 0 such that for all 2 € RY,

gL+ 1z) P < Je(@)] < Co(1+|al) ™7, (1.3)

and in the case 8 < d we further assume |Ve(z)| < Co(1+|2|) 7?1, In addition, we assume
that ¢ can be decomposed as ¢ = ¢p * ¢ where ¢ satisfies!

! : P, (1.4)

—5(d+8) L
leof@)] < Coll +[a) X{ log 2(1+z[) : B=d. 5

Since the covariance function ¢ decays at infinity, the Gaussian random field G is known to
be (strongly) mixing. In particular, G is ergodic, which ensures existence and uniqueness of
correctors and homogenized coefficients (cf. Lemma 2.3). Note however that G is a-mixing
only if the covariance is integrable, that is, if 8 > d (e.g. [8]).

INote that this decay assumption for ¢p (including the logarithmic correction in the critical case 8 = d)
precisely ensures that ¢ = ¢o * co satisfies the upper bound in (1.3).
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In the companion articles [11, 10], it was shown that fluctuations of macroscopic observ-
ables are determined at leading order by those of the so-called standard homogenization
commutator (see also [4, 2])

Ei = (a—a)(Ve; + ).

This is referred to as the pathwise structure of fluctuations in stochastic homogenization,
which originates in the crucial observation that the 2-scale expansion of commutators
remains accurate in the fluctuation scaling. More precisely, the results in [10] take on
the following guise, where all scalings and rates are (generically) optimal. Henceforth, we
focus on dimensions d > 1 — the one-dimensional setting is indeed much simpler since
equation (1.2) can then be explicitly integrated.

e Fluctuation scaling: For all f,g € C®(R%)? and p < oo,

1
1 plp
E Uﬂd,ﬁ(i)Q/dg'VUs ] Sprg b
R

where the rescaling is defined by

(1+rd . B>d,
r d
mas(r) =\ teoty ¢ B=4d, (1.5)
(1+7)% : p<d.

e Pathwise structure of fluctuations: For all f,g € C®(R%)? and p < oo,

E Um,ﬁ(i); </Rdg . V(u8 —-E [us]) +/ (Phg) - Ei(é)%ﬂ) ‘p]é

Rd

3=

., . N\ [P
(Prg) - :i(g)viu)’ ]
Sp?fzg 6Md7/8(%)7 (1'6)

in terms of the homogenized Helmholtz and Leray projections on L2(R%)?,

Py =V(V-a*V)'v.,  P;:=1d-Pya’,

+|[ras0} ([ o+ (@) Vo - Elal:)vu) - [

Rd

where we have set

1 : B>2,d>2,
1
) log2(247r) : f>2,d=2,0or B=2,d> 2,
pap(r) = log(2+7) : p=2,d=2, (1.7)

1+m)"% . B<2,d>2

These results reduce the description of fluctuations of macroscopic observables at leading
order to the fluctuations of (large-scale averages of) the standard homogenization commu-
tator = only. In order to fully describe fluctuations of macroscopic observables, it then
remains to analyze the scaling limit of = itself. Under strong decay assumptions on the

correlations of the coefficient field, the rescaled commutator z—:_gE(E’) is known to converge
in law (as a random Schwartz distribution) to a Gaussian white noise, which was first es-
tablished in the discrete setting in [11], in the case of finite range of dependence in |2, 19|,

and in the integrable Gaussian setting (5 > d) in [12]. In the present contribution, we
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analyze the corresponding scaling limit for the whole Gaussian family of coefficient fields,
including sharp convergence rates, and we emphasize the effects of strong correlations.

1.2. Main results. We address two main questions:

e The scaling limit of the commutator, both qualitatively and quantitatively, for
weak and strong correlations;
e The non-degeneracy of the scaling limit.

Before we state the main results, let us emphasize that this analysis is possible because the
key object for fluctuations in stochastic homogenization, the homogenization commutator,
turns out to be a local map of the coefficients. This appears clearly in |2, 19] in the case
of an ensemble of finite range of dependence, where it is proved that the homogenization
commutator is also a locally-dependent random field. The proof strongly relies on the
fact that the mixing condition is linear (in the sense it is compatible with renormalization
techniques, or iterations). In the present article, we consider Gaussian coefficients, for
which mixing conditions (in form of functional inequalities) are nonlinear (in particular,
these are not easily iterated). In this setting the locality of the homogenization commutator
is a nonlinear one, more in the spirit of [11]. As opposed to |2, 19], the upcoming results
are not only qualitative, but also quantitative.

The following states that in the Gaussian setting the scaling limit of the standard ho-
mogenization commutator is a Gaussian white noise whenever correlations are integrable,
that is, whenever 8 > d, while in the non-integrable case 5 < d the scaling limit is a
fractional Gaussian field. This illustrates that the locality property of the commutator
with respect to the coeflicients is a relative locality. This fully extends to the multidimen-
sional setting the (explicit) computations of [5] for d = 1, and extends the results of [11]
in the iid discrete case to this continuum setting with correlations. Finer statements for
the convergence of the covariance structure with optimal rates are included in Section 3,
cf. Proposition 3.1, and are completely new (even for integrable correlations). To ease the
reading, only a simplified version of these resuls is given below.

Theorem 1. Let the coefficient field a be Gaussian with parameter 8 > 0 as in Defini-
tion 1.1. For F € C(RY)4 we write for short

L(F) := wd,ﬁ(;)é/ F(x) : (Z) da.

R4
(Z) Convergence of the covariance structure:

e Integrable case 8 > d: There exists a constant tensor Q of order 4 such that for all
F,F' € C*(RY)dxd,

lim Cov [I(F); I.(F')] = / F(z): Q: F'(z)dx

el0 R4

e Critical case B = d: If for all x the rescaled covariance Lec(Lz) admits a limit as
L 1 00, then the same conclusion holds as in the integrable case.

e Non-integrable case 3 < d: If for all x the rescaled covariance L°c(Lx) admits a
limit as L 1 0o, then there exists a 4th-order tensor field Q on S ' such that for
all F,F' € C°(R3)dxd,

lim Cov [I.(F); / / |I y| . F'(y) dxdy.
el0 [ ( Rd JRA ’l’—y|5 (y) Y



SCALING LIMIT OF THE HOMOGENIZATION COMMUTATOR 5

(i) Asymptotic normality: For all F € C®(R%)¥*? and e > 0,

- (W;N) dry (mw>
Var [I.(F)]?

! agllogal : B>d,

P d 3 . 4
SE Yy [.(F)] £;]10g€]210g lloge| : B=d,
€2 : B <d,

where W (s N) and dry (+; N) denote the 2-Wasserstein (see e.g. [33]) and the total
variation distance to a standard Gaussian law, respectively.

In particular, if the limiting covariance structure is non-degenerate, that is, if for all
nonzero test functions F € C®(RY)¥4 liminf. Var [I.(F)] > 0, and further assuming
in the non-integrable case B < d that the rescaled covariance L’BC(L-) admits a pointwise

limit as L 1 oo, then the rescaled homogenization commutator 7Td”3(%)%5(é) converges in
law (as a random Schwartz distribution) to a (matriz-valued) Gaussian white noise with
variance Q in the integrable case B > d, or to a (matriz-valued) fractional Gaussian field
with kernel Q(é—')]x\*ﬁ in the non-integrable case § < d. O

The additional condition on the convergence of the rescaled covariance of G in the non-
integrable case is necessary: strong oscillations of the covariance of G can break down the
convergence of the covariance structure of = (it suffices to consider rescaled covariances
LPc(Lx) with several cluster points when L 1 0o) . This is a new feature due to strong
correlations. Likewise, convergence rates can be arbitrarily slow. The proof follows the
general structure of the analysis of the i.i.d. discrete case in [11] and makes strong use of
tools from Malliavin calculus as in [12].

Combining this result with the pathwise structure of fluctuations (1.6), we are led to
a quantitative CLT (with optimal rates) for all macroscopic observables. An important
question concerns the possible degeneracy of the limit: as observed for d = 1 in [22, 26]
(see also [38]), degeneracy may occur and leads to different, non-Gaussian behaviors. In
Section 4, we establish the following sufficient criteria, based on the explicit characterization
of the limiting covariance structures provided by the Malliavin approach. Note that the
condition in the non-integrable case is much more restrictive than in the integrable case.

e In the integrable case 5 > d, if @ = ao(G) is symmetric, if there exist y, « € R” such that
the symmetric matrix aydjap(y) is definite, and if the covariance function ¢ is smooth at
the origin, then the fluctuation tensor Q is non-degenerate.

e In the non-integrable case 8 < d, if @ = ap(G) is symmetric and if for some 1 <[ < k the
symmetric matrix djap(y) is definite for all y € R”, then the fluctuation tensor field Q
is non-degenerate. Many degenerate examples can however be constructed.

e In both the integrable and the non-integrable cases, non-degeneracy is generic.

Precise statements are postponed to Section 4.

Notation

e We denote by C' > 1 any constant that only depends on d, A, ||ag|/jy2.0, and on the
covariance function ¢ via the constants Cp, 5 in (1.3) & (1.4). We use the notation <
(resp. 2) for < Cx (resp. > £ x) up to such a multiplicative constant C. We write
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~ when both < and 2> hold. We add subscripts to C,<,2,~ in order to indicate
dependence on other parameters. If the subscript is a function (e.g. <Sy), then it is
understood as dependence on an upper bound on a suitable (weighted) Sobolev norm.

e The ball centered at x of radius » in R? is denoted by B,(x), and we simply write
B(z) = Bi(x), B, = B,(0), and B = B;(0).

e For a function f and 1 < p < oo, we write [f]y(z) := (fB(z) | fIP)Y/P for the local LP
average, and similarly [f]oo(7) := suppy) | f]-

e We systematically use Einstein’s summation convention on repeated indices.

e For a,b € R, we write a V b := max{a, b} and a A b := min{a, b}.

2. PRELIMINARY

We first review useful results from Malliavin calculus for the fine analysis of functionals
of the underlying Gaussian field G. Next, we recall several tools from quantitative stochas-
tic homogenization theory, including optimal corrector estimates and annealed Calder6n-
Zygmund theory for linear elliptic equations with random coefficients.

2.1. Malliavin calculus. Since the covariance function c is uniformly bounded (cf. (1.3)),
the Gaussian random field G can be viewed as a random Schwartz distribution, that is, as
a random element in S'(R?)": for all (1, (» € C°(RY)" we define G((1), G((2) (or [ GG,
fRd G(2) as centered Gaussian random variables with covariance

Cov [G(¢1) : //Rded —y) Ga(y) dady.

We define §) as the closure of C2°(R%)* for the (semi)norm

Gl = (G o (el =[] @) el = 9) Gty dady,

The space $) (up to taking the quotient with respect to the kernel of || - ||) is a separable
Hilbert space. In view of the isometry relation Cov [G((1); G((2)] = (C1,(2)s, the random
field G is said to be an isonormal Gaussian process over ).

We recall some basic definitions of the Malliavin calculus with respect to the Gaussian
field G (see e.g. |28, 35, 33| for details). Without loss of generality, we work under the
minimality assumption F = o(G), which implies that the linear subspace

R = {g(G(Cl), . G(C) i nEN, g€ CERM), G, Cn € Cgo(]Rd)”"} c 1L2(Q)

is dense in L?(€2). This allows to define operators and prove properties on the simpler
subspace R before extending them to L?(2) by density. For r > 1 we similarly define

R(HE7) :_{ZT/’@ i nEN X1, Xy € R, .t € 5] C LAQ97),

which is dense in L2(Q; 7). For a random variable X € R, say X = g(G(¢1),...,G((n)),
we define its Malliavin derivative DX € L%(Q; $) as

DX =) G0ig(G(Gr), ..., G(én)). (2.1)
i=1
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For an element X € R(H®") with » > 1, say X = > I | ¢;X;, the Malliavin derivative
DX e L*(Q;H®0*1) is then given by DX = S i @ DX;. For j > 1, we iteratively
define the jth-order Malliavin derivative D7 : R($®7) — L2(Q; 2 +9)) for all r > 0. For
all r;m > 0, we then set

m
(X, Y )pmaggery =E[(X,V)gerl + > E[(D'X,DIY)ge0is]
j=1
we define the Malliavin-Sobolev space D™2($®") as the closure of R($*") for the corre-
sponding norm, and we extend the Malliavin derivatives D’ by density to these spaces.
Next, we define a divergence operator D* as the adjoint of the Malliavin derivative D, and
we construct the so-called Ornstein-Uhlenbeck operator

L:=D'D,

which is an essentially self-adjoint nonnegative operator. We refer e.g. to |33, p.34] for a
description of the explicit action of D* and £ on R. In particular, it is easily checked that
L commutes with shifts. In addition, a direct computation (e.g. [33, p.35]) leads to the
commutator relation

DL =(1+L)D. (2.2)

Based on the above definitions, we state the following proposition, which collects various
useful results for the fine analysis of functionals of the Gaussian field G. Item (i) is classical.
Item (ii) is best known in the discrete Gaussian setting [24]. Item (iii) in total variation
distance is a consequence of Stein’s method: it was first obtained in the discrete setting by
Chatterjee [7], while the present Malliavin analogue is due to [32, 34]. The corresponding
result in 2-Wasserstein distance is of a different nature and is due to [27]. A proof and
precise references are included in [12, Appendix A]. Note that since £ is nonnegative the
inverse operator (1 + £)~! is well-defined and has operator norm bounded by 1.

Proposition 2.1 (|24, 7, 32, 34, 27|).
(i) First-order Poincaré inequality: For all X € L2(€),
Var [X] <E[|DX|3] .
(ii) Helffer-Sjostrand identity: For all X,Y € D12(Q),
Cov[X;Y]=E[(DX,(1+ L) 'DY)gs] . (2.3)
(i4i) Second-order Poincaré inequality: For all X € L2(Q) with E[X] = 0 and Var [X] = 1,
1
W (X5N) Vdry (X;N) < 2Var (DX, (1+ £)7'DX)g]2
1 1
< BE[ID*X]l5,] * E [IDX 1],

where Wa (s N) and dpy (+;N') denote the 2-Wasserstein and the total variation dis-
tances to a standard Gaussian law, respectively, and where the operator norm of D*X
1s defined by

|ID?X|lop :=  sup (DX, (@ )gen. (2.4)

<'en
ISg=I11¢"lg=1 <>

For later purposes, it is useful to transform the norm of ) into a suitable Lebesgue norm.
This is a variant of the Hardy-Littlewood-Sobolev inequality.
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Lemma 2.2 (Hardy-Littlewood-Sobolev inequality). For all h € C°(R%)",

172 (gay ) D p>d,
Ihlls < < [Mog2+[-D2hlli2gey = B =4, 0
Il B <d
L2d = (R9)

Proof. For f < d, the estimate is a direct consequence of the Hardy-Littlewood-Sobolev
inequality. For 8 > d, the inequality 2ab < a® + b? implies

oo < [ [
5 drdy < 5 dady = ||h
[ s iy < [ [ e sy~ i

We turn to the critical case § = d. Smuggling in the weight log(2 + |ac])% and using
Cauchy—Schwarz’ inequality,

[, [ L
Rd JRA 1+’.’B—

< tog(2 + |- bl ([ toxt24al ([ Ty o)

Smuggling in the weight (1 + |y])% and using Cauchy-Schwarz’ inequality again,

N

Lol ;
<
Lo ey < 1082 41 Dhlhes
1
- (1 +[yD[h(y)l? dy 3
x loml/d/
( Lotz ([ GERE G (L emma r=a)
log(2+|z])

The last integral in brackets is controlled by C , so that by Fubini’s theorem,

1+]z|

||h | 1
/Rd /Rd 1+ |z — g drdy S [1og(2 + [ - )2 P12 (ga)

g </Rd(“ P ( [, s \m—y\)d)dy>

Using again that the last integral in brackets is controlled by C%, the conclusion

follows. O

NI

2.2. Tools from quantitative stochastic homogenization. Next to the corrector ¢,
we recall the notion of the flux corrector o. The pair (¢, o) is only defined up to an additive
(random) constant and we choose the standard anchoring f5(¢,0) = 0 on the unit ball B
at the origin.

Lemma 2.3 (Correctors, e.g. [16]). Let the coefficient field a be stationary and ergodic (as

is the case if a is Gaussian with parameter § > 0). Then there exist two random tensor

fields (¢i)1<i<a and (0ijk)1<ijk<d with the following properties:

e The gradient fields V; and Vo, are stationary’ and have finite second moments and
vanishing expectations.

2That is, shift-covariant: Vi (-4 z;a) = V(- a(- +2)) and Voik(- + 2; @) = Voik(-; a(- + z)) almost
everywhere in R?, for all shift vectors z € R%.
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e For all i the matriz field o; = (04j1)1<jk<d 5 skew-symmetric (that is, o5, = —0ik;).
e The following equations are satisfied a.s. in the distributional sense on R,
- V-a(Vo;+e;) = 0, V.o = g, —Aojjr = 05qik — Oy, (2.5)
where q; = (¢ij)1<j<d denotes the centered fluz,
gi = a(Ve; +e;) — ae;, ae; . =E[a(Vo;, +e;i)l.
In addition Meyers’s higher-integrability result holds in the following form: there exists
6 ~ 1 such that E [|(V¢, Vo )[21+)] < 1. O

We recall the moment bounds satisfied by correctors in the present Gaussian setting.
For the corrector gradients, the stochastic integrability (i.e. dependence on p) is optimal.

Lemma 2.4 (Corrector estimates, |2, 16, 15]). Let the coefficient field a be Gaussian with
parameter > 0 and let pigp be as in (1.7). Then, the extended corrector (¢, o) satisfies
forall1 <p < oo,

p3 . B>d,
E[(Vo. VO] S ¢ (logp)t : f=d,
P28 ;B <d,
and for all x € R?,
E[[(6,0))2(2)"] Sp Has(la]): 0

Finally, we state a useful annealed Calderén-Zygmund estimate for the elliptic equation
with random coefficients. This result is due to [12, Section 6] and constitutes a useful
upgrade of the quenched Calderon-Zygmund estimates of |1, 3, 16]. To obtain the weighted
estimates as stated below, it suffices to use [37, Theorem 3.4] instead of [37, Theorem 3.2]
in the proof of [12].

Proposition 2.5 (Annealed Calderén-Zygmund estimate, [12]). For h € C2°(R%;1L>°(Q2)),
the unique Lax-Milgram solution of

—-V-aVz=V-h
satisfies for all 1 < p,q < oo, all weights w in the Muckenhoupt class Ap, and all0 < § < %,

1[V2l2llLe, rana)) Spaw Pl2llie reLets @)

9L _1 (%)m_ﬁf L p>d
X ]10g5] a P (%|]Qg5|)p/\q/\2 vav2 o B =,
(%)%(p/\tll/\2_p\/;\/2) . 5 < d.

In particular, in the regime |log 5\(!% -3+ |$ —11) £ 1, the constant in this estimate can
be chosen independent of 0. O

3. CONVERGENCE OF THE COVARIANCE STRUCTURE

In this section, we establish the convergence of the covariance structure for the rescaled
homogenization commutator, thus proving Theorem 1(i). More precisely, we establish the
following result. Note that in the non-integrable case oscillations in the covariance structure
of G can break down the convergence. Likewise, convergence rates can be arbitrarily slow.
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Proposition 3.1. Let a = ag(G) be Gaussian with parameter 5 > 0. For 1 < l,m < k,
define the matriz KC' by

Kl = E[(V6 +¢)) - 01a0(G) (Vi +e2)]
and define the measurable tensor field K'™ of order 4 on R? by
Koy (@) = E[((V@ +¢;) - 0ao(G) (Vi + i) (2)

(14 £)7H (Vo) + e) - Omao(G) (Vo + €)) (0)],
which satisfies ||[K]1 ||y @ay S 1.
(i) Integrable case 3 > d: For all F,F' € O°(R%)4*d

‘COV [I.(F); I(F")] —/ F(z): Q: F'(z) dx‘

Rd
€ P d>2,8>d+1,
SEF e\logs\% s d=2,8>d+1,
gh—d s d< B<d+1,

where the effective fluctuation tensor Q is given by
Qiji’j’ = /d KZZL/]/(.T}) Clm(x) dz.
R
(i3) Critical case 8 = d: For all F,F' € C2°(R%)4*d,
1

loge| Jiy<1

Cov [P L(P)] - ( |

| Fl@): Ko K™ : F'(z) dx) (

cim(y) dy) '

S_,F,F’ ‘lOgE‘il.
In particular, the limit lim, o Cov [[(F); I.(F')] exists for all F, F' if and only if the
limat

_ 1
Cy, = i d
o= T /B ) am(y) dy

exists for all I, m with K' # 0 # K™. In that case,

lim Cov [I.(F); L (F')] = /]R () Q: Fla)dr,

el0
where the effective fluctuation tensor Q is given by
Qijz"j’ = ’Ci]’C%/Clm
(i4i) Non-integrable case 3 < d: For all F,F' € C°(R?),

Cov [L(FRL(E)) = [ [ F@): Kl @K™ F) e (L =) dedy
edp B> 4,
Ser epap(R)+4 etlloge] @ =1,
e’ B <4
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In particular, the limit lim, o Cov [I§(F); I§(F')] exists for all F, F" if and only if the
function LPep,(L-) converges weakly-* in L>°(S1) to some function Cy, as L 1 0o
for all I, m with K' # 0 # K™. In that case,

T— y)
. Iw Yl '
lim C : F'(y) dad
lim Cov [1(F) /]Rd/]Rd R (y) dzdy,

where the effective fluctuation tensor field @ on S is given by

Proof. By polarization, it is enough to consider the case F' = F' = ge; ® ¢; for all 7, j and
g € C*(RY). We aim at analyzing the limit of the variance

vn(g) = Var [raa (D% [ oz | = var | [ 0.2,

where we have set g.(z) 1= e9mq 5(2 )29(556) We split the proof into five steps.

Step 1. Representation formula for the Malliavin derivative of the homogenization com-
mutator,

D /Rd 9:-Eij = 9= (V@] +¢;) - 0ao(G) (Vi + e;)
+ (Vzej + ¢;Vge) - 0ao(G) (Vi +ei), (3.1)
where the auxiliary field z. ; is the unique Lax-Milgram solution in R? of
—V-a'Vz;=V-((a"¢; —0})Vye). (3.2)
Indeed, by definition of the homogenization commutator,
D=;; = ej-Da(Vo;+e)+ej-(a—a)VDe;.

Using the definition of the flux corrector o7 in the form (a* —a*)e; = —a*V; + V- o7

and using the skew-symmetry of o7, we find

DEZ'J’ = ej - Da (V(b@ + 61') (V . O'*) . VD¢Z — qu* . GIVDd%

= ¢j-Da(V¢i+e;) — V- ((ag} +05)VD¢;) + ¢;V - aVDg;.
Using the corrector equation (2.5) for ¢; in the form
—V-aVD¢; =V -Da(Ve; +e;), (3.3)
we deduce
DE;j = (V¢; +¢j) - Da(Vgi +e) — V- ((ad; + 05)VDe;) — V- (05 Da(Ve; + e;)).

Integrating with the test function g. yields
D/ geZij = / 9: (Vi +¢j) - Da(V; + ei) —I—/ Ve - (ad; + 07)VDe;
R4 R4 R4

+ / ¢iVge - Da(V; + e;).
Rd
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Using the equation for z ;, the skew-symmetry of J;-‘, and the corrector equation for ¢; in
the form (3.3), we may reformulate the second right-hand side term as

/Rd Ve - (ag; +0;)VD¢; = — /Rd Vze;-aVD¢; = /Rd Vz. ;- Da(V; + ;).
Further noting that
D.a = 0ay(G(2)) (- — 2), (3.4)
the claim (3.1) follows (since ag is Lipschitz).

Step 2. Application of the Helffer-Sjostrand identity.
By Proposition 2.1(ii), we may represent the variance v.(g) as

ve(g9) = E [<D</Rd geEij> , (1 +£)_1D(/Rd 95527‘)>3J :

By (3.1), the boundedness of (14 £)~! on L%(Q;$), and the stationarity of (Vo; +ej) -
01a0(G)(V; + €;), recalling that £ commutes with shifts, this leads to

‘VS(Q) - U&" § Q(SaTa)% + T57 (35)
in terms of
U = ] aela)ae) Ko = 9) oo — ) dad, (3.6
S = E|[|9-(Ve; +¢)) - 9a0(G) (Vo + €[5 (37)
T = E[|(Vzy +6;94.) - 0ao(G)(Vor +e)|[3] (3.8)

where K is the tensor field defined in the statement of the proposition and where we recall
that 2z ; is defined in (3.2).

Step 3. Properties of K: we show that

(SN 39
d
(Kn) K] S 0+l x{ o L BST B0

where for a measurable function G' on R¢ we use the following short-hand notation for the
local average,

(G(x) = ]fg ][B Gla+y +y) dydy.

We start with (3.9): by stationarity, the boundedness of (1 4+ £)~! on L?(Q), and the
corrector estimates of Lemma 2.4, recalling that £ commutes with shifts and that ag is
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Lipschitz, we find

KEyh) £ f o 1K+ g o)ldudy
Bs J Ba

IN

E[(];(m) (V5 + ;) uao(G) (Vo + ¢2)])

X (]é 1+ L) (V! + ¢)) - Omao(G) (Ve + ez-))\)]

1

< E[Ve + 2 E (Ve + )] < 1.

~

We turn to (3.10). Since the Gaussian field G is strongly mixing (as the covariance function
decays at infinity), and since the identity £1 = 0 and the essential self-adjointness of £
ensure E [(1 + £)'u] = E [u] for all u € L*(Q), it directly follows from the stationarity of
(V(Z)j + €j) - 01a0(G) (Vi + €;) that

lim (K {7 ()
= E [(V¢; + ej) . 6la0(G)(V¢Z + 61)] E [(1 + E)_l ((V(ﬁ; + ej) . amao(G)(quz + 61))]
= E [(V¢; + ej) . 6[@0(G)(V¢z + 61)] E [(V(ﬁ; + ej) . 8ma0(G)(V¢z + 61)]
= /cgj/cm

17

and it remains to establish a convergence rate. Starting from
(Km)i(z) — KLK = Cov [(]é (V65 + ) 0an(G)(Va, +e));

1+ (.95 + ) BuanlG)(Tes +0) |

the Helffer-Sjostrand identity of Proposition 2.1(ii) together with the commutation rela-
tion (2.2) leads to

(Kzl%)l(x) - /Cﬁj/CQ? =E [<D(]é(x)(V¢; +¢€;) - Qao(G) (Vo + ez-)),

1+L)71 2+ ﬁ)lp(][B(w; +e;) - Omao(G) (Vi + ei)) >ﬁ] . (3.11)

(Note indeed that (2.2) yields (1+£) 71D = (2+£)71D.) Since D,0ao(G) = 9%ao(G(2)) §(-—
z), the Malliavin derivative of the factors is evaluated as follows,

D, ( ]i(x)(v¢; +ej) - 0ag(G) (Ve + 61'))
= 1Bl Loen) (V] + ;) - 8an(G) (Vi + ) (2)
+ ]i(x)(VQﬁ; +ej) - 0ao(G)VD.p; + ]é(x) VD.¢% - ag(G)(V; + €;).
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Convolving with ¢y and recalling the corrector equation for ¢; in the form (3.3) together
with (3.4),

/]Rd co(z —2') D < ]é(x)(Vqﬁ; + e;) - 0ap(G)(V; + ei)> dz'
= ][ co(z — ) (Vi + €5) - 0%ao(G) (Vi + €;)
B(x)

+ ][ (V(ﬁ; + €j) . 8@0(G)V(I)27i + ][ V(I);j . 8a0(G)(V¢, + €i>,
B(z) B(z)

where @ ; and @ j denote the unique Lax-Milgram solutions of

—V-aVd,; = V- (c(z—-)0ao(G)(Vi+e;)), (3.12)
—V-a*Vo;; = V- (co(z—)0a3(G)(V; +ej)).

Inserting this representation formula into the right-hand side of (3.11), noting that the
operator (1 4+ £)71(2 + £)~! is bounded in L*(f2), and using the corrector estimates of
Lemma 2.4, we find

(80 () =Kk 5 [ (feolz =) + E[IVa:J3(0) + Vo) )

% (Ieo(2)] + E[[VO.4(0) + [VRI4(0)]* ) d=. (3.13)

We expand the product appearing in the right-hand side and only treat one of the terms,
showing that

=

1 1
() = /R E[[VE.Ji@)] B [[VeJ4(0)] dz
_ 1 : B<d
< B ’
~ (1 + ‘xD X { 10g2(2_|_ |:L“D . f=d, (3-14)
while the other terms are similar. Noting that ®,;(-;a) = ®¢ (- — z;a(- + 2)), we find

Io(@) = [ E[Vdli(e+ )] E[[vaali(z)] a

We start with the case § < d. Smuggling in the weight (1 + ]z\) (1 + |z +2|)” 5 and
applying Cauchy-Schwarz’ inequality,

N

Jﬁ(x)g/R (14— 2| Alz+al) " 2 (14 2) 5 E [VEJ(2)]F de.

Since the weight z — (1 + |z — x| A |z + :1:]) (1 + |z\) belongs to the Muckenhoupt
class Ao, applying the weighted annealed Calderén-Zygmund estimate of Proposition 2.5
to equation (3.12), and using the corrector estimates of Lemma 2.4, we find for 8 < d,

Jp(x) S /R (L+]z—zlAlz+af) T4 ) F o2z S (14 al)

that is, (3.14).
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Finally, we turn to the proof of (3.14) in the critical case § = d. In order to obtain the
optimal power of the logarithm, we rather use the Green’s representation formula for V&
and appeal to annealed bounds on the Green’s function [29, 14, 3, 16, 6] in the form

1 _
E[[V.V,Gl(z.y)]7 Sp (L+Jy —2)™9,
for 1 < p < oo. Together with the corrector estimates of Lemma 2.4 and with the decay
assumption (1.4), this leads to

1
! - log (2 + |x)
EV<I>44</1+— d dy < 287\ T I
[[V@ol2(2)]* < Rd( [z —yl)"leo(y)| dy < A+ [e)?
hence,
1 1 2
Jal) < / log2(2+\ﬂf+§|)log2(2+|§!)dz < losg (2+\il)7
Rt (T+]z+z))? (1+]z]) (1+ |z)
that is, (3.14).
Step 4. Limit of U, (cf. (3.6)).
We start with the integrable case 3 > d. By definition of 4 g, a change of variables yields

U: = / / (e2)g(ey) KT (@ — y)emm(x — y) dady
R4 JR4
= / / .Z‘ + 5y )Kzljzj( )Clm(y) dzdy.
Re JRA
Since [K7; is bounded (cf. (3.9)) and [pa[cJoo S 1, we deduce by dominated convergence,

tin U, = |1z [ KL 0)ctn(y) dy
R4
More precisely, splitting ||g||L2 (RY) =1 [a(lg(@)]? + |g(z + ey)[?) dz, we find
||g||L2/ 2]74 Clm )dy‘
< 5 [ ot en) = o) PIKlw)] dady

< 5L L Comp e+ e) = o)) ) 1l

S Mol [ 07 vl i) dy

Sy eMOD(1 4 [logelTgsa).
We turn to the non-integrable case § < d. By definition of 74 g, we find after rescaling,

/ / KZJWZZJ( (z — y)) Clm(%(flf — y))dxdy
/Rd /]Rd |lx — y‘ﬁ Kllﬁj (é(x - y)) (%\x - y‘)ﬁclm(é(fﬂ - y)) dzxdy.

Before applying (3.10), we take local averages and define

lm 1 1y — 50 1y — "
/Rd /Rd |x—y|5 KZJU) ( ( )) (5| y|) lm(E( y))d dy,

Ue
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and we estimate the error
7. — g8 x & Lz — X
OV 5 [ & @)Vl [ (o — ) dady
] el @laloe ) Vel (L ) dndy

using the additional decay assumption [Vc|oo(7) < (14|z|) P ~1. Next, we appeal to (3.10)
in the form

I 4gm ! -
Vel /Rd /Rd ]:U—y]ﬁ y|) Clm(5($ y)) dxdy
< 7. — l m B 3 1 -
z)|lg(y
<
g H/Rd/ﬂw H’x y[ﬁ‘( —y))| dedy

z)llg ()|
Sg ete dxd
~ /Rd/Rd (e+ |z —y|)28 Y

g e + eANd=B) (l—i—‘]ogg‘]lﬁ:%).

It remains to analyze the critical case 8 = d. By definition of 745, a change of variables
yields

U. = Klm o (x — dd
: |log5| /Rd/Rd ex)g(ey) Kifi;(x — y) eim (2 — y) dady

N KT (y) e () daedy.
|10g5| /Rd/Rd (z + ey)g(x) Kiji; (y) cim (y) dady

Using the boundedness of [K]; (cf. (3.9)) and the decay |c(y)] < (1 + |y|)~%, we find
for p < 2,

1
Ve K; m(y) dad
' ° |loge] /Rd /|y|<19(33+5y 9(x) K55 (y)eim (y) dx y’

// @t Dlolel@) o MeNirry
\loge\ R S |y[>1 ly|® ~P lloge| ~

hence,
gl
' - \1ogLsy i<l Kfﬁj(y)czm(y)dy'
< ”[g]OOHiP(Rd) + 1 / / Supy,eB(y) |g($ + Ey/) _ g(l’)‘Q d:l:d
~Pp ‘10g5’ |10g€| R4 yl<t (1+ ‘y|)d Y
1

< T .
~PI - loge|
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Next, using (3.10) as above, we conclude
lgll? K835 1

Ue — = / cm(y) dy| Spg -

y llog &| i< " P9 loge|

Step 4. Error estimates (cf. (3.7) and (3.8)):

Se Sg1 and T: < 52/&1,6(%)2-
We start with S., and recall that

Se 1= E||9:(9; + ¢5) - 0ao(G)(Voi + )3
By definition of the norm in §), smuggling in local averages, we find
|9:(V 5 + €;) - 0ao(G) (Vi + ei)H; < //Rd iy ([9:)0[V@* +1d]2[V + 1d]2) (z)
X

X ([9e]oo[V@* + 1d]2 [V + 1d]2) (y) [c]oo (z — y) dady,

hence, by Lemma 2.2 and the corrector estimates of Lemma 2.4,

llgekoel, ot L B<d,
1

S S0 Ilog2+ 1 D2lgeoollizgey + B=4d.

1[ge)oo I L2 (e : B>d,

and the claim S; S, 1 follows from the definition of w4 3. We turn to 77, and recall that
* 2
T..=E {H(v,zavj + 65Vge) - Dao(G) (Vi + ei)Hﬁ} :

In the integrable case 8 > d, Lemma 2.2 and the corrector estimates of Lemma 2.4 similarly
lead to

T 5 E[|Vz + ¢ Vah(Ve + 1| a g |

N “[VZE]Q“iQ(Rd;L‘i(Q)) + Hﬂd,ﬁ[vfk]w”i%w)»

while the annealed Calderén-Zygmund estimate of Proposition 2.5 applied to equation (3.2)
and combined with the corrector estimates of Lemma 2.4 then implies

Te S llkaslVoelsollfoga S €21a,6(2)?IHa sV glsollmay-

In the non-integrable case 8 < d, Lemma 2.2 and the corrector estimates of Lemma 2.4
rather lead to

T. 5 E |||V + 6" Veela[Vo + 1dp | 20 -
< v 2 Vool l? ’
S VR aa g T sVl e

and we deduce as above

T: S ”:ud,,B[VQE]ooHi 2

d
2d—B (R4)

< 22 1\2), 2

S S GVl gy -
2d

In the critical case § = d, the L2 norm is replaced by an L? norm with logarith-

mic weight; the proof is then similar, appealing to the weighted version of the annealed

Calderon-Zygmund estimate of Proposition 2.5. U
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4. (NON-)DEGENERACY OF THE LIMITING COVARIANCE

In this section, we investigate the possible degeneracy of the limiting covariance struc-
ture. We only treat the symmetric setting, and we separately consider the integrable and
non-integrable cases. The non-symmetric setting is open. We denote by M the set of
matrices b € R¥¢ such that the boundedness and ellipticity properties (1.1) are satisfied,
that is, |b¢| < |€] and & - b€ > A|€]? for all £ € R?, and we denote by Mym the subset of

symmetric matrices in M.

We start with the statements of the results: sufficient conditions for non-degeneracy
and genericity of the non-degeneracy, both for the case of integrable and non-integrable
covariance. Proofs are postponed to the following subsections.

In the integrable case 5 > d, recall that the effective fluctuation tensor Q is defined in
Proposition 3.1(i).

Lemma 4.1. Let G be an R¥-valued Gaussian random field with an integrable covariance
function ¢ that is of class C*T in a neighborhood of the origin for some n > 0, and assume

(H1) Non-degeneracy of the covariance structure:
If a stationary and centered random field ¢ € L2(Q)* satisfies

[ E [0+ £ n0)] enlz) di = 0,

then ¥ = 0.
Let a = ao(G) with ag € CL(R®; Mgym). If there exist y,a € R* such that the symmetric
matriz ayiap(y) is definite, then Qi # 0 for all 1 < i < d. O

Note that Property (H1) trivially holds true if the Fourier transform ¢ is pointwise positive,
which is in particular compatible with the choice (1.3), and indeed provides many examples.
Here comes the short argument. Setting ¥ := (14 £)~'/2¢ and cy(z) := E[¥(z) ® ¥(0)],
the condition takes the form f]Rd ¢y : ¢ = 0 in Fourier space. Note that stationarity of ¥
implies, for all g € C°(R)",

/Rded 91(2)gm (y) (cw)im (v — y) dzdy = E “ /Rd gl\hﬂ >0,

hence Bochner’s theorem ensures that the Fourier transform ¢y is a nonnegative measure.
If ¢ > 0 holds pointwise, the condition fRd ¢y : ¢ = 0 thus implies ég = 0, hence ¥ = 0,
as claimed. There is another trivial case when the property is satisfied. As a consequence
of an iterated use of the Helffer-Sjostrand identity of Proposition 2.1(ii), it is also easily
checked that Property (H1) holds true when restricted to random fields of the form ¢ (x) =
1o (G(x)) for a smooth function 1y; the corrector is of that special form in dimension d = 1.
We believe Property (H1) might hold generically — this constitutes an open question.

The above condition for non-degeneracy is rather weak and turns out to entail the generic
non-degeneracy of the fluctuation tensor Q. More precisely, given a Gaussian field G with
integrable covariance, there is a dense open set of transformations of the form a = ao(G)
that lead to a non-degenerate fluctuation tensor.

Lemma 4.2. Let G be an R"-valued Gaussian random field with integrable covariance
function, and let s > 0. For all ag € Cy°(R"; Mgym) there exists a sequence (af)n C
Cp° (R"; Mgym) such that a” := af(G) — ap(G) =: @ and 0"aj(G) = 0"ap(G) in LP(Q)
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for allr € N and p < oo, and such that for all n the fluctuation tensor Q" associated with
the coefficient field a™ is non-degenerate in the sense of Q.. # 0 for all 1 < i < d. For
s > 1, the convergence properties ensure a™ — a and Q"™ — Q. O

In the non-integrable case f < d, by Proposition 3.1(iii), the fluctuation tensor field
takes the form Qjji;(u) = ICéjICZT’]?Clm(u). If for all u the matrix C'(u) is positive definite
(as would indeed follow from (1.3)), the non-degeneracy of the fluctuation tensor field is
equivalent to the non-vanishing of the tensor I, for which the following trivial lemma
establishes a sufficient condition.

Lemma 4.3. Let G be an R"-valued Gaussian random field and let a = ag(G) with ag €
CLR®; Msym). Given 1 <1 < k, if the symmetric matriz dyao(y) is definite for all y € R¥,
thenlCéi#OforalllgiSd. O

Although the above sufficient condition is much more stringent than in the integrable
case, it still implies that non-degeneracy is a generic property.

Lemma 4.4. Let G be an R*-valued Gaussian random field, and let s > 1. For all ag €
Cy(R*; Mgym) there exists a sequence (af)n, C Cp(R"; Mgym) such that a™ := af(G) —
ap(G) =: a and 0"afj(G) — 0"ap(G) in L>°(Q) for all 0 < r <s, and such that the tensor
K™ associated with a™ is non-degenerate in the sense of (K™ # 0 for all 1 <i < d and
1 <1 < k. The convergence properties ensure in particular a™ — a and K™ — K. ¢

4.1. Integrable case. We start with the proof of the sufficient condition for non-degeneracy
given by Lemma 4.1.

Proof of Lemma /.1. In the integrable case with a symmetric, according to Proposition 3.1(i),
the fluctuation tensor is defined by

Qs = / E[((V6; +¢5) - an(G) (V6 + ) (2)
R4
(1 + ﬁ)_l ((qu)]/ + €j/) . 0ma0(G)(V¢l/ + ei/))(())} Clm(l‘) dr. (4.1)

By Property (H1), we see that the condition Qy;;; = 0 holds for some ¢ if and only if
(Vi+e;)-01a0(G)(Vgi+e;) = 0 for all . Since ag is of class C*, there exists by assumption
an open neighborhood U C R* of y such that a;djaq is definite on U. In particular, the
condition (V¢; + €;) - 2q01a0(G) (Vi + e;) = 0 implies Vo; + e; = 0 conditioned on the
event that G € U. Since the covariance function ¢ is continuous at the origin, we find
P[Vz € B:G(z) € U] > 0, where B denotes the unit ball of R? at the origin. Hence, if
Qiiii = 0 holds for some i, we deduce P[Va € B : V¢;(x) + e; = 0] > 0. As the covariance
function c is assumed to be of class C?*7 at the origin for some 7 > 0, it follows e.g. from
Dudley’s metric entropy bounds [9] that G (hence a) is almost surely locally Lipschitz
continuous. We may then apply analytic continuation for a-harmonic functions (cf. [13]),
which upgrades the above into P [V¢; + e; = 0] > 0. By ergodicity, this implies V¢;+¢e; = 0
almost surely, which leads to 0 = E [V¢; + ;] = ¢;, a contradiction. O

In particular, in the case when the coefficient field a is diagonal, we deduce the following
simplified sufficient condition, which extends the non-degeneracy observation of |31, 18] to
the continuum setting.
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Corollary 4.5. Let a be a diagonal coefficient field of the form ai; = agi(G;) for some
ag; € Cp°(R; [N, 1]) and some R-valued Gaussian random fields G; with integrable covari-
ance function. If the Gaussian field G = (Gz‘)g:l is non-degenerate and if for all i the
function ag; is not uniformly constant, then Qi # 0 for all 1 <1 < d. O

Next, we deduce that the non-degeneracy of the fluctuation tensor Q is a generic prop-
erty, as stated in Lemma 4.2.

Proof of Lemma /.2. Let x € C*°(R) be nonnegative and compactly supported in (—%, %)
with x/(0) = 1. For all n > 1, define a}(G) := ao(G) + 21d x(G1 — n) sup |dag|. Since G
is Gaussian, we find 0"a}(G) — 9"ap(G) in LP(Q) for all » € N and p < co. Denote by ¢™

the corrector associated with a™. Considering the corrector equation (2.5) in the form
—V.aV(¢" —¢)=V-(a" —a)(Ve" +1d), (4.2)

we deduce from the annealed Calderén-Zygmund estimate of Proposition 2.5 that [V¢™ —
Vola — 0 in LP(Q) for all p < oo, which easily entails a” — a and Q" — Q. It remains
to notice that 01a((ne;1) is symmetric positive definite, so that Q™ is non-degenerate by
Lemma 4.1. ]

4.2. Non-integrable case. We first check the sufficient condition for non-degeneracy
given by Lemma 4.3.

Proof of Lemma /.3. By continuity of dag, the assumption ensures that djag(y) is either
positive definite for all y € R”, or negative definite. The conclusion then follows from the
formula

Kl =E[(Véi + ei) - (01a0)(G) (Vi + )] O

This sufficient condition is particularly stringent compared to Lemma 4.1 since it requires
definiteness at all points rather than at one single point. This result is complemented with
examples of non-degenerate and degenerate fluctuation tensors. Note that the degenerate
example (ii) below is in sharp contrast with Corollary 4.5, which indeed states that if G
had integrable covariance then even in the situation of (ii) the corresponding fluctuation
tensor would be non-degenerate for all z.

Lemma 4.6. Let G be an R-valued Gaussian random field (k = 1) and let a = ap(G) 1d
with ag € CF(R; [\, 1]).

(i) If |ay| > 0 on R, then KL # 0 for all 1 <i < d.

(ii) If supag = 1 and if ag(y) — X as |y| T oo, then there exists zg € R such that

the fluctuation tensor IC* of the shifted coefficient field a® = ao(G + zo) satisfies
(K#)L =0 for all 1 <i<d. O

Proof. Ttem (i) is a direct consequence of Lemma 4.3. We turn to (ii), for which we
start with a reformulation of K}. For z € R, we consider the Gaussian field G + z, the
corresponding coefficient field a* := ao(G + z)Id, we denote by ¢* the solution of the
associated corrector equation (cf. (2.5)),

—V.-a*(V¢; +e;) =0,
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and we denote by a® the homogenized coefficient associated with a®. We may then compute

Va(@)iil:m0 = V(E[(V] +ei) - a”(Ve] +ei)])|
= E[(Voi + €:) - ap(G) (Vi + )] + E[V(V267|:=0) - a(Vh; + ;)]
+E [(quz +e) - av(vz¢§|z=0)] .

The first right-hand side term coincides with ICili while the last two terms vanish due to
the corrector equation (2.5), so that the above takes the form

Kl = V(@) s=o-

Note that these quantities do not depend on i since a (hence @?) is a multiple of the
identity. On the one hand, since by assumption ag(G + z) — A almost surely as |z| 1 oo,
we deduce (@®);; — A as |z| T oo. On the other hand, the standard harmonic lower bound
for homogenized coefficients yields (a®);; > A for all z € R. By continuity in z, there exists
20 € R such that (@*);; is maximal. Since the map z + (@?);; is obviously of class C!, we

deduce V. (@%)ii|-=z, = 0, that is, (’CZO)}i =0. ]

Next, we prove that the non-vanishing of the tensor K is a generic property, as stated
in Lemma 4.4.

Proof of Lemma /.4. Using estimates on differences of correctors as in the proof of Lem-
ma 4.2, if K, # 0 and if approximations a” := a2 (G) satisfy 9"af(G) — 0"ao(G) in LP(Q)
for all 0 < 7 < 1 and p < oo, then the tensors K" associated with a” also satisfy (")}, # 0
for all n large enough. Therefore, it suffices to prove the result for ¢ = 1 and [ = 1, while
the result for all 1 < i < d and 1 <1 < k follows by successive applications. If ag is such
that K}, # 0, there is nothing to prove. Let ag € C*(R"; Mgym) be fixed with i, = 0.
Let b € Cp°(R) be chosen with the following properties,

b(y) = e for [y > 3

b is increasing on (—o00,0) and decreasing on (0, 00);
b(y) < e ¥ and |0/ (y)| < e for all y;

(&)bly=o = 0 for all s > 1.

Next, for all n > 0, we define the following asymmetric rescaling of b,

Dy { n(zy) oy <0,

7o(y) 1y =0,

and we note that b7 € Cp°(R). For > 0, z € R, and n > 1, we then consider the following
perturbations of a = ag(G),

a" = a+ %b”(Gl —2)1d,
as well as the associated correctors ¢™%™ and tensors K*". Expanding the perturbation
and using energy estimates for differences of correctors (4.2), we find
(KP*M1 = K1y +2E[(Vér +e1) - 0ao(G) V(6] — é1)]
+ %E [|v¢1 + 61’2(bn)/(G1 - Z)] + Oa,mz(%)'

n
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Recalling the assumption that i, = 0, and using again energy estimates for differences of
correctors (4.2) in the form

N

(V1 +e1) - 0ao(G)V (1™ = p1)] | £ E[[V(]™" — )]
< RE[IVer + et b7(Gr - 2)P] %

o=

we deduce
(K"*™1 > LE[|Ver + e (07)(G1 — 2)]
1
— CE[|Vé1 + e1*|0"(G1 — 2)[*]% — Copors. (4.3)

We now argue that we can choose 0 < 1 < 1 and z € R such that (KX™*")1, is nonzero for
all n large enough. The construction of the suitable choice of 7, z is split into four steps:

e Since E [\qu)l + €1|2] ~ 1, it is easily seen by conditioning and by continuity in z that
there exist zgp € R and 0 < ng < 1 such that
yo= inf  E[|Ve1(0) +e1f’ || G1(0) =2] > 0, (4.4)
z:|z—z0|<no

r

sup  E[|Ve1(0) + e1]? | G1(0) = 2] < oo.

z:|z—z0|<no
e We show that there exists § ~ 1 such that
1
. E[|V¢1+61|2|b7’(G1 *Zo)P]Q
lim 5 5 ;
nl0 O B [|[V1 + e1]2](67)(G1 — 20)|]
hence, for n > 0 small enough,
1
E Vo1 + e1]*[b"(G1 — 20)*]* < n°E[|Vé1 + er|*|(07) (G1 — 20)]] - (4.5)

By definition of b", using the Meyers integrability of the correctors (cf. Lemma 2.3), the
numerator is estimated as follows: there exists § ~ 1 such that, for all 0 <7 <1,

pr— 07

1 2@ s 1
E [[Vor +erPp"(G1 — 20)P"]* < nE [|V¢1 +efPe il Oq 2

1—46
2 == 1 . 26
< nE([[Vor+e|Tw| TR om0l T g e,

~

while for the denominator we deduce from (4.4), for all 0 < n < 7o,

E [[Vé1 + er*|(07) (G — 20)]]
> E [|V¢)1 + €1|2‘(bn)/(G1 — Zo)| H %77 < zZp— Gl < 7}] P [%77 < zZp— Gl < 77]
> e 'E[|Vér+ el || 3n < 20— G1<n]P[3n <z —G1<n] 2z

and the claim follows.
e We show that

lim sup E [‘V(bl + e1|?|(b7) (G1 — zo)” - X
no  E[Vér +e|? (07)(G1 — 20)] ~zoy, I L

hence, for n > 0 small enough,

E [[Ve1 +er’|(07) (G = 20)l] Saomr E[IVOL+er]? (0")(G1—20)] . (4.6)
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Denoting by p the (Gaussian) law of G1(0), we compute

2 1my/ 2 —5lG1—z0l
E[|V1 +eaP|(67)(G1 = 20) | 161220] < E |[Vor + exf2e” 7! 7]

2 — 5 lz—z0l ~107g
< E[|Vé1+ell” || Gr=z]e » dp(z) +Ce " n*,
|z—z0|<m0

hence, appealing to (4.4),

L
E [[Vé1 +er|(07) (Gr = z0)[hay350] Sao n°T +€ "7,
and similarly,
1
E [|[Vér +er? (07 (Gr — 20) L <x] Sz 0T+ ™.
Conversely, for 0 < n < ng, we deduce from (4.4),
E [|V¢1 + 61|2 (bn)/(Gl - ZO) ﬂGlﬁzo]
> E[|Ver + e1|> (0" (G1 — 20) I In< 20— G <n|P[3n < z—Gi <1
> e 'E[|Vor+el || sn< 20— Gr<n|P[3n < 20— Gr<n| 2z
Combining these estimates in the form
1
E[|[Vé1 +er|(0") (G — 20)[] Sz 0L +e ™7,
and
oL
E[[Vér +e1P(07) (G = 20)] > n(ce — Cognl') = Ce ™2,

the claim follows.

e The combination of the above observations shows that for n > 0 small enough there
holds for all n > 1,

(4.3)
(K0 > JE[IVer+erf? (07 (Gr — 20)]
1
—CR |V +e1P07(G1 — 20)|2] % = Camro
(4.5)
> LE[|Vér + e (0")(G1 — 20)]
1P CE [[Ve1 + e1 2| (5" (G1 — 20)|] — Canpeo
(4.6)

o= = ') E[IVé1 + e 2 [(5")(G1 = 20)[] = Capzo -

- n CZO,"/T

Choosing 1 > 0 small enough, the right-hand side is seen to be strictly positive for all n
large enough, and the conclusion follows. ([

5. ASYMPTOTIC NORMALITY

In this section, we establish the asymptotic normality of the rescaled homogenization
commutator, thus proving Theorem 1(ii). The proof is based on the second-order Poincaré
inequality of Proposition 2.1(iii); in the integrable case § > d we follow the argument
of [12, Section 9.
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Proof of Theorem 1(ii). We focus on the case ¢ = 1 and drop the subscript in the notation.
The final result will be obtained by rescaling in the last step of the proof. Set I(F) :=
fRd F : Z. We split the proof into six steps.

Step 1. Representation formula for Malliavin derivatives: We claim that
DI(F) = (Fije; + VS;) - 0ao(G) (Vs + €i), (5.1)
and
D?*I(F) = Uy + Uy + Us, (5.2)
in terms of
y) = O — ) (Fy(V9) + ;) - %an(G)(Vor + €0)) (@),
(@) = U2(z,y) + Ua(y, ),
(z,y) = (Fij(V$] +¢;) - dao(G)VDyd;)(x),
(z,y) = 6(x—y)(¢;VE; - 0%a(G) (Vi + €)) ()
+(¢;VE;j - 0ao(G)VDy¢;) (x) + (¢5V Fyj - dao(G)V Dathi) (y)
/ VF; - (a¢} +05)VD3, i,

where we identify the operators U; with their kernels and where the auxiliary field S is the
Lax-Milgram solution in R? of

—-V-a*Vs; = V- ((a — d)*Fijej). (5.3)

(Note that we use a very basic representation formula for the first Malliavin derivative,
which is enough here as we only need to deduce the CLT scaling, whereas for the second
Malliavin derivative a much finer decomposition is required.)

We start with the proof of (5.1). We compute

DI(F) = D/ Fijej - (a—a)(Vo; +€;)
= / Fije; - Da (V(ﬁz + 62‘) + / Fije; - (a — EL) VDo,
R4 R4
hence, using the equation (5.3) for S and the corrector equation in the form (3.3),
DI(F) = / Ejej - Da (V¢z + €Z') — / VS; -aVDgo;
Rd R4
= /d(Ejej + VSl) -Da (Vd)l + 6’@').
R

Using (3.4), the conclusion (5.1) follows. We turn to (5.2). The second Malliavin derivative
takes the form

D2 I(F) = D, /R Fijej - (Dea (Vi +ei) + (a—a)VDyoi)

= /Rd Fije; - (D?Eya (Voi +e;) + DpaVDy¢p; + DyaVD,¢; + (a )VDqub,) (5.4)
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and it remains to reformulate the last RHS term. Inserting the definition of the flux

corrector U;-‘ in the form (a* — a*)e; = —a*ng;‘f + V. (7;‘ and using the skew-symmetry

of o7, we find

= Fii(V - 05) - VDa%ygbi B /Rd FiiV 5 - G’VD?cyqbi

R4
— / VF;j-0;VD3,é; —/ F;V¢i - aV D2, ;.
R4
Taking the Malliavin derivative Dy of (3.3) yields
~V-aVD},¢; =V -D3,a(Vé;+¢)+ V- DaVDyg; + V - DyaV Dy, (5.5)

and we deduce
/dFijej (a—a)VD3,¢; = / ¢>jVFij-Diya(ngmLei)Jr/dFingb;-Dgya(VQf)hLei)
R R
+/ ¢;VFij . (DmaVDyd)i + DyaVquﬁi) +/ ij; . (DIaVquﬁi + DyaVngm)
Rd Rd

/ VF;j - (a¢; + 0})V D2, bi.
Inserting this into (5.4), and using (3.4) and
D3ya = 0%ao(G(x)) 0(- — 2)b(x — y), (5.6)
the conclusion (5.2) follows.

Step 2. Proof of

HFH?}(Rd) ) : /B > d)

1 =
E[IDI(F)|4]* < { g+ D2[Flalfege = B=4d,
I[F)2)l* .4 : B<d.

L2d—B(Rd)

We only treat the non-integrable case § < d (the other cases are treated similarly) and
we appeal to the representation formula (5.1) for the Malliavin derivative DI(F'). Using
Lemma 2.2 and the corrector estimates of Lemma 2.4, we find

E[IDIE)A]T < [[(Fye; + VS:) - 0a0(G) (Vs + el |
< F VST

B (RY) L7 (15(0)
and the conclusion follows from the annealed Calderén-Zygmund estimate of Proposi-
tion 2.5.

Step 3. Proof that for all p > 4,

2d
LEF (RELA(9)

s f e R Fllg A2 d
E[IUllop)* S 3 IFloll o . B<d,
L5 (Rd)
where henceforth we set w.(z) := log(2 + |$|)% in the critical case § = d and w, = 1

otherwise.
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Decomposing the covariance function as ¢ = ¢g * ¢y and noting that the norm of ¢ in
coincides with the norm of co* ¢ in L?(R?), the definition (2.4) of the operator norm || - [|op
can be rewritten as follows,

Vil = [ (e 0@ e ) Usa,y) dad]
IICO*CHLQ(]Rd) IICO*C HLQ(]Rd)fl R? JRE

S IICo*CLg(Rd)—l‘/Rd /Rd cxC)(w) (c*()(y) Ur(z,y) dxdy)

Further noting that by the Hardy-Littlewood-Sobolev inequality similarly as in Lemma 2.2
the decay assumption (1.4) for ¢y implies

Jw; e (ool 2may = B2 4d,
>
llco * Clipzray 2 { e+ Cloolly2arspay = B <d,

we find

] e wc<><y>U1<x,y>dxdy\ . 824
||[<100HL2(Rd)—1 R JRd

||U1H0p ~
[ cocmti@pday]  c s<a
”[C]OOHde/ﬁ(Rd)—l R4 JR4

In the integrable case 8 > d, for p > 4, inserting the definition of U;, using Holder’s

(5.7)

2
inequality, and applying the discrete ¢ T2 inequality in the form

IiChel, 25, S W€l iz

we find

1Uillop < sup  [[[¢ ]ooll2 ) |w2 [Fi; (Vo5 + ¢;) '32@0(G)(V¢i+€i)]1}|Lp(Rd)
1€loo 2 ey =1 ()

S lwi [Fleo[ Vo™ + 1d]2[V + Id]a|e (ge),

hence, by stationarity and by the corrector estimates of Lemma 2.4,

E [101I5,]

=

S wE [Floo[Ve* +1d12[Ve + 1d]a | 1r ma.rr ()
S wZ [Floolle ey I[VE* + 1dlalp20 (o) [V 6 + 12|20 (0
S pwe(p)® Wl [Floollr @ay- (5.8)

In the non-integrable case 8 < d, the corresponding estimates take the form

NI

E[i]5 < E||[F(Ve: +¢) - 02a0(G) (Vi + )], |||

LI (RY)
a8+ L0700ty
1[Fooll_a

L5 (Rd)’

N

AN

as claimed.
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Step 4. Proof that for all p > 4,

=

E[|U2lg]* <

puwep)? |02 [Flaolipga 8> d.
AN  B<d

_d_
Ld=FB (R%)

By symmetry, it suffices to estimate the norm of Us. We start with the integrable case
B > d. It follows from (5.7) and Hoélder’s inequality that

ey 5 s [l [ @) Gala o]

licloe 2 ray=1

and hence, by duality in form of

1 ~ 1
E[I0a14)" = s E[€10)2,]°,
||5HL4(Q):1
we deduce
1
E[IGall]" S s M(Q), (5.9)
II[GOO”L4(Q;L2<Rd)):1
22
M(©) =5 | [ a?[ [ w0 Oala )]
Rd Rd 1
Let ¢ be fixed with [[[Clooll s 2(rayy = 1. Note that the discrete "2 inequality and
Jensen’s inequality entail for all 2 < r <4,
[ [CoollLr resnr )y S 1- (5.10)

Inserting the definition of Us, defining the auxiliary field T; as the unique Lax-Milgram
solution of
—V-a*'VT; =V (wCCFij 0ap(G) (Vo5 + ej)), (5.11)
using the corrector equation for ¢; in the form (3.3), and using (3.4), we may write
- r . 22
M) = E / uf / WG Fy (V5 + ) - 0an(G)V D J
R LR

- 273
- E / w? / VTZ--aVquz}]
R4 L JRd 1

r 2] 2
= E / w? v:/;-Da(wﬁei)H
/R — -JRd 1

2

< E /Rdwz[VT]g[wﬂd]g] : (5.12)

By Hoélder’s inequality and the corrector estimates of Lemma 2.4, for p > 4, this entails

1

< 1
MQ) S phecl TRl e
Applying the annealed Calderén-Zygmund estimate of Proposition 2.5 with logarithmic

weight and integrability loss § = @_1)2(7217_1) ~ %, using Holder’s inequality, the corrector
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estimates of Lemma 2.4, and (5.10), we are led to

M) S prwep)w? [oc[Floo[Ve* + 1d]2]

S 2ol L% (ReiL 2 ()

S pwc(p)2 ch [FoollLr,

and the conclusion follows.

L2 (Rd;Lp%(Q))

I[Ve* + Id]alp 20 () w2 [Floolle(ra)

We turn to the non-integrable case § < d. It follows from (5.7) and Hélder’s inequality

that
24N 257
||U2||0p S sup (/ [ C(x) [}2(% ) dl‘] 2d—ﬁ> ’

Ic)ooll; 2a/8 gay=1 \ /RE =JRE 1

and hence, by duality in form of

1 4d %
4 a+5
AN T BT AT
€1l aa/5 gy =1
we deduce the following version of (5.9),
1
E[I10205]" < sup M(Q), (5.13)

Cloo Nl a0/8 qo,1,24/8 gy, =1

(L st )]

d
Let ¢ be fixed with H[C]OOHLALd/,B(Q 124/B(Rd)) = 1. Note that the discrete E’”—K% inequality

M(C) == E

and Jensen’s inequality entail for all 2d <r< 4/6‘,1,

”[C]O@HLT(RFI;LT(Q)) S L (5.14)

Arguing as in (5.12), with the auxiliary field 7; defined in (5.11), and using the the triangle

inequality with 22ddJr g > 1, we obtain

M(¢) E

A

([ wriwo s
Rd

< VT2V +1d);

%5 (L5 ()

For sg := 2:%((65;55)) > d - 5 the corrector estimates of Lemma 2.4 then yield

M) S VT .
€ < ]2HL%(R¢;LSO(Q))
For so < s1 := % < % and for é = % — %, applying the annealed Calderén-

Zygmund estimates of Proposition 2.5, the corrector estimates of Lemma 2.4, and (5.14),
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we deduce
M < oo Floo[Vo* +1d
< ool 2d 2d 41 s ocoll 4
I[¢] Hng( d;LQéi(Q))H[c(b + Id]a|L=2 o I[F] HLdiie(Rd)
< Foo _d_ )
~ ||[ ] HLdii (RY)

and the conclusion follows.

Step 5. Proof that for all ¢ > 4,

PN

<

~

4
E [1Usllop) 10,5V Flooll 4 . p<d.

{ Cyllpapw? [VF]oollLagey = B> d,
L3-5 (R9)

Note that the dependence on ¢ does not need to be made specific here since this contribution
is of higher order, cf. Step 6.

We start with a suitable reformulation of Us. Defining the auxiliary field V; as the unique
Lax-Milgram solution of

~V-a*'VV; = V- ((a*¢} — a})VFy),

using the corrector equation for ¢; in the form (5.5), and using (3.4) and (5.6), we may
write

/ VF;; - (a¢] +05)VDZ,bi = — / VV;-aVD2,¢;
R4 R4

= g VvV - Dgya (Vi +e;) + /]Rd VV; - (Dza VDy¢; + DyaVDyg;)

= §(z—y)(VVi-0%ao(G)(Ve; + €))(z)
+(VVi - 9ao(G)VDysi) () + (VV; - dao(G)V Drhi) (y)-

This allows to decompose Uz = Us + U§ with

Us(z,y) = 6(z —y)((§5VEF; + VVi) - 8a0(G)(Véi + €))) (@),
Ug(xay> = Ug(xay) +(~]§(y,$),
Ui(z,y) = ((¢;VE;+VV;)-0a0(G)VDyg;) ().

As U:,} and U;_;f have a similar structure as U; and Us, their norms are estimated by a
simple modification of the argument of Steps 3 and 4. As an illustration, we treat Ug} in
the integrable case f > d — the other estimates are analogous and details are omitted.
Arguing as in (5.8), we find for ¢ > 1,
i *
E ["U§|’§p] B ng [¢9"VE + VV]2HL¢1(Rd;L2Q(Q))H[V¢ + Id]2HL2q(Q)
Sq Wl [¢9*VF + ViVl pa(ra;r2a())s

and the (weighted) annealed Calderén-Zygmund estimate of Proposition 2.5 (with § = 1)
together with the corrector estimates of Lemma 2.4 lead to

1 * *
E[1Usll5p]* g w2 (07, 0")VF2llLaqgagzar )y Sp l1apwE [VE]sollLagea)-
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Step 6. Conclusion.
In the integrable case § > d, for I.(F) := et Jga F(x) : E(2)dz, the conclusions of
Steps 3-5 yield by scaling, for all 4 < p, ¢ < oo,

1
E(ID°L(F)I&]* < ¥ (pe? NFlollogee) + Coe' ™ pas (D lnaslV Flocllioqes )

Hence, choosing p = |loge| and ¢ = 2d V p, we deduce
L d
E (ID°L(F)4]F < < ogel (NF Tz ey + ||ud,5WF1ooHLamLoo<Rd>)-

In the critical case 8 = d, for I.(F) := e 5 lloge|™ fRd : Z(%) dw, the same argument
yields

NG

d 3
E [||D*L(F)llop] * < €2 [loge|2 log [loge]

X (ng [F]OOHL?mL‘X’(Rd) + Hﬂd,ﬁwg [VF]OOHLQHL‘X’(Rd))'

In the non-integrable case 5 < d, for I.(F) := e 3 Jga F(x) : 2(2) da, the conclusions of
Steps 3-5 yield by scaling,

E(IDLENG)E £ 25 (Pl o, o+ eap (D lnaslVFll e, )

T8 (RY)
B
S e (MFeel, gty o+ IaslV el )

Likewise, the result of Step 2 yields

N

E [ DI(F)|l3]

chFHL2 Rd) . B Z d
S o B<d.

B (R4)
Now applying Proposition 2.1(iii) in the form

- (w;@ dey (um;@
Var [I(F)] Var [I(F)]

[NIE
D=

W=

E [| D2L(F)|4,] 3 E [ DL(F)]4]
~ Var [ (F)] ’

and inserting the above estimates for | D?I.(F)|lop and || DI-(F)||s, the conclusion follows.
O
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