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We consider the well-travelled problem of homogenization of random integral functionals. When
the integrand has standard growth conditions, the qualitative theory is well-understood. When it
comes to unbounded functionals, that is, when the domain of the integrand is not the whole space
and may depend on the space-variable, there is no satisfactory theory. In this contribution we develop
a complete qualitative stochastic homogenization theory for nonconvex unbounded functionals with
convex growth. We first prove that if the integrand is convex and has p-growth from below (with
p > d, the dimension), then it admits homogenization regardless of growth conditions from above.
This result, that crucially relies on the existence and sublinearity at infinity of correctors, is also new
in the periodic case. In the case of nonconvex integrands, we prove that a similar homogenization
result holds provided the nonconvex integrand admits a two-sided estimate by a convex integrand (the
domain of which may depend on the space variable) that itself admits homogenization. This result
is of interest to the rigorous derivation of rubber elasticity from polymer physics, which involves the
stochastic homogenization of such unbounded functionals.
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1. Introduction

Let O be a bounded Lipschitz domain of Rd, d,m ≥ 1. We consider the well-travelled problem of
homogenization of random integral functionals Iε : W 1,p(O;Rm)→ [0,∞] given by

Iε(u) =

ˆ
O
W
(x
ε
,∇u(x)

)
dx,

where W is a random Borel function stationary in its first variable that satisfies for almost every
y ∈ Rd and all Λ ∈ Rm×d the two-sided estimate

1

C
|Λ|p − C ≤ V (y,Λ) ≤ W (y,Λ) ≤ C(1 + V (y,Λ)), (1.1)

for some C > 0, p > 1, and a random convex Borel function V : Rd×Rm×d → [0,∞]. The originality
of the growth condition we consider here is that V (y, ·) may take infinite values and that its domain
may depend on y, so that the domain of the homogenized integrand W (if it exists) is unknown a
priori. The motivation for considering such a problem comes from the derivation of nonlinear elasticity
from the statistical physics of polymer-chain networks, cf. [4, 26, 20]. Indeed, the free energy of the
polymer-chain network is given by two contributions: a steric effect (for which proving homogenization
is one of the most important open problems of the field), and the sum of free energies of the deformed
chains. The free energy of a single chain is a convex increasing function of the square of the length
of the deformed polymer-chain, which blows up at finite deformation. The corresponding problem in
a continuum setting would be the homogenization of the nonconvex integrand

W (y,Λ) = V (y,Λ) + g(det Λ) ≤ C(1 + V (y,Λ)), (1.2)

where V is an infinite-valued convex stationary ergodic integrand whose domain depends on the space
variable, and g is a convex function (in this paper we assume that g is controlled by V , which
unfortunately rules out the finite compressibility of matter).

Homogenization of multiple integrals has a long history, and we start with the state of the art when
V and W are periodic in the first variable:
(i) The first contribution (beyond the linear case) is due to Marcellini [34], who addressed the

homogenization of convex periodic integrands satisfying a polynomial standard growth condition,
that is (1.1) for V (y,Λ) = |Λ|p.

(ii) Marcellini’s result was then generalized to nonconvex periodic integrands satisfying a polynomial
standard growth condition, by Braides [11] (which covers in addition almost-periodic coefficients)
and Müller [36, Theorem 1.3], independently.

(iii) In [36, Theorem 1.5], Müller also addressed the case of a convex periodic integrand satisfying
a convex standard growth condition (1.1) for V (y,Λ) = Ṽ (Λ) with Ṽ : Rm×d → R+ a convex
finite-valued map, and p > d.

(iv) In [12, Chapter 21], Braides and Defranceschi treated the case of nonconvex periodic integrands
(see also [18] in the convex case) satisfying (1.1) where V is convex periodic and satisfies the
polynomial non-standard growth condition

1

C
|Λ|p − C ≤ V (y,Λ) ≤ C(1 + |Λ|q)

for some q < p∗ (with p∗ the Sobolev-conjugate of p > 1), and the doubling property

V (y, 2Λ) ≤ C(1 + V (y,Λ)).
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(v) In [13], given a collection of well-separated periodic inclusions, Braides and Garroni treated the
case of nonconvex periodic integrands satisfying a polynomial standard growth condition as well
as the (strong) doubling property

W (y, 2Λ) ≤ CW (y,Λ).

outside the inclusions, but only satisfying inside the inclusions a convex standard growth condi-
tion (1.1) for some possibly unbounded map V (y,Λ) that is convex in the Λ-variable.

(vi) More recently Anza Hafsa and Mandallena studied in [7] the homogenization of quasiconvex
periodic integrands satisfying a standard (unbounded) convex growth condition, that is, (1.1) for
V (y,Λ) = Ṽ (Λ) with Ṽ : Rm×d → [0,∞] a convex infinite-valued map such that Ṽ (Λ) ≥ |Λ|p,
and with p > d. Note that in this case the domain is fixed.

When W is random, the results are more sparse:
(vii) The first contribution beyond the linear case is due to Dal Maso and Modica, who addressed

the homogenization of convex random stationary integrands satisfying a polynomial standard
growth condition [19], generalizing Marcellini’s result (ii) to the random setting.

(viii) Messaoudi and Michaille later treated the homogenization of quasiconvex stationary ergodic
integrands satisfying a polynomial standard growth condition [35], following Dal Maso and
Modica’s approach.

(ix) In their monograph on homogenization, Jikov, Kozlov and Oleinik treated the case of convex
stationary ergodic integrands satisfying a polynomial non-standard growth condition

1

C
|Λ|p − C ≤ W (y,Λ) ≤ C(1 + |Λ|q)

for some q < p∗ (with p∗ the Sobolev-conjugate of p > 1), see [31, Chapter 15].
For scalar functionals, that is, when m = 1, results are much more precise, and we refer the reader
to the monograph [17] by Carbone and De Arcangelis (which is however only concerned with the
periodic setting) and [15, 16]. When the domain of V (y, ·) is not the whole of Rd, the authors call Iε
an unbounded functional. The main technical tool for scalar unbounded functionals is truncation of
test-functions (see also [31, Section 15.2]), which cannot be used for systems in general (see however
the end of this introduction). In particular, such truncation arguments replace the Sobolev embedding
we shall use for systems and allow one to relax the assumption p > d for scalar problems.

In this contribution we give a far-reaching generalization of (i)–(iv) and (vi)–(ix) for systems in the
random setting, by relaxing the assumption that the domain of V (y, ·) in (1.1) is independent of y.
Our contribution also generalizes (v) by relaxing all geometric assumptions. We argue in two steps.
For convex integrands, our result shows that homogenization holds without any growth condition
from above (cf. Theorem 2.2 for Neumann boundary conditions, and Corollary 2.4 for the more
subtle case of Dirichlet boundary conditions), so that we may homogenize the bound V itself. We
proceed by truncation of the energy density (following the approach by Müller in [36]), and first prove
in Proposition 3.8 that homogenization and truncation commute at the level of the definition of the
homogenized energy density. The proof relies on the existence of correctors with stationary gradients
for convex problems and exploits quantitatively their sublinearity at infinity, see Lemma 3.4 (which
is a substantial difference between the periodic and random cases, and makes the latter more subtle).
The second main technical achievement is the construction of recovery sequences in Proposition 3.10 (a
gluing argument based on affine boundary data trivially fails since the domain of V (y, ·) depends on y
— this difficulty is already present in the periodic setting, and prevents us from using the standard
homogenization formula with Dirichlet boundary conditions). In the case of nonconvex integrands
with a two-sided convex estimate (1.1), we show in Theorem 2.6 that homogenization reduces to the
homogenization of the convex bound V . The first obstacle in this program is the definition of the
homogenized energy density itself. Indeed, in the absence of correctors (which is a consequence of
nonconvexity), one usually defines the homogenized energy density through an asymptotic limit with
linear boundary data on increasing cubes. As pointed out above, such an approach fails in general
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when the domain of the integrand is not fixed. Instead, in Lemma 4.1, we use the (well-defined)
corrector of the associated convex problem as boundary data for the nonconvex problem on these
increasing cubes. Next we argue by blow-up in Proposition 4.3 for the Γ-lim inf inequality (following
the approach by Fonseca and Müller in [25]), and make a systematic use of the corrector of the
convex problem to control the nonconvex energy from above. Then, for the Γ-lim sup we argue in
Proposition 4.6 by relaxation (following the approach introduced by Fonseca in [24] for relaxation
and first used in homogenization by Anza Hafsa and Mandallena in [7]), making a similar use of the
corrector of the convex problem in the estimates.

To conclude this introduction, let us go back to our motivation, that is, the homogenization of (1.2).
On the one hand, we have reduced the homogenization for such integrands to the homogenization for
the convex integrand V . On the other hand, we have proved homogenization for convex integrands
without growth condition from above, and therefore proved homogenization for (1.2). In the specific
setting of (1.2), we can sharpen the general results described above, by simplifying the definition of the
homogenized energy density W , cf. Corollary 2.8. We believe a similar approach can be successfully
implemented in the discrete setting considered in [4] for the derivation of nonlinear elasticity from
polymer physics.

In the scalar case m = 1, combining our approach with truncation arguments, we may further
refine our general results, in particular relaxing the condition p > d. Our approach then improves
(and extends to the stochastic setting) some scalar results of [15, 17].

The main results are given in Section 2. The proofs of the results for convex integrands are displayed
in Section 3, whereas Section 4 is dedicated to the proofs for nonconvex integrands. In Section 5
we turn to various possible improvements of our general results under additional assumptions. In
the appendix we prove several standard and less standard results on approximation of functions,
measurability of integral functionals, and Weyl decompositions in probability, that are abundantly
used in this article.

2. Main results

Let (Ω,F ,P) be a complete probability space and let τ := (τy)y∈Rd be a measurable ergodic action
of (Rd,+) on (Ω,F ,P), that are fixed once and for all throughout the paper. We denote by E the
expectation on Ω with respect to P.

Consider a mapW : Rd×Rm×d×Ω→ [0,∞] that is τ -stationary in the sense that, for all Λ ∈ Rm×d,
all ω ∈ Ω, and all y, z ∈ Rd,

W (y,Λ, τ−zω) = W (y + z,Λ, ω), (2.1)

and assume that W (y, ·, ω) is lower semicontinuous on Rm×d for almost all y, ω. We also assume in
the rest of this paper that, for almost all ω, the map y 7→ W (y,Λ + u(y), ω) is measurable for all
u ∈ Mes(Rd;Rm×d), and that, for almost all y ∈ Rd, the map ω 7→ W (y,Λ + v(ω), ω) is measurable
for all v ∈ Mes(Ω;Rm×d). Continuity in the second variable and joint measurability (in which case
W is called a Carathéodory integrand) would ensure these properties; weaker sufficient conditions for
these properties are given in Appendix A.1. Such integrands W will be called τ -stationary normal
random integrands.

We further make the following additional measurability assumption on W :

Hypothesis 2.1. For any jointly measurable function f : Rd × Ω → R and any bounded domain
O ⊂ Rd,

ω 7→ inf
u∈W 1,1

0 (O;Rm)

ˆ
O
W (y/ε, f(y, ω) +∇u(y), ω)dy

is F-measurable on Ω. �



STOCHASTIC HOMOGENIZATION OF NONCONVEX UNBOUNDED INTEGRAL FUNCTIONALS 5

As discussed in Appendix A.4.2, this last hypothesis is always satisfied ifW is convex in the second
variable, and more generally if it is sup-quasiconvex (in the sense of Definition A.11), which includes
e.g. the case of a sum of a convex integrand and of a “nice” nonconvex part.

For any bounded domain O ⊂ Rd, we define the following family of random integral functionals,
parametrized by ε > 0,

Iε(·, ·;O) : W 1,1(O;Rm)× Ω→ [0,∞] : (u, ω) 7→ Iε(u, ω;O) :=

ˆ
O
W (y/ε,∇u(y), ω)dy. (2.2)

The aim of this paper is to prove homogenization for Iε as ε ↓ 0 under mild growth conditions on W ,
which we formulate in terms of Γ-convergence for the weak convergence of W 1,p(O;Rm) (for some
p > 1). When Λ 7→ W (y,Λ, ω) is convex for almost all y, ω, we say that W is a τ -stationary convex
normal random integrand, and shall use the notation V and Jε instead of W and Iε, that is, for every
bounded domain O ⊂ Rd and ε > 0,

Jε(·, ·;O) : W 1,1(O,Rm)× Ω→ [0,∞] : (u, ω) 7→ Jε(u, ω;O) :=

ˆ
O
V (y/ε,∇u(y), ω)dy. (2.3)

The notation W and Iε will be used for nonconvex integrands. We start our analysis with the
case of convex integrands, then turn to nonconvex integrands, present an application to nonlinear
elasticity, and conclude with a discussion of several possible improvements of these general results
under additional assumptions.

2.1. Convex integrands. In this subsection we state homogenization results for Jε with (essentially)
no growth condition from above. We start with Neumann boundary conditions, and then address the
more subtle case of Dirichlet boundary conditions.

2.1.1. Homogenization with Neumann boundary conditions. Our first result is as follows.

Theorem 2.2 (Convex integrands with Neumann boundary data). Let V : Rd × Rm×d × Ω →
[0,∞] be a τ -stationary convex normal random integrand that satisfies the following uniform coercivity
condition: there exist C > 0 and p > d such that for almost all ω and y, we have for all Λ,

1

C
|Λ|p − C ≤ V (y,Λ, ω). (2.4)

Assume that the convex function M := sup essy,ω V (y, ·, ω) has 0 in the interior of its domain. Then,
for almost all ω ∈ Ω and all bounded Lipschitz domains O ⊂ Rd, the integral functionals Jε(·, ω;O)
Γ-converge to the integral functional J(·;O) : W 1,p(O;Rm)→ [0,∞] defined by

J(u;O) =

ˆ
O
V (∇u(y))dy,

for some lower semicontinuous convex function V : Rm×d → [0,∞] characterized by the following
three equivalent formulas:
(i) Formula in probability: for all Λ ∈ Rm×d,

V (Λ) = inf
g∈F ppot(Ω)m

E[V (0,Λ + g, ·)], (2.5)

where the space of mean-zero potential random variables F ppot(Ω) is recalled in Section 3.1.2.

(ii) Dirichlet formula with truncation: for any increasing sequence V k ↑ V of τ -stationary convex
random integrands that satisfy the standard p-growth condition

1

C
|Λ|p − C ≤ V k(y,Λ, ω) ≤ Ck(1 + |Λ|p) (2.6)

for all y, ω,Λ, and some sequence Ck < ∞, we have for almost all ω, all Λ, and all bounded
Lipschitz domains O ⊂ Rd,

V (Λ) = lim
k↑∞

lim
ε↓0

inf
φ∈W 1,p

0 (O/ε;Rm)

 
O/ε

V k(y,Λ +∇φ(y), ω)dy. (2.7)
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(iii) Convexification formula: for all Λ and all bounded Lipschitz domains O ⊂ Rd, we have, for
almost all ω,

V (Λ) = lim
t↑1

lim
ε↓0

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V (y, tΛ +∇φ(y), ω)dy. (2.8)

As a consequence of convexity, the limit t ↑ 1 can be omitted when Λ /∈ ∂domV . �

Comments are in order:
— The limit t ↑ 1 cannot be omitted in (2.8) in general for Λ ∈ ∂domV . Indeed, let V coincide with

a convex map Ṽ : Rm×d → [0,∞] with a closed domain, and which is not lower semicontinuous
at the boundary of its domain. In the interior of domṼ , V coincides with Ṽ . However, since V
is necessarily lower semicontinuous on its domain, it cannot coincide with Ṽ on ∂domṼ .

— In the proof we take (2.7) as the defining formula for V , following the approach by Müller in [36].
Formula (2.5) is interesting in two respects: first, it is intrinsinc (no approximation is required),
and second it is an exact formula (there is no asymptotic limit involved). The equivalence of
both formulas, which can be interpreted as the commutation of trunction and homogenization,
is the key to the proof of the Γ-convergence result.

We may extend Theorem 2.2 in two directions:
— The extension of Theorem 2.2 to the case of domains with holes (or more generally to soft

inclusions, for which the coercivity assumption (2.4) does not hold everywhere) is straighforward
provided we have a suitable extension result. When holes are well-separated, such extension
results are standard (see e.g. [31, Sections 3.1]). For general situations however, this can become
a subtle issue (see in particular [31, Sections 3.1 and 3.5]). In the particular case of the periodic
setting, there is a very general extension result [1], which is used e.g. in [13].

— The assumption p > d is crucial in the generality of Theorem 2.2, which is used in the form of
the Sobolev embedding of W 1,p(O;Rm) in L∞(O;Rm). In the case 1 < p ≤ d, the conclusions
of the theorem still hold true provided that V (y,Λ, ω) ≤ M(Λ) for some convex function
M : Rm×d → R that satisfies the growth condition lim|Λ|→∞M(Λ)/|Λ|q <∞ for q = dp/(d−p)
if p < d or for some q <∞ if p = d. In the scalar case m = 1, the use of the Sobolev embedding
can be avoided by a truncation argument, as explained in Corollary 2.9 below, see also [17, 15].

2.1.2. Dirichlet boundary conditions. We now discuss the homogenization result in the case of Dirich-
let boundary conditions (the case of mixed boundary data can then be dealt with in a straightforward
way, and we leave the details to the reader). A first remark is that Dirichlet data have to be well-
prepared, as the following elementary example shows.

Example 2.3. Consider random unit spherical inclusions centered at the points of a Poisson point
process, choose the integrand V to be equal to |Λ|p outside the inclusions and to have a bounded
domain D ⊂ Rm×d inside the inclusions. Given a (nonempty) bounded open set O ⊂ Rd, for almost
all ω, the realization of the inclusions corresponding to ω intersects ∂(O/ε) for infinitely many ε > 0,
and hence lim supε Jε(u + Λ · x, ω;O) = ∞ for all u ∈ W 1,p

0 (O;Rm), due to the Dirichlet boundary
condition. In contrast, if the intensity of the underlying Poisson process is not too big, it is easily
seen that the homogenized integral functional J defined in Theorem 2.2 is finite-valued. This proves
that, for all Λ /∈ D and almost all ω, Jε(·+ Λ · x, ω;O) cannot Γ-converge to J(·;O) on W 1,p

0 (O;Rm),
due to the intersection of some rigid inclusions with the boundary of the domain where the Dirichlet
condition is imposed. �

We propose two ways to prepare Dirichlet data:
— by relaxing the boundary data so that the energy remains finite for all ε > 0 while ensuring

that the boundary data are recovered at the limit ε ↓ 0 — we call “lifting” this procedure;
— by replacing the integrand V by a softer integrand on a neighborhood of the boundary where

the boundary condition is imposed — we call this a “soft buffer zone”.
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Corollary 2.4 (Convex integrands with Dirichlet boundary data). Let V , M , Jε, and J be as in
Theorem 2.2 for some p > d. Then, for almost all ω ∈ Ω and all bounded Lipschitz domains O ⊂ Rd,
we have
(i) For all boundary data u ∈W 1,p(O;Rm) such that J(αu;O) <∞ for some α > 1, there exists a

lifted sequence (uε)ε with uε −⇀ u in W 1,p(O;Rm), such that we have on W 1,p
0 (O;Rm):

J(·+ u;O) = Γ- lim
t↑1

Γ- lim inf
ε↓0

Jε(·+ tuε, ω;O)

= Γ- lim
t↑1

Γ- lim sup
ε↓0

Jε(·+ tuε, ω;O).

In particular,

inf
v∈W 1,p

0 (O)
J(v + u;O) = lim

t↑1
lim inf
ε↓0

inf
v∈W 1,p

0 (O)
Jε(v + tuε;O)

= lim
t↑1

lim sup
ε↓0

inf
v∈W 1,p

0 (O)
Jε(v + tuε;O).

If u satisfies the additional condition
´
OM(∇u(y))dy < ∞, then we may take uε ≡ u, and if

this condition is strengthened to
´
OM(α∇u(y))dy <∞ for some α > 1 then the limit t ↑ 1 can

be omitted.
(ii) For all boundary data u ∈W 1,p(O;Rm) such that J(u;O) <∞, we have on W 1,p

0 (O;Rm):

J(·+ u;O) = Γ- lim
t↑1,η↓0

Γ- lim inf
ε↓0

Jηε (·+ tu, ω;O)

= Γ- lim
t↑1,η↓0

Γ- lim sup
ε↓0

Jηε (·+ tu, ω;O),

where Jηε is the following modification of Jε on an η-neighborhood of ∂O:

Jηε (v, ω;O) :=

ˆ
O
V O,η
ε (y,∇v(y), ω)dy,

V O,η
ε (y,Λ, ω) :=

{
V (y/ε,Λ, ω), if dist(y, ∂O) > η;

|Λ|p, if dist(y, ∂O) < η.
(2.9)

In particular,

inf
v∈W 1,p

0 (O)
J(v + u;O) = lim

t↑1,η↓0
lim inf
ε↓0

inf
v∈W 1,p

0 (O)
Jηε (v + tu;O)

= lim
t↑1,η↓0

lim sup
ε↓0

inf
v∈W 1,p

0 (O)
Jηε (v + tu;O).

If u satisfies the additional condition J(αu;O) <∞ for some α > 1, then the limit t ↑ 1 can be
omitted. �

Comments are in order:
— The results of Corollary 2.4 are not completely satisfactory. Indeed, if one makes a diagonal

extraction of t and η wrt ε to obtain a Γ-convergence in ε only, then the extraction for the
Γ-limsup depends on the target function v + u and not only on the boundary data u as we
would hope for. This dependence is however restricted to a dilation parameter only in the
case of the lifting. In the case of the buffer zone, the result can be (optimally) improved to
ηε = θε for any fixed θ > 0, under some additional structural assumption in the form of the
existence of stationary quasi-correctors (see Proposition 5.1). For specific examples for which
this assumption holds, see Corollary 2.10 below.

— In the specific situation when domV = domM (this is trivially the case when the domain is fixed,
i.e. domV (y, ·, ω) = domM for almost all y, ω), then the strong assumptions

´
OM(∇u(y))dy <

∞ and
´
OM(α∇u(y))dy <∞ (for some α > 1) in part (i) of the statement reduce to the simpler

assumptions J(u;O) < ∞ and J(αu;O) < ∞ (for some α > 1), respectively. In particular, in
that situation, the lifting can always be chosen to be trivial, uε := u for all ε.
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— In [13] (see also [12, Chapter 20]), Braides and Garroni prepare the boundary data in a different
way in the specific case of stiff inclusions. In particular they introduce an operator Rε which
acts on functions u as follows: on each stiff inclusion Rε(u) has value the average of u on the
considered stiff inclusion, away from all inclusions Rε(u) coincides with u, and in between Rε(u)
is an interpolation between u and the average of u on the inclusion. Such a construction can
be used here as well, but seem to admit no natural generalization in other settings than stiff
inclusions.

2.2. Nonconvex integrands with convex growth. In the case when W is nonconvex and admits
a two-sided estimate by a convex function (which may depend on the space variable), we show that
a Γ-convergence result similar to the convex case holds. Before we precisely state this result, let us
recall the notion of radial uniform upper semicontinuity (which is trivially satisfied by convex maps).

Definition 2.5. A map Z : Rm×d → [0,∞] is said to be ru-usc (i.e. radially uniformly upper
semicontinuous) if there is some α ≥ 0 such that the function

∆α
Z(t) = sup

Λ∈domZ

Z(tΛ)− Z(Λ)

α+ Z(Λ)

satisfies lim supt↑1 ∆α
Z(t) ≤ 0. A τ -stationary normal random integrandW is said to be ru-usc if there

exists a τ -stationary integrable random field a : Rd × Ω→ [0,∞] such that the function

∆a
W (t) :=sup ess

y∈Rd
sup ess
ω∈Ω

sup
Λ∈domW (y,·,ω)

W (y, tΛ, ω)−W (y,Λ, ω)

a(y, ω) +W (y,Λ, ω)

satisfies lim supt↑1 ∆a
W (t) ≤ 0. �

The following result is a far-reaching generalization of [36, Theorem 1.5] to a wide class of random
and nonconvex integrands; it is also a substantial extension of [7, Corollary 2.2].

Theorem 2.6 (Nonconvex integrands with convex growth). Let W : Rd × Rm×d × Ω → [0,∞] be
a (nonconvex) ru-usc τ -stationary normal random integrand satisfying Hypothesis 2.1. Assume that,
for almost all ω, y, and for all Λ,

V (y,Λ, ω) ≤ W (y,Λ, ω) ≤ C(1 + V (y,Λ, ω)), (2.10)

for some C > 0 and some τ -stationary convex random integrand V : Rd × Rm×d × Ω → [0,∞] that
satisfies the assumptions of Theorem 2.2 for some p > d. Then, for almost all ω ∈ Ω and all bounded
Lipschitz domains O ⊂ Rd, the integral functionals Iε(·, ω;O) Γ-converge to the integral functional
I(·;O) : W 1,p(O;Rm)→ [0,∞] defined by

I(u;O) =

ˆ
O
W (∇u(y))dy,

for some ru-usc lower semicontinuous quasiconvex function W : Rm×d → [0,∞] that satisfies V ≤
W ≤ C(1+V ), where V is the homogenized integrand associated with V by Theorem 2.2. In addition,
the results stated in Corollary 2.4 for Jε also hold for Iε.

For all Λ ∈ Rm×d, let gΛ be the potential field in probability minimizing E[V (0,Λ + ·)] (cf. (2.5)),
and note that x 7→ gΛ(τxω) is a gradient field on Rd for almost all ω ∈ Ω, which we denote by
∇ϕΛ(x, ω). The homogenized integrand W is characterized for all Λ ∈ Rm×d by

W (Λ) = lim inf
t↑1

lim inf
Λ′→Λ

lim
ε↓0

inf
v∈W 1,p

0 (O/ε;Rm)

 
O/ε

W (y, tΛ′ + t∇ϕΛ′(y, ω) +∇v(y), ω)dy. (2.11)

for any bounded Lipschitz domain O ⊂ Rd and almost every ω ∈ Ω. �

In general, we do not expect that the limits t ↑ 1 and Λ′ → Λ can be dropped in (2.11), see however
Corollary 2.8 below under Hypothesis 2.7.
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2.3. Application to nonlinear elasticity. In the example from the statistical physics of polymer-
chain networks, the integrand has the specific decomposition (1.2). Moreover, the nonconvex part of
the integrand satisfies the following assumption, which in particular implies that W satisfies Hypoth-
esis 2.1 (see indeed Lemma A.12), as well as the ru-usc property.

Hypothesis 2.7. There exists a τ -stationary convex map V : Rd × Rm×d × Ω → [0,∞] and some
p > 1 such that

W (y,Λ, ω) = V (y,Λ, ω) +Wnc(y,Λ, ω),

whereWnc : Rd×Rm×d×Ω→ [0,∞] is a (nonconvex) τ -stationary normal random integrand satisfying
the p-th order upper bound and the local Lipschitz conditions, for some C > 0,

(i) for almost all y, ω, for all Λ,

Wnc(y,Λ, ω) ≤ C(|Λ|p + 1);

(ii) for almost all y, ω, for all Λ,Λ′,

|Wnc(y,Λ, ω)−Wnc(y,Λ′, ω)| ≤ C(1 + |Λ|p−1 + |Λ′|p−1)|Λ− Λ′|.

�

Under this assumption, the following variant of Theorem 2.6 holds and yields in particular a simpler
formula for the homogenized energy density.

Corollary 2.8. Let W : Rd × Rm×d × Ω → [0,∞] be a (nonconvex) τ -stationary normal random
integrand satisfying Hypothesis 2.7. Assume that, for almost all ω, y, and for all Λ,

V (y,Λ, ω) ≤ W (y,Λ, ω) ≤ C(1 + V (y,Λ, ω)), (2.12)

for some C > 0, where V : Rd × Rm×d × Ω → [0,∞] satisfies the assumptions of Theorem 2.2 for
some p > d. Then the conclusions of Theorem 2.6 hold true. In addition we have for all Λ ∈ Rm×d
for almost all ω

W (Λ) = lim
R↑∞

inf
v∈W 1,p

0 (QR;Rm)

 
QR

W (y,Λ +∇ϕΛ(y, ω) +∇v(y), ω)dy, (2.13)

where ϕΛ is as in Theorem 2.6. �

The behavior ofW close to the boundary of its domain is of particular interest. From a mechanical
point of view, in the case of (1.2) with V satisfying V (y,Λn) → ∞ as dist(Λn, ∂domV (y, ·)) → 0,
we expect that W (Λn) → ∞ as dist(Λn, ∂domW ) → 0. Except in a few explicit examples, we do
not know under which condition and how to prove such a property. In the case of the geometry that
saturates the Hashin-Shtrikman bound (obtained by a stationary and statistically isotropic Vitali
covering of Rd by balls, cf. [31, Section 6.2]), where each ball is the homothetic image of a unit
ball with a given spherical inclusion, the corrector gradient field is explicit when Λ is a dilation, and
t 7→W (t Id) indeed blows up when t approaches the boundary of the domain.

2.4. Some improved results. The general results above naturally call for various questions con-
cerning possible improvements:

— What about the subcritical case 1 < p ≤ d?
— What is the minimal size ηε of the soft buffer zone needed in the presence of Dirichlet boundary

conditions (see Corollary 2.4(ii))? Under which conditions can we take ηε = θε for some constant
θ > 0?

— What about periodic boundary data? In particular, can one approximate V by periodization
(in law) in the spirit of [22]?

These three questions are partially addressed below under various additional assumptions.
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2.4.1. Subcritical case 1 < p ≤ d. The first improvement concerns the growth condition from below
in Theorem 2.2. It is relaxed here to any p > 1 in the convex scalar case m = 1 under the addi-
tional assumption that V has fixed domain. The idea is to avoid the use of Sobolev embedding by
using suitable truncations (in the spirit of e.g. [17, proof of Lemma 13.1.5]), which are indeed only
available in the scalar case with fixed domain. We recover in particular in this way the results of [17,
Section 13.4] in Sobolev spaces.

Corollary 2.9 (Subcritical case). Let V and M satisfy the assumptions of Theorem 2.2 in the scalar
case m = 1, for some p > 1. Also assume that domV (y, ·, ω) = domM for almost all y, ω. Then the
conclusions of Theorem 2.2 and Corollary 2.4 hold true for this p > 1. �

2.4.2. Minimal soft buffer zone. The second improvement concerns the size of the buffer zone for
Dirichlet boundary data, at least for affine target functions. The minimal size ηε = θε, for any
constant θ > 0, is achieved under the technical structural assumption that stationary quasi-correctors
exist, cf. Proposition 5.1. Understanding the validity of this assumption in general seems to be a
difficult question of functional analytic nature. It is trivially satisfied in the periodic case. It is also
valid provided that truncations are available, which holds in the scalar case with fixed domain.

Corollary 2.10 (Minimal soft buffer zone). Let V, Jε, J,M andW, Iε, I be as in Theorems 2.2 and 2.6
for some p > 1. Also assume that one of the following holds:

(1) p > d, and, for all Λ, ω, V (·,Λ, ω) and W (·,Λ, ω) are Q-periodic;

(2) m = 1, and domV (y, ·, ω) = domM is open for almost all y, ω.

Then, for all Λ, for almost all ω ∈ Ω,

V (Λ) = lim
ε↓0

inf
v∈W 1,p

0 (O)

 
O
V O,θε
ε (y,Λ +∇v(y), ω)dy,

where V O,θε
ε is defined as in (2.9) with η = θε. The same result also holds for V, Jε, J replaced by

W, Iε, I (for p > d). �

2.4.3. Approximation by periodization. The last improvement concerns the approximation of V by
periodization. As for Dirichlet boundary conditions, periodic boundary conditions require “well-
prepared data”. In this case, the well-preparedness is formalized in terms of periodization of the law
of the energy density (as opposed to the more naive periodization in space, cf. Figure 1):

Definition 2.11. A collection (V R)R>0 of random maps V R : Rd ×Rm×d ×Ω→ [0,∞] is said to be
an admissible periodization in law for V if

(i) Periodicity in law: for all R > 0, V R is QR = [−R
2 ,

R
2 )d-periodic and is stationary with respect

to translations on the torus TR = (R/RZ)d (more precisely there exists a measurable action τR
of TR on Ω such that, for all y = y1 + y2 with y1 ∈ (RZ)d and y2 ∈ QR, we have V R(y, ·, ω) =
V R(y2, ·, ω) = V R(0, ·, τR−y2

ω));

(ii) Stabilization property: for all θ ∈ (0, 1) and for almost all ω, there exists Rθ(ω) > 0 such that
for all R > Rθ(ω) we have V R(·, ·, ω)|QθR×Rm×d = V (·, ·, ω)|QθR×Rm×d . �

Remark 2.12. It may seem quite unnatural to make in this definition the action τR depend on
R. Another definition would consist in keeping the same integrand V and action τ but letting the
probability measure vary according to PR := (TR)∗P, which amounts to defining V R(y,Λ, ω) =
V (y,Λ, TR(ω)), for some projection TR : Ω → Ω with suitable properties such as the τ -invariance of
the set TR(Ω). As shown in the examples below, TR will typically be the (natural) QR-periodization
of an underlying Poisson process, and TR(Ω) will be the set of QR-periodic realizations (that is of
P-measure 0). Note that this is a particular case of the formalism of Definition 2.11 above, for the
conjugated action τRy := τy ◦ TR.
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Figure 1. For Poisson random inclusions: periodization in space (left) versus peri-
odization in law (right), four periods.

The main goal here is to prove an approximation formula for V and W by periodization in law,
that is an asymptotic formula of the following form: for all Λ ∈ Rm×d, for almost all ω,

V (Λ) ∼ lim
R↑∞

inf
u∈W 1,p

per (QR)

 
QR

V R(y,Λ +∇u(y), ω)dy, (2.14)

and similarly for W . Such a formula would be of particular interest for numerical approximations
of V and W . The notion of periodization in law was introduced in [22]. It crucially differs from
“periodization in space”, which would consist in replacing the argument of the limit in (2.14) by

inf
u∈W 1,p

per (QR)

 
QR

V (y,Λ +∇u(y), ω)dy.

The difference between both types of periodization is illustrated on Figure 1 for Poisson random
inclusions. Empirical results in [22] tend to show that periodization in law is more precise than pe-
riodization in space for the approximation of homogenized coefficients in the case of discrete linear
elliptic equations, whereas [27, 29] provide with a complete numerical analysis (convergence rate,
quantitative central limit theorem) of this method when the coefficients are independent and identi-
cally distributed. In the case of the unbounded integral functionals considered here, it is not clear
whether the approximation by periodization in space converges in general. Note that for problems
with discrete stationarity (like the random chessboard or periodic structures) such periodizations are
not needed but the sequences ε,R have to be discrete: εk = 1/k,R = k with k ∈ N.

Before we state our results, let us shortly discuss periodization in law on the example of random
inclusions. Let

V (y,Λ, ω) := a(Λ)1Rd\E(ω)(y) + b(Λ)1E(ω)(y), (2.15)

where a, b : Rm×d → [0,∞] are convex functions and E(ω) is a stationary random set (to be thought
of as a collection of inclusions). A typical choice for E is E =

⋃∞
n=1B(qn), where ρ = (qn)n is

a stationary point process in Rd. For R > 0, set ρR = (qn,R)n, ER :=
⋃∞
n=1B(qn,R), and define
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V R(y,Λ, ω) := a(Λ)1Rd\ER(ω)(y) + b(Λ)1ER(ω)(y). For V R to be an admissible periodization in law
of V , it is sufficient that (ρR)R is an admissible periodization of ρ in the following sense:
(i’) Periodicity in law: for all R > 0, ρR is QR-periodic and τR-stationary with respect to transla-

tions on the torus TR = (R/RZ)d;
(ii’) Stabilization: for all θ ∈ (0, 1) and for almost all ω there is Rθ(ω) > 0 so that for all R ≥ Rθ(ω),

ρR(ω) ∩QθR = ρ(ω) ∩QθR.
Let us now describe three typical examples, for which the periodization in law can be explicitly
constructed:
(a) Poisson point process. If ρ is a Poisson point process on Rd, a suitable periodization in law is

given by ρR =
⋃
z∈Zd(Rz + ρ ∩ QR). Property (i’) is satisfied by complete independence of the

Poisson process, while property (ii’) holds for θ = 1.
(b) Random parking point process. We now let ρ be the random parking measure on Rd defined in [38].

Penrose’s graphical construction is as follows: ρ is obtained as a transformation ρ := T (ρ0) of a
Poisson point process ρ0 on Rd×R+. Following [30, Remark 5], we may periodize the underlying
Poisson process on QR as above by setting ρR0 :=

⋃
z∈Zd((Rz, 0) + ρ0 ∩ (QR × R+)), and define

a periodization of ρ as ρR := T (ρR0 ). Property (i’) holds by construction. Property (ii’) is more
subtle and relies on the stabilization properties of the random parking measure. By a union
bound argument we may rephrase the exponential stabilization of [39, Lemma 3.5] as follows:
There exist K,κ > 0 and for all R > 0 there exists a random variable tR such that
— ρ ∩ QR does not depend on ρ0 ∩ ((Rd \ QtR) × R+), and in particular, for any locally finite

subset F ⊂ (Rd \QtR)× R+, we have

QR ∩ T (F ∪ (ρ0 ∩ (QtR × R+))) = QR ∩ T (ρ0 ∩ (QtR × R+));

— for all L ≥ 0, P[tR ≥ L] ≤ RdKe−κ(L−R).
Hence, for all θ ∈ (0, 1),

∞∑
R=1

P[ρ ∩QθR does depend on ρ0 ∩ ((Rd \QR)× R+)]

≤
∞∑
R=1

P[tθR ≥ R] ≤
∞∑
R=1

(θR)dKe−κ(1−θ)R <∞.

By the Borel-Cantelli lemma, ρ∩QθR does eventually not depend on ρ0∩((Rd\QR)×R+) as R ↑ ∞
almost surely. In particular, for all θ ∈ (0, 1) and for almost all ω, there exists some Rω > 0 with
the following property: for all R ≥ Rω, ρ(ω)∩QθR does not depend on ρ0(ω)∩ ((Rd \QR)×R+),
so that ρR(ω) ∩QθR = ρ(ω) ∩QθR, that is, (ii’).

(c) Hardcore Poisson point process. As noticed in [21, Step 1 of Section 4.2] (in a more general
context), a hardcore Poisson point process ρ on Rd can be obtained by applying the transformation
T of (b) to a Poisson point process ρ0 on Rd × (0, 1), that is, ρ = T (ρ0). The same argument as
in (b) (with however easier bounds) then yields the desired periodization in law of ρ.

In terms of applications, example (b) is of particular interest since it is used in [30, 26, 20] as a
suitable random point set for the derivation of nonlinear elasticity from polymer physics started in [4].

We now turn to our Γ-convergence results with periodic boundary data under periodization in law
(yielding in particular an approximation of the homogenized energy density of the form (2.14)). The
main difficulty is the following: in order to carry out the analysis as before, we would somehow need
the uniform sublinearity of the correctors associated to the family of periodized integrands (V R)R>0.
It is not clear to us whether this uniformity holds in general. In what follows, we give an alternative
argument in the scalar case with fix domain, as well as in the very particular example of well-separated
random stiff inclusions in a soft matrix. Note that because of the separation assumption this does
not include the example (a) of Poisson inclusions; however we believe that up to some technicalities
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the proof could be adapted to that case. For simplicity, we consider spherical inclusions, but random
shapes could of course be considered too.

Corollary 2.13 (Approximation by periodization). Let V, Jε, J,M and W, Iε, I be as in Theorems 2.2
and 2.6 for some p > 1. Also assume that one of the following holds:
(1) m = 1, and domV (y, ·, ω) = domM for almost all y, ω;
(2) p > d, and V (y,Λ, ω) ≤ C(1 + |Λ|p) for all ω and all y /∈ Eω, for some random stationary set

Eω =
⋃∞
n=1BRωn (qωn ) ⊂ Rd satisfying almost surely, for all n, and some constant C > 0,

1

Rωn
inf

m,m 6=n
dist(BRωm(qωm), BRωn (qωn )) ≥ 1

C
, Rωn ≤ C.

Let (V R)R>0 be an admissible periodization in law for V in the sense of Definition 2.11, and for all
ε > 0 and all Λ ∈ Rm×d denote by Jper

ε (·,Λ, ·) the following random integral functional on the unit
cube Q = [−1

2 ,
1
2)d:

Jper
ε (u,Λ, ω) :=

ˆ
Q
V 1/ε(y/ε,Λ +∇u(y), ω)dy, u ∈W 1,p

per(Q;Rm),

where W 1,p
per(Q;Rm) denotes the closure in W 1,p(Q;Rm) of the set of smooth periodic functions on Q.

Then, for almost all ω and for all Λ, the integral functionals Jper
ε (·,Λ, ω) Γ-converge to J(·+ Λ ·x, ω)

on the space W 1,p
per(Q;Rm). In particular, we have the following approximation of V by periodization:

for all Λ ∈ Rm×d, for almost all ω,

V (Λ) = lim
t↑1

lim
R↑∞

inf
u∈W 1,p

per (QR)

 
QR

V R(y, tΛ +∇u(y), ω)dy

= lim
t↑1

lim
R↑∞

E

[
inf

u∈W 1,p
per (QR)

 
QR

V R(y, tΛ +∇u(y), ·)dy

]
.

By convexity, if Λ ∈ int domV , then the limits t ↑ 1 can be dropped. Note that domV = Rm×d holds
in case (2). The same results also hold for V, Jε, J replaced by W, Iε, I, provided that p > d. �

3. Proof of the results for convex integrands

This section is dedicated to the proofs of Theorem 2.2, Corollary 2.4, and Corollaries 2.10 and 2.13.
Let V be a convex τ -stationary normal random integrand. Up to the addition of a constant, we may
restrict to the following stronger version of (2.4): for almost all ω, y, we have, for all Λ,

1

C
|Λ|p ≤ V (y,Λ, ω), (3.1)

for some C > 0 and 1 < p <∞. We assume that 0 belongs to the interior of the domain of the convex
function M := sup essy,ω V (y, ·, ω).

Following the strategy of [36, Theorem 1.5], we proceed by truncation of V . We let (V k)k be an
increasing sequence of τ -stationary convex normal random integrands V k : Rd × Rm×d × Ω → R+

such that, for almost all ω, y, and for all Λ, we have

lim
k↑∞

V k(y,Λ, ω) = V (y,Λ, ω), and
1

C
|Λ|p ≤ V k(y,Λ, ω) ≤ Ck(|Λ|p + 1), (3.2)

for some C > 0 and some sequence Ck ↑ ∞ (see [36, Lemma 3.4] for such a construction). Let
Ω0 ⊂ Ω be a subset of maximal probability on which all these assumptions (about V and the V k’s)
are simultaneously pointwise satisfied.

We shall prove the existence of a subset Ω′ ⊂ Ω0 of maximal probability such that, for all ω ∈ Ω′

and all bounded Lipschitz domains O ⊂ Rd, the functionals Jε(·, ω;O) Γ-converge to the functional
J(·;O) on W 1,p(O;Rm), where we recall the definitions

Jε(u, ω;O) :=

ˆ
O
V (y/ε,∇u(y), ω)dy, J(u;O) :=

ˆ
O
V (∇u(y))dy.
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As usual, the proof of Γ-convergence splits into two parts: the proof of a lower bound (Γ-lim inf
inequality) and the explicit construction of a recovery sequence which achieves the lower bound (Γ-
lim sup inequality).

3.1. Preliminaries. We first need to briefly recall the standard stationary differential calculus in
probability (first introduced by [37, Section 2]), as well as some results on ergodic Weyl decomposi-
tions.

3.1.1. Stationary differential calculus in probability. Let 1 ≤ p < ∞. For all 1 ≤ i ≤ d, consider
the partial action (T ih)h∈R of (R,+) on Lp(Ω), defined by (T ihf)(ω) = f(τ−heiω), for h ∈ R. The
actions (T ih)h∈R (for 1 ≤ i ≤ d) commute with each other and are unitary and strongly continuous by
Lemma A.5. For all i, we may then consider the infinitesimal generator Di of (T ih)h∈R, defined by

Dif = lim
h→0

T ihf − f
h

, f ∈ Lp(Ω),

whenever the limit exists in the strong sense of Lp(Ω). By classical semigroup theory, the generatorsDi

are closed linear operators with dense domains Di ⊂ Lp(Ω), and the intersection W 1,p(Ω) :=
⋂d
i=1Di

is also dense in Lp(Ω). Moreover, W 1,p(Ω) is endowed with a natural Banach space structure.
For f ∈ W 1,p(Ω), its stationary gradient is then defined by Df := (D1f, . . . ,Ddf) ∈ Lp(Ω;Rd).

Through the usual correspondence between random variables and τ -stationary random fields as re-
called in Appendix A.2.1 (for all g ∈ Lp(Ω), write g(x, ω) := g(τ−xω), defining g ∈ Lploc(R

d; Lp(Ω))),
we may define Df(x, ω) := Df(τ−xω) for all x. By unitarity of the action T , the operator D is
skew-symmetric, so that the following “integration by parts formula” holds, for all f ∈ W 1,p(Ω) and
g ∈W 1,p′(Ω), p′ = p/(p− 1),

E[Df ] = 0 and E[fDg] = −E[gDf ].

As explained in Section A.2.2 (see in particular Lemma A.7), for almost all ω, the function Df(·, ω)
is nothing but the distributional derivative of f(·, ω) ∈ Lploc(R

d), and the following identity holds:

W 1,p(Ω) = {f ∈W 1,p
loc (Rd; Lp(Ω)) : f(x+ y, ω) = f(x, τ−yω),∀x, y, ω}. (3.3)

This justifies that in the sequel we simply use the notation Df = ∇f .

3.1.2. Ergodic Weyl decomposition. Ergodicity of the measurable action τ of (Rd,+) on the probability
space (Ω,F ,P) is crucial in the sequel. Let 1 < p <∞. In analogy with the classical Weyl subspaces
of Lploc(R

d;Rd), we define the subspaces of potential and solenoidal random fields with respect to the
differential calculus associated with the group action in the following way: for p′ = p/(p− 1),

Lppot(Ω) = {f ∈ Lp(Ω;Rd) : E[f · (∇× g)] = 0, ∀g ∈W 1,p′(Ω;Rd)}, (3.4)

Lpsol(Ω) = {f ∈ Lp(Ω;Rd) : E[f · ∇g] = 0, ∀g ∈W 1,p′(Ω)}.

Reinterpreting these definitions in physical space, we easily obtain the following reformulations in
terms of stationary extensions:

Lppot(Ω) = {f ∈ Lp(Ω;Rd) : for almost all ω, x 7→ f(τxω) ∈ Lploc(R
d;Rd) is potential}, (3.5)

Lpsol(Ω) = {f ∈ Lp(Ω;Rd) : for almost all ω, x 7→ f(τxω) ∈ Lploc(R
d;Rd) is solenoidal},

where a function h ∈ Lploc(R
d) is said to be potential (resp. solenoidal) if ∇× h = 0 (resp. ∇ · f = 0)

in the distributional sense. Constant functions belong to both subspaces, and we further define

F ppot(Ω) = {f ∈ Lppot(Ω) : E[f ] = 0} and F psol(Ω) = {f ∈ Lpsol(Ω) : E[f ] = 0}. (3.6)

The spaces Lppot(Ω), Lpsol(Ω), F ppot(Ω) and F psol(Ω) are all closed in Lp(Ω;Rd), and the following Banach
direct sum decomposition holds

Lp(Ω;Rd) = F ppot(Ω)⊕ F psol(Ω)⊕ Rd, (3.7)
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as well as the following density results:

F ppot(Ω) = adh Lp(Ω;Rd){∇g : g ∈W 1,p(Ω)}, (3.8)

F psol(Ω) = adh Lp(Ω;Rd){∇ × g : g ∈W 1,p(Ω)}.

Since we did not find a suitable reference for these results (besides the Hilbert setting), we provide a
proof of (3.7) and (3.8) in Appendix A.3.

3.2. Γ-convergence of truncated energies. Since the approximations V k of V all satisfy standard
polynomial growth conditions, we can appeal to the classical stochastic homogenization result of [19]
(which could be reproved via a direct adaptation of the (periodic) arguments of [36, Theorem 1.3]).
More precisely, there exists a subset Ω1 ⊂ Ω0 of maximal probability such that, for all ω ∈ Ω1, all
k, and all Λ ∈ Rm×d, the following limit exists (as a consequence of the Ackoglu-Krengel subadditive
ergodic theorem) and defines the homogenized integrand V k:

V
k
(Λ) = lim

R↑∞
inf

φ∈W 1,p
0 (QR;Rm)

 
QR

V k(y,Λ +∇φ(y), ω)dy, (3.9)

where QR := [−R
2 ,

R
2 )d. By dominated convergence, this convergence also holds when taking the

expectation of the infimum. In addition, for any bounded Lipschitz domain O ⊂ Rd, and for all
ω ∈ Ω1 and all k, the functionals Jkε (·, ω;O) Γ-converge, as ε ↓ 0, to the functional Jk(·;O), defined
by

Jkε (u, ω;O) :=

ˆ
O
V k(y/ε,∇u(y), ω)dy, and Jk(u;O) :=

ˆ
O
V
k
(∇u(y))dy.

Since k 7→ V k is increasing, k 7→ V
k is increasing as well, and for all Λ ∈ Rm×d we may define

V (Λ) := limk→∞ V
k
(Λ). In particular,

V (Λ) = sup
k
V
k
(Λ) = sup

k
lim
R↑∞

inf
φ∈W 1,p

0 (QR;Rm)

 
QR

V k(y,Λ +∇φ(y), ω)dy. (3.10)

It remains to pass to the limit k ↑ ∞ in the Γ-convergence result. The key is to prove the commutation
of homogenization and truncation, which we do in Subsection 3.4 below.

Alternative formulas for V k are obtained in Lemma 3.7. Since V k is convex and everywhere finite,
it is continuous on Rm×d, and we may directly deduce from the definition V (Λ) := supk V

k
(Λ):

Lemma 3.1. The map V : Rm×d → [0,∞] is convex and lower semicontinuous. �

3.3. Γ-lim inf inequality. In view of the definition of V , the Γ-lim inf inequality is an elementary
consequence of the monotone convergence theorem:

Proposition 3.2 (Γ-lim inf inequality). For all ω ∈ Ω1, all bounded domains O ⊂ Rd, and all
sequences (uε)ε ⊂W 1,p(O;Rm) with uε −⇀ u in W 1,p(O;Rm), we have

lim inf
ε↓0

Jε(uε, ω;O) ≥ J(u;O).

�

Proof. Let O, (uε)ε, and u be as in the statement. Then, for all ω ∈ Ω1 and all k ∈ N, using the
Γ-lim inf result for Jkε (·, ω;O) towards Jk(·;O) (see Section 3.2), and that V ≥ V k,

lim inf
ε↓0

Jε(uε, ω;O) ≥ lim inf
ε↓0

Jkε (uε, ω;O) ≥ Jk(u;O),

so that, by monotone convergence,

lim inf
ε↓0

Jε(uε, ω;O) ≥ lim
k↑∞

Jk(u;O) = J(u;O). �

From this Γ-lim inf result, we deduce the locality of recovery sequences, if they exist.
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Corollary 3.3 (Locality of recovery sequences). If for some ω ∈ Ω1, some bounded domain O ⊂ Rd,
and some function u ∈ W 1,p(O;Rm), there exists a sequence (uε)ε ⊂ W 1,p(O;Rm) with uε −⇀ u
in W 1,p(O;Rm) and Jε(uε, ω;O) → J(u;O), then we also have Jε(uε, ω;O′) → J(u;O′) for any
subdomain O′ ⊂ O. Hence, by an extension result, the Γ-lim sup inequality on a bounded Lipschitz
domain O implies the Γ-lim sup inequality on any Lipschitz subdomain O′ ⊂ O. �

Proof. Choose a subdomain O′ ⊂ O, and define O′′ := O \O′. We then have by assumption

J(u;O) = lim
ε↓0

J(uε;O) = lim
ε↓0

(
Jε(uε, ω;O′) + Jε(uε, ω;O′′)

)
≥ lim inf

ε↓0
Jε(uε, ω;O′) + lim inf

ε↓0
Jε(uε, ω;O′′).

Now by Proposition 3.2 we have lim infε↓0 Jε(uε, ω;O′) ≥ J(u;O′) and lim infε↓0 Jε(uε, ω;O′′) ≥
J(u;O′′). The conclusion then follows from the identity J(u;O′) + J(u;O′′) = J(u;O). �

3.4. Commutation of truncation and homogenization. The crucial ingredient to prove the
commutation of truncation and homogenization is the reformulation of the asymptotic homogenization
formula in the probability space. For that purpose, we first introduce the following proxy for V :

P (Λ) := inf
f∈F ppot(Ω)m

E[V (0,Λ + f, ·)]. (3.11)

Likewise, for all k ∈ N, we set

P
k
(Λ) := inf

f∈F ppot(Ω)m
E[V k(0,Λ + f, ·)]. (3.12)

In this case, due to the growth condition (3.2), we may prove (see Lemma 3.7 below) that

lim
ε↓0

E

[
inf

φ∈W 1,p
0 (O/ε;Rm)

 
O/ε

V k(y,Λ +∇φ(y), ·)dy

]
= P

k
(Λ).

However, for V itself, this equality has no chance to be true if Λ ∈ domP \ domM since the left-hand
side could be infinite (because of the Dirichlet boundary condition) while the right-hand side is not
— see Example 2.3. We thus rather use a “relaxed version” of the Dirichlet boundary conditions and
set for all ε > 0

P ε(Λ, ω;O) := inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V (y,Λ +∇φ(y), ω)dy. (3.13)

As opposed to the case of Dirichlet boundary conditions, there is no natural subadditive property in
this definition (two test-functions on disjoint domains cannot be glued together). This difficulty will
be overcome by using a more sophisticated gluing argument that relies quantitatively on the following
sublinearity property of the correctors.

Lemma 3.4 (Sublinearity of correctors). For all Λ ∈ Rm×d, there exists a corrector field ϕΛ ∈
Mes(Ω;W 1,p

loc (Rd;Rm)) such that ∇ϕΛ(0, ·) ∈ F ppot(Ω)m, and

P (Λ) = E [V (0,Λ +∇ϕΛ(0, ·), ·)] .

In addition, ϕΛ is sublinear at infinity in the sense that, for almost all ω ∈ Ω,

εϕΛ(·/ε, ω) −⇀ 0 (3.14)

weakly in W 1,p(O;Rm) for all bounded domains O ⊂ Rd. �

Remark 3.5. Although the space {∇g : g ∈ W 1,p(Ω)} is dense in F ppot(Ω) (see (3.8)), the infi-
mum (3.11) defining P (Λ) cannot be replaced in general by an infimum over this smaller dense sub-
space because of a possible lack of strong continuity of the functional, see however Proposition 5.1. �
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Proof. Let Λ ∈ Rm×d be fixed. By convexity and by the lower bound (3.1) on V , χ 7→ E[V (0,Λ+χ, ·)]
is lower semicontinuous and coercive on F ppot(Ω)m, and therefore attains its infimum. Let g ∈ F ppot(Ω)m

be a minimizer. The τ -stationary extension (x, ω) 7→ g(τxω) of g is a potential field on Rd for almost
every ω. Hence, there exists a map ϕΛ ∈ Mes(Ω;W 1,p

loc (Rd;Rm)) such that g(τxω) = ∇ϕΛ(x, ω) for
almost all x, ω (see indeed Proposition A.10). The claim now follows from the combination of the
following two applications of the Birkhoff-Khinchin ergodic theorem: for almost all ω,

∇ϕΛ(·/ε, ω) −⇀ 0, (weakly) in Lp(O;Rm), (3.15)

ε

ˆ
O
ϕΛ(y/ε, ω)dy → 0. (3.16)

Indeed, by Poincaré’s inequality and (3.15), the sequence y 7→ εϕΛ(y/ε, ω) − ε
´
O ϕΛ(z/ε, ω)dz con-

verges weakly to zero in W 1,p(O;Rm) for almost every ω. Combined with (3.16), this implies (3.14).
To conclude, we turn to the proofs of (3.15) and (3.16). The weak convergence (3.15) to zero is a di-

rect consequence of the Birkhoff-Khinchin ergodic theorem in the form ∇ϕΛ(·/ε, ω) −⇀ E[∇ϕΛ(0, ·)] =
0 in Lp(O;Rm). It remains to prove (3.16). We may assume wlog ϕΛ(0, ·) = 0 almost surely, so that∣∣∣∣ε  

O
ϕΛ(y/ε, ω)dy

∣∣∣∣ =

∣∣∣∣∣ε
 
O/ε

ϕΛ(·, ω)

∣∣∣∣∣ =

∣∣∣∣∣ε
 
O/ε

ˆ 1

0
x · ∇ϕΛ(tx, ω)dtdx

∣∣∣∣∣
≤
 1/ε

0

∣∣∣∣ 
O
x · ∇ϕΛ(tx, ω)dx

∣∣∣∣ dt. (3.17)

For almost all ω, the function ψω(t) :=
ffl
O x · ∇ϕΛ(tx, ω)dx is continuous on (0,∞). By (3.15),

ψω(t)→ 0 as t ↑ ∞ for almost all ω. By joint measurability and (local) integrability of ∇ϕΛ, and by
stationarity, 0 is a Lebesgue point of ∇ϕΛ(·, ω) for almost all ω, and hence lim supt↓0 |ψω(t)| <∞ for
almost all ω. The result (3.16) then follows from (3.17). �

For all Λ ∈ domP , let ϕΛ be defined as in Lemma 3.4, and let ΩΛ ⊂ Ω1 be a subset of maximal
probability such that (3.14) holds on ΩΛ for all bounded Lipschitz domains. Restricting ΩΛ further,
the Birkhoff-Khinchin ergodic ensures that, for all ω ∈ ΩΛ, we have for all bounded subsets O ⊂ Rd
and all t ∈ Q,  

O/ε
∇ϕtΛ(·, ω)

ε↓0−−→ 0 (3.18)

and  
O/ε

V (y, tΛ +∇ϕtΛ(y, ω), ω)dy
ε↓0−−→ E[V (0, tΛ +∇ϕtΛ(0, ·))] = P (tΛ). (3.19)

We now turn to the proof that limε P
ε(Λ, ω;O) = P (Λ) for all Λ for almost all ω ∈ Ω. The following

inequality is the most subtle part.

Lemma 3.6. For all Λ ∈ int domP and all bounded domains O ⊂ Rd, there exists a sequence
ψΛ,O,ε ∈ Mes(Ω;W 1,p(O/ε;Rm)) such that, for all ω ∈ ΩΛ,

ffl
O/ε∇ψΛ,O,ε(·, ω) = 0,

εψΛ,O,ε(·/ε, ω) −⇀ 0

weakly in W 1,p(O;Rm) as ε ↓ 0, and

P (Λ) ≥ lim sup
ε↓0

 
O/ε

V (y,Λ +∇ψΛ,O,ε(y, ω), ω)dy ≥ lim sup
ε↓0

P ε(Λ, ω;O). (3.20)

�

Proof. Let Λ ∈ int domP be fixed, and let ω ∈ ΩΛ. For all t ∈ [0, 1) ∩Q and ε > 0, set

ΛωO,ε,t := −t
 
O/ε
∇ϕΛ/t(·, ω), and ψΛ,O,ε,t(x, ω) := tϕΛ/t(x, ω) + ΛωO,ε,t · x.
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By definition,
ffl
O/ε∇ψΛ,O,ε,t = 0, and by Lemma 3.4, εψΛ,O,ε,t(·/ε, ω) −⇀ 0 in W 1,p(O;Rm) as ε ↓ 0.

Hence,

P ε(Λ, ω;O) ≤
 
O/ε

V (y,Λ +∇ψΛ,O,ε,t(y, ω), ω) =: P̂ εt (Λ, ω;O).

By convexity

P̂ εt (Λ, ω;O) =

 
O/ε

V (y,Λ + t∇ϕΛ/t(y, ω) + ΛωO,ε,t, ω)dy

≤ t
 
O/ε

V (y,Λ/t+∇ϕΛ/t(y, ω), ω)dy + (1− t)
 
O/ε

V

(
y,

1

1− t
ΛωO,ε,t, ω

)
dy.

Since 0 ∈ int domM , there exists δ > 0 such that adhBδ ⊂ int domM . As t is rational and ω ∈ ΩΛ,
we have ΛωO,ε,t → 0 as ε ↓ 0 by the Birkhoff-Khinchin ergodic theorem in the form of (3.18). Hence
there exists εωΛ,O,t > 0 such that, for all 0 < ε < εωΛ,O,t, we have∣∣∣∣ 1

1− t
ΛωO,ε,t

∣∣∣∣ < δ,

and therefore,  
O/ε

V

(
y,

1

1− t
ΛωO,ε,t, ω

)
dy ≤ sup

|Λ′|<δ
M(Λ′) <∞.

This implies that

lim sup
t↑1,t∈Q

lim sup
ε↓0

P̂ εt (Λ, ω;O) ≤ lim sup
t↑1,t∈Q

lim sup
ε↓0

 
O/ε

V (y,Λ/t+∇ϕΛ/t(y, ω), ω)dy.

By the Birkhoff-Khinchin ergodic theorem in the form of (3.19) and the continuity of P in the interior
of its domain (as a consequence of convexity), this yields

lim sup
t↑1,t∈Q

lim sup
ε↓0

P̂ εt (Λ, ω;O) ≤ lim sup
t↑1,t∈Q

E[V (0,Λ/t+∇ϕΛ/t(0, ·), ·)] = lim sup
t↑1,t∈Q

P (Λ/t) = P (Λ).

We have thus proved:

lim sup
t↑1,t∈Q

lim sup
ε↓0

((
P̂ εt (Λ, ω;O)− P (Λ)

)+
+ ‖εψΛ,O,ε,t(·/ε, ω)‖Lp(O;Rm)

)
= 0.

By Attouch’s diagonalization lemma (see [8, Corollary 1.16]), this implies the existence of a sequence
(ψΛ,O,ε)ε with ψΛ,O,ε ∈W 1,p(O/ε;Rm) such that

´
O/ε∇ψΛ,O,ε = 0, lim supε P̂

ε
t (Λ, ω;O) ≤ P (Λ), and

εψΛ,O,ε(·/ε, ω) → 0 in Lp(O;Rm), for all ω ∈ ΩΛ. By the choice of Λ, P (Λ) < ∞, so that the lower
bound (3.1) on V implies that the sequence (∇ψΛ,O,ε(·/ε, ω))ε is bounded in Lp(O;Rm). We thus
conclude that εψΛ,O,ε(·/ε, ω) −⇀ 0 weakly in W 1,p(O;Rm), as claimed. �

In the case of standard growth conditions (thus e.g. for the V k’s), the corresponding inequality
(3.20) in Lemma 3.6 is indeed an equality. The following lemma gives equivalent definitions for the
V
k’s, which will be crucial in the sequel.

Lemma 3.7. Let O be a bounded Lipschitz domain of Rd. For all ω ∈ Ω1, all k, and all Λ ∈ Rm×d,
the following quantities are well-defined:

V
k
1(Λ) := lim

ε↓0
inf

φ∈W 1,p
0 (O/ε;Rm)

 
O/ε

V k(y,Λ +∇φ(y), ω)dy, (3.21)

V
k
2(Λ, ω) := lim

ε↓0
inf

φ∈W1,p(O/ε;Rm)ffl
O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω)dy, (3.22)

V
k
3(Λ) := inf

f̃∈F ppot(Ω)m
E[V k(0,Λ + f̃ , ·)], (3.23)
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and we have
V
k
(Λ) = V

k
1(Λ) = V

k
2(Λ) = V

k
3(Λ).

�

This result is standard (see for instance [31, Chapter 15]) and we display its proof for completeness.
Note that the formulas (3.22) and (3.23) for V will be shown to be equivalent to V , whereas formula
(3.21) is in general larger than V .

Proof. Let O ⊂ Rd be a bounded Lipschitz domain, and k ∈ N. By the definition of Γ-convergence
for Jk on W 1,p

0 (O;Rm) and the convergence of infima with Dirichlet boundary conditions, for all Λ
and ω ∈ Ω1 we have

V
k
(Λ) =

1

|O|
inf

φ∈W 1,p
0 (O;Rm)

ˆ
O
V
k
(Λ +∇φ)

=
1

|O|
lim
ε↓0

inf
φ∈W 1,p

0 (O;Rm)

 
O
V k(y/ε,Λ +∇φ(y), ·)dy = V

k
1(Λ). (3.24)

Likewise, the Γ-convergence result holds on {u ∈W 1,p(O) :
´
O∇u = 0} so that the identity

V
k
(Λ) = V

k
2(Λ)

also follows from the convergence of infima. Since Lemma 3.6 (applied to V k instead of V ) yields
V
k
2(Λ) ≤ V k

3(Λ), it remains to prove that V k
3(Λ) ≤ V k

1(Λ) for all Λ.
Let O′ ⊂ Rd be a bounded domain. By the coercivity and the lower semicontinuity of the integral

functional Jk (which follow from the growth condition (3.2) and the convexity of V k), there exists a
minimizer ζ ∈ L∞(Ω;W 1,p

0 (O′;Rm)) (where measurability follows from Proposition A.15) such that,
for almost all ω, 

O′
V k(y,Λ +∇ζ(y, ω), ω)dy = inf

φ∈W 1,p
0 (O′;Rm)

 
O′
V k(y,Λ +∇φ(y), ω)dy.

Set

ξ(x, ω) :=
1

|O′|

ˆ
Rd
ζ(x+ z, τzω)dz =

 
−x+O′

ζ(x+ z, τzω)dz.

Clearly, ξ is well-defined and stationary, belongs to W 1,p(Ω;Rm), and

∇ξ(x, ω) =

 
−x+O′

∇ζ(x+ z, τzω)dz.

Hence

V
k
3(Λ) ≤ E

[
V k(0,Λ +∇ξ(0, ·), ·)

]
= E

[
V k

(
0,Λ +

 
O′
∇ζ(z, τz·)dz, ·

)]
,

and by convexity of V k

V
k
3(Λ) ≤ E

[ 
O′
V k(0,Λ +∇ζ(z, τz·), ·)dz

]
.

By stationarity and the Fubini theorem, we may conclude

V
k
3(Λ) ≤

 
O′

E[V k(z,Λ +∇ζ(z, ·), ·)]dz = E

[
inf

φ∈W 1,p
0 (O′;Rm)

 
O′
V k(y,Λ +∇φ(y), ·)dy

]
.

With O′ := O/ε, the claim V
k
3(Λ) ≤ V

k
1(Λ) follows by the dominated convergence theorem and the

growth condition from above (3.2). �

The following result proves the equivalence between formulas (i), (ii) and (iii) in Theorem 2.2.



20 M. DUERINCKX AND A. GLORIA

Proposition 3.8 (Commutation of limits). For all bounded Lipschitz domains O ⊂ Rd, and all
Λ ∈ Rm×d, we have for almost all ω

V (Λ) = P (Λ) = lim
t↑1

lim
ε↓0

P ε(tΛ, ω;O).

By convexity, for all Λ /∈ ∂domV , this takes the form V (Λ) = P (Λ) = limε↓0 P
ε(Λ, ω;O). �

Remark 3.9. Although not stated explicitly, this result proves the commutation of truncation and
homogenization. By monotone convergence (cf. the proof of V ≡ P below) we have for all ε > 0 and
almost every ω,

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V (y,Λ +∇φ(y), ω)dy = sup
k

inf
φ∈W1,p

0 (O/ε;Rm)ffl
O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω)dy

so that Proposition 3.8, combined with (3.22) in Lemma 3.7, yields the desired commutation result

lim
ε↓0

sup
k

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω)dy

= V (Λ) = sup
k
V
k
(Λ) = sup

k
lim
ε↓0

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω)dy.

�

Proof of Proposition 3.8. We split the proof into two steps.

Step 1. Proof of V ≡ P .
Let Λ ∈ domV . By (3.23) in Lemma 3.7, for all k,

V
k
(Λ) = inf

f∈F ppot(Ω)m
E[V k(0,Λ + f)].

By convexity, f 7→ E[V k(0,Λ + f)] is lower semicontinuous on F ppot(Ω)m, and by coercivity, the
infimum is attained. Hence there exists gk ∈ F ppot(Ω)m such that

V
k
(Λ) = E[V k(0,Λ + gk)].

By the uniform growth condition from below (3.2), (gk)k is bounded in Lp(Ω;Rm×d):
1

C
2−p+1E[|gk|p]−

1

C
|Λ|p ≤ 1

C
E[|Λ + gk|p] ≤ E[V k(0,Λ + gk)] = V

k
(Λ) ≤ V (Λ).

Let g ∈ F ppot(Ω)m be a cluster point of (gk) for the weak convergence of Lp(Ω;Rm×d). We have along
the subsequence

V (Λ) = sup
k
V
k
(Λ) = lim

k↑∞
E[V k(0,Λ + gk)].

Since k 7→ V k is increasing and f 7→ E[V k(0,Λ+f)] is lower semicontinuous for the weak convergence
of Lp(Ω;Rm×d), this yields for all `

V (Λ) ≥ lim inf
k↑∞

E[V `(0,Λ + gk)] ≥ E[V `(0,Λ + g)].

We then conclude by monotone convergence that

V (Λ) ≥ E[V (0,Λ + g)] ≥ inf
f∈F ppot(Ω)m

E[V (0,Λ + f)] = P (Λ).

For Λ /∈ domV , the above inequality is trivial so that V (Λ) ≥ P (Λ) for all Λ ∈ Rm×d. For the
converse inequality, note that for all Λ,

P (Λ) ≥ sup
k

inf
f∈F ppot(Ω)m

E[V k(0,Λ + f)] = sup
k
V
k
(Λ) = V (Λ).
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Hence, V ≡ P , as claimed.

Step 2. Proof of limt↑1 limε↓0 P
ε(tΛ, ω;O) = V (Λ).

Since for Λ ∈ domV and t ∈ [0, 1), tΛ ∈ int domV , Lemma 3.6 and Step 1 yield for almost all ω

V (tΛ) = P (tΛ) ≥ lim sup
ε↓0

P ε(tΛ, ω;O). (3.25)

By (3.22) in Lemma 3.7, for all Λ ∈ Rm×d and almost all ω,

lim inf
ε↓0

P ε(Λ, ω;O) ≥ sup
k

lim
ε↓0

inf
φ∈W1,p(O/ε;Rm)ffl

O/ε∇φ=0

 
O/ε

V k(y,Λ +∇φ(y), ω)dy = sup
k
V
k
(Λ) = V (Λ). (3.26)

Combined with (3.25), this yields limε P
ε(tΛ, ω;O) = V (tΛ) for almost all ω, for all Λ ∈ domV and

t ∈ [0, 1). By convexity and lower semicontinuity of V , this implies for all Λ ∈ domV

lim
t↑1

lim
ε↓0

P ε(tΛ, ω;O) = lim
t↑1

V (tΛ) = V (Λ), (3.27)

and (3.26) ensures that this equality also holds for Λ /∈ domV . By convexity and by (3.27), the
function Λ 7→ limε P

ε(Λ, ω;O) is continuous outside ∂domV , so that the limit t ↑ 1 can be omitted
for Λ /∈ ∂domV . �

3.5. Proof of Theorem 2.2: Γ-convergence with Neumann boundary data. It only remains
to prove the Γ-lim sup inequality.

Proposition 3.10 (Γ-lim sup inequality with Neumann boundary data). Assume p > d. There
exists a subset Ω′ ⊂ Ω1 of maximal probability with the following property: for all ω ∈ Ω′, all bounded
Lipschitz domains O ⊂ Rd, and all u ∈ W 1,p(O;Rm), there exists a sequence (uε)ε ⊂ W 1,p(O;Rm)
such that uε −⇀ u in W 1,p(O;Rm) and Jε(uε, ω;O)→ J(u;O). �

Proof. We split the proof into three steps. We first treat the case of affine functions, then the case
of continuous piecewise affine functions, and finally the general case. The novelty of our approach is
the careful gluing argument needed to pass from affine to piecewise affine functions.

Step 1. Recovery sequence for affine functions.
In this step, we consider the case when u = Λ ·x is an affine function. More precisely, we prove the

existence of a subset Ω′ ⊂ Ω1 of maximal probability with the following property: given a bounded
Lipschitz domain O ⊂ Rd, for all ω ∈ Ω′ and all Λ ∈ int domV , there exists a sequence (uωΛ,ε)ε ⊂
W 1,p(O;Rm) with uωΛ,ε −⇀ Λ·x weakly inW 1,p(O;Rm) such that, for all Lipschitz subdomains O′ ⊂ O,
we have Jε(uωΛ,ε, ω;O′)→ J(Λ · x;O′). By Corollary 3.3, it suffices to prove this for O′ = O.

By Lemma 3.4 and Proposition 3.8, there exists a sequence ϕΛ ∈ Mes(Ω;W 1,p
loc (Rd;Rm)) such that,

for all ω ∈ ΩΛ, we have εϕΛ(·/ε, ω) −⇀ 0 weakly inW 1,p(O;Rm) and, by the Birkhoff-Khinchin ergodic
theorem in the form of (3.19),

V (Λ) = P (Λ) = lim
ε↓0

 
O/ε

V (y,Λ +∇ϕΛ(y, ω), ω)dy.

In particular, by a change of variables, this yields

J(Λ · x;O) = |O|V (Λ) = lim
ε↓0

Jε(Λ · x+ εϕΛ(·/ε, ω), ω;O).

The function uΛ,ω
ε (x) := Λ · x + εϕΛ(x/ε, ω) thus satisfies uΛ,ω

ε −⇀ Λ · x in W 1,p(O;Rm) and
Jε(u

Λ,ω
ε , ω;O)→ J(Λ · x;O) as ε ↓ 0, for all ω ∈ ΩΛ.

We then define Ω′ ⊂ Ω1 as the (countable) intersection of all ΩΛ’s with Λ ∈ Qm×d ∩ int domV ,
which is still of maximal probability. Let Λ ∈ int domV and ω ∈ Ω′ be fixed. Choose a sequence
(Λn)n ⊂ Qm×d ∩ int domV such that Λn → Λ. For all n, we have already constructed a sequence
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(uωε,n)ε ⊂ W 1,p(O;Rm) such that uωε,n ⇀ Λn · x in W 1,p(O;Rm) and Jε(u
ω
ε,n, ω;O) → J(Λn · x;O).

Since by convexity, V is continuous on int domV , we have

lim sup
n↑∞

lim sup
ε↓0

(
|Jε(uωε,n, ω;O)− J(Λ · x;O)|+ ‖uωε,n − Λ · x‖Lp(O;Rm)

)
= lim sup

n↑∞

(
|J(Λn · x;O)− J(Λ · x;O)|+ ‖Λn · x− Λ · x‖Lp(O;Rm)

)
≤ lim sup

n↑∞

(
|O||V (Λn)− V (Λ)|+ CO|Λn − Λ|

)
= 0.

By the Attouch diagonalization lemma (see [8, Corollary 1.16]), this implies the existence of a sequence
(vωε )ε such that Jε(vωε , ω;O) → J(Λ · x;O) and vωε → Λ · x in Lp(O;Rm) for all ω ∈ Ω′. By the p-th
order lower bound for V , we conclude that vωε converges weakly to Λ · x in W 1,p(O;Rm).

Step 2. Recovery sequence for continuous piecewise affine functions.
Let ω ∈ Ω′, O ⊂ Rd be a bounded Lipschitz domain, and u be a continuous piecewise affine

function on O such that ∇u ∈ int domV pointwise. We shall prove that there exists a sequence
(uωε )ε ⊂ W 1,p(O;Rm) with uωε −⇀ u weakly in W 1,p(O;Rm), such that Jε(uωε , ω;O) → J(u;O). For
that purpose, the major issue consists in gluing the recovery sequences for the different affine parts
together, which requires a particularly careful treatment.

Consider the open partition O =
⊎k
l=1Ol associated with u (note that the Ol’s have piecewise

flat boundary outside ∂O), and define cl + Λl · x := u|Ol , with Λl ∈ int domV , for all 1 ≤ l ≤ k.
Let M := (

⋃k
l=1 ∂Ol) \ ∂O be the interior boundary of the partition of O, and for all r > 0 set

Mr := (M+Br) ∩O = {x ∈ O : dist(x,M) < r}, the r-neighborhood of this interior boundary. By
Proposition A.17, for all 0 < κ ≤ 1 and r > 0, there exists a continuous piecewise affine function uκ,r
on O with the following properties:

(i) ∇uκ,r = ∇u pointwise on O \Mr, and

lim sup
r↓0

sup
0<κ≤1

‖uκ,r − u‖L∞(O) = 0; (3.28)

(ii) ∇uκ,r ∈ conv({Λl : 1 ≤ l ≤ k}) b int domV pointwise (where conv(·) denotes the convex hull);

(iii) denoting by O :=
⊎nκ,r
l=1 O

l
κ,r the open partition associated with uκ,r, and denoting clκ,r+Λlκ,r ·x :=

uκ,r|Olκ,r for all l, then, for any i, j with ∂Oiκ,r ∩ ∂O
j
κ,r 6= ∅, we have |Λiκ,r − Λjκ,r| ≤ κ.

We shall approximate u with these refined continuous piecewise affine functions uκ,r having smoother
variations; in the sequel, we shall successively take the limits κ ↓ 0 and r ↓ 0.

Since ω ∈ Ω′ and O ⊂ Rd are fixed in the argument, we drop them from our notation. Fix
κ, r > 0. By Step 1, for all 1 ≤ i ≤ nκ,r there exists a sequence (uiε,κ,r)ε ⊂ W 1,p

loc (Rd;Rm) with
uiε,κ,r −⇀ ciκ,r + Λiκ,r · x in W 1,p

loc (Rd;Rm) and such that, for all Lipschitz subdomains O′ ⊂ O, we have
Jε(u

i
ε,κ,r, ω;O′)→ J(Λiκ,r · x;O′). For all η > 0 and all 1 ≤ i ≤ nκ,r, define the sets

Oi+κ,r,η :={x ∈ O : dist(x,Oiκ,r) < η} = O ∩ (Oiκ,r +Bη),

Oi−κ,r,η :={x ∈ Oiκ,r : dist(x, ∂Oiκ,r) > η}

Let then
∑nκ,r

i=1 χ
i
κ,r,η = 1 be a partition of unity on O, where, for all 1 ≤ i ≤ nκ,r, the smooth cut-off

function χiκ,r,η has values in [0, 1], equals 1 on Oi−κ,r,η and vanishes outside Oi+κ,r,η, and satisfies the
bound |∇χiκ,r,η| ≤ C ′/η pointwise for some constant C ′ > 0. We now set

uε,κ,r,η := uκ,r +

nκ,r∑
i=1

(uiε,κ,r − (ciκ,r + Λiκ,r · x)) χiκ,r,η.
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By the Sobolev compact embedding for p > d, we have uiε,κ,r → ciκ,r + Λiκ,r · x in L∞(O;Rm) as ε ↓ 0,
and hence lim supη lim supε ‖uε,κ,r,η − uκ,r‖L∞(O) = 0, so that (3.28) yields

lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

‖tuε,κ,r,η − u‖L∞(O) = 0. (3.29)

Let us now evaluate the integral functional Jε(·, ω;O) at tuε,κ,r,η for t ∈ [0, 1). Since

t∇uε,κ,r,η =

nκ,r∑
i=1

tχiκ,r,η∇uiε,κ,r

+ (1− t) t

1− t

nκ,r∑
i=1

(
(uiε,κ,r − (ciκ,r + Λiκ,r · x))∇χiκ,r,η + (∇uκ,r − Λiκ,r)χ

i
κ,r,η

)
,

and (1− t) +
∑nκ,r

i=1 tχ
i
κ,r,η = 1, we have by convexity and non-negativity of V

Jε(tuε,κ,r,η, ω;O) ≤ (1− t)Eε,κ,r,η,t + t

nκ,r∑
i=1

ˆ
Oi+κ,r,η

χiκ,r,η(y)V (y/ε,∇uiε,κ,r(y), ω)dy

≤ (1− t)Eε,κ,r,η,t +

nκ,r∑
i=1

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η), (3.30)

where the error term reads

Eε,κ,r,η,t =

ˆ
O
V

(
y/ε,

t

1− t

nκ,r∑
i=1

(
(uiε,κ,r(y)− (ciκ,r + Λiκ,r · y))∇χiκ,r,η(y)

+ (∇uκ,r(y)− Λiκ,r)χ
i
κ,r,η(y)

)
, ω

)
dy.

For all i, set N i
κ,r,η := {j : j 6= i, Oj+κ,r,η ∩ Oi+κ,r,η 6= ∅}. We then rewrite the argument of the energy

density in the error term as

Sε,κ,r,η(y) :=

∣∣∣∣∣
nκ,r∑
i=1

(
(uiε,κ,r(y)− (ciκ,r + Λiκ,r · y))∇χiκ,r,η(y) + (∇uκ,r(y)− Λiκ,r)χ

i
κ,r,η(y)

)∣∣∣∣∣
≤ C ′

η

nκ,r∑
i=1

‖uiε,κ,r − (ciκ,r + Λiκ,r · x)‖L∞(O) + sup
1≤i≤nκ,r

sup
j∈N i

κ,r,η

|Λjκ,r − Λiκ,r|.

Since by definition lim supη↓0 supj∈N i
κ,r,η
|Λjκ,r − Λiκ,r| ≤ κ for all i, we have

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

Sε,κ,r,η(y) = 0

for all r, η > 0. By assumption, there exists δ > 0 such that adhBδ ⊂ int domM . Hence, for all
r, t > 0 there exists κr,t > 0 such that for all 0 < κ < κr,t there exists ηκ,r > 0 such that for all
0 < η < ηκ,r there exists εκ,r,η,t > 0 with the following property: for all 0 < ε < εκ,r,η,t, we have∥∥∥∥ t

1− t
Sε,κ,r,η

∥∥∥∥
L∞(O)

< δ.

This yields the bound
Eε,κ,r,η,t ≤ |O| sup

|Λ′|<δ
M(Λ′) <∞,

and proves
lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

(1− t)Eε,κ,r,η,t = 0,
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so that (3.30) turns into

lim sup
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

Jε(tuε,κ,r,η, ω;O)

≤ lim sup
r↓0

lim sup
κ↓0

nκ,r∑
i=1

lim sup
η↓0

lim sup
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η). (3.31)

For all i, we have by construction

lim
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η) = |Oi+κ,r,η|V (Λiκ,r),

so that, by definition of Oi+κ,r,η,

lim
η↓0

lim
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η) = |Oiκ,r|V (Λiκ,r).

Hence, summing over i, 1 ≤ i ≤ nκ,r, yields
nκ,r∑
i=1

lim
η↓0

lim
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η) =

nκ,r∑
i=1

|Oiκ,r|V (Λiκ,r).

On the one hand, ∇uκ,r = ∇u holds on O \ Mr. On the other hand, for all i, κ, r, Λiκ,r ∈ K :=

conv({Λl : 1 ≤ l ≤ k}), which is a compact subset of int domV . Using in addition the non-negativity
of the energy density, one may then turn the above equality into

nκ,r∑
i=1

lim
η↓0

lim
ε↓0

Jε(u
i
ε,κ,r, ω;Oi+κ,r,η) = J(uκ,r;O) = J(u;O \Mr) + J(uκ,r;Mr)

≤ J(u;O) + |Mr| sup
K
V .

Combined with (3.31), this yields

lim sup
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

Jε(tuε,κ,r,η, ω;O) ≤ J(u;O). (3.32)

We are now in position to conclude. By coercivity of V , the sequence ∇(tuε,κ,r,η) is bounded in
Lp(O;Rm×d). Combined with (3.29) (convergence in L∞(O;Rm)), this shows that any weakly con-
verging subsequence of (tuε,κ,r,η)ε,η,κ,r,t inW 1,p(O;Rm) converges to u. Hence the Γ-lim inf inequality
of Proposition 3.2 yields

lim inf
t↑1

lim inf
r↓0

lim inf
κ↓0

lim inf
η↓0

lim inf
ε↓0

Jε(tuε,κ,r,η, ω;O) ≥ J(u;O).

These last two inequalities combine to

lim sup
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
ε↓0

(
|Jε(tuε,κ,r,η, ω;O)− J(u;O)|+ ‖tuε,κ,r,η − u‖Lp(O;Rm)

)
= 0,

and we conclude as before by the Attouch diagonalization lemma.

Step 3. Recovery sequence for general functions.
We claim that, for all ω ∈ Ω′, all bounded Lipschitz domains O ⊂ Rd and all u ∈ W 1,p(O;Rm),

there is a sequence (uε)ε ⊂ W 1,p(O;Rm) with uε −⇀ u in W 1,p(O;Rm) and Jε(uε, ω;O) → J(u;O).
By the locality of recovery sequences (cf. Corollary 3.3), we may consider that O is a ball of Rd to
which we may apply the approximation result of Proposition A.16. By the Γ-lim inf inequality of
Proposition 3.2, we can further assume that u ∈W 1,p(O;Rm) satisfies

J(u;O) =

ˆ
O
V (∇u(y))dy <∞,

so that ∇u ∈ domV almost everywhere. Let u be such a function and let ω ∈ Ω′ be fixed.
Since O is bounded, Lipschitz and strongly star-shaped, V is convex, and 0 ∈ int domV , Proposi-

tion A.16(ii) shows that there exists a sequence (un)n of continuous piecewise affine functions with
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∇un ∈ int domV pointwise such that un → u (strongly) in W 1,p(O;Rm) and J(un;O) −→ J(u;O) as
n ↑ ∞. By Step 2, for all n, there exists a sequence (uε,n)ε ⊂ W 1,p(O;Rm) such that uε,n −⇀ un in
W 1,p(U ;Rm) and Jε(uε,n, ω;O)→ J(un;O), as ε ↓ 0. In particular,

lim
n↑∞

lim
ε↓0

(
|Jε(uε,n, ω;O)− J(u;O)|+ ‖uε,n − u‖Lp(O;Rm)

)
= lim

n↑∞

(
|J(un;O)− J(u;O)|+ ‖un − u‖Lp(O;Rm)

)
= 0.

We then conclude as before by the Attouch diagonalization argument. �

3.6. Proof of Corollary 2.4(i): lifting Dirichlet boundary data. We split the proof into two
steps. We first consider the case when J(αu;O) <∞ for some α > 1, and then turn to the case when
in addition

´
OM(∇u) <∞ or

´
OM(α∇u) <∞ for some α > 1.

Step 1. Case when J(αu;O) <∞, for some α > 1.
As v ∈ u + W 1,p

0 (O;Rm) and J(αu;O) < ∞, Proposition A.16(ii)(a) yields the existence of a
sequence (vk)k ⊂ u + C∞c (O;Rm) with vk → v in W 1,p(O;Rm) and J(vk;O) → J(v;O). For all
r > 0, set O1

r := {x ∈ O : dist(x, ∂O) > 2r}, O2
r := {x ∈ O : dist(x, ∂O) > r}, and choose smooth

cut-off functions χ1
r , χ

2
r with the following properties: the functions take values in [0, 1], χ1

r equals
1 on O1

r and 0 on Rd \ O2
r , χ2

r equals 1 on O2
r and 0 on Rd \ O, and |∇χ1

r |, |∇χ2
r | ≤ C ′/r for some

constant C ′. For all ω ∈ Ω′, Proposition 3.10 provides sequences (uωε )ε and (vωε,r,k)ε in W 1,p(O;Rm)

such that uωε −⇀ u and vωε,r,k −⇀ χ1
rvk + (1 − χ1

r)u in W 1,p(O;Rm), and Jε(u
ω
ε , ω;O′) → J(u;O′)

and Jε(v
ω
ε,r,k, ω;O′) → J(χ1

rvk + (1 − χ1
r)u;O′), for any subdomain O′ ⊂ O. We then set wωε,r,k :=

χ2
rv
ω
ε,r,k + (1− χ2

r)u
ω
ε . Given t ∈ [0, 1), using the decomposition

t∇wωε,r,k = tχ2
r∇vωε,r,k + t(1− χ2

r)∇uωε + (1− t) t

1− t
∇χ2

r(v
ω
ε,r,k − uωε ),

and convexity, we obtain

Jε(tw
ω
ε,r,k, ω;O) ≤ (1− t)Eωε,r,k,t + Jε(v

ω
ε,r,k, ω;O) + Jε(u

ω
ε , ω;O \O2

r), (3.33)

where the error term reads

Eωε,r,k,t :=

ˆ
O
V

(
y/ε,

t

1− t
∇χ2

r(y)(vωε,r,k(y)− uωε (y)), ω

)
dy.

For all y ∈ O \O2
r , since χ1

r(y) = 0, we have

|vωε,r,k(y)− uωε (y)| ≤ ‖vωε,r,k − (χ1
rvk + (1− χ1

r)u)‖L∞(O) + ‖uωε − u‖L∞(O).

By assumption, there is some δ > 0 with adhBδ ⊂ int domM . Hence, for all fixed r, k, t, there exists
εr,k,t > 0 such that for all 0 < ε < εr,k,t we have∥∥∥∥ t

1− t
∇χ2

r(v
ω
ε,r,k − uωε )

∥∥∥∥
L∞(O)

< δ,

and therefore
lim sup
ε↓0

Eωε,r,k,t ≤ |O| sup
|Λ′|<δ

M(Λ′) <∞.

Inequality (3.33) then turns into

lim sup
t↑1

lim sup
k↑∞

lim sup
r↓0

lim sup
ε↓0

Jε(tw
ω
ε,r,k, ω;O)

≤ lim sup
k↑∞

lim sup
r↓0

J(χ1
rvk + (1− χ1

r)u;O) + lim sup
r↓0

J(u;O \O2
r).
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The second term in the right-hand side vanishes since J(u;O) <∞, and it only remains to study the
first term. By definition, for fixed k, we have vk ∈ u+C∞c (O;Rm), so that for all r > 0 small enough,
χ1
rvk + (1− χ1

r)u = vk pointwise on O. This implies

lim sup
k↑∞

lim sup
r↓0

J(χ1
rvk + (1− χ1

r)u;O) = lim sup
k↑∞

J(vk;O) = J(v;O),

and thus

lim sup
t↑1

lim sup
k↑∞

lim sup
r↓0

lim sup
ε↓0

Jε(tw
ω
ε,r,k, ω;O) ≤ J(v;O).

Combined with the Γ-lim inf inequality of Proposition 3.2 and a diagonalization argument, this proves
the first part of the statement.

Step 2. Cases when
´
OM(∇u) <∞ or

´
OM(α∇u) <∞ for some α > 1.

If u is chosen in such a way that
´
OM(∇u(y))dy <∞, then we can repeat the argument of Step 1

with uωε := u, and bound the last term in the right-hand side of (3.33) by

lim sup
r↓0

lim sup
ε↓0

Jε(u, ω;O \O2
r) ≤ lim sup

r↓0

ˆ
O\O2

r

M(∇u(y))dy = 0.

We conclude with the case when u satisfies
´
OM(α∇u(y))dy <∞ for some α > 1. Let vk, χ1

r , χ
2
r be

chosen as in Step 1, and let ω ∈ Ω′ be fixed. For any t ∈ [0, 1), Proposition 3.10 shows the existence
of a sequence (vωε,r,k,t)ε in W 1,p(O;Rm) such that vωε,r,k,t −⇀ χ1

rvk + (1 − χ1
r)u/t in W 1,p(O;Rm)

and Jε(v
ω
ε,r,k,t, ω;O′) → J(χ1

rvk + (1 − χ1
r)u/t;O

′), for any subdomain O′ ⊂ O. Set wωε,r,k,t :=

χ2
rv
ω
ε,r,k,t + (1− χ2

r)u/t. As before, we obtain by convexity

Jε(tw
ω
ε,r,k,t, ω) ≤ Jε(vωε,r,k,t, ω;O) + Jε(u/t, ω;O \O2

r)

+ (1− t)
ˆ
O
M

(
t

1− t
∇χ2

r(y)(vωε,r,k,t(y)− u(y)/t)

)
dy,

and the conclusion then follows, using the convexity once more in the following form: for t > 1/α,

lim sup
r↓0

lim sup
ε↓0

Jε(u/t, ω;O \O2
r) ≤ lim sup

r↓0

ˆ
O\O2

r

M(∇u(y)/t)dy

≤ 1

αt
lim sup
r↓0

ˆ
O\O2

r

M(α∇u(y))dy + lim sup
r↓0

|O \O2
r |M(0) = 0.

This completes the proof. �

Remark 3.11. As can be seen in the proof, the assumption that J(αu;O) < ∞ can be relaxed to
J(αu;O′) <∞ for some open neighborhood O′ ⊂ O of ∂O in O. �

3.7. Proof of Corollary 2.4(ii): soft buffer zone for Dirichlet boundary data. We split the
proof into two steps. For all s > 0 and O ⊂ Rd, we use the notation Os := {x ∈ O : dist(x, ∂O) > s}.
Step 1. Γ-lim inf inequality.

Let ω ∈ Ω′, let O ⊂ Rd be a bounded Lipschitz domain, let u ∈ W 1,p(O;Rm) with J(u;O) < ∞,
and let (uε)ε ⊂W 1,p(O;Rm) be a sequence with uε −⇀ u in W 1,p(O;Rm). By the Γ-lim inf inequality
for Jε in Proposition 3.2,

lim inf
ε↓0

Jηε (uε, ω;O) ≥ lim inf
ε↓0

Jε(uε, ω;Oη) ≥ J(u;Oη) =

ˆ
Oη

V (∇u(y))dy,

that is, using that
´
O\Oη V (∇u(y))dy → 0 as η ↓ 0,

lim inf
η↓0

lim inf
ε↓0

Jηε (uε, ω;O) ≥ J(u;O).

Step 2. Γ-lim sup inequality.
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Let ω ∈ Ω′, let O ⊂ Rd be a bounded Lipschitz domain, and let u ∈W 1,p(O;Rm) with J(u;O) <∞.
By Proposition 3.10, there exists a sequence (wε)ε ⊂W 1,p(O;Rm) such that wε −⇀ 0 in W 1,p(O;Rm)
and Jε(u+ wε, ω;O)→ J(u;O). Given η > 0, choose a cut-off function χη with values in [0, 1], such
that χη equals 1 on Oη and 0 outside O, and that satisfies |∇χη| ≤ C ′/η for some constant C ′ > 0.
Set vε,η := χηwε ∈W 1,p

0 (O;Rm). For all t ∈ [0, 1), we have

t∇u+ t∇vε,η = tχη∇(u+ wε) + t(1− χη)∇u+ (1− t) t

1− t
wε∇χη,

so that by convexity and the definition of V O,η
ε ,

Jηε (tu+ tvε,η, ω;O) ≤ (1− t)Eε,η,t + Jηε (u+ wε, ω;O) +

ˆ
O

(1− χη(y))V O,η
ε (y,∇u(y), ω)dy

≤ (1− t)Eε,η,t + Jε(u+ wε, ω;O) +

ˆ
O\Oη

|∇u(y)|pdy, (3.34)

where the error is defined by

Eε,η,t :=

ˆ
O
V O,η
ε

(
y,

t

1− t
wε(y)∇χη(y), ω

)
dy

≤ |Oη|M(0) +

ˆ
O\Oη

∣∣∣∣ t

1− t
wε(y)∇χη(y)

∣∣∣∣p dy. (3.35)

By the Rellich-Kondrachov theorem, wε → 0 (strongly) in Lp(O), so that lim supεEε,η,t ≤ |O|M(0)
for all t, η. Passing to the limit in inequality (3.34) thus yields

lim sup
t↑1

lim sup
η↓0

lim sup
ε↓0

Jηε (tu+ tvε, ω;O, η) ≤ lim sup
ε↓0

Jε(u+ wε, ω;O) = J(u;O).

We then conclude by the same diagonalization argument as before and Step 1. This proves the first
part of the statement.

Now consider the case when u satisfies J(αu;O) < ∞ for some α > 1. Then, for all t ∈ [0, 1),
Proposition 3.10 provides a sequence (wε,t)ε ⊂ W 1,p(O;Rm) such that wε,t −⇀ 0 in W 1,p(O;Rm) and
Jε(u/t+wε,t, ω;O)→ J(u/t;O) as ε ↓ 0. Define vε,t,η := χηwε,t, where χη is the same cut-off function
as above. We then have now

∇u+ t∇vε,t,η = tχη∇(u/t+ wε,t) + t(1− χη)∇u/t+ (1− t) t

1− t
wε,t∇χη,

so that by convexity and definition of V O,η
ε ,

Jηε (u+ tvε,η, ω;O) ≤ (1− t)E′ε,η,t + Jε(u/t+ wε,t, ω;O) + t1−p
ˆ
O\Oη

|∇u(y)|pdy, (3.36)

where the error is defined by

E′ε,η,t :=|Oη|M(0) +

ˆ
O\Oη

∣∣∣∣ t

1− t
wε,t(y)∇χη(y)

∣∣∣∣p dy.
By the Rellich-Kondrachov theorem, wε,t → 0 (strongly) in Lp(O) for all t, so that lim supεE

′
ε,η,t =

|Oη|M(0) for all t, η. Passing to the limit in inequality (3.36) then yields

lim sup
t↑1

lim sup
η↓0

lim sup
ε↓0

Jηε (u+ tvε,t,η, ω;O) ≤ lim sup
t↑1

lim sup
ε↓0

Jε(u/t+ wε,t, ω;O) = lim sup
t↑1

J(u/t;O).

Since u satisfies J(αu;O) <∞, we deduce by convexity that the map t 7→ J(u/t;O) is continuous on
(1/α, 1]. This implies lim supt↑1 J(u/t;O) = J(u;O), and the conclusion follows. �

Remark 3.12. As can be seen in the proof, the assumption that J(αu;O) < ∞ can be relaxed to
J(αu;O′) <∞ for some open neighborhood O′ ⊂ O of ∂O in O. �
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4. Proof of the results for nonconvex integrands

In this section, we study the case when W is nonconvex but admits a two-sided estimate by
a convex function (which may depend on the space variable) and prove Theorem 2.6. Let W be
a (nonconvex) τ -stationary normal random integrand, which is further assumed to be ru-usc (in
the sense of Definition 2.5, with respect to some τ -stationary integrable random field a). Up to
a translation, for simplicity of notation, we can restrict to the following stronger version of (2.10)
and (2.4): for almost all ω, y, we have, for all Λ,

1

C
|Λ|p ≤ V (y,Λ, ω) ≤W (y,Λ, ω) ≤ C(V (y,Λ, ω) + 1), (4.1)

for some C > 0 and d < p <∞, and for some convex τ -stationary normal random integrand V . Also
assume that 0 belongs to the interior of the domain of the convex function M := sup essy,ω V (y, ·, ω).
We can then apply Theorem 2.2 to V , yielding an homogenized energy density V with the following
property: defining

Jε(u, ω;O) =

ˆ
O
V (y/ε,∇u(y), ω)dy, J(u;O) =

ˆ
O
V (∇u(y))dy,

for almost all ω, the integral functionals Jε(·, ω;O) Γ-converge to J(·;O) on W 1,p(O;Rm), for any
bounded Lipschitz domain O ⊂ Rd. Let Ω0 ⊂ Ω be a subset of maximal probability on which all
these assumptions and properties (of V,W ) are simultaneously pointwise satisfied.

4.1. Definition of the homogenized energy density. We need to define in this section a candidate
for the homogenized energy densityW . As before, the standard homogenization formula with Dirichlet
boundary conditions does not hold because of the generality of the growth conditions considered here.
Instead, we use the corrector for the convex problem as a boundary condition for the nonconvex
problem, which is indeed admissible because of the two-sided growth condition (4.1).

More precisely, for all Λ ∈ Rm×d, Lemma 3.4 yields a function ϕΛ ∈ Mes(Ω;W 1,p
loc (Rd;Rm)) such

that ∇ϕΛ(0, ·) ∈ F ppot(Ω)m and

V (Λ) = E[V (0,Λ +∇ϕΛ(0, ·), ·)].

Now, for any t ∈ [0, 1), consider the function µtΛ defined by

µtΛ(O,ω) := inf
v∈W 1,p

0 (O;Rm)

ˆ
O
W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω)dy.

As this quantity is stationary and subadditive, the Ackoglu-Krengel ergodic theorem implies:

Lemma 4.1 (Definition of the homogenized energy density). Let t ∈ [0, 1) be fixed. Then, there
exists a function W t : domV → [0,∞) such that, for all Λ ∈ domV , the following holds for almost all
ω ∈ Ω0: for all bounded Lipschitz domains O ⊂ Rd,

W t(Λ) = lim
ε↓0

µtΛ(O/ε, ω)

|O/ε|
, (4.2)

where convergence also holds for expectations. Now define W (Λ) := lim inft↑1 lim infΛ′→ΛW t(Λ
′) for

any Λ ∈ domV , and further set W (Λ) =∞ for all Λ /∈ domV . Then, W satisfies V ≤W ≤ C(1+V )
on the whole of Rm×d, and for all Λ ∈ Rm×d the following holds for almost all ω and all bounded
Lipschitz domain O ⊂ Rd:

W (Λ) = lim inf
t↑1

lim inf
Λ′→Λ

lim
ε↓0

µtΛ′(O/ε, ω)

|O/ε|
, (4.3)

where the lim inf as t ↑ 1 can further be restricted to t ∈ Q. Finally, in the particular case when W
is convex, then W coincides with the various definitions for the homogenized integrand as given by
Theorem 2.2. �
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Proof. We split the proof into three steps.

Step 1. Definition of W t(Λ) and proof of (4.2).
First consider the case when Λ ∈ domV . Let t ∈ [0, 1) be fixed. The upper bound in (4.1)

then implies E[µtΛ(O, ·)] ≤ C|O|(1 + tV (Λ) + (1 − t)M(0)) < ∞. As the function µtΛ is obviously
stationary and subadditive, and as µtΛ(O, ·) is measurable by Hypothesis 2.1, the Ackoglu-Krengel
subadditive ergodic theorem (see e.g. [33, Section 6.2]) can be applied and asserts the existence of
some W t(Λ) ∈ [0,∞) such that, for almost all ω, we have

W t(Λ) = lim
n↑∞

µtΛ(In, ω)

|In|
,

for any regular sequence (In)n ⊂ I := {[a, b) : a, b ∈ Zd} such that limn↑∞ In = Rd (in the usual
sense of [33, Section 6.2]), and moreover this convergence also holds for expectations. In particular,
we easily see that the same result must hold for the choice In = nQ0, where Q0 is any cube aligned
with the axes. Further note that, for all bounded Lipschitz subsets O′ ⊂ O ⊂ Rd, we can estimate,
as W 1,p

0 (O′/ε;Rm) ⊂W 1,p
0 (O/ε;Rm),

εdµtΛ(O/ε, ω) ≤ εdµtΛ(O′/ε, ω) + εd
ˆ

(O\O′)/ε
W (y, tΛ + t∇ϕΛ(y, ω), ω)dy

≤ εdµtΛ(O′/ε, ω) + C|O \O′|

(
1 +

 
(O\O′)/ε

V (y,Λ +∇ϕΛ(y, ω), ω)dy

)
,

where the last expression in brackets converges to 1 + V (Λ) < ∞ as ε ↓ 0. Now based on this
estimate, an easy approximation argument (see e.g. [30, Step 4 of the proof of Theorem 3.1]) allows
us to conclude as follows: for almost all ω (for all ω ∈ ΩΛ, for some subset ΩΛ ⊂ Ω of maximal
probability, say), we have for all bounded Lipschitz domains O ⊂ Rd and all t ∈ (0, 1)

lim
ε↓0

µtΛ(O/ε, ω)

|O/ε|
= W t(Λ). (4.4)

Step 2. Definition of W and proof of the bounds V (Λ) ≤W (Λ) ≤ C(1 + V (Λ)) for Λ ∈ domV .
Let Λ ∈ domV be fixed, and let O ⊂ Rd be some bounded Lipschitz domain. We define W (Λ) =

lim inft lim infΛ′→ΛW t(Λ
′). The bounds V (Λ) ≤ W (Λ) ≤ C(1 + V (Λ)) directly follow from the

two-sided estimate (4.1) together with the following equality, for almost all ω,

V (Λ) = V 0(Λ, ω), (4.5)

where we have defined

V 0(Λ, ω) := lim inf
t↑1

lim inf
Λ′→Λ

lim
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O
V (y/ε, tΛ′ + t∇ϕΛ′(y/ε, ω) +∇v(y), ω)dy.

Let us give the argument for (4.5). On the one hand, we can estimate

V 0(Λ, ω) ≥ lim inf
t↑1

lim inf
Λ′→Λ

lim
ε↓0

inf
v∈W1,p(O;Rm)ffl

O ∇v=0

 
O
V (y/ε, tΛ′ + tΛ′ε(ω) +∇v(y), ω)dy,

where we have set Λ′ε(ω) :=
ffl
O∇ϕΛ′(·/ε, ω). For almost all ω, since Λ′ε(ω) → 0, we can write, for

any κ > 0,

V 0(Λ, ω) ≥ inf
Λ′:|Λ′−Λ|≤κ

lim inf
t↑1

lim inf
ε↓0

inf
v∈W1,p(O;Rm)ffl

O ∇v=0

 
O
V (y/ε, tΛ′ +∇v(y), ω)dy,

so that formula (2.8) yields V 0(Λ, ω) ≥ infΛ′:|Λ′−Λ|≤κ V (Λ′). Passing to the limit κ ↓ 0, the lower
semicontinuity of V directly gives V 0(Λ, ω) ≥ V (Λ). On the other hand, the convexity of V , the
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Birkhoff-Khinchin ergodic theorem and the definition of ϕΛ′ give for all t ∈ [0, 1] and all Λ′ ∈ Rm×d

lim
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O
V (y/ε, tΛ′ + t∇ϕΛ′(y/ε, ω) +∇v(y), ω)dy

≤ lim
ε↓0

 
O
V (y/ε,Λ′ +∇ϕΛ′(y/ε, ω), ω)dy + (1− t)M(0) = V (Λ′) + (1− t)M(0).

Passing to the limit Λ′ → Λ and t ↑ 1, and using the lower semicontinuity of V in the form of
V (Λ) = lim infΛ′→Λ V (Λ′), this gives V 0(Λ, ω) ≤ V (Λ). The desired identity (4.5) is proven.

Step 3. Case when Λ /∈ domV .
For Λ /∈ domV , arguing as in Step 2 above, we can estimate, using the pointwise bound V ≤W ,

lim inf
t↑1

lim inf
Λ′→Λ

lim inf
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O
W (y/ε, tΛ + t∇ϕΛ(y/ε, ω) +∇v(y), ω)dy ≥ V (Λ) =∞,

so that (4.3) trivially holds with W (Λ) := ∞. Moreover, the bounds V ≤ W ≤ C(1 + V ) holds as
well. �

Although the definition of the homogenized energy densityW (Λ) may a priori depend on the choice
of a corrector ϕΛ, it would follow a posteriori from the Γ-convergence result that the value of W (Λ) is
independent of that choice. As this independence will actually be useful in the proof of the Γ-lim sup
inequality (see the proof of Lemma 4.4(c)), we display a direct proof.

Lemma 4.2 (Independence upon the choice of a corrector). Assume p > d, and let t ∈ [0, 1) and
Λ ∈ domV be fixed. For almost all ω, given a bounded domain O ⊂ Rd, if (uε)ε ⊂ W 1,p(O;Rm)
satisfies ‖uε‖L∞(O) → 0 and lim supε

´
D V (y/ε,Λ +∇uε(y), ω)dy ≤ CΛ|D| for all subdomains D ⊂ O

and some constant CΛ > 0, then, for all Lipschitz subdomains D ⊂ O,

W t(Λ) = lim
ε↓0

inf
v∈W 1,p

0 (D;Rm)

 
D
W (y/ε, tΛ + t∇uε(y) +∇v(y), ω)dy, (4.6)

where the limit is well-defined. �

Proof. Let t ∈ [0, 1) and Λ ∈ domV be fixed. Let ω ∈ Ω be fixed such that (4.2) holds on all bounded
Lipschitz domains and such that moreover, for all bounded domains D ⊂ Rd,

‖εϕΛ(·/ε, ω)‖L∞(D) → 0,

ˆ
D
V (y/ε,Λ +∇ϕΛ(y/ε, ω), ω)dy → V (Λ),

which follows almost surely from Lemma 3.4, the Sobolev embedding and the Birkhoff-Khinchin
ergodic theorem. Let (uε)ε be as in the statement of the lemma. Also denote vωε := εϕΛ(·/ε, ω) ∈
W 1,p

loc (Rd;Rm). By the choice of ω, the sequence (vωε )ε satisfies the same properties as uε on any
bounded domain, with CΛ replaced by C ′Λ = V (Λ), and moreover, for all bounded Lipschitz domains
D ⊂ Rd,

W t(Λ) = lim
ε↓0

inf
v∈W 1,p

0 (D;Rm)

 
D
W (y/ε, tΛ + t∇vωε (y) +∇v(y), ω)dy. (4.7)

Let D ⊂ O be some fixed Lipschitz subdomain. On the one hand, define

W
′
t(Λ, ω;D) = lim sup

ε↓0
inf

v∈W 1,p
0 (D;Rm)

 
D
W (y/ε, tΛ + t∇uε(y) +∇v(y), ω)dy. (4.8)

Given η > 0, set Dη := {x ∈ D : dist(x, ∂D) > η} and consider the difference

∆ω
ε,t,η := inf

v∈W 1,p
0 (D;Rm)

ˆ
D
W (y/ε, tΛ + t∇uε(y) +∇v(y), ω)dy (4.9)

− inf
w∈W 1,p

0 (Dη ;Rm)

ˆ
Dη

W (y/ε, tΛ + t∇vωε (y) +∇w(y), ω)dy.
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Choose a smooth cut-off function χη such that χη equals 1 on Dη and vanishes outside D, with
|∇χη| ≤ C ′/η for some constant C ′ > 0, and define wωε,η := χηv

ω
ε + (1 − χη)uε. Restricting the first

infimum in (4.9) to those v’s that are equal to t(vε − uε) on ∂Dη, we obtain

∆ω
ε,t,η ≤ inf

v∈W 1,p
0 (D\Dη ;Rm)

ˆ
D\Dη

W (y/ε, tΛ + t∇wωε,η(y) +∇v(y), ω)dy.

Hence, choosing v = 0, using the upper bound W ≤ C(1 + V ) and decomposing

t∇wωε,η = tχη∇vωε + t(1− χη)∇uε + (1− t) t

1− t
∇χη(vωε − uε),

we obtain by convexity

∆ω
ε,t,η ≤ C|D \Dη|

(
1 +

 
D\Dη

V (y/ε,Λ +∇uε(y), ω)dy

+

 
D\Dη

V (y/ε,Λ +∇vωε (y), ω)dy + Eωε,t,η

)
,

where the error reads

Eωε,t,η :=

 
D\Dη

V

(
y/ε,

t

1− t
∇χη(y)(vωε (y)− uε(y)), ω

)
dy.

Since vωε and uε go to 0 in L∞(D;Rm), we can prove that, for any t ∈ (0, 1),

lim sup
η↓0

lim sup
ε↓0

∆ω
ε,t,η ≤ lim sup

η↓0
C|D \Dη|(1 + CΛ + C ′Λ) = 0.

In view of equalities (4.7) and (4.10), this implies W ′t(Λ, ω;D) ≤W t(Λ).
On the other hand, define

W
′′
t (Λ, ω;D) = lim inf

ε↓0
inf

v∈W 1,p
0 (D;Rm)

 
D
W (y/ε, tΛ + t∇uε(y) +∇v(y), ω)dy, (4.10)

and repeat the same argument as above with Dη := {x : dist(x,D) < η} and

∆̃ω
ε,t,η := inf

v∈W 1,p
0 (Dη ;Rm)

ˆ
Dη
W (y/ε, tΛ + t∇vωε (y) +∇v(y), ω)dy

− inf
w∈W 1,p

0 (D;Rm)

ˆ
D
W (y/ε, tΛ + t∇uε(y) +∇w(y), ω)dy,

which then yieldsW ′′t (Λ, ω;D) ≥W t(Λ). This shows thatW ′′t (Λ, ω;D) = W
′
t(Λ, ω;D) = W t(Λ), and

the result is proven. �

Let Ω1 ⊂ Ω0 be a subset of maximal probability such that (4.2) holds for all ω ∈ Ω1, t ∈ Q∩ [0, 1)
and Λ ∈ Qm×d ∩domV , such that (4.3) holds for all ω ∈ Ω1 and Λ ∈ Qm×d, and such that we further
have, for all ω ∈ Ω1, Λ ∈ Qm×d, and all bounded domains O ⊂ Rd,

V (Λ) = lim
ε↓0

 
O/ε

V (y,Λ +∇ϕΛ(y, ω), ω)dy.

4.2. Γ-lim inf inequality by blow-up. In this section, we prove the Γ-lim inf inequality for Theo-
rem 2.6 by adapting the blow-up method introduced by [25] (see also [7, Section 4.1] and [14]). In
the present context, a subtle use of the corrector for the convex problem is needed.

Proposition 4.3 (Γ-lim inf inequality). For any ω ∈ Ω1, any bounded Lipschitz domain O ⊂ Rd,
and any sequence (uε)ε ⊂W 1,p(O;Rm) with uε −⇀ u in W 1,p(O;Rm), we have

lim inf
ε↓0

Iε(uε, ω;O) ≥ I(u;O).

�
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Proof. For all r > 0 and x ∈ Rd, define Qr(x) = x+ rQ and Sr,κ(x) = Qr(x) \Qrκ(x) for all κ > 0.
For all ε > 0 and all Λ, ω, define χωε,Λ = εϕΛ(·/ε, ω). For all ω ∈ Ω1 and Λ ∈ Qm×d, the sequence
(χωε,Λ)ε satisfies χωε,Λ −⇀ 0 in W 1,p(O;Rm) and Jε(χωε,Λ + Λ · x, ω; O′) → J(Λ · x; O′) = |O′|V (Λ) as
ε ↓ 0, for any subdomain O′ ⊂ O.

From now on, let ω ∈ Ω1 be fixed, let O ⊂ Rd be some bounded Lipschitz subset, and let (uε)ε ⊂
W 1,p(O;Rm) be some fixed sequence with uε −⇀ u in W 1,p(O;Rm). We need to prove

lim inf
ε↓0

Iε(uε, ω;O) ≥ I(u;O). (4.11)

It does not restrict generality to assume lim infε Iε(uε, ω;O) = limε Iε(uε, ω;O) < ∞ and also
supε Iε(uε, ω;O) < ∞. Hence, ∇uε(x) ∈ domW (x/ε, ·, ω) = domV (x/ε, ·, ω) for almost all x. Fur-
thermore, the Γ-convergence result for V yields J(u;O) ≤ lim infε Jε(uε, ω;O) ≤ limε Iε(uε, ω;O) <
∞, so that ∇u(x) ∈ domV for almost all x.

Step 1. Localization by blow up: we prove that it suffices to show for almost all x0 that

lim inf
t↑1

lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy ≥W (∇u(x0)). (4.12)

For all ε > 0, consider the positive Radon measure on O defined by dρε(x) = W (x/ε,∇uε(x), ω)dx.
As supε ρε(adhO) < ∞ by hypothesis, the Prokhorov theorem asserts the convergence ρε

∗−⇀ ρ up
to extraction of a subsequence, for some positive Radon measure ρ on adhO. (The extraction will
remain implicit in our notation in the sequel.) By Lebesgue’s decomposition theorem, we can consider
the absolutely continuous part of the positive measure ρ, and the Radon-Nikodym theorem allows to
define the density f ∈ L1(U) of the latter. As O is open, we then have by the portmanteau theorem
(see e.g. [10, Theorem 2.1])

lim inf
ε

Iε(uε, ω;O) = lim inf
ε

ρε(O) ≥ ρ(O) ≥
ˆ
O
f(x)dx.

Hence, in order to prove (4.11), it suffices to show that f(x) ≥ W (∇u(x)) for almost all x. Since
ρ(adhO) <∞, we have ρ(∂Qr(x)) = 0 for all r ∈ (0, 1) \Dx, where Dx is at most countable, so that,
for almost all x, Lebesgue’s differentiation theorem and the portmanteau theorem successively give

f(x) = lim
r↓0
r/∈Dx

ρ(Qr(x))

rd
= lim

r↓0
r/∈Dx

lim
ε↓0

ρε(Qr(x))

rd
.

Hence, it suffices to show that, for almost all x0,

lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε,∇uε(y), ω)dy ≥W (∇u(x0)).

Using the ru-usc assumption on W , we easily deduce the following inequality:

lim sup
t↑1

lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy ≤ lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε,∇uε(y), ω)dy. (4.13)

Indeed, as ∇uε(y) ∈ domW (y/ε, ·, ω) for almost all y, we can write 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy ≤ (1 + ∆a
W (t))

 
Qr(x0)

W (y/ε,∇uε(y), ω)dy

+ ∆a
W (t)

 
Qr(x0)

a(y/ε, ω)dy,

and thus, by τ -stationarity of a, the Birkhoff-Khinchin ergodic theorem yields

lim inf
r↓0

lim
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy

≤ (1 + ∆a
W (t)) lim inf

r↓0
lim
ε↓0

 
Qr(x0)

W (y/ε,∇uε(y), ω)dy + ∆a
W (t)E[a(0, ·)],
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so that inequality (4.13) now directly follows from the ru-usc assumption with respect to a (meaning
indeed that lim supt↑1 ∆a

W (t) ≤ 0). Using (4.13), we finally conclude that it is sufficient to show (4.12)
for almost all x0.

Step 2. Proof of (4.12) by truncation.
The idea is to truncate uε at the boundary, in order to make appear in the left-hand side of (4.12)

precisely W (t∇u(x0)), which will then allow us to conclude.
Let t, κ ∈ (0, 1) be fixed. Since p > d, the Sobolev embedding yields uε → u in L∞(O;Rm).

Moreover, combining the Lebesgue differentiation theorem for ∇u and the Sobolev embedding for
p > d, we deduce that, for all x0 /∈ N (for some null set N ⊂ Rd, |N | = 0),

lim
r↓0

1

r
‖u− u(x0)−∇u(x0) · (x− x0)‖L∞(Qr(x0)) = 0. (4.14)

Enlarging the null set N , we can also assume that ∇u(x0) ∈ domV for any x0 /∈ N . From now
on, let x0 ∈ O \ N be fixed and write for simplicity Λ := ∇u(x0). Since V is convex and lower
semicontinuous, we have V (Λ) = lim infΛ′→Λ,Λ′∈Qm×d V (Λ′), and a diagonalization argument then
allows us to choose a sequence (Λr)r ⊂ Qm×d such that Λr → Λ and V (Λr) → V (Λ) as r ↓ 0, and
simultaneously

lim
r↓0

1

r
‖u− u(x0)− Λr · (x− x0)‖L∞(Qr(x0)) = 0. (4.15)

Let φr,κ be a smooth cut-off function with values in [0, 1], such that φr,κ equals 1 on Qrκ(x0), vanishes
outside Qr(x0), and satisfies ‖∇φr,κ‖L∞ ≤ 2

r(1−κ) . We then set

vε,r,κ := φr,κuε + (1− φr,κ)(u(x0) + Λr · (x− x0) + χωε,Λr(x)).

Since vε,r,κ coincides with uε on Qrκ(x0) and 0 ≤W ≤ C(1 + V ), we have 
Qr(x0)

W (y/ε, t∇vε,r,κ(y), ω)dy

≤
 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy +
C

rd

ˆ
Sr,κ(x0)

V (y/ε, t∇vε,r,κ(y), ω)dy + C(1− κd). (4.16)

Defining Ψε,r,κ(x) := ∇φr,κ(x)⊗ (uε(x)− u(x0)− Λr · (x− x0)− χωε,Λr) and decomposing

t∇vε,r,κ = tφr,κ∇uε + t(1− φr,κ)(Λr +∇χωε,Λr) + (1− t) t

1− t
Ψε,r,κ,

we obtain by convexity of V

V (y/ε, t∇vε,r,κ(y), ω) ≤ tφr,κV (y/ε,∇uε(y), ω) + t(1− φr,κ)V (y/ε,Λr +∇χωε,Λr(y), ω)

+ (1− t)V
(
y/ε,

t

1− t
Ψε,r,κ(y), ω

)
≤W (y/ε,∇uε(y), ω) + V (y/ε,Λr +∇χωε,Λr(y), ω)

+ (1− t)V
(
y/ε,

t

1− t
Ψε,r,κ(y), ω

)
. (4.17)

Combined with

‖Ψε,r,κ‖L∞(Sr,κ(x0)) ≤
2

r(1− κ)

(
‖uε − u‖L∞(O) + ‖u− u(x0)− Λr · (x− x0)‖L∞(Qr(x0))

+ ‖χωε,Λr‖L∞(O)

)
,

the convergences uε → u and χωε,Λr → 0 in L∞(O;Rm) as ε ↓ 0, and (4.15) yield

lim sup
r↓0

lim sup
ε↓0

‖Ψε,r,κ‖L∞(Sr,κ(x0)) = 0.
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By assumption, we can find δ > 0 with adhBδ ⊂ int domM . Hence, for all t, κ ∈ (0, 1), there exists
rκ,t > 0 such that, for all 0 < r < rκ,t, there exists some εr,κ,t > 0 such that for all 0 < ε < εr,κ,t∥∥∥∥ t

1− t
Ψε,r,κ

∥∥∥∥
L∞(Sr,κ(x0))

< δ.

This impliesˆ
Sr,κ(x0)

V

(
y/ε,

t

1− t
Ψε,r,κ(y), ω

)
dy ≤ |Sr,κ(x0)| sup

|Λ′|<δ
M(Λ′) = rd(1− κd)| sup

|Λ′|<δ
M(Λ′),

where the supremum is finite, by virtue of the convexity of M and our choice of δ > 0. Combined
with inequality (4.17) and the definition of the correctors χωε,Λr (with limr V (Λr) = V (Λ) <∞), this
yields

lim inf
κ↑1

lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

ˆ
Sr,κ(x0)

V (y/ε, t∇vε,r,κ(y), ω)dy

≤ lim inf
κ↑1

lim inf
r↓0

lim inf
ε↓0

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy.

This turns inequality (4.16) into

lim inf
κ↑1

lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇vε,r,κ(y), ω)dy

≤ lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy (4.18)

+ lim inf
κ↑1

lim inf
r↓0

lim inf
ε↓0

C

rd

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy.

Since we have chosen ω ∈ Ω1, t ∈ Q ∩ (0, 1) and Λr ∈ Qm×d, (4.2) holds and reads

W t(Λr) = lim inf
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
Qr(x0)

W (y/ε, tΛr + t∇ϕΛr(·/ε, ω) +∇v(y), ω)dy.

Hence, since vε,r,κ − u(x0) − Λr · (x − x0) ∈ χωε,Λr + W 1,p
0 (Qr(x0);Rm) with χωε,Λr = εϕΛr(·/ε, ω),

(4.18) yields

W (∇u(x0)) = W (Λ) ≤ lim inf
t↑1

lim inf
r↓0

W t(Λr)

≤ lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇vε,r,κ(y), ω)dy

≤ lim inf
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy (4.19)

+ lim sup
κ↑1

lim sup
r↓0

lim sup
ε↓0

C

rd

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy.

It remains to get rid of the second term of the right-hand side of (4.19). By the portmanteau theorem,

lim sup
ε↓0

1

rd

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy = lim sup
ε↓0

ρε(Sr,κ(x0))

rd

≤ lim sup
ε↓0

ρε(adhSr,κ(x0))

rd
≤ ρ(adhSr,κ(x0))

rd
.

Since the singular part of ρ must be supported in a closed subset of adhO of measure 0, we deduce,
for almost all x0 ∈ O \N , the existence of some r0 > 0 sufficiently small such that adhQr(x0) has no
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intersection with that support for all 0 < r < r0. Hence, for all 0 < r < r0,

lim sup
ε↓0

1

rd

ˆ
Sr,κ(x0)

W (y/ε,∇uε(y), ω)dy

≤ ρ(adhSr,κ(x0))

rd
=

1

rd

ˆ
Sr,κ(x0)

f(y)dy =

 
Qr(x0)

f(y)dy − κd
 
Qrκ(x0)

f(y)dy,

where, for almost all x0, the right-hand side converges to (1 − κd)f(x0) as r ↓ 0 by Lebesgue’s
differentiation theorem. Hence, for almost all x0, (4.19) turns into

W (∇u(x0)) ≤ lim sup
t↑1

lim inf
r↓0

lim inf
ε↓0

 
Qr(x0)

W (y/ε, t∇uε(y), ω)dy,

and the desired result (4.12) is proven. �

4.3. Γ-lim sup inequality with Neumann boundary data. In this section, we prove the Γ-lim sup
inequality, first considering the affine case, and then deducing the general case by approximation. For
this approximation argument to hold, we would however need to know a priori that the homogenized
energy W satisfies good regularity properties (i.e. lower semicontinuity on Rm×d and continuity on
int domV ). Since this is not clear at all a priori, our strategy (inspired by [7]) consists in introducing
some relaxations of W that enjoy the required properties, and then in deducing a posteriori from
Γ-convergence (or a weaker form of it) the equality of W with its relaxations (so that W itself has
all the desired properties). Motivated by the work of Fonseca [24] (see also [7]), we thus consider the
following relaxation of W :

ZW (Λ) := inf

{ 
O
W (Λ +∇φ(y))dy : φ continuous piecewise affine on O and φ|∂O = 0

}
,

where the definition does clearly not depend on the chosen underlying (nonempty) bounded Lipschitz
domain O ⊂ Rd. Also write ẐW for the lower semicontinuous envelope of ZW (defined by ẐW (Λ) :=
lim infΛ′→ΛZW (Λ′) for all Λ). Now define the integral functionals corresponding to all these relaxed
integrands: for any bounded domain O ⊂ Rd and u ∈W 1,p(O;Rm),

ZI(u;O) :=

ˆ
O
ZW (∇u(y))dy, ẐI(u;O) :=

ˆ
O
ẐW (∇u(y))dy.

The following result gives some properties of these relaxations, which will be crucial in the sequel:

Lemma 4.4 (Properties of relaxations). Assume p > d. Then the following holds:

(a) ZW (and thus also ẐW ) is continuous on int domZW .

(b) V ≤ ẐW ≤W ≤ C(1 + V ).

(c) W and ZW are ru-usc.
(d) For any t ∈ (0, 1), we have t adh domZW ⊂ int domZW , and the following representation result

holds:

ẐW (Λ) = lim inf
t→1

ZW (tΛ) =


ZW (Λ), if Λ ∈ int domZW ;
limt↑1ZW (tΛ), if Λ ∈ ∂ domZW ;
∞, otherwise;

where, in particular, the limit in the second line does exist.
(e) Let Λ ∈ Rm×d and let O ⊂ Rd be a bounded Lipschitz domain. Then, there exists a sequence

(φk)k ⊂W 1,p
0 (O;Rm) of piecewise affine functions such that φk → 0 in L∞(O;Rm) and

lim
k↑∞

 
O
W (Λ +∇φk(y))dy = ZW (Λ).

�
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Proof. Continuity of ZW on int domZW is a result due to [24], which yields part (a) (even without
any ru-usc assumption on W ). The inequalities stated in part (b) directly follow from the definitions
of V , W and ẐW . Part (e) is standard (see [7, Proposition 3.17] for details). It remains to prove
properties (c) and (d).

Step 1. Proof of (c).
We first prove that W t is ru-usc, for any fixed t ∈ [0, 1). Let s > 0, Λ ∈ domW = domV , and

let O ⊂ Rd be some bounded Lipschitz domain. For almost all ω, note that by convexity, for all
subdomains D ⊂ O,

lim sup
ε↓0

ˆ
D
V (y/ε, sΛ + s∇ϕΛ(y/ε, ω), ω)dy

≤ lim
ε↓0

ˆ
D
V (y/ε,Λ +∇ϕΛ(y/ε, ω), ω)dy + (1− s)M(0) = V (Λ) + (1− s)M(0) <∞.

Hence for almost all ω we can apply equality (4.6) at sΛ with uε = sεϕΛ(·/ε, ω), which yields

W t(sΛ) = lim
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O
W (y/ε, stΛ + st∇ϕΛ(y/ε, ω) +∇v(y), ω)dy.

Given ω ∈ Ω such that this convergence and (4.2) both hold, and choosing a sequence (vωε )ε ⊂
W 1,p

0 (O;Rd) such that

W t(Λ) = lim
ε↓0

 
O
W (y/ε, tΛ + t∇ϕΛ(y/ε, ω) +∇vωε (y), ω)dy,

we deduce

W t(sΛ)−W t(Λ) ≤ lim
ε↓0

 
O

(
W (y/ε, s(tΛ + t∇ϕΛ(y/ε, ω) +∇vωε (y)), ω)

−W (y/ε, tΛ + t∇ϕΛ(y/ε, ω) +∇vωε (y), ω)
)
dy

≤ ∆a
W (s) lim

ε↓0

 
O

(a(y/ε, ω) +W (y/ε, tΛ + t∇ϕΛ(y/ε, ω) +∇vωε (y), ω))dy

= ∆a
W (s)(E[a(0, ·)] +W t(Λ)), (4.20)

using the Birkhoff-Khinchin ergodic theorem for the stationary field a. As W t and the field a are
nonnegative, as α := E[a(0, ·)] is finite and as lim sups↑1 ∆a

W (s) ≤ 0 by assumption, we deduce that
W t is also ru-usc. Now rewriting inequality (4.20) in the form

W t(sΛ) ≤ α∆a
W (s) + (1 + (−1) ∨∆a

W (s))W t(Λ),

and taking the suitable lim inf, we directly deduce W (sΛ) −W (Λ) ≤ (−1) ∨∆a
W (s)(α + W (Λ)) for

all Λ ∈ domV and s ∈ [0, 1), proving that W is itself ru-usc with ∆α
W

= (−1) ∨∆a
W (s).

We now show that ZW is also ru-usc. Take s > 0 and Λ ∈ domV . By definition, there exists a
sequence of piecewise affine functions (φk)k ⊂W 1,p

0 (O) such that

ZW (Λ) = lim
k↑∞

 
O
W (Λ +∇φk(y))dy.

As Λ ∈ domV , the left-hand side is finite, and we can thus assume Λ + ∇φk ∈ domW almost
everywhere. Hence the ru-usc property satisfied by W gives

ZW (sΛ)−ZW (Λ) ≤ lim
k↑∞

 
O

(W (s(Λ +∇φk(y)))−W (Λ +∇φk(y)))dy

≤ ∆α
W

(s) lim
k↑∞

 
O

(α+W (Λ +∇φk(y))dy = ∆α
W

(s)(α+ ZW (Λ)).

Step 2. Proof of (d).
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Since domZW = domV is a convex set containing 0, it is clear that, for all t ∈ [0, 1), t adh domZW
is contained in int domZW . We first show that the limit limt↑1ZW (tΛ) exists for all Λ ∈ adh domV .
Given some fixed Λ ∈ adh domV , choose two sequences sn ↑ 1 and tn ↑ 1 with tn/sn ↑ 1 such that

lim
n↑∞
ZW (snΛ) = lim inf

t↑1
ZW (tΛ) and lim

n↑∞
ZW (tnΛ) = lim sup

t↑1
ZW (tΛ).

As snΛ, tnΛ ∈ domV for all n, and as ZW is ru-usc, we have

lim
n↑∞
ZW (tnΛ) ≤ lim sup

n↑∞
(α+ ZW (snΛ))∆a

W (tn/sn) + lim
n↑∞
ZW (snΛ)

≤ lim
n↑∞
ZW (snΛ) ≤ lim

n↑∞
ZW (tnΛ),

which thus proves the existence of the limit limt↑1ZW (tΛ) for all Λ ∈ adh domV .
We now prove the claimed representation result. First, if Λ ∈ int domV , then lim inft→1ZW (tΛ) =

ZW (Λ) = ẐW (Λ) follows from part (a). Second, if Λ /∈ adh domV , then ZW (tΛ) = ∞ for any t
sufficiently close to 1, and thus lim inft→1ZW (tΛ) =∞ = ẐW (Λ). Now it only remains to consider
Λ ∈ ∂ domZW . Then ZW (tΛ) = ∞ whenever t > 1, so that we simply have lim inft→1ZW (tΛ) =
lim inft↑1ZW (tΛ) = limt↑1ZW (tΛ), since we have already proven the existence of this limit. Hence,
it suffices to prove that ẐW (Λ) = lim inft↑1ZW (tΛ). By definition of the lower semicontinuous
envelope ẐW of ZW , this equality would follow if we could show that, for any sequence Λn → Λ, we
have

lim inf
n↑∞

ZW (Λn) ≥ lim inf
t↑1

ZW (tΛ). (4.21)

It is of course sufficient to assume lim infnZW (Λn) = limnZW (Λn) < ∞ and supnZW (Λn) < ∞.
Hence, Λn ∈ domV for all n, and thus, for all t ∈ [0, 1), tΛ ∈ int domV , so that, using part (a) as
well as the ru-usc property satisfied by ZW , we have

ZW (tΛ) = lim
n↑∞
ZW (tΛn) ≤ lim

n↑∞
ZW (Λn) + ∆a

W (t) lim
n↑∞

(α+ ZW (Λn)).

This yields
lim sup
t↑1

ZW (tΛ) ≤ lim inf
n↑∞

ZW (Λn),

and proves (4.21). �

Combining the Γ-lim inf inequality for Iε towards I with a Γ-lim sup argument, we prove the
following a priori surprising equality of W with its relaxations.

Lemma 4.5 (Regularity of the homogenized energy density). Assume p > d. Then W (Λ) =

ZW (Λ) = ẐW (Λ) for all Λ ∈ Rm×d. In particular, W is lower semicontinuous on Rm×d and is
continuous on int domV . �

Proof. We split the proof into four steps.

Step 1. Recovery sequence for I(Λ · x;O).
Let Λ ∈ int domV and let t ∈ [0, 1). In this step, for almost all ω, for all bounded Lipschitz domain

O ⊂ Rd, we prove the existence of sequences tε ↑ 1, Λε → Λ and (wε)ε ⊂ W 1,p
0 (O;Rm) such that

εϕΛε(·/ε, ω) −⇀ 0, wε −⇀ 0 in W 1,p(O;Rm) and Iε(tεΛε · x+ εtεϕΛε(·/ε, ω) + wε, ω;O)→ |O|W (Λ) =
I(Λ · x;O).

By definition of W and a diagonalization argument, for almost all ω and all bounded Lipschitz
domains O ⊂ Rd, it suffices to prove the existence of a sequence (vε)ε ⊂ W 1,p

0 (O;Rm) such that
vε −⇀ 0 in W 1,p(O;Rm) and Iε(tΛ · x+ εtϕΛ(·/ε, ω) + vε, ω;O)→ |O|W t(Λ) as ε ↓ 0.

Let O be some fixed bounded Lipschitz domain. Given ε > 0, consider the cubes of the form
k(z + Q), z ∈ Zd, that are contained in O/ε, and denote by zj ∈ Zd, j = 1, . . . , Nε,k, the centers
of these cubes (the enumeration of which can be chosen independent of ε, k). Since O is Lipschitz,
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we have Nε,k(εk)d → |O| as ε ↓ 0, for all k. For all j, ω, we can choose a sequence (vj,ωk )k with
vj,ωk ∈W 1,p

0 (k(zj +Q);Rm) such that 
k(zj+Q)

W (y, tΛ + t∇ϕΛ(y, ω) +∇vj,ωk (y), ω)dy

≤ 1

k
+ inf
v∈W 1,p

0 (k(zj+Q);Rm)

 
k(zj+Q)

W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω)dy.

For all ε, k, ω, we then consider the function vωε,k :=
∑Nε,k

j=1 v
j,ω
k 1k(zj+Q) ∈ W 1,p

0 (O/ε;Rm), and we
define wωε,k := εvωε,k(·/ε) ∈ W

1,p
0 (O;Rm). Up to a diagonalization argument, it suffices to show that,

for almost all ω (independent of the choice of O, as it is clear in the proof below),

lim sup
k↑∞

lim sup
ε↓0

(∣∣Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wωε,k, ω;O)− |O|W t(Λ)
∣∣+ ‖wωε,k‖Lp(O)

)
= 0. (4.22)

First we argue that, for almost all ω,

lim sup
k↑∞

lim sup
ε↓0

Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wωε,k, ω;O) ≤ |O|W t(Λ). (4.23)

Indeed, by definition of wωε,k,

Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wωε,k, ω;O)

≤ 1

k
(εk)dNε,k + (εk)d

Nε,k∑
j=1

inf
v∈W 1,p

0 (k(zj+Q);Rm)

 
k(zj+Q)

W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω)dy

+ εd
ˆ

(O/ε)\
⋃Nε,k
j=1 k(zj+Q)

W (y, tΛ + t∇ϕΛ(y, ω), ω)dy.

Since W ≤ C(1 + V ), the last term of the right-hand side goes to 0 as ε ↓ 0 for almost all ω by
construction of the cubes k(zj + Q) and definition of ϕΛ. The Birkhoff-Khinchin ergodic theorem
(which we apply to a measurable map by Hypothesis 2.1) then gives, for almost all ω,

lim sup
ε↓0

Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wωε,k, ω;O)

≤ |O|
k

+ |O|E

[
inf

v∈W 1,p
0 (kQ;Rm)

 
kQ
W (y, tΛ + t∇ϕΛ(y, ·) +∇v(y), ·)dy

]
. (4.24)

Lemma 4.1 then yields the desired result (4.23) as k ↑ ∞. On the other hand, by definition (4.2) of
W t, for all k and almost all ω, we have

lim inf
ε↓0

Iε(tΛ · x+ εtϕΛ(·/ε, ω) + wε,k(·, ω), ω;O)

≥ |O| lim inf
ε↓0

inf
v∈W 1,p

0 (O;Rm)

 
O/ε

W (y, tΛ + t∇ϕΛ(y, ω) +∇v(y), ω;O) = |O|W t(Λ). (4.25)

We now show that wωε,k → 0 in Lp(O;Rm) as ε ↓ 0, for almost all ω. Combining inequality (4.24)
with the bound W ≤ C(1 + V ), the p-th order lower bound for W and the convexity of V , we indeed
have

lim sup
ε↓0

‖tΛ + t∇ϕΛ(·/ε, ω) +∇wωε,k‖
p
Lp(O) ≤

|O|
k

+ C|O|(1 + V (Λ) + (1− t)M(0)) <∞.

For almost all ω, the weak Lp convergence of the sequence (∇ϕΛ(·/ε, ω))ε to 0 implies the boundedness
of this sequence in Lp(O;Rm×d), so that (∇wωε,k)ε is also bounded in Lp(O;Rm×d), for any fixed k.
By Poincaré’s inequality on cubes of side length kε, this implies

‖wωε,k‖Lp(O) ≤ Ck(ω)ε,

for some (random) constant Ck(ω). Combined with (4.23) and (4.25), this proves (4.22).
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Step 2. Recovery sequence for ZI(Λ · x;O).
Let Λ ∈ int domV and let O ⊂ Rd be a bounded Lipschitz domain. In this step, for almost all

ω, we prove the existence of a sequence (uε)ε ⊂ W 1,p(O;Rm) such that uε −⇀ 0 in W 1,p(O;Rm) and
Iε(Λ · x+ uε, ω;O)→ ZI(Λ · x;O).

Lemma 4.4(e) gives a sequence (φk)k ⊂W 1,p
0 (O;Rm) of piecewise affine functions such that φk → 0

in Lp(O;Rm) (and even in L∞(O;Rm)), and

I(φk + Λ · x;O) =

ˆ
O
W (Λ +∇φk(y))dy

k↑∞−−−→ |O|ZW (Λ).

Denote by (P ik)
nk
i=1 the partition of O associated with the piecewise affine function φk. For all k and

1 ≤ i ≤ nk, considering Λik := Λ + ∇φk|P ik on P ik, Step 1 above gives, for almost all ω, a sequence

tε ↑ 1, a sequence Λik,ε → Λik and a sequence (viε,k)ε ⊂W
1,p
0 (P ik;Rm) such that εϕΛiε,k

(·/ε, ω), viε,k −⇀ 0

inW 1,p(P ik;Rm) and Iε(tεΛiε,k ·x+εtεϕΛiε,k
(·/ε, ω)+viε,k, ω;P ik)→ I(Λik ·x;P ik) = I(φk+Λ ·x;P ik). As

the viε,k’s satisfy Dirichlet boundary conditions, they can be directly glued together, while for the ϕΛ’s
we need to repeat the more complicated gluing argument of Step 2 of the proof of Proposition 3.10,
with p > d. Although the functional Iε is not convex here, as in the proof of Proposition 4.3, the idea
is to use the bound W ≤ C(1 + V ) at all points where the cut-off functions are different from 1 or
0, then use the convexity of V and estimate the corresponding error terms as before. We leave the
details to the reader.

Step 3. Recovery sequence for ẐI(Λ · x;O).
Let Λ ∈ domV and let O ⊂ Rd be a bounded Lipschitz domain. In this step, for almost all ω,

we prove the existence of a sequence (uωε )ε ⊂ W 1,p(O;Rm) such that uωε −⇀ 0 in W 1,p(O;Rm) and
Iε(Λ · x+ uωε , ω;O)→ ẐI(Λ · x;O).

By Lemma 4.4(d), ZW and ẐW coincide on int domV , and hence the result on int domV already
follows from Step 2. Let now Λ ∈ ∂domZW . Lemma 4.4(d) then asserts ẐW (Λ) = limt↑1ZW (tΛ).
By convexity of domV , for all t ∈ [0, 1), we have tΛ ∈ int domV , and hence, for almost all ω,
Step 2 above gives a sequence (uε,t)ε ⊂ W 1,p(O;Rm) such that uε,t −⇀ 0 in W 1,p(O;Rm) and Iε(tΛ ·
x + uε,t, ω;O) → ZI(tΛ · x;O) = |O|ZW (tΛ). The conclusion then follows from a diagonalization
argument.

Step 4. Conclusion.
Let Λ ∈ domV , let O ⊂ Rd be a bounded Lipschitz domain, and let (uωε )ε be the sequence given

by Step 3 above. As uωε −⇀ 0 in W 1,p(O;Rm), the Γ-lim inf inequality (see Proposition 4.3) gives, for
almost all ω,

|O|ẐW (Λ) = lim
ε↓0

Iε(Λ · x+ uωε , ω;O) ≥ I(Λ · x;O) = |O|W (Λ).

This being true for any Λ ∈ domV , we conclude that ẐW = W everywhere. �

With Lemma 4.5 at hands, we may prove the Γ-lim sup inequality.

Proposition 4.6 (Γ-lim sup inequality). Assume p > d. There exists a subset Ω′ ⊂ Ω1 of maxi-
mal probability with the following property: for all ω ∈ Ω′, all strongly star-shaped (in the sense of
Proposition A.16) bounded Lipschitz domains O ⊂ Rd and all u ∈ W 1,p(O;Rm), there exist a se-
quence (uε)ε ⊂ W 1,p(O;Rm) and a sequence (vε)ε ⊂ W 1,p

0 (O;Rm) such that uε −⇀ u and vε −⇀ 0 in
W 1,p(O;Rm), and such that Iε(uε + vε, ω;O)→ I(u;O) and Jε(uε, ω;O)→ J(u;O) as ε ↓ 0. �

Recall that the Γ-lim inf inequality implies the locality of recovery sequences (see the proof of
Corollary 3.3). Hence, the Γ-convergence result on a Lipschitz domain D for Neumann boundary
conditions follows from the Γ-lim sup on a ball B ⊃ D and the Γ-lim inf inequality on B \D. For the
adaptation of Corollary 2.4, the approach is similar and we leave the details to the reader.

Proof. Step 1. Recovery sequence for affine functions.
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In this step, we consider the case when u = Λ · x. is an affine function. More precisely, we
prove the existence of a subset Ω′ ⊂ Ω1 of maximal probability with the following property: given
a bounded Lipschitz domain O ⊂ Rd, for all ω ∈ Ω′ and all Λ ∈ int domW , there exist sequences
(uε)ε ⊂ W 1,p

loc (Rd;Rm) and (vε)ε ⊂ W 1,p
0 (O;Rm) such that uε −⇀ Λ · x in W 1,p

loc (Rd;Rm) and vε −⇀ 0
in W 1,p(O;Rm), and such that Iε(uε + vε, ω;O)→ I(Λ · x;O) and Jε(uε, ω;O′)→ J(Λ · x;O′) for all
bounded domains O′ ⊂ Rd.

Let Λ ∈ int domV . For almost all ω ∈ Ω1, and all bounded domains O′ ⊂ Rd, we have by convexity,
the Birkhoff-Khinchin ergodic theorem, definition of ϕΛ′ , and continuity of V at Λ:

lim sup
t↑1,Λ′→Λ

lim
ε↓0

Jε(tΛ
′ · x+ εtϕΛ′(·/ε, ω), ω;O′) ≤ lim sup

Λ′→Λ
lim
ε↓0

Jε(Λ
′ · x+ εϕΛ′(·/ε, ω), ω;O′)

= |O′| lim
Λ′→Λ

V (Λ′) = |O′|V (Λ) = J(Λ · x;O′).

Combined with the Γ-lim inf inequality for Jε(·, ω;O′) towards J(·;O′) (for ω ∈ Ω1), this yields

lim
t↑1,Λ′→Λ

lim
ε↓0

Jε(tΛ
′ · x+ εtϕΛ′(·/ε, ω), ω;O′) = J(Λ · x;O′). (4.26)

By definition of W , we may choose sequences Λn → Λ and tn ↑ 1 such that W tn(Λn) → W (Λ). For
this choice, (4.26) yields for almost all ω and all bounded domain O′ ⊂ Rd

lim
n↑∞

lim
ε↓0

Jε(tnΛn · x+ εtnϕΛn(·/ε, ω), ω;O′) = J(Λ · x;O′).

For all n and almost all ω, set uωε,n := tnΛn ·x+ εtnϕΛn(·/ε, ω). By Step 1 of the proof of Lemma 4.5,
for any bounded Lipschitz domains O ⊂ Rd, there exists a sequence (vωε,n)ε ⊂W 1,p

0 (O;Rm) such that
vωε,n −⇀ 0 in W 1,p(O;Rm) and Iε(uωε,n + vωε,n, ω;O)→ |O|W tn(Λn).

By a diagonalization argument, we then conclude that for almost all ω and all bounded Lipschitz
domains O ⊂ Rd there exist sequences (uε)ε ⊂ W 1,p

loc (Rd;Rm) and (vε)ε ⊂ W 1,p
0 (O;Rm) such that

uε −⇀ Λ · x and vε −⇀ 0 in W 1,p, and such that Iε(uε + vε, ω;O) → I(Λ · x;O) and Jε(uε, ω;O′) →
J(Λ · x;O′) for all bounded domains O′ ⊂ Rd.

Now define Ω′ ⊂ Ω1 as a subset of maximal probability such that this result holds for all Λ ∈
Qm×d ∩ int domV and all ω ∈ Ω′. Arguing as in the end of Step 1 of the proof of Proposition 3.10,
and using the continuity of both W and V in the interior of the domain (see Lemma 4.5), the
conclusion follows.

Step 2. Recovery sequence for continuous piecewise affine functions.
We now show that, for any ω ∈ Ω′, any bounded Lipschitz domain O ⊂ Rd, and any continuous

piecewise affine function u on O with ∇u ∈ int domV pointwise, there exist a sequence (uε)ε ⊂
W 1,p(O;Rm) and a sequence (vε)ε ⊂W 1,p

0 (O;Rm) such that uε −⇀ u and vε −⇀ 0 in W 1,p(O;Rm), and
such that Iε(uε + vε, ω;O)→ I(u;O) and Jε(uε, ω;O)→ J(Λ ·x;O). This follows from an immediate
adaptation of Step 2 of the proof of Proposition 3.10. Again, the functional Iε is not convex, but we
may use the bound W ≤ C(1 + V ) at all points where the cut-off functions are different from 1 or
0, and use the convexity of V to estimate the corresponding error terms. We leave the details to the
reader.

Step 3. Recovery sequence for general functions.
We show that, for all ω ∈ Ω′, all strongly star-shaped bounded Lipschitz domains O ⊂ Rd, and all

u ∈ W 1,p(O;Rm), there exist a sequence (uε)ε ⊂ W 1,p(O;Rm) and a sequence (vε)ε ⊂ W 1,p
0 (O;Rm)

such that uε −⇀ u and vε −⇀ 0 in W 1,p(O;Rm), and such that Iε(uε + vε, ω;O) → I(u;O) and
Jε(uε, ω;O) → J(u;O). Let O ⊂ Rd be some fixed strongly star-shaped bounded Lipschitz domain.
By the Γ-lim inf inequality of Proposition 4.3, we can restrict attention to those u ∈ W 1,p(O;Rm)
that satisfy

I(u;O) =

ˆ
O
W (∇u(y))dy <∞,

so that ∇u ∈ domV almost everywhere. Let u be such a function and let ω ∈ Ω′ be fixed.
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Let t ∈ (0, 1). Since O is Lipschitz and strongly star-shaped, and since W is lower semicontinuous
on Rm×d, continuous on int domV , ru-usc, and satisfies V ≤W ≤ C(1 + V ) (see indeed Lemmas 4.4
and 4.5), the nonconvex approximation result of Proposition A.16(ii)(c) yields a sequence (un)n of
continuous piecewise affine functions such that un → u (strongly) inW 1,p(O;Rm), I(un;O)→ I(u;O)
and J(un;O) → J(u;O) as n ↑ ∞, and such that ∇un ∈ int domV pointwise. Now Step 2 above
gives, for any n, sequences (uε,n)ε ⊂W 1,p(O;Rm) and (vε,n)ε ⊂W 1,p

0 (O;Rm) such that uε,n −⇀ un and
vε,n −⇀ 0 inW 1,p(O;Rm), and such that Iε(uε,n+vε,n, ω;O)→ I(un;O) and Jε(uε,n, ω;O)→ J(un;O)
as ε ↓ 0. The result then follows from a diagonalization argument. �

5. Proof of the improved results

5.1. Subcritical case 1 < p ≤ d. In this section, we prove Corollary 2.9. We shall use truncations in
place of the Sobolev compact embedding. For such truncation arguments to work, we need to restrict
to the scalar case and to assume that the domain is fixed, i.e. domV (y, ·, ω) = domM for almost all
y, ω.

Proof of Corollary 2.9. In the proof of Theorem 2.2 and Corollary 2.4, the Sobolev compact embed-
ding into bounded functions is used both in Step 2 of the proof of Proposition 3.10 and in Step 1
of the proof of Corollary 2.4(i) (see Section 3.6). We only display the argument for Proposition 3.10
(the argument for Corollary 2.4(i) is similar).

We use the notation of Step 2 of the proof of Proposition 3.10. For all s > 0, define the truncation
map Ts : R→ R as follows:

Ts(x) = sign(x)|x| ∧ s =


s, if x ≥ s;
x, if −s ≤ x ≤ s;
−s, if x ≤ −s;

(5.1)

and for all s > 0 consider the following s-truncation of uε,κ,r,η:

uε,κ,r,η,s := Ts(uε,κ,r,η − uκ,r) + uκ,r ∈W 1,p(O;R). (5.2)

Since |tuε,κ,r,η,s − u| ≤ s+ |tuκ,r − u|, we may replace (3.29) by

lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
s↓0

lim sup
ε↓0

‖tuε,κ,r,η,s − u‖L∞(O) = 0.

Since ∇uε,κ,r,η,s = T ′s(uε,κ,r,η − uκ,r)∇uε,κ,r,η + (1− T ′s(uε,κ,r,η − uκ,r))∇uκ,r, we deduce by convexity,
noting that T ′s takes values in [0, 1],

Jε(tuε,κ,r,η,s, ω;O) ≤
ˆ
O
T ′s(uε,κ,r,η(y)− uκ,r(y))V (y/ε, t∇uε,κ,r,η, ω)dy (5.3)

+

ˆ
O

(1− T ′s(uε,κ,r,η(y)− uκ,r(y)))V (y/ε, t∇uκ,r, ω)dy

≤ Jε(tuε,κ,r,η, ω;O) + |{y ∈ O : |uε,κ,r,η(y)− uκ,r(y)| > s}| max
1≤l≤k

M(tΛl)

≤ Jε(tuε,κ,r,η, ω;O) + s−p‖uε,κ,r,η − uκ,r‖pLp(O)

(
(1− t)M(0) + max

1≤l≤k
M(Λl)

)
.

Since by definition (and by the Rellich-Kondrachov theorem) we have uε,κ,r,η → uκ,r (strongly) in
Lp(O) as ε ↓ 0, since the Λl’s all belong to domV , and since by assumption domM = domV , we
deduce, combining this with (3.32), that

lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
s↓0

lim sup
ε↓0

Jε(tuε,κ,r,η,s, ω;O) ≤ J(u;O).

The rest of the proof is unchanged. �
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5.2. Minimal soft buffer zone for Dirichlet boundary data. In this section, we prove Corol-
lary 2.10. In view of the error term (3.35) in the proof of Corollary 2.4, it seems that the speed of
convergence of η to 0 with respect to ε must depend quantitatively on the speed of convergence of wε
to 0 in L∞(O;Rm). In the case when the target function is affine (Λ · x, say), then wε := εϕΛ(·/ε, ·)
is the rescaling of the corrector and its convergence to zero is strictly related to the sublinearity of
ϕΛ at infinity, cf. Lemma 3.4. Even in the linear scalar case when V (y,Λ) = Λ · A(y)Λ for some
matrix random field A, this sublinear growth can be arbitrary, and we expect that for all γ < 1, there
exists a field A such that E[|ϕΛ(x)|2]

1
2 ∼ |x|γ as |x| � 1 (see recent results in [28] and the example

of Gaussian fields with non-integrable covariance). Yet, if instead of using the corrector ϕΛ itself,
which is in general not stationary and well-behaved, we use a proxy that is stationary, then the size
of the buffer zone can be (optimally) reduced, at least for affine target functions, as the following
proposition shows.

Proposition 5.1. If for all Λ ∈ Rm×d we have

V (Λ) = inf
φ∈W 1,p(Ω;Rm)

E[V (0,Λ +Dφ, ·)], (5.4)

then the conclusion of Corollary 2.10 holds (and we can further replace θε by any sequence ηε ↓ 0
satisfying lim infε ηε/ε > 0). �

Identity (5.4) is essentially a regularity statement on quasi-minimizers of f 7→ E[V (0,Λ + f, ·)] on
Lppot(Ω)m. By Poincaré’s inequality, periodic gradients with mean-value zero are gradients of periodic
functions, and hence in that case the space F ppot(Ω) coincide with {Dφ : φ ∈W 1,p

τ (Ω)m}, so that (5.4)
is trivially satisfied. This already proves Corollary 2.10 under the additional assumption (1).

On the other hand, the following result shows that (5.4) is also satisfied in the scalar case m = 1
if the domain of V is fixed, in which case truncations are available. This proves Corollary 2.10 under
the additional assumption (2).

Lemma 5.2. If m = 1 and if domV (y, ·, ω) = domM is open for almost all y, ω, then (5.4) holds
true for all Λ. �

Proof of Proposition 5.1. For all Λ ∈ Rm×d, by assumption (5.4), for all δ > 0, there exists a sta-
tionary random field ϕΛ,δ ∈ W 1,p(Ω;Rm) such that E[V (0,Λ + ∇ϕΛ,δ(0, ·), ·)] ≤ V (Λ) + δ. Set
uΛ,δ,ω
ε := εϕΛ,δ(·/ε, ω). By stationarity, for almost all ω, the Birkhoff-Khinchin ergodic theorem

asserts that, for any bounded domain O ⊂ Rd,

lim
ε↓0

ˆ
O
|uΛ,δ,ω
ε /ε|p = |O|E[|ϕΛ,δ|p], lim

ε↓0

ˆ
O
|∇uΛ,δ,ω

ε |p = |O|E[|∇ϕΛ,δ|p]. (5.5)

Let O ⊂ Rd be some fixed bounded domain. For η > 0, set Oη := {x ∈ O : dist(x, ∂O) > η}. For any
sequence ηε ↓ 0, (5.5) yields

lim
ε↓0

ˆ
O\Oηε

|uΛ,δ,ω
ε /ε|p = 0 = lim

ε↓0

ˆ
O\Oηε

|∇uΛ,δ,ω
ε |p. (5.6)

Fix such a sequence ηε ↓ 0. As in Step 1 of the proof of Proposition 3.10, for all Λ ∈ Rm×d,
we obtain the following, for some subset ΩΛ ⊂ Ω of maximal probability: for all ω ∈ ΩΛ and all
δ > 0, there is a sequence (uΛ,δ,ω

ε )ε ⊂ W 1,p(O;Rm) such that uΛ,δ,ω
ε −⇀ 0 in W 1,p(O;Rm) as ε ↓ 0,

lim supε Jε(Λ · x+ uΛ,δ,ω
ε , ω;O) ≤ J(Λ · x;O) + δ, and such that (5.6) is satisfied.

Let Λ and ω ∈ ΩΛ be fixed, and let (uΛ,δ,ω
ε )ε be as above. For all ε > 0, choose a smooth cut-off

function χε with values in [0, 1], equal to 1 on Oηε = {x ∈ O : d(x, ∂O) > ηε}, vanishing outside O,
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and with |∇χε| ≤ C ′/ηε for some constant C ′. Defining vΛ,δ,ω
ε := χεu

Λ,δ,ω
ε ∈W 1,p

0 (O;Rm), we obtain

Jηεε (Λ · x+ vΛ,δ,ω
ε , ω;O) = Jε(Λ · x+ vΛ,δ,ω

ε , ω;Oηε) +

ˆ
O\Oηε

|Λ +∇vΛ,δ,ω
ε |p

≤ Jε(Λ · x+ vΛ,δ,ω
ε , ω;O) + 3p−1|Λ|p|O \Oηε |

+ 3p−1

ˆ
O\Oηε

(|∇uΛ,δ,ω
ε |p + |C ′uΛ,δ,ω

ε /ηε|p),

and hence, if the sequence ηε ↓ 0 is further chosen such that lim infε ηε/ε > 0,

lim sup
ε↓0

Jηεε (Λ · x+ vΛ,δ,ω
ε , ω;O) ≤ lim sup

ε↓0
Jε(Λ · x+ vΛ,δ,ω

ε , ω;O) ≤ J(Λ · x;O) + δ.

Therefore, lim supδ lim supε J
ηε
ε (Λ · x + vΛ,δ,ω

ε , ω;O) ≤ J(Λ · x;O). Combined with the Γ-lim inf
inequality of Proposition 3.2 and a diagonalization argument, this proves the result. �

Proof of Lemma 5.2. We split the proof into two steps.

Step 1. Preliminary: we claim that it suffices to prove that, for all Λ ∈ domV ,

lim sup
t↑1

inf
φ∈W 1,p(Ω)

E[V (0, tΛ +Dφ, ·)] ≤ V (Λ). (5.7)

Define V ′(Λ) := infφ∈W 1,p(Ω) E[V (0,Λ + Dφ, ·)]. By definition V ′(Λ) ≥ V (Λ) for all Λ, and hence
property (5.7) together with the lower semicontinuity of V directly yields V (Λ) = limt↑1 V

′
(tΛ) for

all Λ (and in particular the limit exists). Since V ′ is obviously convex, it is continuous on the interior
of its domain. Since the domain is assumed to be open, this yields V (Λ) = V

′
(Λ) for all Λ.

Step 2. Proof of (5.7).
Let Λ ∈ domV be fixed. Lemma 3.4 gives a measurable corrector u := ϕΛ ∈ Mes(Ω;W 1,p

loc (Rd))
such that ∇u ∈ F ppot(Ω) and V (Λ) = E[V (0,Λ + ∇u(0, ·), ·)]. For all R > r > 0, choose a smooth
cut-off function χR,r taking values in [0, 1], equal to 1 on QR−r, vanishing outside QR and satisfying
|∇χR,r| ≤ 2/r. Also recall the definition (5.1) of the truncation Ts. We then set

uR(x, ω) = u(x, ω)−
 
QR

u(·, ω), vsR,r(x, ω) = χR,r(x)TsuR(x, ω),

and

wsR,r(x, ω) =
1

|QR|

ˆ
Rd
vsR,r(x+ y, τyω)dy =

 
−x+QR

vsR,r(x+ y, τyω)dy.

Clearly, wsR,r is well-defined, stationary, and belongs to W 1,p(Ω), with

∇wsR,r(x, ω) =

 
−x+QR

∇vsR,r(x+ y, τyω)dy.

Let t ∈ [0, 1). By Jensen’s inequality,

Ks
R,r(t) := E[V (0, tΛ + t∇wsR,r(0, ·), ·)] = E

[
V

(
0, tΛ + t

 
QR

∇vsR,r(y, τy·)dy, ·
)]

≤ E
[ 

QR

V (0, tΛ + t∇vsR,r(y, τy·), ·)dy
]
,

and hence, by stationarity and the Fubini theorem,

Ks
R,r(t) ≤ E

[ 
QR

V (y, tΛ + t∇vsR,r(y, ·), ·)dy
]
.
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Decomposing

tΛ + t∇vsR,r(y, ω) = tΛ + tχR,r(y)∇TsuR(y, ω) + (1− t) t

1− t
∇χR,r(y)TsuR(y, ω)

= tχR,r(y)T ′s(uR(y, ω))(Λ +∇u(y, ω)) + t(1− χR,r(y))T ′s(uR(y, ω))Λ

+ t(1− T ′s(uR(y, ω)))Λ + (1− t) t

1− t
∇χR,r(y)TsuR(y, ω),

with T ′s taking values in [0, 1], we may then bound by convexity

Ks
R,r(t) ≤ E

[ 
QR

V (y,Λ +∇u(y, ·), ·)dy
]

+ (1− t)EsR,r(t)

+M(Λ)

 
QR

(1− χR,r) +M(Λ)E
[ 

QR

(1− T ′s(uR(y, ·)))
]
, (5.8)

where the error term reads

EsR,r(t) = E
[ 

QR

M

(
t

1− t
∇χR,r(y)TsuR(y, ω)

)
dy

]
.

By stationarity of ∇u, note that

E
[ 

QR

V (y,Λ +∇u(y, ·), ·)dy
]

= E[V (0,Λ +∇u(0, ·), ·)] = V (Λ). (5.9)

For the error term, note that∥∥∥∥ t

1− t
∇χR,r(·)TsuR(·, ω)

∥∥∥∥
L∞(O)

≤ 2t

1− t
s

r
. (5.10)

It remains to treat the last two terms of (5.8). Noting that
ffl
QR

(1−χR,r) = R−d(Rd−(R−r)d) ≤ dr/R,
we obtain 

QR

(1− χR,r) + E
[ 

QR

(1− T ′s(uR(y, ·)))
]
≤ dr

R
+ E

[ 
QR

1|uR(y)|≥sdy

]
(5.11)

≤ dr

R
+

ˆ
Q
P
[

1

R

∣∣∣∣u(Ry, ·)−
 
Q
u(Rz, ·)dz

∣∣∣∣ ≥ s

R

]
dy.

Lemma 3.4 (together with the Rellich-Kondrachov theorem) gives 1
R |u(R·, ω) −

ffl
Q u(Rz, ω)dz| → 0

(strongly) in Lp(Q) as R ↑ ∞, for almost all ω. Hence up to an extraction in R (implicit in the
sequel) we deduce that, for almost all y ∈ Q, 1

R |u(Ry, ·) −
ffl
Q u(Rz, ·)dz| → 0 almost surely. Since

almost sure convergence implies convergence in probability, we deduce by dominated convergence, for
all ε > 0,

lim
R↑∞

ˆ
Q
P
[

1

R

∣∣∣∣u(Ry, ·)−
 
Q
u(Rz, ·)dz

∣∣∣∣ ≥ ε] dy = 0.

A diagonalization argument then gives a sequence εR ↓ 0 such that

lim
R↑∞

ˆ
Q
P
[

1

R

∣∣∣∣u(Ry, ·)−
 
Q
u(Rz, ·)dz

∣∣∣∣ ≥ εR] dy = 0. (5.12)

Choose s = sR := RεR and r = rR := R
√
εR. By assumption, there exists some δ > 0 with

adhBδ ⊂ int domM . By (5.10), for all t ∈ [0, 1), there is some Rt > 0 such that for all R > Rt∥∥∥∥ t

1− t
∇χR,rR(·)TsRuR(·, ω)

∥∥∥∥
L∞(O)

≤ 2t

1− t
√
εR < δ. (5.13)

Combining this with (5.8), (5.9), (5.11), (5.12), and noting that M(Λ) < ∞ follows from the choice
Λ ∈ domV , we obtain

lim sup
t↑1

lim sup
R↑∞

KsR
R,rR

(t) ≤ V (Λ),
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and the result (5.7) follows. �

5.3. Approximation by periodization in law. This last section is devoted to the proof of Corol-
lary 2.13. For that purpose, we first prove the following version of the Γ-lim sup inequality of Propo-
sition 3.10 in expectation. As Lemma 3.4 only gives almost sure (and not L1(Ω)) control of the
sublinearity of the corrector, we need to use truncations to prove this result (and therefore restrict to
the scalar case with fixed domain).

Proposition 5.3 (Γ-lim sup inequality in expectation with Neumann boundary data). Let V, Jε, J,M
be as in Theorem 2.2 for some p > 1. Also assume that we have m = 1 and domV (y, ·, ω) =
domM for almost all y, ω. Then, for all bounded Lipschitz domains O ⊂ Rd and all u ∈ W 1,p(O),
there exists a sequence (uε)ε ⊂ Mes(Ω;W 1,p(O)) such that E[Jε(uε, ·;O)] → J(u;O) and uε → u in
L∞(Ω; L∞(O)). �

Proof. We split the proof into three steps.

Step 1. Preliminary.
We claim that, for all bounded domains O ⊂ Rd and all Λ ∈ int domV , there exists a se-

quence (uΛ,ε)ε ⊂ Mes(Ω;W 1,p(O)) with uΛ,ε(·, ω) −⇀ Λ · x weakly in W 1,p(O) for almost all ω and
E[Jε(uΛ,ε, ·;O)] → J(Λ · x;O′) for all subdomains O′ ⊂ O. This is indeed a simple reformulation of
Lemma 3.4 with the notation uΛ,ε(x, ω) := εϕΛ(x/ε, ω).

Step 2. Recovery sequence for continuous piecewise affine functions.
Let O ⊂ Rd be a bounded Lipschitz domain and let u be a continuous piecewise affine function on O

such that ∇u ∈ int domV pointwise. We prove the existence of a sequence (uε)ε ⊂ Mes(Ω;W 1,p(O))
with uε → u in L∞(Ω; L∞(O)) and E[Jε(uε, ·;O)]→ J(u;O).

Let us modify u as in Step 2 of the proof of Proposition 3.10 to make its variations smoother (using
Proposition A.17), and use the same notation. By Step 1, for all 1 ≤ i ≤ nκ,r, there exists a sequence
(uiε,κ,r)ε ⊂ Mes(Ω;W 1,p

loc (Rd)) with uiε,κ,r(·, ω) −⇀ ciκ,r + Λiκ,r · x in W 1,p
loc (Rd) for almost all ω and such

that, for all Lipschitz subdomains O′ ⊂ O, we have E[Jε(u
i
ε,κ,r, ·;O′)]→ J(Λiκ,r · x;O′). Consider the

same partition of unity
∑nκ,r

i=1 χ
i
κ,r,η as in Step 2 of the proof of Proposition 3.10, and also recall the

definition (5.1) of the truncation Ts. We now set, for s > 0,

uε,κ,r,η,s := uκ,r +

nκ,r∑
i=1

χiκ,r,ηTs(u
i
ε,κ,r − (ciκ,r + Λiκ,r · x)) ∈ Mes(Ω;W 1,p(O)).

On the one hand, since |tuε,κ,r,η − u| ≤ s+ |tuκ,r − u| pointwise, we deduce

lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
s↓0

lim sup
ε↓0

‖tuε,κ,r,η − u‖L∞(Ω;L∞(O)) = 0. (5.14)

On the other hand, since

t∇uε,κ,r,η,s =

nκ,r∑
i=1

tχiκ,r,ηT
′
s(u

i
ε,κ,r − (ciκ,r + Λiκ,r · x))∇uiε,κ,r

+

nκ,r∑
i=1

tχiκ,r,η(1− T ′s(uiε,κ,r − (ciκ,r + Λiκ,r · x)))Λiκ,r + (1− t)Sε,κ,r,η,s,t,

where we have set

Sε,κ,r,η,s,t :=
t

1− t

nκ,r∑
i=1

Ts(u
i
ε,κ,r − (ciκ,r + Λiκ,r · x))∇χiκ,r,η +

t

1− t

nκ,r∑
i=1

χiκ,r,η(∇uκ,r − Λiκ,r),
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we deduce by convexity

E[Jε(tuε,κ,r,η,s, ·;O)] ≤ (1− t)Eε,κ,r,η,s,t +

nκ,r∑
i=1

E[Jε(u
i
ε,κ,r, ·;Oi+κ,r,η)] (5.15)

+

nκ,r∑
i=1

M(Λiκ,r)E[|{y ∈ Oi+κ,r,η : |uiε,κ,r(y, ω)− (ciκ,r + Λiκ,r · y)| ≥ s}|]

where the error reads

Eε,κ,r,η,s,t = E
[ˆ

O
V (y/ε, Sε,κ,r,η,s,t(y, ·), ·)dy

]
.

For all i, set N i
κ,r,η := {j : j 6= i, Oj+κ,r,η ∩Oi+κ,r,η 6= ∅}. We estimate Sε,κ,r,η,s,t for all y, ω as follows:

|Sε,κ,r,η,s,t(y, ω)| ≤ t

1− t
C ′nκ,r
η

s+
t

1− t
sup

1≤i≤nκ,r
sup

j∈N i
κ,r,η

|Λjκ,r − Λiκ,r|,

and hence, since lim supη↓0 supj∈N i
κ,r,η
|Λjκ,r − Λiκ,r| ≤ κ for all i,

lim sup
κ↓0

lim sup
η↓0

lim sup
s↓0

lim sup
ε↓0

‖Sε,κ,r,η,s,t‖L∞(Ω;L∞(O)) = 0. (5.16)

The last term of the right-hand side of (5.15) is estimated by

E[|{y ∈ Oi+κ,r,η : |uiε,κ,r(y, ω)− (ciκ,r + Λiκ,r · y)| ≥ s}|] ≤
ˆ
O
P[|uiε,κ,r(y, ω)− (ciκ,r + Λiκ,r · y)| ≥ s]dy.

For almost all ω, the Rellich-Kondrachov theorem shows that uiε,κ,r(·, ω) → ciκ,r + Λiκ,r · x (strongly)
in Lp(O), and hence, up to an extraction in ε (implicit in the sequel), this convergence holds almost
surely, almost everywhere on O. The dominated convergence theorem then yields

lim sup
ε↓0

E[|{y ∈ Oi+κ,r,η : |uiε,κ,r(y, ω)− (ciκ,r + Λiκ,r · y)| ≥ s}|] = 0. (5.17)

Finally we note that by construction,

lim
ε↓0

nκ,r∑
i=1

E[Jε(u
i
ε,κ,r, ·;Oi+κ,r,η)] =

nκ,r∑
i=1

J(Λiκ,r · x;Oi+κ,r,η) = |Oi+κ,r,η|V (Λiκ,r).

Hence, arguing as in Step 2 of the proof of Proposition 3.10, combining this with (5.15), (5.16)
and (5.17), and recalling that domV = domM , we obtain

lim
t↑1

lim sup
r↓0

lim sup
κ↓0

lim sup
η↓0

lim sup
s↓0

lim sup
ε↓0

E[Jε(tuε,κ,r,η,s, ·;O)] ≤ J(u;O), (5.18)

so that the conclusion follows as in Step 2 of the proof of Proposition 3.10 (note that by Fatou’s
lemma the Γ-lim inf inequality also holds in expectation).

Step 3. Conclusion. The existence of recovery sequences for general functions can now be deduced as
in Step 3 of the proof of Proposition 3.10, using the result of Step 2 above. �

We now turn to the proof of Corollary 2.13 itself. In case (1), we use Proposition 5.3 to control
the energy close to the boundary of the cube, where the periodization in law may have modified
the integrand (which however is the same in law locally and can therefore be handled by taking the
expectation). In case (2), we use the particular geometric structure to explicitly estimate the energy
density near the boundary and prove its uniform integrability.

Proof of Corollary 2.13. Let (V R)R>0 be an admissible periodization in law for V in the sense of
Definition 2.11, and for all ε > 0 and all Λ ∈ Rm×d denote by Jper

ε (·,Λ, ·) the following random
integral functional on the unit cube Q = [−1

2 ,
1
2)d:

Jper
ε (u,Λ, ω) :=

ˆ
Q
V 1/ε(y/ε,Λ +∇u(y), ω)dy, u ∈W 1,p

per(Q;Rm).
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We split the proof into three main steps.

Step 1. Γ-lim inf inequality. The results of this step hold without the additional assumptions (1)
and (2). Let Ω′′ ⊂ Ω′ be a subset of maximal probability such that the almost sure property of
Definition 2.11(ii) holds pointwise on Ω′′. We claim that for all u ∈ W 1,p

per(Q;Rm), all uε −⇀ u in
W 1,p

per(Q) and all Λε → Λ, we have lim infε↓0 J
per
ε (uε,Λε, ω) ≥ J(u+ Λ · x;Q) for all ω ∈ Ω′′.

For all θ ∈ (0, 1) and ω ∈ Ω′′, we thus have for all ε > 0 small enough

Jper
ε (uε,Λε, ω) = Jε(uε + Λε · x, ω;Qθ) +

ˆ
Q\Qθ

V 1/ε(y/ε,Λε +∇uε(y), ω)dy.

By the Γ-lim inf inequality for Jε(·, ω;Qθ) (see Proposition 3.2) and by the non-negativity of V 1/ε,
this turns into

lim inf
ε↓0

Jper
ε (uε,Λε, ω) ≥ J(u+ Λ · x;Qθ),

and the result follows by the arbitrariness of θ < 1 and the monotone convergence theorem.

Step 2. Γ-lim sup inequality under assumption (1). We assume m = 1 and domV (y, ·, ω) = domM
for almost all y, ω. We prove the existence of a subset Ω′′′ ⊂ Ω′′ of maximal probability such that,
for all u ∈ W 1,p

per(Q), all Λ ∈ R1×d, and all ω ∈ Ω′′′, there exists a sequence (uε)ε ⊂ Mes(Ω;W 1,p
per(Q))

such that uε → 0 in L∞(Ω; L∞(Q)) and

lim
t↑1

lim inf
ε↓0

Jper
ε (tuε(·, ω) + tu, tΛ, ω) = lim

t↑1
lim sup
ε↓0

Jper
ε (tuε(·, ω) + tu, tΛ, ω) = J(u+ Λ · x;Q).

Moreover, the limits t ↑ 1 can be dropped if we have J(αu+αΛ ·x;Q) <∞ for some α > 1. We split
the proof of this step into three parts.

Step 2.1. Local recovery sequence for affine functions.
For all R > 0, define the event

ΩR := {ω ∈ Ω : V r(·, ·, ω)|Qθ0r×Rm×d = V (·, ·, ω)|Qθ0r×Rm×d , for all r > R},

for some fixed θ0 > 0. Definition 2.11(ii) ensures that P[ΩR] ↑ 1 as R ↑ ∞. Let Λ ∈ R1×d, let O ⊂ Q
be a domain of diameter smaller than θ0/2, and let R > 0. By the diameter condition, there exists
x0 ∈ Q such that O ⊂ x0 + θ0Q. We claim that there is a sequence (uε)ε ⊂ Mes(Ω;W 1,p(O)) such
that uε → 0 in L∞(Ω; L∞(O)) and E[1τx0/ε

ΩR

´
O V

1/ε(·/ε,Λ +∇uε, ·)]→ P[ΩR]J(Λ · x;O).
By definition, for all ω ∈ ΩR we have V 1/ε(·, ·, ω)|Qθ0/ε×Rm×d = V (·, ·, ω)|Qθ0/ε×Rm×d for all ε < 1/R.

Therefore, applying Proposition 5.3 on −x0 +O restricted to ΩR yields the following: there exists a
sequence (uε)ε ⊂ Mes(Ω;W 1,p(−x0 +O)) with uε → 0 in L∞(Ω; L∞(−x0 +O)) and

lim
ε↓0

E
[
1ΩR

ˆ
−x0+O

V 1/ε(·/ε,Λ +∇uε, ·)
]

= lim
ε↓0

E
[
1ΩR

ˆ
−x0+O

V (·/ε,Λ +∇uε, ·)
]

= P[ΩR]J(Λ · x;−x0 +O) = P[ΩR]J(Λ · x;O).

Now define u′ε := uε(−x0 + ·, τ1/ε
−x0/ε

·) ∈ Mes(Ω;W 1,p(−x0 +O)) for all ε. By construction u′ε → 0 in
L∞(Ω; L∞(O)), and the stationarity property of Definition 2.11(i) further gives

lim
ε↓0

E
[
1
τ

1/ε
x0/ε

ΩR

ˆ
O
V 1/ε(y/ε,Λ +∇u′ε(y, ·), ·)dy

]
= lim

ε↓0
E
[
1ΩR

ˆ
O
V 1/ε(y/ε,Λ +∇uε(−x0 + y, ·), τ1/ε

x0/ε
·)dy

]
= lim

ε↓0
E
[
1ΩR

ˆ
O
V 1/ε((−x0 + y)/ε,Λ +∇uε(−x0 + y, ·), ·)dy

]
= lim

ε↓0
E
[
1ΩR

ˆ
−x0+O

V 1/ε(y/ε,Λ +∇uε(y, ·), ·)dy
]

= P[ΩR]J(Λ · x;O).

Step 2.2. Global recovery sequence for (piecewise) affine functions.
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Let Λ ∈ R1×d and let u be a continuous piecewise affine Q-periodic function on Rd with Λ +∇u ∈
int domV . We claim that there exists a sequence (uε)ε ⊂ Mes(Ω;W 1,p

per(Q)) such that uε → u in
L∞(Ω; L∞(Q)), and, for almost all ω,

lim
t↑1

lim inf
ε↓0

Jper
ε (tuε(·, ω) + tu, tΛ, ω)

= lim
t↑1

lim sup
ε↓0

Jper
ε (tuε(·, ω) + tu, tΛ, ω) = J(u+ Λ · x;Q). (5.19)

Consider the partition of Q associated with u, and let Q =
⊎k
l=1Ol be a refined partition such that

all the Ol’s have diameter at most θ0/2. For all l, define cl + Λl · x := ∇u|Ol with Λ + Λl ∈ int domV ,
and choose xl ∈ Q such that Ol ⊂ xl + θ0Q. Given R > 0, define

χε,R :=

k∏
l=1

1
τ

1/ε
xl/ε

ΩR
.

Step 2.1 then gives a sequence (ulε)ε ⊂ Mes(Ω;W 1,p(Ol)) such that ulε → 0 in L∞(Ω; L∞(Ol)) and

lim sup
ε↓0

E
[
χε,R

ˆ
Ol

V 1/ε(·/ε,Λ + Λl +∇ulε, ·)
]
≤ lim

ε↓0
E
[
1
τ

1/ε
xl/ε

ΩR

ˆ
Ol

V 1/ε(·/ε,Λ + Λl +∇ulε, ·)
]

= P[ΩR]J(u+ Λ · x;Ol).

We can then repeat the argument of Step 2 of the proof of Proposition 3.10, and glue the recovery
sequences for the (small) affine parts, using this time Proposition A.18 instead of Proposition A.17
(applied to the function u). This allows to deduce the following: there exists a sequence (uε)ε ⊂
Mes(Ω;W 1,p

per(O)) such that uε → 0 in L∞(Ω; L∞(Q)) and

lim sup
t↑1

lim sup
ε↓0

E[χε,RJ
per
ε (tuε + tu, tΛ, ·)] ≤ P[ΩR]J(u+ Λ · x;Q). (5.20)

Now the Γ-lim inf inequality of Step 1 yields lim inft lim infε J
per
ε (uε(·, ω)+u, tΛ, ω) ≥ J(u+Λ·x;Q)

for almost all ω. Assume by contradiction that this inequality is strict for all ω in some set of positive
probability (even for some subsequence in ε, t). In this case we would find ε0, δ > 0 and t0 ∈ (0, 1)
such that P[Ωδ

ε0,t0 ] > 0, where we have defined the event

Ωδ
ε0,t0 := {ω ∈ Ω : Jper

ε (tuε(·, ω) + tu, tΛ, ω) > δ + J(u+ Λ · x;Q), for all ε < ε0, t > t0},

By definition we have

lim inf
t↑1

lim inf
ε↓0

E[χε,RJ
per
ε (tuε + tu, tΛ, ·)]

≥ J(u+ Λ · x;Q) lim inf
ε↓0

E[χε,R] + lim inf
t↑1

lim inf
ε↓0

E[χε,R(Jper
ε (tuε + tu, tΛ, ·)− J(u+ Λ · x;Q))]

≥ J(u+ Λ · x;Q) lim inf
ε↓0

E[χε,R] + δ lim inf
ε↓0

E[1Ωδε0,t0
χε,R]

+ lim inf
t↑1

lim inf
ε↓0

E[1Ω\Ωδε0,t0
χε,R(Jper

ε (tuε + tu, tΛ, ·)− J(u+ Λ · x;Q))].

Now a union bound argument yields

E[χε,R] ≥ 1− kP[Ω \ ΩR], E[1Ωδε0,t0
χε,R] ≥ P[Ωδ

ε0,t0 ]− kP[Ω \ ΩR],

and hence, by Fatou’s lemma and by the Γ-lim inf inequality of Step 1, we obtain

lim inf
t↑1

lim inf
ε↓0

E[χε,RJ
per
ε (tuε + tu, tΛ, ·)]

≥ J(u+ Λ · x;Q)(1− kP[Ω \ ΩR]) + δ(P[Ωδ
ε0,t0 ]− kP[Ω \ ΩR]).

However, taking the limit R ↑ ∞, and recalling P[ΩR] ↑ 1, this contradicts (5.20). The result (5.19)
is then proven.

Step 2.3. Recovery sequence for general target functions.
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For all Λ ∈ int domV , let ΩΛ ⊂ Ω′′ be a subset of maximal probability such that equalities (5.19)
hold for all ω ∈ ΩΛ for the choice u = 0. We then define Ω′′′ ⊂ Ω′′ as the (countable) intersection
of all ΩΛ’s with Λ ∈ Q1×d ∩ int domV . Repeating on this basis the gluing argument of Step 2 of the
proof of Proposition 3.10, for all Λ ∈ R1×d and for all continuous piecewise affine Q-periodic functions
u on Rd with Λ +∇u ∈ Q1×d ∩ int domV , we may prove that (5.19) holds for all ω ∈ Ω′′′.

Let now u ∈W 1,p
per(Q) and let Λ ∈ R1×d. By Step 1, we may assume J(u+Λ ·x;Q) <∞, so that by

convexity Λ ∈ domV . By convexity and lower semicontinuity of V , limt↑1 J(tu+ tΛ ·x;Q) = J(u+Λ ·
x;Q). For all t ∈ (0, 1), since Λ ∈ domV , we have 0 ∈ int domV (·+ tΛ) and Proposition A.16(ii)(b)
then gives a sequence (un,t)n of continuous piecewise affine Q-periodic functions such that Λ+∇un,t ∈
Q1×d∩ int domV , un,t → tu inW 1,p(Q), and J(un,t+tΛ ·x;Q)→ J(tu+tΛ ·x;Q). We can then apply
the result for the (rational) continuous piecewise affine approximations on Ω′′′, and the conclusion
then follows from a diagonalization argument.

In the case when J(αu+αΛ ·x;Q) <∞ for some α > 1, the limits t ↑ 1 can be dropped. Similarly
as in the proof of Corollary 2.4 (see Sections 3.6 and 3.7), it is enough to replace u,Λ by u/t,Λ/t for
t ∈ [1/α, 1) and to adapt Steps 2.2 and 2.3 above accordingly. We omit the details.

Step 3. Γ-lim sup inequality under assumption (2). We assume p > d, and V (y,Λ, ω) ≤ C(1 + |Λ|p)
for all ω and all y /∈ E(ω), for some random stationary set Eω =

⋃∞
n=1BRωn (qωn ) satisfying almost

surely, for all n, for some constant C > 0,

2δωn :=
1

Rωn
inf

m,m 6=n
dist(BRωm(qωm), BRωn (qωn )) ≥ 1

C
, Rωn ≤ C. (5.21)

We prove the existence of a subset Ω′′′ ⊂ Ω′′ of maximal probability such that, for all u ∈ W 1,p
per(Q),

all Λ ∈ Rm×d, and all ω ∈ Ω′′′, there exists a sequence uωε −⇀ 0 in W 1,p
per(Q;Rm) such that

lim
t↑1

lim inf
ε↓0

Jper
ε (tuωε + tu, tΛ, ω) = lim

t↑1
lim sup
ε↓0

Jper
ε (tuωε + tu, tΛ, ω) = J(u+ Λ · x;Q).

Moreover, the limits t ↑ 1 can be dropped if we have J(αu+ αΛ · x;Q) <∞ for some α > 1. Finally,
we have for all Λ ∈ Rm×d and almost all ω

V (Λ) = lim
ε↓0

inf
u∈W 1,p

per (Q;Rm)

ˆ
Q
V 1/ε(y/ε,Λ +∇u(y), ω)dy, (5.22)

where the convergence also holds in expectation. We split the proof of this step into three parts.

Step 3.1. Recovery sequence for affine functions. We prove that for all Λ ∈ Rm×d for almost all ω
there is a sequence uωε −⇀ 0 in W 1,p

per(Q;Rm) such that Jper
ε (Λ, uωε , ω)→ J(Λ · x;Q).

Let Λ ∈ Rm×d be fixed. Lemma 3.4 and the Birkhoff-Khinchin ergodic theorem give a random field
ϕΛ ∈ Mes(Ω;W 1,p

loc (Rd;Rm)) such that, for almost all ω, εϕΛ(·/ε, ω) −⇀ 0 weakly in W 1,p
loc (Rd;Rm) and

also Jε(Λ ·x+ εϕΛ(·/ε, ω), ω;O)→ J(Λ ·x;O), for all bounded domains O ⊂ Rd. Let ω ∈ Ω′′ be fixed
such that both properties hold, and set uωε := Λ · x+ εϕΛ(·/ε, ω).

For all ε > 0, consider the Q/ε-periodic random set Eωε =
⋃∞
n=1BRωε,n(qωε,n) associated with the

periodization in law V 1/ε at scale 1/ε. By stationarity, these periodized inclusions also satisfy (5.21),
that is 2δωε,n ≥ 1/C and Rωε,n ≤ C almost surely. For all ε, n, define Bω

ε,n := BRωε,n(qωε,n) and B̃ω
ε,n :=

BRωε,n(1+1∧δωε,n)(q
ω
ε,n). By definition, the B̃ω

ε,n’s are all disjoint. For all ε, n, choose a smooth cut-off
function χωε,n that equals 1 on εBω

ε,n, vanishes outside εB̃ω
ε,n and satisfies |∇χωε,n| ≤ 2/(εRωε,n(1∧δωε,n)) ≤

4C/(εRωε,n). We choose these cut-off functions in such a way that
∑

n χ
ω
ε,n is Q-periodic.

Let θ ∈ (0, 1). Denote by Nω
ε,θ (resp. Mω

ε ) the set of all n ≥ 1 such that (Q \ θQ) ∩ εB̃ω
ε,n 6= ∅

(resp. ∂Q ∩ εB̃ω
ε,n 6= ∅). Choose a smooth cut-off function χθ that equals 1 on θQ, vanishes outside

Q and satisfies |∇χθ| ≤ 2/(1− θ). Set

χωε,θ(y) := χθ(y)− χθ(y)
∑
n∈Mω

ε

χωε,n(y) +
∑

n∈Nω
ε,θ\Mω

ε

χωε,n(y)

 
εB̃ωε,n

(χθ(z)− χθ(y))dz.
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This defines a smooth cut-off function χωε,θ that equals 1 on (θ−2Cε)Q, vanishes outside Q, is constant
on each inclusion Bε,n, and satisfies |∇χωε,θ| ≤ C/(1− θ) for some constant C > 0. We then define

uωε,θ(y) = (1− χωε,θ(y))Λ · y + (1− χωε,θ(y))
∑

n∈Nω
ε,θ

χωε,n(y)

 
εB̃ωε,n

Λ · (z − y)dz

+ χωε,θ(y)

(
1−

∑
n∈Nω

ε,θ

χωε,n(y)

)
uωε (y) + χωε,θ(y)

∑
n∈Nω

ε,θ

χωε,n(y)

 
εB̃ωε,n

uωε .

By construction uωε,θ ∈ Λ · x + W 1,p
per(Q;Rm). Since uωε,θ = uωε at least on (θ − 2εC)Q, and since

∇uωε,θ = 0 on all εBω
ε,n with n ∈ Nω

ε,θ, we have, for all ε > 0 small enough,ˆ
Q
V 1/ε(·/ε,∇uωε,θ, ω) ≤

ˆ
(θ−2εC)Q

V (·/ε,∇uωε , ω)

+M(0)|Q \ (θ − 2εC)Q|+ C

ˆ
Q\(θ−2εC)Q

(1 + |∇uωε,θ|p)

≤ Jε(uωε , ω;Q) + C(1− θ + 2εC) + C

ˆ
Q\(θ−2εC)Q

|∇uωε,θ|p. (5.23)

We need to estimate the last term. A straightforward calculation yieldsˆ
Q\(θ−2εC)Q

|∇uωε,θ|p ≤ C(1− θ + 2εC)|Λ|p +
C

(1− θ)p

ˆ
Q
|uωε (y)− Λ · y|pdy + C

ˆ
Q\(θ−2εC)Q

|∇uωε |p

+ C
∑
n∈Mω

ε

((1− θ)−p + (εRωε,n)−p)

ˆ
εB̃ωε,n

∣∣∣∣  
εB̃ωε,n

Λ · (z − y)dz

∣∣∣∣pdy
+ C

∑
n∈Nω

ε,θ

((1− θ)−p + (εRωε,n)−p)

ˆ
εB̃ωε,n

∣∣∣∣uωε −  
εB̃ωε,n

uωε

∣∣∣∣p,
and hence, by the Poincaré inequality and the estimate

∑
n∈Mω

ε
|εB̃ω

ε,n| ≤ |Q \ (1− 2εC)Q| ≤ 2dεC,ˆ
Q\(θ−2εC)Q

|∇uωε,θ|p ≤ C(1− θ + 2εC)|Λ|p +
C

(1− θ)p

ˆ
Q
|εϕΛ(·/ε, ω)|p (5.24)

+ C

(
1 +

εp

(1− θ)p

) ˆ
Q\(θ−2εC)Q

(|Λ|p + |∇ϕΛ(·/ε, ω)|p).

For all ε0 > 0, the Birkhoff-Khinchin ergodic theorem yields, for almost all ω,

lim sup
ε↓0

ˆ
Q\(θ−2εC)Q

(|Λ|p + |∇ϕΛ(·/ε, ω)|p) ≤ lim
ε↓0

ˆ
Q\(θ−2ε0C)Q

(|Λ|p + |∇ϕΛ(·/ε, ω)|p)

≤ |Q \ (θ − 2ε0C)Q| (|Λ|p + E[|∇ϕΛ|p])
≤ C(1− θ + 2ε0C)(|Λ|p + E[|∇ϕΛ|p]).

Combined with (5.24) and the sublinearity of the corrector in the form of εϕΛ(·/ε, ω)→ 0 in Lp(Q;Rm)
(see Lemma 3.4 and the Rellich-Kondrachov theorem), this yields, for almost all ω,

lim sup
ε↓0

ˆ
Q\(θ−2εC)Q

|∇uωε,θ|p ≤ C(1− θ)|Λ|p + C(1− θ + 2ε0C)E[|Λ +∇ϕΛ|p].

We then insert this estimate in (5.23) and to pass to the limits θ ↑ 1 and ε0 ↓ 0 to obtain for almost
all ω

lim sup
θ↑1

lim sup
ε↓0

ˆ
Q
V 1/ε(·/ε,∇uωε,θ, ω) ≤ lim

ε↓0
Jε(u

ω
ε , ω;Q) = V (Λ) = J(Λ · x;Q).

The conclusion then follows from Step 1 and a diagonalization argument.

Step 3.2. Recovery sequence for general target functions.
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As we assume here p > d, we may use the gluing argument of Step 2 of the proof of Proposition 3.10
to pass from affine to piecewise affine functions. The conclusion follows by approximation similarly
as in Step 2.3 above. We omit the details.

Step 3.3. Proof that the almost sure convergence (5.22) also holds in expectation.
Using the same notation and cut-off functions as in Step 3.1, we define uωε ∈W

1,p
per(Q;Rm) as

uωε (y) :=
∑
n

χωε,n(y)

 
εB̃ωε,n

Λ · (z − y)dz.

Testing the infimum in (5.22) with u = uωε , we obtain by similar calculations as in (5.23) and (5.24)
that for all ε > 0 and all ω

inf
u∈W 1,p

per (Q;Rm)

ˆ
Q
V 1/ε(·/ε,Λ +∇u, ω)

≤ C(1 + |Λ|p) + C
∑
n

(εRωε,n)−p
ˆ
Q∩εB̃ωε,n

∣∣∣∣  
εB̃ωε,n

Λ · (z − y)dz

∣∣∣∣pdy ≤ C(1 + |Λ|p).

The conclusion then follows by dominated convergence. �
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A. Appendix

A.1. Normal random integrands. In this appendix, we briefly recall the precise definition of
normal random integrands (as defined e.g. in [23, Section VIII.1.3]) and we prove their main properties,
mentioned in the beginning of Section 2 and used throughout this paper. Let (Ω,F , P ) be a complete
probability space. We denote by B(Rk) the (not completed) Borel σ-algebra on Rk.

Definition A.1. A normal random integrand is a map W : Rd × Rm×d × Ω→ [0,∞] such that
(a) W is jointly measurable (i.e. with respect to the completion of B(Rd)× B(Rm×d)×F);
(b) for almost all ω, there exists a map Vω : Rd×Rm×d → [0,∞] that is B(Rd)×B(Rm×d)-measurable

and such that W (y, ·, ω) = Vω(y, ·) for almost all y;
(c) for almost all y, there exists a map Vy : Rm×d×Ω→ [0,∞] that is B(Rm×d)×F-measurable and

such that W (y, ·, ω) = Vy(·, ω) for almost all ω;

(d) for almost all y, ω, the map W (y, ·, ω) is lower semicontinuous on Rm×d.
It is said to be τ -stationary if it satisfies (2.1) for all Λ, y, z, ω. �

As shown e.g. in [23, Section VIII.1.3], a simple example of normal random integrands is given by
the so-called Carathéodory random integrands, that are maps W : Rd×Rm×d×Ω→ [0,∞] such that
W (y, ·, ω) is continuous on Rm×d for almost all y, ω, and such that W (·,Λ, ·) is jointly measurable on
Rd × Ω for all Λ.

As already advertised in the beginning of Section 2, the reason for these technical assumptions is
that they are particularly weak but still guarantee the following properties:

Lemma A.2. Let W : Rd × Rm×d × Ω→ [0,∞] be a normal random integrand. Then,
(i) for almost all ω, the map y 7→W (y, u(y), ω) is measurable for all u ∈ Mes(Rd,Rm×d);
(ii) for almost all y, the map ω 7→W (y, u(ω), ω) is measurable for all u ∈ Mes(Ω,Rm×d). �

Proof. For almost all ω, part (b) of Definition A.1 gives a B(Rd) × B(Rm×d)-measurable map Vω
on Rd × Rm×d such that W (y, ·, ω) = Vω(y, ·) for almost all y. Hence, for u ∈ Mes(Rd;Rm×d), the
map y 7→ W (y, u(y), ω) is equal almost everywhere to the map y 7→ Vω(y, u(y)), which is necessarily
measurable since Id×u : Rd×Rd → Rd×Rm×d is measurable and since Vω is Borel-measurable. This
proves (i), and (ii) is similar. �

If W is τ -stationary, we may write W (y,Λ, ω) = W (0,Λ, τ−yω), which thus receives a pointwise
meaning in the first variable, and Lemma A.2(ii) may obviously be strengthened as follows.

Lemma A.3. Let W : Rd ×Rm×d ×Ω→ [0,∞] be a τ -stationary normal random integrand. For all
y and all u ∈ Mes(Ω;Rm×d), the map ω 7→W (y, u(ω), ω) is measurable. �

A.2. Stationary differential calculus in probability. In this appendix, we precisely define the
measurable action τ that is used throughout this paper to induce the stationarity, and we discuss the
properties of the stationary derivatives defined in Section 3.1.1, and prove in particular the useful
identity (3.3).

A.2.1. Stationary random fields. As usual, the standard notion of stationarity of random fields (de-
fined as the translation invariance of all the finite-dimensional distributions) is strictly equivalent to
a formulation of stationarity as the invariance under some (measure-preserving) action of the group
of translations (Rd,+) on the probability space (see e.g. [32, Section 16.1]). This point of view is of
great interest, since it puts us into the realm of ergodic theory.

Because we focus on jointly measurable random fields, which is standard in stochastic homoge-
nization theory (see also Remark A.6 below), a further measurability requirement is added in our
definition of an action, as e.g. in [31, Section 7.1],

Definition A.4. A measurable action of the group (Rd,+) on (Ω,F ,P) is a collection τ := (τx)x∈Rd
of measurable transformations of Ω such that
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(i) τx ◦ τy = τx+y for all x, y ∈ Rd;
(ii) P[τxA] = P[A] for all x ∈ Rd and all A ∈ F ;
(iii) the map Rd × Ω→ Ω : (x, ω) 7→ τxω is measurable. �

For any random variable f ∈ Mes(Ω;R), we may define its τ -stationary extension f : Rd × Ω→ R
by f(x, ω) := f(τ−xω), which is a τ -stationary random field on Rd (in the sense that f(x + y, ω) =
f(x, τ−yω) for all x, y, ω) and which is by definition jointly measurable on Rd×Ω. For f ∈ Lp(Ω), 1 ≤
p <∞, the τ -stationary extension f belongs to Lp(Ω; Lploc(R

d)). In this way, we get a bijection between
the random variables (resp. in Lp(Ω)) and the τ -stationary random fields (resp. in Lp(Ω; Lploc(R

d))).
We may also naturally consider the associated action T := (Tx)x∈Rd of (Rd,+) on Mes(Ω;R),

defined by (Txf)(ω) = f(τ−xω) for all ω ∈ Ω and f ∈ Mes(Ω;R). Let 1 ≤ p < ∞. The following
gives elementary properties of this action (see e.g. [31, Section 7.1]):

Lemma A.5. The action T defined above is unitary and strongly continuous on Lp(Ω). �

In the context of stochastic homogenization theory, the measurability hypotheses made above (as
in e.g. [31, Section 7.1]) are sometimes replaced by stochastic continuity hypotheses (see e.g. [37,
Section 2]). As the following remark shows, both are actually equivalent.

Remark A.6 (Measurability or continuity). It should be noted that the additional measurability
assumption (iii) in Definition A.4 above is not inoffensive at all. Indeed, a stochastic version of the
Lusin theorem can easily be proven: a random field h on Rd is jointly measurable if and only if, for
almost all x ∈ Rd, for all δ > 0,

lim
y→0

P[|h(x+ y, ω)− h(x, ω)| > δ] = 0.

Hence, for a stationary random field h on Rd, joint measurability is actually equivalent to stochastic
continuity (and even to continuity in the p-th mean, in the case when h(0, ·) ∈ Lp(Ω)). In the
same vein, the measurability property (iii) in Definition A.4 is equivalent to the strong continuity
of the action T of (Rd,+) on Lp(Ω), and also to the property that all τ -stationary extensions are
stochastically continuous. �

A.2.2. Stationary Sobolev spaces. Let 1 ≤ p < ∞, and let the stationary gradient D and the space
W 1,p(Ω) be defined as in Section 3.1.1. Now we present another useful vision for derivatives of
stationary random fields.

Given a random variable f ∈ Lp(Ω), the τ -stationary extension is an element f ∈ Lploc(R
d; Lp(Ω)) =

Lp(Ω; Lploc(R
d)) and can thus be seen as an Lp(Ω)-valued distribution on Rd. We may then de-

fine its distributional gradient ∇f in the usual way. Note that by definition, for almost all ω,
∇f(·, ω) is nothing but the usual distributional gradient of f(·, ω) ∈ Lploc(R

d). As usual, the Sobolev
space W 1,p

loc (Rd; Lp(Ω)) is defined as the space of functions f ∈ Lploc(R
d; Lp(Ω)) such that ∇f ∈

Lploc(R
d; Lp(Ω;Rd)), and in that case ∇f is called the weak gradient. The following result shows the

link with stationary gradients and with the space W 1,p(Ω), in particular proving identity (3.3).

Lemma A.7. Modulo the correspondence between random variables and τ -stationary random fields,
we have

W 1,p(Ω) = {f ∈W 1,p
loc (Rd; Lp(Ω)) : f(x+ y, ω) = f(x, τ−yω),∀x, y, ω},

and moreover ∇f = Df for all f ∈W 1,p(Ω). �

Proof. Denote for simplicity Ep := {f ∈W 1,p
loc (Rd; Lp(Ω)) : f(x+ y, ω) = f(x, τ−yω),∀x, y, ω}. For all

i, the stationary derivativeDif is defined as the strong derivative of the map R→ Lp(Ω) : h 7→ T−heif ,
so that

W 1,p(Ω) = {f ∈ C1(Rd; Lp(Ω)) : f(x+ y, ω) = f(x, τ−yω), ∀x, y, ω}.
Hence, for all f ∈W 1,p(Ω), we have f ∈ Ep, and ∇f = Df , since weak derivatives are generalizations
of strong derivatives.
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We now turn to the converse statement. Let f ∈ W 1,p(Ω). As in [31, Section 7.2], choose a
nonnegative even function ρ ∈ C∞c (Rd) with

´
ρ = 1 and supp ρ ⊂ B1, write ρδ(x) = δ−dρ(x/δ) for

all δ > 0, and define a regularization Rδ[f ] ∈ Lp(Ω) by

Rδ[f ](ω) =

ˆ
Rd
ρδ(y)f(y, ω)dy, (A.1)

or equivalently, as ρδ is even,

Rδ[f ](x, ω) =

ˆ
Rd
ρδ(y)f(x+ y, ω)dy =

ˆ
Rd
ρδ(y − x)f(y, ω)dy = (ρδ ∗ f(·, ω))(x).

Clearly, Rδ[f ] → f in Lp(Ω), and hence by stationarity Rδ[f ](x, ·) → f(x, ·) in Lp(Ω) uniformly in
x. As by definition Rδ[f ] ∈ C∞(Rd; Lp(Ω)), we have Rδ[f ] ∈ W 1,p(Ω) and the stationary gradient is
simply DRδ[f ] = Rδ[∇f ]. This proves DRδ[f ]→ ∇f in Lp(Ω;Rd), and thus DRδ[f ](x, ·)→ ∇f(x, ·)
in Lp(Ω;Rd) uniformly in x. Hence Rδ[f ] → f in C1(Rd; Lp(Ω)), so f ∈ C1(Rd; Lp(Ω)), from which
we conclude f ∈W 1,p(Ω). �

A.3. Ergodic Weyl decomposition. In this appendix, we discuss the various properties of the
ergodic Weyl spaces recalled in Section 3.1.2. In particular, we prove the ergodic Weyl decomposi-
tion (3.7) as well as the density result (3.8).

Let τ be a measurable action of (Rd,+) on the probability space (Ω,F ,P), let 1 < p <∞, and let
Lppot(Ω), Lpsol(Ω), F ppot(Ω) and F psol(Ω) be defined by (3.4) (or equivalently (3.5)) and (3.6). First we
prove the ergodic Weyl decomposition (3.7):

Proposition A.8 (Ergodic Weyl decomposition). Let τ be ergodic and let 1 < p < ∞. Then the
following Banach direct sum decompositions hold:

Lp(Ω;Rd) = Lppot(Ω)⊕ F psol(Ω) = F ppot(Ω)⊕ Lpsol(Ω) = F ppot(Ω)⊕ F psol(Ω)⊕ Rd.

�

Proof. Let 1 < p <∞ and let q := p′ = p/(p− 1). The following weaker form of the result is proven
e.g. in [31, Lemma 15.1]:

(F ppot(Ω))⊥ = Lqsol(Ω) = F qsol(Ω)⊕ Rd, (A.2)

(F psol(Ω))⊥ = Lqpot(Ω) = F qpot(Ω)⊕ Rd,

in the sense of duality between Lp(Ω;Rd) and Lq(Ω;Rd). In the Hilbert case p = 2, this is already
enough to conclude by the orthogonal decomposition theorem. For the general case, we will need to
use more subtle (nonlinear) decomposition results in Banach spaces.

As the Banach space Lp(Ω;Rd) is uniformly smooth and uniformly convex, the following (nonlinear)
direct sum decomposition (see e.g. [3, Theorem 2.13]) holds for any closed subspace M ⊂ Lp(Ω;Rd): 1

Lp(Ω;Rd) = M ⊕ J(M⊥),

where M⊥ ⊂ Lq(Ω;Rd) denotes the orthogonal in the sense of duality, and where the (nonlinear)
map J : Lq(Ω;Rd) → Lp(Ω;Rd) is defined by J(u) := ‖u‖2−qLq |u|

q−2u. Let us apply this result
to the choice M = F ppot(Ω). By (A.2) we have M⊥ = Lqsol(Ω), and we may compute DJ(u) =

(q− 1)‖u‖2−qLq |u|
q−2Du, so that JM⊥ ⊂ Lpsol(Ω). On the other hand, given u ∈ Lpsol(Ω), we may write

u = J(v) with v := ‖u‖2−pLp |u|
p−2u ∈ Lqsol(Ω) = M⊥. This proves equality J(M⊥) = Lpsol(Ω), and the

result follows. �

The density result (3.8) is now easily obtained, using the same (nonlinear) direct sum decomposition
in Banach spaces:

1. The direct sum means here that any element of Lp(Ω;Rd) can be written in a unique way as the sum of an element
of M and an element of J(M⊥), and that moreover M ∩ J(M⊥) = {0}. As shown in [3], this is actually even a direct
sum in Birkhoff-James’ sense, that is ‖u‖Lp(Ω) ≤ ‖u + tv‖Lp(Ω) for all u ∈M , v ∈ J(M⊥) and t ∈ R.
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Proposition A.9. Let τ be ergodic, and let 1 < p <∞. Then,

F ppot(Ω) = adh Lp(Ω;Rd){Dχ : χ ∈W 1,p(Ω)},
F psol(Ω) = adh Lp(Ω;Rd){D × χ : χ ∈W 1,p(Ω)}.

�

Proof. Using the same notation as in the proof of Proposition A.8, the (nonlinear) direct sum decom-
position of [3, Theorem 2.13] gives

Lp(Ω;Rd) = adhDW 1,p(Ω)⊕ J((adhDW 1,p(Ω))⊥).

By definition (adhDW 1,p(Ω))⊥ = Lqsol(Ω), while as in the proof of Proposition A.8 we find J(Lqsol(Ω)) =
Lpsol(Ω). This yields

Lp(Ω;Rd) = adhDH∞(Ω)⊕ Lpsol(Ω).

The obvious inclusion adhDW 1,p(Ω) ⊂ F ppot(Ω) and the direct sum decomposition of Proposition A.8
then imply the equality adhDW 1,p(Ω) = F ppot(Ω). The result for F psol is obtained similarly. �

A.4. Measurability results. This appendix is concerned with various measurability properties.

A.4.1. Measurable potentials for random fields. The following result complements the equivalent def-
inition (3.5) of Lppot(Ω), and shows that potentials associated with potential random fields may be
chosen in a measurable way with respect to the alea.

Proposition A.10. Let τ be an ergodic measurable action on a complete probability space (Ω,F ,P).
Let 1 < p < ∞. For all f ∈ Lppot(Ω) there exists a random field φ ∈ Mes(Ω;W 1,p

loc (Rd)) such that
f(·, ω) = ∇φ(·, ω) for almost all ω. �

Proof. Let f ∈ Lppot(Ω) be fixed. For all n, k ≥ 1, define the space

Xn,k :=

{
φ ∈W 1,p(Bn) : ‖∇φ‖Lp(Bn) ≤ k,

ˆ
Bn

φ = 0

}
,

endowed with the weak topology. By Poincaré’s inequality and by the Banach-Alaoglu theorem, this
space is metrizable and compact, hence Polish. Consider the multifunction Γn,k : Ω ⇒ Xn,k defined
by

Γn,k(ω) := {φ ∈ Xn,k : ∇φ|Bn = f(·, ω)|Bn}.
Clearly Γn,k(ω) is closed for all ω. We first prove further properties of this multifunction, and the
conclusion will then follow by applying the Rokhlin–Kuratowski–Ryll Nardzewski theorem.

Step 1. For all n ≥ 1, we claim the existence of an increasing sequence of events Ωn,k ⊂ Ω such that
P[Ωn,k] ↑ 1 as k ↑ ∞ for fixed n, and such that Γn,k(ω) 6= ∅ for all ω ∈ Ωn,k.

By Definition 3.5, there is a subset Ω′ ⊂ Ω of maximal probability, such that for all ω ∈ Ω′ the
function f(·, ω) is a potential field in Lploc(R

d;Rd), and hence there exists φω ∈ W 1,p
loc (Rd) such that

f(·, ω) = ∇φω. For all n ≥ 1, define φωn := φω −
ffl
Bn
φω(z)dz ∈ W 1,p(Bn). By definition,

´
Bn
φωn = 0

and ∇φωn = f(·, ω) on Bn. Moreover, ‖∇φωn‖Lp(Bn) ≤ M holds for all ω ∈ Ωn,k, where we define the
event

Ωn,k := {ω ∈ Ω′ : ‖f(·, ω)‖Lp(Bn) ≤ k}.
Integrability and stationarity of f easily imply that P[Ωn,k] ↑ 1 as k ↑ ∞.

Step 2. Proof that Γn,k is measurable, in the sense that Γ−1
n,k(O) ∈ F for all open subset O ⊂ Xn,k,

where we have set
Γ−1
n,k(O) := {ω ∈ Ω : Γn,k(ω) ∩O 6= ∅}.
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As Xn,k is metrizable, it suffices to check Γ−1
n,k(F ) ∈ F for all closed subset F ⊂ Xn,k (see e.g. [5,

Lemma 18.2]). Given a closed subset F ⊂ Xn,k, we may write, using Poincaré’s inequality and the
weak lower semicontinuity of the norm,

Γ−1
n,k(F ) = {ω ∈ Ω : ∃φ ∈ F,∇φ = f(·, ω)|Bn}

=

∞⋂
j=1

{ω ∈ Ω : ∃φ ∈ F, ‖∇φ− f(·, ω)‖Lp(Bn) ≤ 1/j}.

Separability of the Polish space Xn,k implies that F is itself separable, and there exists a countable
dense subset F0 ⊂ F . Hence

Γ−1
n,k(F ) =

∞⋂
j=1

⋃
φ∈F0

{ω ∈ Ω : ‖∇φ− f(·, ω)‖Lp(Bn) ≤ 1/j},

and measurability of Γ−1
n,k(F ) then follows from measurability of f .

Step 3. Conclusion.
By steps 1 and 2, for all n, k ≥ 1, the restricted multifunction Γn,k|Ωn,k : Ωn,k ⇒ Xn,k is measurable

and has nonempty closed values. As Xn,k is a Polish space, we may apply the Rokhlin–Kuratowski–
Ryll Nardzewski theorem (see e.g. [5, Theorem 18.13]), which gives a measurable function φn,k :
Ωn,k → Xn,k such that φn,k(ω) ∈ Γn,k(ω), that is ∇φn,k(·, ω) = f(·, ω)|Bn for all ω ∈ Ωn,k. For all
n > 0, define a measurable function φn : Ω→W 1,p(Bn) by

φn(ω) = 1Ω1(ω)φ1,n(ω) +
∞∑
k=2

1Ωk\Ωk−1
(ω)φn,k(ω).

By definition, we have ∇φn(·, ω) = f(·, ω)|Bn for all ω ∈ Ωn, where Ωn :=
⋃∞
k=1 Ωn,k is a subset of

maximal probability. Denote Ω′′ :=
⋂∞
n=1 Ωn.

Let n ≥ 1. By definition, ∇φn−∇φ1 vanishes on B1, hence the difference δn(ω) := φn(·, ω)−φ1(·, ω)
is constant on B1 for all ω ∈ Ω′′ and defines a measurable function δn : Ω′′ → R. Then consider the
measurable function ψn : Ω → W 1,p(Bn) defined by ψn(x, ω) := φn(x, ω) − δn(ω). By construction,
for all m > n ≥ 1, we have ψn = ψm on Bn, so the ψn’s can be glued together and yield a measurable
function ψ : Ω′′ →W 1,p

loc (Rd) such that ∇ψ(·, ω) = f(·, ω) for all ω ∈ Ω′′. �

A.4.2. Sufficient conditions for Hypothesis 2.1. As will be shown below, the measurability Hypoth-
esis 2.1 is automatically satisfied if the integrand is quasiconvex and has the following nice approxi-
mation property, introduced by [6]:

Definition A.11. A normal random integrandW : Rd×Rm×d×Ω→ [0,∞] is said to be quasiconvex
if W (y, ·, ω) is quasiconvex for almost all y, ω. Given p ≥ 1, it is further said to be p-sup-quasiconvex
if there exists a sequence (Wk)k of quasiconvex normal random integrands such that Wk(y,Λ, ω) ↑
W (y,Λ, ω) pointwise as k ↑ ∞, and such that, for all k, for almost all y, ω and for all Λ,Λ′,

1

C
|Λ|p − C ≤Wk(y,Λ, ω) ≤ Ck(1 + |Λ|p), (A.3)

for some constants C,Ck > 0. �

Note that Tartar [40] has proven the existence of quasiconvex functions that are not p-sup-
quasiconvex properties for any p ≥ 1. Before stating our measurability result, let us examine some
important particular cases:

Lemma A.12. Let W : Rd × Rm×d × Ω→ [0,∞] be a normal random integrand. Assume that there
exist C > 0 and p > 1 such that, for almost all ω, y and for all Λ,

1

C
|Λ|p − C ≤W (y,Λ, ω). (A.4)

Also assume that one of the following holds:
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(1) W = V is a convex normal random integrand, and the convex function M := sup essy,ω V (y, ·, ω)
has 0 in the interior of its domain;

(2) W satisfies Hypothesis 2.7, with a convex part V such that M := sup essy,ω V (y, ·, ω) has 0 in the
interior of its domain.

Then, W is a p-sup-quasiconvex normal random integrand. �

Proof. Case (2) directly follows from the approximation result of case (1) applied to the convex part
V . We may thus focus on case (1). Let W = V be a convex normal random integrand. For all k ≥ 0,
consider the following Yosida transform:

Vk(y,Λ, ω) = inf
Λ′∈Rm×d

(
V (y,Λ′, ω) + k|Λ− Λ′|p

)
. (A.5)

For almost all y, ω, convexity of Vk(y, ·, ω) easily follows from convexity of V (y, ·, ω). For almost all
y, ω, the lower semicontinuity of V (y, ·, ω) ensures that Vk(y, ·, ω) ↑ V (y, ·, ω) pointwise as k ↑ ∞.
Moreover, by definition, Vk(y,Λ, ω) ≤M(0)+k|Λ|p, while the lower bound (A.4) implies Vk(y,Λ, ω) ≥
1
C |Λ|

p − C.
It remains to check that the Vk’s are normal random integrands. For almost all y, ω, the function

V (y, ·, ω) is convex and lower semicontinuous, hence it is continuous on its domain Dy,ω (not only on
the interior). As by assumption 0 ∈ intDy,ω, the set Dy,ω is a convex subset of maximal dimension,
and hence points with rational coordinates are dense in Dy,ω. The infimum (A.5) defining Vk may
thus be restricted to Qm×d. As a countable infimum, the required measurability properties follow. �

We now turn to the validity of the measurability Hypothesis 2.1 for p-sup-quasiconvex integrands.

Proposition A.13. Let O ⊂ Rd be a bounded domain, let (Ω,F ,P) be a complete probability space,
and let W : Rd×Rm×d×Ω→ [0,∞] be a p-sup-quasiconvex normal random integrand for some p > 1
(in the sense of Definition A.11). Given some fixed function f ∈ Lp(Ω; Lp(O;Rm×d)), consider the
random integral functional I : W 1,p(O;Rm)× Ω→ [0,∞] defined by

I(u, ω) =

ˆ
O
W (y, f(y, ω) +∇u(y), ω)dy. (A.6)

Then, I is weakly lower semicontinuous on W 1,p(O;Rm). Moreover, for all weakly closed subsets
F ⊂ W 1,p

0 (O;Rm) or F ⊂ {u ∈ W 1,p(O;Rm) :
´
O u = 0}, the function ω 7→ infv∈F I(v, ω) is

F-measurable. In particular, Hypothesis 2.1 is satisfied. �

Proof. For all k, define the approximated random functional Ik : W 1,p(O;Rm)× Ω→ [0,∞] by

Ik(u, ω) =

ˆ
O
Wk(y, f(y, ω) +∇u(y), ω)dy.

As the Wk’s are nonnegative, monotone convergence yields that Ik ↑ I pointwise. Moreover, for
all k, and almost all ω, the quasiconvexity and the upper bound (A.3) satisfied by Wk(·, ·, ω) imply
the weak lower semicontinuity of Ik(·, ω) on W 1,p(O;Rm) (see [2]). As a pointwise supremum of
weakly lower semicontinuous functions, we deduce that I(·, ω) is itself weakly lower semicontinuous
on W 1,p(O;Rm).

Combining the weak lower semicontinuity of Ik with the uniform coercivity assumption (cf. lower
bound in (A.3)) and with Poincaré’s inequality, we easily conclude, for any weakly closed subset
F ⊂W 1,p

0 (O;Rm) or F ⊂ {u ∈W 1,p(O;Rm) :
´
O u = 0},

lim
k↑∞

inf
v∈F

Ik(v, ω) = inf
v∈F

I(v, ω). (A.7)

For all k, as Wk is quasiconvex hence rank-1 convex in its second variable (see [9]), the p-growth
condition (A.3) implies the following local Lipschitz condition: for almost all y, ω, for all Λ,Λ′,

|Wk(y,Λ, ω)−Wk(y,Λ
′, ω)| ≤ Ck|Λ− Λ′|(1 + |Λ|p−1 + |Λ′|p−1),
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for some constant Ck > 0. The Hölder inequality then gives, for all u, v, for almost all ω,

|Ik(u, ω)− Ik(v, ω)| ≤ CkC‖∇(u− v)‖Lp(O)(1 + ‖∇u‖p−1
Lp(O) + ‖∇v‖p−1

Lp(O) + ‖f(·, ω)‖p−1
Lp(O)).

This proves that the map Ik(·, ω) is strongly continuous on W 1,p(O;Rm), for almost all ω. Given a
weakly (hence strongly) closed subset F ⊂W 1,p

0 (O;Rm) or F ⊂ {u ∈W 1,p(O;Rm) :
´
O u = 0}, strong

separability ofW 1,p(O;Rm) implies strong separability of F , so there exists a countable strongly dense
subset F0 ⊂ F . Therefore, the map

ω 7→ inf
v∈F

Ik(v, ω) = inf
v∈F0

Ik(v, ω)

is F-measurable, and the conclusion follows from (A.7). �

A.4.3. Measurable minimizers. We show that in the convex case (or more generally in the p-sup-
quasiconvex case) the random functional (A.6) admits a measurable minimizer. For that purpose, we
begin with the following useful reformulation of the Rokhlin–Kuratowski–Ryll Nardzewski theorem,
which essentially asserts that the measurability of the infimum implies the measurability of minimizers.

Lemma A.14. Let X be a Polish space, let (Ω,F , µ) be a complete measure space, and let I : X×Ω→
[0,∞]. Assume that
(i) for all ω, I(·, ω) is lower semicontinuous on X;
(ii) for all ω, I(·, ω) is coercive on X (i.e. the sublevel sets {u ∈ X : I(u, ω) ≤ c} are compact for

all c > 0);
(iii) for all closed subset F ⊂ X, the map φF : Ω → [0,∞] defined by φF (ω) := minv∈F I(v, ω) is

F-measurable.
Then, there exists an F-measurable map u : Ω→ X such that, for all ω ∈ Ω,

I(u(ω), ω) = min
v∈X

I(v, ω) = φX(ω).

�

Proof. By coercivity and lower semicontinuity, the minima of I(·, ω) are always attained on all closed
subsets F , so that the function φF is always well-defined.

Consider the multifunction Γ : Ω ⇒ X defined by Γ(ω) = {u ∈ X : I(u, ω) = φX(ω)}. By lower
semicontinuity, Γ(ω) ⊂ X is nonempty and closed for all ω. Moreover, we claim that Γ is measurable,
in the sense that

Γ−1(O) := {ω ∈ Ω : Γ(ω) ∩O 6= ∅}
belongs to F for all open subsets O ⊂ X. As X is metrizable, it actually suffices to check Γ−1(F ) ∈ F
for all closed subsets F ⊂ X (see e.g. [5, Lemma 18.2]). By the coercivity and the lower semicontinuity
of I, we may write

Γ−1(F ) = {ω ∈ Ω : ∃u ∈ F, I(u, ω) = φX(ω)}

=

∞⋂
n=1

{
ω ∈ Ω : ∃u ∈ F, I(u, ω) ≤ φX(ω) +

1

n

}

=
∞⋂
n=1

{
ω ∈ Ω : φF (ω) ≤ φX(ω) +

1

n

}
,

where the right-hand side belongs to F , by measurability of φX and φF . Hence, Γ is measurable,
and we may thus apply the Rokhlin–Kuratowski–Ryll Nardzewski measurable selection theorem (see
e.g. [5, Theorem 18.13]), which states the existence of a F-measurable map u : Ω → X such that
u(ω) ∈ Γ(ω) for all ω. �

Combining this measurable selection lemma with the measurability result of Proposition A.13, we
obtain the following:
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Proposition A.15. Let O be some bounded domain, let (Ω,F ,P) be a complete probability space,
and let W : Rd ×Rm×d ×Ω→ [0,∞] be a normal random integrand. Assume that there exists C > 0
and p > 1 such that, for almost all y, ω and for all Λ,

1

C
|Λ|p − C ≤W (y,Λ, ω). (A.8)

Also assume that W satisfies Hypothesis 2.1 and that I(·, ω) is weakly lower semicontinuous on
W 1,p(O;Rm) for almost all ω (in particular this is the case if W is convex or p-sup-quasiconvex
in the sense of Definition A.11). Given some fixed function f ∈ Lp(Ω; Lp(O;Rm×d)), consider the
random integral functional I : W 1,p(O;Rm)× Ω→ [0,∞] defined by

I(u, ω) =

ˆ
O
W (y, f(y, ω) +∇u(y), ω)dy.

Then, for all nonempty weakly closed subsets F ⊂W 1,p
0 (O;Rm) or F ⊂ {u ∈W 1,p(O;Rm) :

´
O u = 0},

there exists a F-measurable map u : Ω→ F such that, for almost all ω,

I(u(ω), ω) = inf
v∈F

I(v, ω).

�

Proof. Let X denote the Banach space W 1,p
0 (O;Rm) or {u ∈W 1,p(O;Rm) :

´
O u = 0}, endowed with

the weak topology, and, for all k ≥ 1, consider the subset Xk := {u ∈ X : ‖∇u‖Lp(O) ≤ k}, endowed
with the induced weak topology. By Poincaré’s inequality and by the Banach-Alaoglu theorem, Xk is
easily seen to be metrizable and compact, hence Polish. Let F ⊂ X be a nonempty (weakly) closed
subset.

Let Ω′ ⊂ Ω denote a subset of maximal probability such that I(·, ω) is weakly lower semicontin-
uous on W 1,p(O;Rm) for all ω ∈ Ω′. Since Xk ⊂ X is (weakly) closed, the intersection Xk ∩ F
is also (weakly) closed, and hence Hypothesis 2.1 asserts that the map ω → infv∈F∩Xk I(v, ω) is
F-measurable. Applying Lemma A.14 on the compact Polish space Xk and on Ω′ then yields a
F-measurable map uk : Ω′ → Xk such that, for all ω ∈ Ω′,

I(uk(ω), ω) = min
v∈F∩Xk

I(v, ω).

The lower bound (A.8) and the triangle inequality giveˆ
O
|∇u|p ≤ C22p−1 + C2p−1I(u, ω) + 2p−1

ˆ
O
|f(·, ω)|p.

Define for all k ≥ 1,

Ωk :=

{
ω ∈ Ω′ : C22p−1 + C2p−1 inf

v∈F
I(v, ω) + 2p−1

ˆ
O
|f(·, ω)|p ≤ k

}
,

and note that Ωk ∈ F by Hypothesis 2.1. By definition, for all ω ∈ Ωk we have

I(uk(ω), ω) = min
v∈F∩Xk

I(v, ω) = min
v∈F

I(v, ω).

The sequence (Ωk)k is increasing, Ωk ↑ Ω′′ :=
⋃∞
k=1 Ωk. By integrability of f , Ω′′ ⊂ Ω′′′ and P[Ω′′′ \

Ω′′] = 0, where we have defined the event Ω′′′ := {ω ∈ Ω : infv∈F I(v, ω) < ∞}. Given some fixed
w ∈ F , the measurable map u : Ω→ X defined by

u(ω) := 1Ω\Ω′′w + 1Ω1u1(ω) +

∞∑
k=2

1Ωk\Ωk−1
uk(ω)

satisfies by definition I(u(ω), ω) = infv∈F I(v, ω) for all ω ∈ Ω′′ ∪ (Ω \ Ω′′′). �
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A.5. Approximation results. In the present appendix, we prove two general approximation results
that are crucially needed in this paper. The first one is an extension of [36, Lemma 3.6] and [23,
Proposition 2.6 of Chapter X].

Proposition A.16. Let O ⊂ Rd be a bounded Lipschitz domain, which is also strongly star-shaped,
in the sense that there exists x0 ∈ O such that

−x0 +O ⊂ α(−x0 +O), for all α > 1.

Let Θ : Rm×d → [0,∞] be a convex lower semicontinuous function with 0 ∈ int domΘ, and let
u ∈W 1,1(O;Rm) such that

´
O Θ(∇u) <∞. Then,

(i) there is a sequence (vn)n ⊂ C∞(adhO;Rm) such that ∇vn ∈ int domΘ pointwise,

vn → u in W 1,1(O;Rm), and
ˆ
O

Θ(∇vn(y))dy →
ˆ
O

Θ(∇u(y))dy;

(ii) there is a sequence (wn)n of (continuous) piecewise affine functions such that ∇wn ∈ Qm×d ∩
int domΘ pointwise,

wn → u in W 1,1(O;Rm), and
ˆ
U

Θ(∇wn(y))dy →
ˆ
O

Θ(∇u(y))dy.

If in addition u belongs to W 1,p(O;Rm) for some 1 ≤ p < ∞, then the sequences (vn)n and (wn)n
can be chosen such that vn → u and wn → u in W 1,p(O;Rm). Moreover,
(a) if u belongs to W 1,1

0 (O;Rm), then we can choose vn ∈ C∞c (O;Rm) and wn|∂O = 0 (and in that
case the assumption that O be strongly star-shaped can be relaxed);

(b) if O = Q and u ∈W 1,1
per(Q;Rm), then vn and wn can be both chosen to be Q-periodic;

(c) if Ξ : Rm×d → [0,∞] is a (nonconvex) ru-usc lower semicontinuous function which is continuous
on int domΘ and satisfies 0 ≤ Ξ ≤ Θ pointwise, then the sequences (vn)n and (wn)n can be chosen
in such a way that

´
O Ξ(∇vn)→

´
O Ξ(∇u) and

´
O Ξ(∇wn)→

´
O Ξ(∇u). �

Proof. We divide the proof into four steps.

Step 1. Proof of (i).
First, we show that we can assume ∇u ∈ int domΘ almost everywhere. Indeed, assume that (i) is

proven for such u’s, and let us deduce the general case. Given u ∈W 1,p(O;Rm) with
´
O Θ(∇u) <∞,

we have ∇u ∈ domΘ almost everywhere, and hence by convexity t∇u ∈ domΘ almost everywhere for
all t ∈ [0, 1). As convexity also implies

´
O Θ(t∇u) ≤ t

´
O Θ(∇u) + (1− t)Θ(0) <∞, we can apply the

result (i) to tu, for any t ∈ [0, 1): this gives a sequence (vn,t)n ⊂ C∞(adhO;Rm) such that vn,t → tu
in W 1,1(O;Rm) and

´
O Θ(∇vn,t(y))dy →

´
O Θ(t∇u(y))dy. Weak lower semicontinuity of the integral

functional u 7→
´
O Θ(∇u) on W 1,1(O;Rm) (which follows from convexity and lower semicontinuity of

Θ) implies lim inft↑1
´
O Θ(t∇u) ≥

´
O Θ(∇u). As the converse inequality follows from convexity, we

obtain

lim sup
t↑1

lim sup
n↑∞

(
‖vn,t − u‖W 1,1(O) +

∣∣∣∣ˆ
O

Θ(∇vn,t)−
ˆ
O

Θ(∇u)

∣∣∣∣)
= lim sup

t↑1

(
‖tu− u‖W 1,1(O) +

∣∣∣∣ˆ
O

Θ(t∇u)−
ˆ
O

Θ(∇u)

∣∣∣∣) = 0,

and hence a standard diagonalization argument gives a sequence (vn)n ⊂ C∞(adhO;Rm) such that
∇vn ∈ int domΘ almost everywhere, vn → u in W 1,1(O;Rm), and

´
O Θ(∇vn) →

´
O Θ(∇u), and

proves the general version of (i).
Hence, from now on, we assume ∇u ∈ int domΘ almost everywhere. Moreover, without loss of

generality, we may also assume that O is strongly star-shaped with respect to x0 = 0. Choose
(αk)k ⊂ (1,∞) a decreasing sequence of positive numbers converging to 1, sufficiently slowly so that
1
k <

1
2 dist(adhO, ∂(αkO)) for all k, and define

uk : αkO → Rm : x 7→ uk(x) = u(x/αk).
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Take ρ ∈ C∞c (Rd) such that
´
ρ = 1, ρ ≥ 0 and supp ρ ⊂ B(0, 1), and write ρk(x) = k−dρ(kx), for

all k ≥ 1. Consider the sequence (vk)k defined by vk = ρk ∗ (αkuk) (which is well-defined by virtue of
the condition on the αk’s). Note that vk ∈ C∞(adhO;Rm) and ∇vk = ρk ∗ (∇u)k, where we use the
notation (∇u)k(x) = ∇u(x/αk). Moreover, we then observe vk → u in W 1,1(O;Rm) since uk → u et
(∇u)k → ∇u in L1(O;Rm). Now, Jensen’s inequality yields

0 ≤ Θ(∇vk) = Θ(ρk ∗ (∇u)k) ≤ ρk ∗ (Θ((∇u)k)) = ρk ∗ (Θ(∇u))k.

As the sequence (ρk ∗ (Θ(∇u))k)k converges to Θ ◦ ∇u in L1(O;Rm), it is uniformly integrable, and
the same thus holds for the sequence (Θ(∇vk))k. As ∇vk → ∇u in L1(O;Rm), the convergence
holds almost everywhere up to an extraction. Since by convexity Θ is continuous on int domΘ, since
∇u ∈ int domΘ almost everywhere, and since ∇vk → ∇u almost everywhere up to an extraction, we
deduce Θ(∇vk)→ Θ(∇u) almost everywhere up to an extraction. By uniform integrability the latter
convergence also holds in L1(O;Rm), which allows us to get rid of the extraction. In particular,ˆ

O
Θ(∇vk)→

ˆ
O

Θ(∇u).

Moreover, (∇u)k ∈ int domΘ almost everywhere, and thus ∇vk = ρk ∗ (∇u)k ∈ int domΘ everywhere
for all k, since int domΘ is a convex set containing 0. This proves part (i).

Let us now assume that u ∈ W 1,p(O;Rm) for some 1 ≤ p <∞, and consider the sequences (uk)k,
((∇u)k)k and (vk)k defined above. First, Lebesgue’s dominated convergence theorem implies uk → u
and (∇u)k → ∇u in Lp(O;Rm). Further, since the Jensen inequality givesˆ

O
|vk − u|p =

ˆ
O
|αkρk ∗ uk − u|p ≤

ˆ
O

ˆ
B1/k

ρk(t)|αkuk(x− t)− u(x)|pdt dx,

and likewise for gradients, we conclude that the sequence (vk)k converges to u in W 1,p(O;Rm). This
proves part (i) in the case when u ∈W 1,p(O;Rm).

Step 2. Proof of (ii).
For all k, since vk ∈ C∞(adhO;Rm), there exists a sequence (wk,j)j of piecewise affine functions

such that wk,j → vk in W 1,∞(O;Rm) as j ↑ ∞ and ‖∇wk,j‖L∞ ≤ ‖∇vk‖L∞ for all j, k (see e.g. [23,
Proposition 2.1 of Chapter X]). Further, these functions wk,j can (simply remember their construction
by triangulation) be chosen taking their values in int domΘ, since we have constructed∇vk ∈ int domΘ
everywhere for all k. Another approximation argument further allows us to choose wk,j such that
∇wk,j only takes rational values. The desired result then follows from Step 1 and a diagonalization
argument. Finally, the particular case when u belongs to W 1,p(O;Rm) is obtained similarly as in
Step 1.

Step 3. Proof of the additional statements.
It remains to address the particular cases (a) and (b). First assume that u belongs toW 1,1

0 (O;Rm).
For the corresponding result, we refer to [23, Proposition 2.6 of Chapter X]. The only difference is
that the argument in [23] requires continuity of Θ. Instead, we replace u by tu for t < 1 as in Step 1,
so that by convexity t∇u ∈ int domΘ almost everywhere, hence all the constructed quantities have
almost all their values in int domΘ, on which Θ is continuous by convexity. No further continuity
assumption is then needed.

Finally, if we assume O = Q with u ∈ W 1,1
per(Q;Rm), then we can consider the periodic extension

of u on Rd and repeat the arguments in such a way that periodicity is conserved.

Step 4. Proof in the nonconvex case.
Let u ∈W 1,p(O;Rm) be such that

´
U Θ(∇u) <∞, which implies ∇u ∈ domΘ almost everywhere.

Let t ∈ (0, 1). The approximation result given by point (i) gives a sequence (un,t)n of smooth functions
such that un,t → tu (strongly) in W 1,p(O;Rm) and

´
O Θ(∇un,t) →

´
O Θ(t∇u) as n ↑ ∞, and such

that ∇un,t ∈ int domΘ pointwise. Up to an extraction, we have ∇un,t → t∇u almost everywhere,
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and thus Ξ(∇un,t) → Ξ(t∇u) almost everywhere, which follows from continuity of Ξ on the interior
of its domain, with indeed t∇u ∈ int domΞ almost everywhere. Then noting that

0 ≤ Ξ(∇un,t) ≤ C(1 + Θ(∇un,t)),
and invoking both Lebesgue’s dominated convergence theorem (for Ξ(∇un,t)) and its converse (for
Θ(∇un,t)), we deduce convergence

´
O Ξ(∇un,t)→

´
O Ξ(t∇u) as n ↑ ∞. As Ξ is lower semi-continuous

and also ru-usc, we compute, by Fatou’s lemma,ˆ
O

Ξ(∇u(y))dy ≤
ˆ
O

lim inf
t↑1

Ξ(t∇u(y))dy ≤ lim inf
t↑1

ˆ
O

Ξ(t∇u(y))dy

≤ lim sup
t↑1

ˆ
O

Ξ(t∇u(y))dy ≤
ˆ
O

Ξ(∇u(y))dy.

Hence,

lim
t↑1

lim
n↑∞

ˆ
O

Ξ(∇un,t) = lim
t↑1

ˆ
O

Ξ(t∇u) =

ˆ
O

Ξ(∇u),

and similarly

lim
t↑1

lim
n↑∞

ˆ
O

Θ(∇un,t) =

ˆ
O

Θ(∇u),

so that the conclusion follows from a standard diagonalization argument. The other properties are
deduced in a similar way. �

For technical reasons, we need in the proof of Proposition 3.10 to further approximate piecewise
affine functions by refined ones with smoother variations. The precise approximation result we need
is the following.

Proposition A.17. Let u be an Rm-valued continuous piecewise affine function on a bounded Lips-
chitz domain O ⊂ Rd. Consider the open partition O =

⊎k
l=1O

l associated with u (i.e. u is affine on
each piece Ol). Define M := (

⋃k
l=1 ∂O

l) \ ∂O the interior boundary of this partition of O, and, for
fixed r > 0, also define Mr := (M +Br) ∩O the r-neighborhood of this interior boundary. Then, for
all κ > 0, there exists a continuous piecewise affine function uκ,r on O with the following properties:
(i) ∇uκ,r = ∇u pointwise on O \Mr, and lim supr↓0 sup0<κ≤1 ‖uκ,r − u‖L∞(O) = 0;

(ii) ∇uκ,r ∈ conv({∇u(x) : x ∈ O}) pointwise (where conv(·) denotes the convex hull);

(iii) denoting by O :=
⊎nκ,r
l=1 O

l
κ,r the open partition associated with uκ,r, and Λlκ,r := ∇uκ,r|Olκ,r for

all l, we have |Λiκ,r − Λjκ,r| ≤ κ for all i, j with ∂Oiκ,r ∩ ∂O
j
κ,r 6= ∅. �

Proof. Let u, O and r be fixed. Without loss of generality, we can assume 0 ∈ O. Denote r0 :=
dist(0, ∂O) and R0 := maxx∈∂O dist(0, x), and define αr > 1 by (αr − 1)R0 = r/2. Choose a
nonnegative smooth function ρr supported in B(αr−1)r0 with

´
ρr = 1, and consider the smooth

function ur on O defined by ur = ρr ∗ [αru(·/αr)]. Since by definition inequality |αrx − x| ≤
(αr − 1)R0 = r/2 holds for any x ∈ O, we easily check ∇ur = ∇u on the set O \Mr. As ur is
smooth, we can consider Lr := maxx∈adhO |∇∇ur(x)| < ∞. Choose a triangulation (Olκ,r)

nκ,r
l=1 of O

which is a refinement of the partition {Ol \Mr : l = 1, . . . , k} ∪ {Mr}, such that the diameter of
each of the Olκ,r’s is at most κ/(2Lr). Now construct as usual the piecewise affine approximation
uκ,r of ur with respect to the triangulation (Olκ,r)l (see e.g. [23, Proposition 2.1 of Chapter X]). By
construction, ∇uκ,r = ∇ur = ∇u on O\Mr, since ur is affine on each connected component of O\Mr.
Also note that the construction ensures that ∇uκ,r belongs pointwise to the set {∇ur(x) : x ∈ O}
(as a consequence of the mean value theorem), which is by definition included in the convex hull
conv({∇u(x) : x ∈ O}). Moreover, if ∂Oiκ,r ∩ ∂O

j
κ,r 6= ∅, it implies that Oiκ,r ∪ O

j
κ,r has diameter

bounded by κ/Lr. The construction of uκ,r then gives∣∣∣∇uκ,r|Oiκ,r −∇uκ,r|Ojκ,r ∣∣∣ ≤ sup
x∈Oiκ,r

sup
y∈Ojκ,r

|∇ur(x)−∇ur(y)| ≤ κ

Lr
sup
x∈O
|∇∇ur(x)| ≤ κ,
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which proves property (iii). Finally, the last property of (i) directly follows from the construction. �

To treat the case of periodic boundary conditions, we further need the following periodic version
of the previous result. The proof is omitted, since it is a direct adaptation on the torus of the proof
above.

Proposition A.18. Let u be an Rm-valued continuous piecewise affine Q-periodic function on Rd.
Consider the periodic partition Rd =

⊎∞
l=1O

l associated with u (i.e. u is affine on each piece Ol).
Define M :=

⋃∞
l=1 ∂O

l the boundary of this partition, and, for fixed r > 0, also define Mr :=
(M + Br) ∩ Q the r-neighborhood of this boundary. Then, for all κ > 0, there exists a continuous
piecewise affine Q-periodic function uκ,r on Rd with the following properties:

(i) ∇uκ,r = ∇u pointwise on Rd \Mr, and lim supr↓0 sup0<κ≤1 ‖uκ,r − u‖L∞(Q) = 0;

(ii) ∇uκ,r ∈ conv({∇u(x) : x ∈ Q}) pointwise (where conv(·) denotes the convex hull);

(iii) denoting by Rd :=
⊎∞
l=1 T

l
κ,r the Q-periodic partition associated with uκ,r, and Λlκ,r := ∇uκ,r|T lκ,r

for all l, we have |Λiκ,r − Λjκ,r| ≤ κ for all i, j with ∂T iκ,r ∩ ∂T
j
κ,r 6= ∅. �
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