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Abstract. This work is concerned with the mathematical analysis of the bulk rheology
of random suspensions of rigid particles settling under gravity in viscous fluids. Each
particle generates a fluid flow that in turn acts on other particles and hinders their
settling. In an equilibrium perspective, for a given ensemble of particle positions, we
analyze both the associated mean settling speed and the velocity fluctuations of indi-
vidual particles. In the 1970s, Batchelor gave a proper definition of the mean settling
speed, a 60-year-old open problem in physics, based on the appropriate renormalization
of long-range particle contributions. In the 1980s, a celebrated formal calculation by
Caflisch and Luke suggested that velocity fluctuations in dimension d = 3 should diverge
with the size of the sedimentation tank, contradicting both intuition and experimental
observations. The role of long-range self-organization of suspended particles in form of
hyperuniformity was later put forward to explain additional screening of this divergence
in steady-state observations. In the present contribution, we develop the first rigorous
theory that allows to justify all these formal calculations of the physics literature.
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1. Introduction

1.1. General overview. The present article constitutes the first rigorous analysis of the
bulk sedimentation of a random suspension of rigid particles in a Stokes fluid in a large
tank. We place ourselves in a quasistatic setting where inertial forces are neglected. Given
particle positions {xn}n in an (experimental) tank, the corresponding instantaneous ve-
locities {Vn}n are obtained by solving the steady Stokes equation with suitable conditions
at the particle boundaries, cf. Section 1.3. Following the physical contributions by Smolu-
chowski [71], Burgers [13, 14], and Batchelor [8], we place ourselves in an equilibrium
perspective, and we assume that particle positions {xn}n are distributed according to a
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known random ensemble and we analyze the corresponding random ensemble of veloci-
ties {Vn}n. We specifically focus on the mean settling speed E [Vn] and on velocity fluctu-
ations Var [Vn]. Under suitable mixing assumptions, we recover all the predictions of the
physics literature, cf. Sections 1.2 and 1.4, and correctly capture in particular the effect
of the long-range self-organization of particles in form of hyperuniformity. While these
predictions [70, 8, 16, 45] are based on a simplified linear pairwise analysis, cf. Section 2.6,
the key difficulty to treat the original model stems from the multibody and nonlinear na-
ture of hydrodynamic interactions in combination with the crucial analysis of stochastic
cancellations. The mathematical merits of this contribution are mainly threefold:
• Sensitivity calculus: In the spirit of Malliavin calculus, we analyze the sensitivity of
the fluid velocity with respect to the random ensemble of particle positions. More pre-
cisely, local changes in the latter are shown to generate two effects on the fluid velocity:
a linear response (similar to the simplified linear pairwise analysis used in the physics
literature, cf. Section 2.6) and a nonlinear response (related to hydrodynamic interac-
tions). Our analysis establishes a difference of locality between these two effects: the
linear response is less local by one length scale, and therefore dominates the nonlin-
ear response. This suggests that assumptions such as hyperuniformity that improve
the scalings in the linear analysis should yield a similar improvement for the original
nonlinear model. This is quite surprising as it would not be true in the more classical
setting of stochastic homogenization of linear elliptic equations, cf. Section 2.7.
• Hyperuniformity: In order to cope with the nonlinearity of hydrodynamic interactions
and rigorously exploit the above sensitivity calculus, we appeal to functional inequal-
ities on the probability space as a convenient form of nonlinear mixing condition.
While hyperuniformity expresses the suppression of large-scale density fluctuations
and is usually defined in terms of the pair correlation function of the random point
process, cf. Appendix A, we need to devise functional inequalities that are compatible
with hyperuniformity. For that purpose, in line with the multiscale variance inequali-
ties that we introduced in [21, 22] for point processes, we introduce here a new family
of hyperuniform variance inequalities, cf. assumption (Hyp+) below. We believe that
these functional inequalities, which provide a versatile tool for the rigorous analysis of
nonlinear hyperuniform systems, are of independent interest.
• Annealed regularity: Due to the nonlinearity of hydrodynamic interactions, the anal-
ysis critically requires fine regularity results on the steady Stokes equation with a
random suspension. Although deterministic regularity results could be used, the lat-
ter always require a large enough minimal interparticle distance — which is physically
an unsatisfying restriction —, whether they are based on the reflection method [42,
40, 55, 41] or on other perturbative ideas [31], cf. Section 1.5. In contrast, in this
work, we take advantage of randomness and rely on a new family of non-perturbative
annealed regularity results, cf. Section 4.2.2, to which the companion article [20] is
dedicated. Using such refined analytical tools inspired by the quantitative theory of
stochastic homogenization of divergence-form linear elliptic equations, we fully take
into account hydrodynamic interactions for the first time in a non-dilute regime.

We start this introduction by reviewing the physics literature. Next, we introduce the
precise Stokes system that we study in the present work, we give an informal statement
of our main results, and briefly discuss the relation to previous works in the mathematics
literature. Precise assumptions and rigorous statements are postponed to Section 2.
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1.2. Review of the physics literature. A linear analysis of the Stokes equation shows
that each particle in a Stokes fluid generates a long-range flow disturbance, which only
decays as O(r2−d) with the distance r. Any naïve summation of particle contributions
would therefore diverge as O(L2) in a tank of size L, in particular leading to the erro-
neous conclusion that the mean settling speed would not be a well-defined bulk quantity
and would depend on the size and shape of the tank. This paradox remained an open
problem for 60 years since the work of Smoluchowski [71] in 1912, despite several notable
attempts by Burgers [13, 14]. The correct screening of hydrodynamic interactions was first
unravelled by Batchelor [8] in the 1970s (see also the revisited approaches by Hinch [38]
and Feuillebois [26]), which formally shows that the mean settling speed is well-defined in
dimension d > 2, and further establishes a dilute expansion at small volume fraction. The
divergence is screened by a macroscopic backflow that appears as a multiparticle effect.

The next step towards the rheology of sedimenting suspensions is the analysis of velocity
fluctuations of individual particles, which is viewed as an intermediate step towards the
understanding of hydrodynamic diffusion, e.g. [57]. In the 1980s, Caflisch and Luke [16]
argued that for a random suspension of particles, despite Batchelor’s renormalization,
velocity fluctuations should diverge linearly in the size of the tank in dimension d = 3,
which would again contradict both intuition and steady-state experimental observations.
As pointed out by Caflisch and Luke [16], this divergence is strongly related to the standard
assumption that particle positions are maximally disordered (that is, uniformly distributed
in the tank and independent up to volume exclusion), suggesting that long-range order
might drastically change the conclusion.

This was made precise by Hinch [39] in form of the scaling analysis of a “blob model”,
where particles are assumed to be organized in large correlated regions, constituting “blobs”
at some characteristic correlation scale: particles are maximally disordered at smaller
scales, while density fluctuations are reduced on larger scales. For such a model, the
Caflisch-Luke prediction is expected to hold only up to the correlation scale, while long-
range hydrodynamic interactions would be screened on larger scales. In other words,
density fluctuations are expected to drive velocity fluctuations, and the spontaneous self-
organization of particles would be the key mechanism that prevents the divergence.

This scaling analysis was later refined by Koch and Shaqfeh [45]: a simple condition on the
pair correlation function of the ensemble of particle positions was put forward and formally
shown to ensure the boundedness of velocity fluctuations. The condition coincides with
what was later coined “hyperuniformity” by Torquato and Stillinger [69] (see also [67, 29])
and characterizes the suppression of density fluctuations on large scales, or equivalently
the vanishing of the structure factor at vanishing wavenumber, cf. Appendix A.

From the experimental viewpoint, it took some years to devise experiments that give a
clear picture on velocity fluctuations. Observations are as follows: when starting from a
well-mixed suspension (which can be reasonably modeled as maximally disordered), initial
fluctuations are diverging in agreement with the Caflisch-Luke prediction, while, after some
time evolution, particles reorganize and velocity fluctuations are dramatically reduced, see
e.g. [56, 46, 47, 63, 51]. Whether this is indeed due to long-range order is however not clear
and does not seem supported by recent experiments [10, 11]. Other possible screening
mechanisms have been proposed in the physics literature based on inertial effects, on
stratification, on wall effects, or on the absorbing role of the bottom of the container, see
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e.g. [12], but still no consensus has emerged [35, 62]. Such additional effects are not taken
into account in the present contribution.

To conclude this discussion, let us emphasize that all above-mentioned predictions are
based on calculations for a linearized version of the problem, which amounts to replacing
multibody hydrodynamic interactions by two-body (Coulomb-type) interactions as a first-
order dilute approximation, cf. Section 2.6. The merit of the present work is to extend
these results to the full model, and give definite conclusions. In particular, this contribution
shows that either there is indeed long-range order in experiments, or additional effects must
be included in the sedimentation model.

1.3. Discussion of the model. We now describe the sedimentation model under study,
which allows to compute instantaneous particle velocities from their positions in a qua-
sistatic perspective. We consider a tank of size L ≥ 1, which for simplicity we choose as
the cube QL := (−L

2 ,
L
2 ]d of side length L with periodic boundary conditions. The tank

is filled with a (steady) Stokes fluid, together with a monodisperse collection of disjoint
spherical suspended particles,

IL :=
⋃
n

In,L,

where the particle In,L := B(xn,L) is the unit ball centered at xn,L and where PL := {xn,L}n
is a collection of positions in the tank QL. The total volume fraction is denoted by

λL := L−d |IL|. (1.1)

The fluid flow satisfies the following steady Stokes equation outside the suspended particles,
with periodic boundary conditions,

−4φL +∇ΠL = −αLe, divφL = 0, in QL \ IL, (1.2)

where the constant right-hand side −αLe accounts for the multiparticle backflow in the
fluid in the opposite direction to gravity e ∈ Rd, and where we have set for abbreviation
the relevant factor

αL :=
λL

1− λL
.

In the present periodic setting, this backflow is imposed by the solvability condition for
the Stokes equation (1.2) together with the boundary conditions below. As described in
Theorem 3, in sedimentation experiments, since no additional force is applied, this backflow
term does not appear and is in fact compensated by the pressure.

No-slip boundary conditions are imposed at particle boundaries. As particles are con-
strained to have rigid motions, this amounts to letting the velocity field φL be extended
inside particles, with the rigidity constraint

D(φL) = 0, in IL, (1.3)

where D(φL) denotes the symmetrized gradient of φL. In other words, this condition means
that φL coincides with a rigid motion Vn,L + Θn,L(x − xn,L) inside each particle In,L, for
some Vn,L ∈ Rd and skew-symmetric matrix Θn,L (cf. divφL = 0). Next, gravity e ∈ Rd
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appears through the force and torque balances on each particle,

e|In,L|+
ˆ
∂In,L

σ(φL,ΠL)ν = 0, (1.4)
ˆ
∂In,L

Θν · σ(φL,ΠL)ν = 0, for all skew-symmetric matrices Θ, (1.5)

where σ(φL,ΠL) stands for the usual Cauchy stress tensor,

σ(φL,ΠL) = 2 D(φL)−ΠL Id,

and where ν stands for the outward unit normal vector at particle boundaries. As φL
and ΠL are only defined up to a constant, we fix them by imposing the vanishing average
conditions, ˆ

QL

φL = 0,

ˆ
QL\IL

ΠL = 0.

Well-posedness for (1.2)–(1.5) with φL ∈ H1
per(QL)d and ΠL ∈ L2

per(QL \ IL) follows
from the standard theory for the steady Stokes equation, e.g. [27, Section IV]. In addition,
regularity theory ensures that (φL,ΠL) is smooth on QL\IL, is a classical solution of (1.2),
and that boundary conditions are satisfied in a pointwise sense.

Given the positions {xn,L}n of the suspended particles {In,L}n, the above model allows to
compute their instantaneous velocities {Vn,L}n, which are given by the averaged boundary
values

Vn,L :=

 
In,L

φL. (1.6)

(Note that the rotational or skew-symmetric part Θn,L does not contribute to the average.)

Remarks 1.1.
(a) Reformulation by projection:

As checked e.g. in [58, 41], the weak solution φL of the above equations (1.2)–(1.5)
can equivalently be written as φL = 1

1−λLπLφ
◦
L, where φ

◦
L denotes the solution of the

following “linear” approximation, where particle interactions are neglected,

−4φ◦L +∇Π◦L =
(
1IL − λL

)
e, divφ◦L = 0, in QL, (1.7)

and where πL is the orthogonal projection in H1
div(QL) := {φ ∈ H1

per(QL) : divφ = 0}
onto the subspace {φ : D(φ) = 0 in IL}. In other words, while φ◦L depends linearly
on the set IL of particles, the multibody nonlinear hydrodynamic interactions can be
fully encoded in this projection πL. This reformulation could slightly simplify some
calculations but will not be used in the sequel.

(b) Reflection method:
As introduced by Smoluchowski [70], the so-called reflection method aims at rewriting
the complicated projection πL as a cluster expansion only involving single-particle op-
erators: denoting by πnL the projection in H1

div(QL) onto {φ : D(φ) = 0 in In,L}, and
setting qnL := 1−πnL, the expansion takes the form πL = Id−

∑
n q

n
L+
∑

n6=m q
n
Lq

m
L − . . .

Such an expansion appears to be very useful as single-particle operators {qnL}n are es-
sentially explicit. However, as shown in [58, 41], based on deterministic arguments,
convergence is only expected in the dilute regime — more precisely, for a large enough
minimal interparticle distance. For this reason, such simplifying tools are systemati-
cally avoided in the sequel. ♦
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1.4. Informal statement of the results. We henceforth consider a random ensemble of
suspended particles in form of a stationary point process PL = {xn,L}n with intensity ρL
in the periodic tank QL, constructed on a given probability space (Ω,P), and we analyze
both the corresponding mean settling speed and the fluctuations of individual velocities,

V̄L := e
|e| · E [Vn,L] , σL := |Var [Vn,L]|

1
2 , (1.8)

in the large-volume limit L ↑ ∞, where E [·] and Var [·] denote the expectation and the
variance with respect to P, respectively. Note that a direct computation from (1.2)–(1.5)
shows that the averaged settling speed is proportional to the Dirichlet form of the fluid
velocity, cf. (3.5) below,

αL|e|V̄L
L↑∞∼ E

[
|∇φL|2

]
. (1.9)

Our main result states that, for a mixing ensemble of particles without long-range order,
the mean settling speed and velocity fluctuations are well-defined in the large-volume limit
only in dimensions d > 2 and d > 4, respectively. More precisely, the following bounds are
expected to be sharp,

V̄L
ρL|e|

.


1 : d > 2;

(logL)
1
2 : d = 2;

L
1
2 : d = 1;

and
σL
ρL|e|

.


1 : d > 4;

(logL)
1
2 : d = 4;

L
1
2 : d = 3;

(1.10)

cf. Theorems 1(i) and 2(i). In particular, the boundedness of V̄L for d > 2 fully justifies
Batchelor’s analysis [8, 38, 26], while the linear divergence of σ2

L for d = 3 provides a
rigorous version of the celebrated calculation by Caflisch and Luke [16] (and extends the
results of [31] to the present much more general setting, cf. Section 1.5).

Next, we investigate the role of the hyperuniformity of the suspension and rigorously
analyze how it leads to the screening of hydrodynamic interactions. Under a suitable
functional-analytic version of hyperuniformity, we show that the critical dimensions in (1.10)
are shifted by 2,

V̄L
ρL|e|

. 1 and
σL
ρL|e|

.


1 : d > 2;

(logL)
1
2 : d = 2;

L
1
2 : d = 1;

(1.11)

cf. Theorems 1(ii) and 2(ii). This rigorously justifies the heuristic calculations in dimen-
sion d = 3 by Hinch [39] and Koch and Shaqfeh [45].

In addition, whenever the averaged settling speed remains bounded, we make sense of
an infinite-volume equation describing the limit of (1.2)–(1.5), cf. Theorem 1. We also
deduce a homogenization result for sedimentation experiments, cf. Theorem 3: in the limit
of a dense suspension of small particles (with suitably rescaled gravity) in a finite tank,
the velocity field of the Stokes fluid with the suspension converges weakly to that of an
effective Stokes fluid. The latter is characterized by an effective viscosity, which is shown
to be independent of gravity. In particular, this effective viscosity is the same as for
the corresponding colloidal (non-sedimenting) system that we studied in [19]. The local
behavior of the fluid is however drastically impacted by sedimentation, which is expressed
in form of a corrector result.
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1.5. Relation to previous works. The mathematical literature on settling suspensions
in viscous fluids is particularly scarce. Most contributions have been investigating the
(quasistatic) dynamics: particle positions {xn,L}n evolve according to the set of ODEs
{ẋn,L = Vn,L}n, where instantaneous velocities {Vn,L}n are computed from the steady
Stokes problem (1.2)–(1.5). The first result on this topic is due to Jabin and Otto [42]
and identifies the non-interacting regime, while more recent contributions by Höfer [40]
and Mecherbet [55] have studied the mean-field limit. Those works are restricted to a
perturbative dilute regime (the particle density tends to zero as the particle radii with some
scaling relation) and they only rely on deterministic arguments in form of the reflection
method; see also [58, 41].

The analysis of velocity fluctuations further requires to capture stochastic cancellations,
for which a probabilistic input is crucially needed. This was first performed by the second
author in [31] for a scalar version of the sedimentation problem, and the corresponding
version of the Caflisch-Luke bound (1.10) on velocity fluctuations was succesfully estab-
lished. As in the present work, the mixing assumption on the point process {xn,L}n was
conveniently formulated in form of a multiscale functional inequality as we introduced
in [21, 22], and the proof borrowed ideas from quantitative stochastic homogenization for
divergence-form linear elliptic equations. As opposed to the present contribution however,
the approach was based on deterministic regularity properties for (a scalar version of) the
Stokes equation with a suspension, in particular in form of a perturbative Green’s function
estimate, which only holds under the assumption that the minimal interparticle distance is
large enough. Diluteness was also used at several other instances, together with the scalar
nature of the equation and the sphericity of the particles.

The present work widely generalizes the result of [31]:
• We fully relax the diluteness requirement. For that purpose, we resort to a random
version of regularity properties in form of annealed Lp regularity in the spirit of a recent
work of the first author and Otto [23] for divergence-form linear elliptic equations with
random coefficients. In addition, the analysis of stochastic cancellations relies on a
new, particularly efficient buckling argument, which exploits this annealed regularity
and is inspired from [59]. This approach also allows to treat non-spherical particles.
• Treating the vectorial case of the Stokes equation further requires to control the pres-
sure. To this aim, we follow an approach based on local regularity [27], which we
initiated in [19] in the simpler setting of colloidal (non-sedimenting) suspensions.

In addition, the present work studies for the first time the effect of hyperuniformity of the
random ensemble of positions. In line with our works on multiscale functional inequali-
ties [21, 22], we introduce the notion of hyperuniform functional inequalities, which allows
us to unravel additional stochastic cancellations in sedimentation. More generally, this
work constitutes to our knowledge the first example of a nonlinear physical system for
which the hyperuniformity of the input is rigorously shown to improve the scalings.

Notation.
• We denote by C ≥ 1 any constant that only depends on the space dimension d and on
controlled constants appearing in the assumptions. We use the notation . (resp. &) for
≤ C× (resp. ≥ 1

C×) up to such a multiplicative constant C. We write ' when both .
and & hold. In an assumption, we write� (resp.�) for ≤ 1

C× (resp. ≥ C×) with some
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large enough constant C. We add subscripts to C,.,&,',�,� in order to indicate
dependence on other parameters.
• The ball centered at x of radius r in Rd is denoted by Br(x), and we simply write
B(x) := B1(x), Br := Br(0), and B := B1(0).

• For a function f we write [f ]2(x) := (
ffl
B(x) |f |

2)1/2 for its local moving quadratic average.
• We set 〈x〉 := (1 + |x|2)1/2 for x ∈ Rd, and we similarly define 〈∇〉 = (1 − 4)1/2. We
denote by |x|L the Euclidean distance between x and 0 modulo LZd (that is, the distance
on QL viewed as the flat torus Rd/LZd). We set a ∧ b := min{a, b} for all a, b ∈ R. We
denote by ]E the cardinality of a locally finite set E.
• We denote by D(u) := 1

2(∇u + (∇u)′) the symmetrized gradient of u, by σ(φ,Π) :=
2 D(φ) − Π Id the Stokes stress tensor, by ν the outward unit normal vector at particle
boundaries, and by Mskew the set of skew-symmetric d× d matrices.

2. Main results

We start with suitable assumptions on the random ensemble of suspended particles,
including precise mixing and hyperuniformity assumptions, and then turn to the statement
of the main results on the mean settling speed, velocity fluctuations, and homogenization.
Finally, for the reader’s convenience, a heuristic proof of our results in the dilute regime is
included in Section 2.6, justifying the scalings and illustrating the use of hyperuniformity,
while in Section 2.7 we underline the useful analogy with stochastic homogenization of
linear elliptic equations.

2.1. Assumptions. The following general assumption makes precise the notion of conver-
gence for the point process PL in the periodic tank QL in the large-volume limit L ↑ ∞.
We also always assume that the process is hardcore, with some uniform bound δ > 0.

Assumption (Hδ) — General conditions.
The family (PL)L≥1 of point processes is constructed on some probability space (Ω,P) and
satisfies the following properties:

• Periodicity in law: For all L ≥ 1, the point process PL = {xn,L}n is defined on the
periodic cell QL := (−L

2 ,
L
2 ]d and is stationary with respect to shifts on the latter.1

• Stabilization: For any compact set K ⊂ Rd the restricted point set PL ∩ K con-
verges almost surely as L ↑ ∞. We denote by P the limiting point process, which
is assumed stationary (on Rd) and ergodic, and we denote by I := ∪nIn the corre-
sponding particle suspension.
• Hardcore condition: For all L ≥ 1 the point process PL satisfies

inf
m6=n
|xm − xn|L ≥ 2(1 + δ) almost surely. ♦

Before stating mixing and hyperuniformity assumptions, we recall the following standard
definition of the pair correlation function of the stationary random point process PL.

1More precisely, as is standard in the field, e.g. [60] or [44, Section 7], stationarity is understood as
follows: there exists a measure-preserving group action {τL,x}x∈QL of (Rd/LZd,+) on the probability
space (Ω,P) such that PωL + x = PτL,xω

L for all x, ω.
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Definition 2.1 (Pair correlation function). The intensity of PL is defined by

ρL := E
[
L−d ]PL

]
,

which is related to the volume fraction λL of the suspension IL via E [λL] = |B|ρL, cf. (1.1).
The pair density function f2,L : QL → R+ of PL = {xn,L}n is defined via the following
relation, for all ζ ∈ C∞per(QL ×QL),

E
[ ∑
n 6=m

ζ(xn,L, xm,L)

]
= ρ2

L

¨
QL×QL

ζ(x, y) f2,L(x− y) dxdy.

The pair correlation function is defined as g2,L := ρ−2
L (f2,L−ρ2

L). The total pair correlation
function of PL is defined by h2,L(x) := g2,L(x) + ρ−1

L δ(x) and is characterized by the
following relation, for all ζ ∈ C∞per(QL),

Var

[∑
n

ζ(xn,L)

]
= ρ2

L

¨
QL×QL

ζ(x)ζ(y)h2,L(x− y) dxdy. (2.1)
♦

After an appropriate mechanical mixing of the particle suspension, the distribution of
particle positions in the fluid typically displays fast decaying correlations and we naturally
consider the following type of condition.

Assumption (Mix) — Mixing condition.
The pair correlation function g2,L of PL is integrable in the sense of

sup
L≥1

ˆ
QL

|g2,L| < ∞. ♦

Next, in the spirit of the discussion in Section 1.2, see also [39, 45], we consider the
assumption that the sedimenting suspension displays long-range structural order such that
density fluctuations are suppressed, while still displaying fast decaying correlations. This
is formalized through the notion of hyperuniformity, which we define as follows in the peri-
odized setting. We refer to Appendix A for a detailed motivation and some reformulations.

Assumption (Hyp) — Mixing and hyperuniformity conditions.
The pair correlation function g2,L of PL has fast decay in the sense of

sup
L≥1

ˆ
QL

|x|2L |g2,L(x)| dx < ∞,

and hyperuniformity holds in the sense that the total pair correlation h2,L satisfies

sup
L≥1

L2
∣∣∣ ˆ

QL

h2,L

∣∣∣ < ∞,
which is viewed as the approximate vanishing of the so-called structure factor at small
wavenumber, cf. Appendix A. ♦

While the above assumptions (Mix) and (Hyp) are expressed in terms of the pair cor-
relation function, stronger versions quickly become necessary to analyze the effects of
nonlinear multibody interactions. First, the mixing assumption (Mix) should be replaced
by a stronger mixing assumption. As in [31], we choose to appeal to the following nonlin-
ear assumption in form of a multiscale variance inequality, cf. [21, 22]. As shown in [22,
Section 3], examples of point processes that satisfy this assumption include for instance
(periodized) hardcore Poisson processes and random parking processes.
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Assumption (Mix+) — Improved mixing condition.
There exists a non-increasing weight function π : R+ → R+ with superalgebraic decay (that
is, π(`) ≤ Cp〈`〉−p for all p ≥ 1) such that for all L ≥ 1 the point process PL satisfies, for
all σ(PL)-measurable random variables Y (PL),

Var [Y (PL)] ≤ E
[ˆ L

0

ˆ
QL

(
∂osc
PL,B`(x)Y (PL)

)2
dx 〈`〉−dπ(`) d`

]
, (2.2)

where the “oscillation” derivative ∂osc is defined by

∂osc
P,B`(x)Y (P) := sup ess

{
Y (P ′) : P ′|QL\B`(x) = P|QL\B`(x)

}
− inf ess

{
Y (P ′) : P ′|QL\B`(x) = P|QL\B`(x)

}
. ♦

Similarly, we strengthen the hyperuniformity assumption (Hyp) in form of a suitable
variance inequality. Intuitively, while the “oscillation” derivative in (Mix+) above allows to
locally add and move points, the carré-du-champ below only accounts (at leading order)
for moving points, but not adding or removing any, in accordance with the definition of
hyperuniformity as suppressing density fluctuations. We refer to Appendix A for a detailed
discussion.

Assumption (Hyp+) — Improved mixing and hyperuniformity conditions.
There exists a non-increasing weight function π : R+ → R+ with superalgebraic decay
such that for all L ≥ 1 the point process PL satisfies, for all σ(PL)-measurable random
variables Y (PL),

Var [Y (PL)] ≤ E
[ˆ L

0

ˆ
Rd

(
∂hyp
PL,B`(x)Y (PL)

)2
dx 〈`〉−dπ(`) d`

]
, (2.3)

where the “hyperuniform” derivative is given by

∂hyp
PL,B`(x)Y (PL) = ∂mov

PL,B`(x)Y (PL) + L−1∂osc
PL,B`(x)Y (PL)

and the “move-point” derivative ∂mov is defined by

∂mov
P,B`(x)Y (P) := sup ess

{
Y (P ′) : P ′|QL\B`(x) = P|QL\B`(x), ]P ′|B`(x) = ]P|B`(x)

}
− inf ess

{
Y (P ′) : P ′|QL\B`(x) = P|QL\B`(x), ]P ′|B`(x) = ]P|B`(x)

}
. ♦

2.2. Mean settling speed. Our first main result concerns the mean settling speed V̄L,
cf. (1.8), which is shown to be well-defined under the mixing condition (Mix) only in
dimension d > 2 while under hyperuniformity (Hyp) it is well-defined in all dimensions.
We also make sense of a limiting equation in the large-volume limit L ↑ ∞. The proof
is surprisingly elementary, although fully taking into account multibody hydrodynamic
interactions: the argument is solely based on L2 theory, and the standard weak form (Hyp)
of hyperuniformity is enough to unravel the screening.

Theorem 1 (Mean settling speed). Let the random point processes (PL)L≥1 satisfy the
general assumption (Hδ) for some δ > 0.
(i) Under the mixing assumption (Mix), there holds for all L ≥ 1,

V̄L
ρL|e|

.


1 : d > 2;

(logL)
1
2 : d = 2;

L
1
2 : d = 1.
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More precisely, in dimension d > 2, for almost all ω,

lim
L↑∞

1

]PL

∑
n

e
|e| · V

ω
n,L = lim

L↑∞
V̄L = V̄ , (2.4)

in terms of

V̄ :=
1

α|e|
E
[
|∇φ|2

]
, α :=

λ

1− λ
, λ := E [1I ] = lim

L↑∞
λωL, (2.5)

where the random field φ ∈ L2(Ω;H1
loc(Rd)d) denotes the unique solution of the fol-

lowing infinite-volume problem:
• For almost all ω the realization φω ∈ H1

loc(Rd)d satisfies in the weak sense, for
some pressure field Πω ∈ L2

loc(Rd),
−4φω +∇Πω = −αe, in Rd \ Iω,
divφω = 0, in Rd \ Iω,
D(φω) = 0, in Iω,
e|Iωn |+

´
∂Iωn

σ(φω,Πω)ν = 0, ∀n,´
∂Iωn

Θν · σ(φω,Πω)ν = 0, ∀n, ∀Θ ∈Mskew.

(2.6)

• The gradient field ∇φ and the pressure field Π are stationary, they have vanishing
expectations E

[
∇φ
]

= 0 and E
[
Π1Rd\I

]
= 0, they have bounded second moments

E
[
|∇φ|2

]
+ E

[
|Π|21Rd\I

]
. |e|2,

and φ is anchored at the origin in the sense of
ffl
B φ

ω = 0 for almost all ω.
(ii) Under the mixing and hyperuniformity assumption (Hyp), in any dimension d ≥ 1,

there holds for all L ≥ 1,
V̄L
ρL|e|

. 1,

the limit (2.4) holds, and the infinite-volume problem (2.6) is always well-posed. ♦

2.3. Velocity fluctuations. Our next main result concerns the estimation of velocity
fluctuations, which requires a much finer use of stochastic cancellations. In this context,
the analysis of the effects of nonlinear multibody interactions requires a suitable strength-
ening of the standard mixing and hyperuniformity assumptions (Mix) and (Hyp), and we
rather appeal to their nonlinear functional-analytic versions (Mix+) and (Hyp+). In ad-
dition, this result crucially relies on annealed regularity properties for the steady Stokes
equation in presence of a random suspension, cf. Section 4.2.2. Rather than focussing on
the variance σ2

L, cf. (1.8), we further consider higher moments of the velocity field φL.

Theorem 2 (Velocity fluctuations). Let the random point processes (PL)L≥1 satisfy the
general assumption (Hδ) for some δ > 0.
(i) Under the improved mixing assumption (Mix+), in any dimension d > 2, we have for

all L ≥ 1 and 1 ≤ p <∞,

‖∇φL‖Lp(Ω) .p |e|, (2.7)

and

‖φL(x)‖Lp(Ω) .p |e| ×


1, if d > 4;

log(2 + |x|)
1
2 , if d = 4;

〈x〉
1
2 , if d = 3.

(2.8)
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In particular, in dimension d > 4, up to relaxing the anchoring condition, the solu-
tion φ of the infinite-volume problem (2.6) can be uniquely constructed as a stationary
object with vanishing expectation.

(ii) Under the improved mixing and hyperuniformity assumption (Hyp+), in any dimen-
sion d ≥ 1, we have for all L ≥ 1 and 1 ≤ p <∞,

‖∇φL‖Lp(Ω) .p |e|, (2.9)

and

‖φL(x)‖Lp(Ω) .p |e| ×


1, if d > 2;

log(2 + |x|)
1
2 , if d = 2;

〈x〉
1
2 , if d = 1.

(2.10)

In particular, in dimension d > 2, up to relaxing the anchoring condition, the solu-
tion φ of the infinite-volume problem (2.6) can be uniquely constructed as a stationary
object with vanishing expectation. ♦

Stochastic cancellations are conveniently exploited in form of the fluctuation scaling of
large-scale averages of ∇φL, from which the above moment bounds are deduced as conse-
quences. More precisely, we show that, under the improved mixing assumption (Mix+),
in dimension d > 2, fluctuations of ∇φL miss the usual central limit theorem scaling by a
length scale (as encoded by the norm of the test function in L

2d
d+2 instead of L2): for all

g ∈ C∞per(QL)d×d and 1 ≤ p <∞, we have∥∥∥ˆ
QL

g : ∇φL
∥∥∥

L2p(Ω)
.p ‖[〈∇〉

1
2 g]2‖

L
2d
d+2 (QL)

, (2.11)

while under the improved mixing and hyperuniformity assumption (Hyp+) in any dimen-
sion d ≥ 1 the usual central limit theorem scaling is recovered in form of∥∥∥ˆ

QL

g : ∇φL
∥∥∥

L2p(Ω)
.p ‖〈∇〉

1
2 g‖L2(QL). (2.12)

(Note that the additional gradient 〈∇〉
1
2 in the bounds plays no role on large scales.)

2.4. Homogenization result. We consider a steady Stokes fluid in a bounded domain
with internal forces and a dense suspension of small particles: we analyze the non-dilute
homogenization regime with vanishing particle radii but fixed volume fraction λωε → λ > 0.
Suspended particles in the fluid act as obstacles, hindering the fluid flow and therefore
increasing the flow resistance, that is, the viscosity. The fluid with the suspension is then
expected to behave approximately like a Stokes fluid with some effective viscosity — which
was the basis of Perrin’s celebrated experiment to estimate the Avogadro number as inspired
by Einstein’s PhD thesis [25]. The upcoming theorem shows that the effective viscosity
for a sedimenting suspension exactly coincides with that for a colloidal (non-sedimenting)
suspension, although the local behavior of the fluid flow is drastically different as expressed
via the corrector result. This constitutes the counterpart for sedimenting suspensions of
our recent work [19, Theorem 1] on colloidal suspensions. Strikingly, although the result
is only qualitative, it requires strong mixing conditions and quantitative estimates, in
particular relying on Theorems 1 and 2 above, as opposed to the much simpler situation
of colloidal suspensions in [19]. An optimal convergence rate (which relies on a further use
of annealed regularity) will be given in the companion article [20]. This homogenization
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result is the very first of its kind in the context of sedimentation. In particular, as opposed
to contributions such as [36, 17, 37], where particle velocities are prescribed a priori rather
than deduced from the steady Stokes equation, there is no Brinkman term in the effective
equation. In addition, we consider a non-dilute regime (cf. λωε → λ > 0), where the
multiparticle effect of hydrodynamic interactions is not negligible.

We start with some notation: Given a reference bounded Lipschitz domain U , we consider
the set N ω

ε (U) of all indices n such that ε(Iωn + δB) ⊂ U , and we define the corresponding
rescaled particle suspension Iωε (U) in U ,

Iωε (U) :=
⋃

n∈Nωε (U)

εIωn .

Note that particles in this collection are at least at distance εδ from one another and from
the boundary ∂U .

Theorem 3 (Homogenization of steady Stokes flow with sedimenting suspension). Let
the stationary random point process P be as in (Hδ). Under the improved mixing as-
sumption (Mix+) in dimension d > 2, or under the improved mixing and hyperuniformity
assumption (Hyp+) in any dimension d ≥ 1, given a bounded Lipschitz domain U ⊂ Rd,
an internal force f ∈ L2(U), and gravity e ∈ Rd, we consider for all ε > 0 and ω ∈ Ω the
unique weak solution uωε ∈ H1

0 (U) of the following steady Stokes problem,

−4uωε +∇Pωε = f, in U \ Iωε (U),
divuωε = 0, in U \ Iωε (U),
uωε = 0, on ∂U,
D(uωε ) = 0, in Iωε (U),
εd−1e|Iωn |+

´
ε∂Iωn

σ(uωε , P
ω
ε )ν = 0, ∀n ∈ N ω

ε (U),´
ε∂Iωn

Θν · σ(uωε , P
ω
ε )ν = 0, ∀n ∈ N ω

ε (U), ∀Θ ∈Mskew.

(2.13)

Then the following results hold,

(i) Homogenization: For almost all ω, uωε ⇀ ū weakly in H1
0 (U), where ū ∈ H1

0 (U) is
the unique weak solution of the homogenized Stokes problem −divB̄ D(ū) +∇P̄ = (1− λ)f, in U,

divū = 0, in U,
ū = 0, on ∂U,

(2.14)

where λ := E [1I ] is the intensity of the inclusion process, and the effective viscosity
tensor B̄ is positive definite on trace-free matrices and is given by

B̄ :=
∑

E,E′∈E
(E′ ⊗ E) E

[
(∇ψE′ + E′) : (∇ψE + E)

]
, (2.15)

where the sum runs over an orthonormal basis E of trace-free d × d matrices, and
where the random field ψE ∈ L2(Ω;H1

loc(Rd)d×d) denotes the unique solution of the
following (infinite-volume) “colloidal corrector” problem:
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• For almost all ω, the realization ψωE ∈ H1
loc(Rd)d satisfies in the weak sense, for

some pressure field Σω
E ∈ L2

loc(Rd),
−4ψωE +∇Σω

E = 0, in Rd \ Iω,
divψωE = 0, in Rd \ Iω,
D
(
ψωE + E(x− xωn)

)
= 0, in Iω,ffl

∂Iωn
σ
(
ψωE + E(x− xωn),Σω

E

)
ν = 0, ∀n,ffl

∂Iωn
Θν · σ

(
ψωE + E(x− xωn),Σω

E

)
ν = 0, ∀n, ∀Θ ∈Mskew.

(2.16)

• The gradient field ∇ψE and the pressure field ΣE are stationary, they have van-
ishing expectations E

[
∇ψE

]
= 0 and E

[
ΣE1Rd\I

]
= 0, they have bounded second

moments, and ψE satisfies the anchoring condition
ffl
B ψ

ω
E = 0 for almost all ω.

(ii) Convergence of pressure: For almost all ω, the pressure field Pωε converges weakly
in L2(U) up to suitable renormalization in the following sense,(

(Pωε − 1
ελe · x)−

 
U\Iωε (U)

(Pωε − 1
ελe · x)

)
1U\Iωε (U)

⇀ (1− λ)

(
P̄ + b : D(ū)−

 
U
P̄

)
,

where b is a symmetric trace-free matrix given for all E ∈Msym
0 by

b : E :=
1

d
E
[∑
n

1In
|In|

ˆ
∂In

(x− xn) · σ(ψE + Ex,ΣE)ν

]
; (2.17)

(iii) Corrector result: Provided f ∈ Lp(U) for some p > d, for almost all ω, a corrector
result holds in the following form for the velocity field uωε ,∥∥∥∥uωε − ū− ε(1− λ)φω( ·ε)− ε

∑
E∈E

ψωE( ·ε)∇E ū
∥∥∥∥
H1(U)

→ 0,

and for the pressure field Pωε ,

inf
κ∈R

∥∥∥∥Pωε − 1
ελe · x− P̄ − b : D(ū)

− (1− λ)(Πω1Rd\Iω)( ·ε)−
∑
E∈E

(Σω
E1Rd\Iω)( ·ε)∇E ū− κ

∥∥∥∥
L2(U\Iωε (U))

→ 0,

where (φ,Π) is the (infinite-volume) “sedimentation corrector” of Theorem 1. ♦

Remark 2.2. We briefly comment on the scaling in (2.13). In the force balance, while
gravity appears as a bulk term εde|In| and the drag force as a surface term

´
ε∂In

σ(uε, Pε)ν,
gravity is naturally rescaled by a factor 1

ε so that both contributions have the same order of
magnitude. This appears as the natural setup for sedimentation experiments: by scaling,
it is equivalent to considering a fixed gravity and particles with fixed size and volume
fraction in a tank of increasing size. As gravity is rescaled by a diverging factor 1

ε , it is
compensated by a diverging backflow −1

ελe generated by the pressure, which explains why
the convergence of the pressure only holds up to this corresponding renormalization. ♦
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2.5. Extensions. We mention possible relaxations of the set of general assumptions on
the suspension; details are omitted.

• Polydisperse suspensions: Spherical particles In,L = B(xn,L) can be replaced by other
bounded shapes, or even by iid bounded random shapes (provided that particle bound-
aries are uniformly of class C2). In the hyperuniform setting, if particles have varying
volumes, the condition on the conservation of the number of points in the move-point
derivative has naturally to be replaced by a condition on the conservation of the total
volume of the particles upon perturbation.

• Weakened hardcore condition: The deterministic hardcore condition in (Hδ) could be
relaxed into a lower bound of the type

E
[
1xn∈B sup

m:m6=n

(
|xm − xn| − 2

)−r]
< ∞,

for some large enough power r ≥ 1, at the price of appealing more substantially to
Meyers type estimates.

2.6. Heuristic proof: the linear response. The main difficulty of any rigorous ap-
proach to sedimentation is to account for multibody nonlinear hydrodynamic interactions.
In this paragraph, we briefly show how the scalings for the mean settling speed and for
velocity fluctuations can be motivated by a formal linear analysis in the dilute regime and
we explicitly emphasize the role of hyperuniformity in this simple setting. This constitutes
a reformulation of the formal calculations by Batchelor [8], Caflisch and Luke [16] (see
also [31, Section 1.3]), and Koch and Shaqfeh [45]. A heuristic discussion of the nonlinear
contribution is postponed to Section 2.7.

Neglecting the multibody interactions in the dilute regime λL � 1, the Stokes prob-
lem (1.2)–(1.5) is formally reduced to φL ≈ φ◦L, see also Remark 1.1(a),

−4φ◦L +∇Π◦L =
(∑

n

1In,L − λL
)
e, divφ◦L = 0, in QL, (2.18)

and particle velocities are approximated by Vn,L ≈ V ◦n,L :=
´
In,L

φ◦L. For this simplified
linear model, in view of (1.9), the mean settling speed is explicitly given by

λL|e|V̄ ◦L
L↑∞∼ E

[
|∇φ◦L|2

]
= E

[∣∣∣∑
n

∇UL(xn,L)
∣∣∣2] =

∣∣∣∣Var

[∑
n

∇UL(xn,L)

]∣∣∣∣, (2.19)

in terms of the periodic (locally averaged) Stokeslet,

−4UL +∇PL =
(
1B − L−d|B|

)
e, in QL.

Likewise, velocity fluctuations are formally computed as follows,

(σ◦L)2 ≈ |Var [φ◦L]| =
∣∣∣∣Var

[∑
n

UL(xn,L)

]∣∣∣∣. (2.20)

In order to estimate (2.19) and (2.20), we distinguish between random point processes PL
without or with long-range order in form of hyperuniformity.
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• Case without long-range order:
If correlations of the point process PL = {xn,L}n display an integrable decay (Mix),
the following variance estimate is easily obtained, cf. (A.4),

Var

[∑
n

ζ(xn,L)

]
. ρ2

L

ˆ
QL

|ζ|2. (2.21)

Recalling that the decay of the Stokeslet is given by

|UL(x)| . |e|(1 + |x|L)2−d, |∇UL(x)| . |e|(1 + |x|L)1−d,

identities (2.19) and (2.20) then lead to the expected scaling,

λL|e|V̄ ◦L . ρ2
L

ˆ
QL

|∇UL|2 . ρ2
L|e|2, provided d > 2,

(σ◦L)2 . ρ2
L

ˆ
QL

|UL|2 . ρ2
L|e|2, provided d > 4.

• Case with hyperuniformity:
Hyperuniformity is naturally expected to translate into a strong improvement of (2.21):
indeed, given an independent copy {x′n,L}n of {xn,L}n, we may represent

Var

[∑
n

ζ(xn,L)

]
= EE′

[
1

2

(∑
n

ζ(xn,L)−
∑
n

ζ(x′n,L)
)2
]
,

and the suppression of density fluctuations would formally allow to locally couple the
point sets {x′n,L}n and {xn,L}n, hence only compare close points, which would ideally
translate into the gain of a derivative: for all ζ ∈ C∞per(QL) with

´
QL

ζ = 0,

Var

[∑
n

ζ(xn,L)

]
. ρ2

L

ˆ
QL

|∇ζ|2. (2.22)

As shown in Lemma A.2, this functional inequality is indeed essentially equivalent
to hyperuniformity together with a suitable decay of correlations. Identities (2.19)
and (2.20) then lead to the expected improved scaling,

λL|e|V̄ ◦L . ρ2
L

ˆ
QL

|∇2UL|2 . ρ2
L|e|2, for any d ≥ 1,

(σ◦L)2 . ρ2
L

ˆ
QL

|∇UL|2 . ρ2
L|e|2, provided d > 2.

2.7. Analogies to stochastic homogenization: the nonlinear response. This sec-
tion is devoted to analogies between the sedimentation problem and corrector equations
for linear elliptic operators, both in divergence form or in non-divergence form (cf. [34,
32, 1, 2, 3] e.g.). In particular, we explain the differences in the corresponding critical
dimensions, as well as the surprising fact that the sedimentation problem benefits from
hyperuniformity whereas elliptic corrector equations do not in general. We first recall the
corrector equations for linear elliptic operators both in divergence form, cf. (Div), and in
non-divergence form, cf. (NDiv), associated with a uniformly elliptic random coefficient
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field aL; to make the comparison with the sedimentation problem more transparent, we
also introduce some hybrid corrector equation, cf. (Hyb):

−div(aL∇ψ1) = div(aLe), (Div)

−aL : ∇2ψ2 = (aL − ãL) : E, (NDiv)
−div(aL∇ψ3) = (aL − E [aL]) : E, (Hyb)

for some fixed directions e ∈ Rd and E ∈ Rd×d, and some suitable constant ãL ∈ Rd×d
that ensures solvability. In each of these corrector equations, the right-hand side displays a
linear random input either in divergence or in non-divergence form, while the nonlinearity
with respect to randomness arises from the solution operator associated with the elliptic
operator in the left-hand side, which is again either in divergence or in non-divergence
form. We compare these elliptic models with the sedimentation problem (1.2)–(1.5), which
is conveniently rewritten as follows, cf. Remark 1.1(a),

φL = 1
1−λLπLφ

◦
L, −4φ◦L +∇Π◦L = (1IL − λL)e, divφ◦L = 0, in QL.

The linear random input 1IL in the equation for φ◦L is in non-divergence form, and the non-
linearity arises from the projection πL. Although the latter has a very different structure
from elliptic solution operators, our results in the present work indicate that it behaves
quite similarly and displays exactly the same nonlocality as the divergence-form elliptic
solution operator (−divaL∇)−1. In this respect, the sedimentation problem appears com-
parable to the hybrid model (Hyb).

We now compare the critical dimensions for the different elliptic models. While a linearized
analysis would be misleading when unraveling the role of hyperuniformity, we appeal to sen-
sitivity calculus: we analyze how correctors are modified upon infinitesimal local changes
δaL of the random coefficients aL and we consider both the linear and nonlinear responses.
Formally differentiating (Div), (NDiv), and (Hyb) with respect to aL in the direction δaL
yields, respectively,

−div(aL∇δψ1) = div(δaLe) + div(δaL∇ψ1),

−aL : ∇2δψ2 = δaL : E + δaL : ∇2ψ2,

−div(aL∇δψ3) = δaL : E + div(δaL∇ψ3),

where in each line the first right-hand side term is the linear response and the second
one is the nonlinear response. We denote by G1 and G2 the Green’s functions associated
with −div(aL∇) and −aL : ∇2, respectively, and we recall that they behave on large
scales like the Green’s function for the Laplacian (up to second mixed derivative for G1,
cf. [18, 53, 2, 33], and up to first derivative for G2, cf. [3]). In order to assess the locality
of the above contributions, we appeal to Green’s representation formula,

δψ1(x) = −
ˆ
QL

∇2G1(x, ·) · δaLe−
ˆ
QL

∇2G1(x, ·) · δaL∇ψ1, (2.23)

δψ2(x) =

ˆ
QL

G2(x, ·) δaL : E +

ˆ
QL

G2(x, ·) δaL : ∇2ψ2, (2.24)

δψ3(x) =

ˆ
QL

G1(x, ·) δaL : E −
ˆ
QL

∇2G1(x, ·) · δaL∇ψ3. (2.25)
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Locality is measured in terms of the power decay of δψ1(x), δψ2(x), δψ3(x) when the per-
turbation δaL of the coefficient field is localized in a ball B(y) at a far-away point y. In
this informal discussion, we focus on a self-consistency analysis and assume that ∇ψ1,
∇2ψ2, and ∇ψ3 are already known to be well-defined stationary objects with bounded mo-
ments, while rigorous analysis would require a suitable buckling argument, cf. Section 4.1.
First note that the divergence-form structure yields an additional gradient on the Green’s
function, hence a better locality. Decay is indeed |x− y|1−d for (Div) and only |x− y|2−d
for (NDiv), which explains the shift in critical dimensions: combined with suitable func-
tional inequalities, in the spirit of Malliavin calculus, this formally entails that ψ1 has
bounded moments in dimension d > 2, while ψ2 only has bounded moments in dimension
d > 4. Next, note that both in (2.23) and in (2.24) the linear and nonlinear responses
display the same locality (Green’s functions have the same number of derivatives), while
this is not the case in the hybrid model: the nonlinear response in (2.25) has better locality
and the scaling is thus dominated by the linear part in non-divergence form. The same
property is shown to hold for the original sedimentation problem, cf. Proposition 4.1(i), and
this explains in particular why the critical dimension is in general the same as for (NDiv).

Finally, we investigate the role of hyperuniformity. As this statistical property consists of
the suppression of density fluctuations of aL, this is naturally expressed by restricting to
perturbations δaL having vanishing average. In the spirit of (2.22), this restriction leads
to the gain of a derivative in the following form, for all F ∈ C∞per(QL)d×d,

∣∣∣ ˆ
QL

F : δaL

∣∣∣ =
∣∣∣ˆ

B(y)

(
F −

 
B(y)

F
)

: δaL

∣∣∣ . ‖δaL‖L∞ ˆ
B(y)
|∇F |.

In the linear terms in (2.23)–(2.25), this yields an additional derivative on the Green’s func-
tion, but no such gain appears in the nonlinear terms due to the presence of the stationary
factors ∇ψ1, ∇2ψ2, and ∇ψ3. Alternatively, this is understood as follows: fluctuations
of elliptic solution operators are known to depend not only on density fluctuations of aL
(which would be suppressed by hyperuniformity), but also on its geometry (which is un-
related to hyperuniformity), e.g. [44, Section 7.3]. In the models (Div) and (NDiv), the
nonlinear responses are therefore limitant and no benefit is expected from hyperuniformity
— except in the particular case of dimension d = 1 for (Div) and of isotropic coefficients
a(x) = α(x) Id for (NDiv), in which case the nonlinearity with respect to randomness is
drastically simplified. In contrast, in the hybrid model (Hyb), as the nonlinear response
has already better locality, hyperuniformity leads to a nontrivial improvement; this ex-
plains why under hyperuniformity the critical dimension for the sedimentation problem as
for (Hyb) becomes the same as for (Div).

3. Mean settling speed

This section is devoted to the analysis of the mean settling speed, cf. Theorem 1. First
recall that the flow φL in the periodized tank QL is defined via (1.2)–(1.5), that is, for all
ω ∈ Ω, the velocity field φωL ∈ H1

per(QL)d and pressure field Πω
L ∈ L2

per(QL) are the unique
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periodic solutions of

−4φωL +∇Πω
L = −αωLe, in QL \ IωL ,

divφωL = 0, in QL \ IωL ,
D(φωL) = 0, in IωL ,
e|Iωn,L|+

´
∂Iωn,L

σ(φωL,Π
ω
L)ν = 0, ∀n,´

∂Iωn,L
Θν · σ(φωL,Π

ω
L)ν = 0, ∀n, ∀Θ ∈Mskew,

(3.1)

with vanishing average
´
QL

φωe,L = 0 and
´
QL\IωL

Πω
L = 0, where solvability imposes that

the constant backflow −αωLe be given by

αωL =
λωL

1− λωL
, λωL = L−d|IωL |.

Note that the hardcore assumption in (Hδ) ensures αωL . 1. We may now proceed to the
proof of Theorem 1.

Proof of Theorem 1. We split the proof into three steps. After some general preparation
in the first step, the second step is devoted to the analysis of the periodized problem (3.1)
and the proof of the main estimates. In the last step, borrowing arguments from [19],
we argue that the infinite-volume limit is well-defined and that the corresponding Stokes
problem (2.6) is well-posed.

Step 1. Reformulation of the equation: we prove that equation (3.1) for φωL yields in the
weak sense on the whole periodic cube QL,

−4φωL +∇(Πω
L1QL\IωL ) = −αωLe1QL\IωL −

∑
n

δ∂Iωn,Lσ(φωL,Π
ω
L)ν, (3.2)

where δ∂Iωn,L stands for the Dirac measure on the boundary of Iωn,L.

Given ζ ∈ C∞per(QL)d, testing equation (3.1) with ζ and integrating by parts on QL \ IωL ,
we findˆ

QL\IωL
∇ζ : ∇φωL −

ˆ
QL\IωL

(divζ) Πω
L

= −αωLe ·
ˆ
QL\IωL

φωL −
∑
n

ˆ
∂Iωn,L

(ζ ⊗ ν) : (∇φωL −Πω
L Id). (3.3)

The claim (3.2) would follow provided we prove thatˆ
IωL
∇ζ : ∇φωL = −

∑
n

ˆ
∂Iωn,L

(ν ⊗ ζ) : ∇φωL. (3.4)

Indeed, adding (3.4) to (3.3) yields the claim (3.2) in view ofˆ
∂Iωn,L

(ν ⊗ ζ + ζ ⊗ ν) : ∇φωL =

ˆ
∂Iωn,L

ζ ⊗ ν : 2 D(φωL).

We turn to the proof of (3.4). Using that φωL is affine in Iωn,L, we obtain for all n,ˆ
∂Iωn,L

(ν ⊗ ζ) : ∇φωL =

ˆ
∂Iωn,L

ζiν · ∇iφωL =

ˆ
Iωn,L

div(ζi∇iφωL) =

ˆ
Iωn,L

∇ζi · ∇iφωL.
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Since D(φωL) = 0 on Iωn,L, we can write φωL = V ω
n,L + Θω

n,L(x − xωn,L) on Iωn,L for some
V ω
n,L ∈ Rd and Θω

n,L ∈Mskew, so that the above becomesˆ
∂Iωn,L

(ν ⊗ ζ) : ∇φωL =

ˆ
Iωn,L

∇ζi · ∇i(Θω
n,Lx) =

ˆ
∂Iωn,L

ν · (ζ · ∇)(Θω
n,Lx) =

ˆ
∂Iωn,L

ν ·Θω
n,Lζ.

Likewise, we findˆ
Iωn,L

∇ζ : ∇φωL =

ˆ
Iωn,L

∇ζ : ∇(Θω
n,Lx) =

ˆ
∂Iωn,L

ζ · (ν · ∇)(Θω
n,Lx) =

ˆ
∂Iωn,L

ζ ·Θω
n,Lν.

By skew-symmetry of Θω
n,L, this yields (3.4), hence (3.2).

Step 2. Bounds on periodized problem (3.1): we establish the identity
1

]PωL

∑
n

e
|e| · V

ω
n,L =

1

αωL|e|

 
QL

|∇φωL|2, (3.5)

and show that under the mixing assumption (Mix) there holds

‖∇φL‖L2(Ω) . ρL|e| ×


1 : d > 2;

(logL)
1
2 : d = 2;

L
1
2 : d = 1;

(3.6)

whereas under the mixing and hyperuniformity assumption (Hyp) this is improved in all
dimensions to

‖∇φL‖L2(Ω) . ρL|e|. (3.7)

Testing the reformulation (3.2) of the equation for φωL with φωL itself and using the divergence-
free condition for φωL, we obtainˆ

QL

|∇φωL|2 = −αωLe ·
ˆ
QL\IωL

φωL −
∑
n

ˆ
∂Iωn,L

φωL · σ(φωL,Π
ω
L)ν.

Since D(φωL) = 0 on Iωn,L, we can write φωL = V ω
n,L + Θω

n,L(x − xωn,L) on Iωn,L for some
V ω
n,L ∈ Rd and Θω

n,L ∈Mskew, so that the boundary conditions for φωL lead to
ˆ
∂Iωn,L

φωL · σ(φωL,Π
ω
L)ν = V ω

n,L ·
ˆ
∂Iωn,L

σ(φωL,Π
ω
L)ν +

ˆ
∂Iωn,L

Θω
n,Lν · σ(φωL,Π

ω
L)ν

= −e · |Iωn,L|V ω
n,L = −e ·

ˆ
Iωn,L

φωL,

and the above becomesˆ
QL

|∇φωL|2 = −αωLe ·
ˆ
QL\IωL

φωL +
∑
n

e ·
ˆ
Iωn,L

φωL.

Since
´
QL

φωL = 0, this energy identity takes the formˆ
QL

|∇φωL|2 = (1 + αωL)
∑
n

e ·
ˆ
Iωn,L

φωL. (3.8)

In terms of particle velocities V ω
n,L =

ffl
Iωn,L

φωL, cf. (1.6), noting that (1+αωL)|B|]PωL = LdαωL,
this turns into the claim (3.5).
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Next, recalling
´
QL

φωL = 0 and integrating by parts, the energy identity (3.8) is alterna-
tively written asˆ

QL

|∇φωL|2 = (1 + αωL)

ˆ
QL

φωL ·
(∑

n

e(1Iωn,L − L
−d|B|)

)
= (1 + αωL)

ˆ
QL

∇φωL :
(
e⊗

∑
n

∇(−4)−1(1Iωn,L − L
−d|B|)

)
. (3.9)

Hence, by Cauchy-Schwarz’ inequality,ˆ
QL

|∇φωL|2 ≤ (1 + αωL)2|e|2
ˆ
QL

∣∣∣∑
n

∇4−1(1Iωn,L − L
−d|B|)

∣∣∣2,
so that we find, by the hardcore assumption in the form αωL . 1 and by stationarity of PL,

‖∇φL‖2L2(Ω)
. |e|2 E

[∣∣∣∑
n

∇4−1(1In,L − L
−d|B|)

∣∣∣2].
Denoting by GL the Green’s function for the Laplacian on the periodic cell QL, that is, the
unique distributional solution of −4GL = δ−L−d on QL, and setting FL(x) :=

´
B(x)∇GL,

we may rewrite the above as

‖∇φL‖2L2(Ω)
. |e|2 E

[∣∣∣∑
n

FL(xn,L)
∣∣∣2] = |e|2

∣∣∣∣Var

[∑
n

FL(xn,L)

]∣∣∣∣,
where the last equality follows from noting that E [

∑
n FL(xn,L)] = ρL

´
QL

FL = 0. Under
the mixing assumption (Mix), in terms of the pair correlation function g2,L, we then deduce

‖∇φL‖2L2(Ω)
. ρ2

L|e|2
∣∣∣∣¨

QL×QL
FL(x)FL(y) g2,L(x− y) dxdy

∣∣∣∣
≤ ρ2

L|e|2
( ˆ

QL

|FL|2
)( ˆ

QL

|g2,L|
)
. ρ2

L|e|2
ˆ
QL

|FL|2,

and the claim (3.6) follows from the standard decay of the Green’s function GL in form of
|FL(x)| . (1 + |x|L)1−d. Under the hyperuniformity assumption (Hyp), we rather appeal
to the variance estimate (2.22), cf. Lemma A.2, to the effect of

‖∇φL‖2L2(Ω)
. ρ2

L|e|2
ˆ
QL

|∇FL|2,

and the claim (3.7) now follows from the standard decay of the Green’s function GL in
form of |∇FL(x)| = |

´
B(x)∇

2GL| . (1 + |x|L)−d.

Step 3. Infinite-volume limit: under (Mix) for d > 2 or under (Hyp) for any d ≥ 1, we
argue that ∇φL converges strongly in L2(Ω) as L ↑ ∞ to the unique gradient solution ∇φ
of the corresponding infinite-volume problem (2.6).

Uniqueness for (2.6) is already contained in [19] since the difference of two solutions of (2.6)
is a solution of (2.6) without gravity. It only remains to establish the strong convergence
result. For that purpose, in terms of

γωL :=
∑
n

∇(−4)−1(1Iωn,L − L
−d|B|),
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we appeal to identity (3.9) in the form

E
[
|∇φL|2

]
= E

[
(1 + αL)

 
QL

∇φL : (e⊗ γL)
]
,

or equivalently, by stationarity of ∇φL : (e⊗ γL) and by invariance of αL with respect to
shifts on the periodic cell (shifting PL does indeed not change the number of points),

E
[
|∇φL|2

]
= E

[
(1 + αL)∇φL : (e⊗ γL)

]
. (3.10)

The stabilization condition for PL in (Hδ) ensures that γL converges strongly in L2(Ω) to
γ :=

∑
n∇(−4)−11In , which is indeed well-defined under (Mix) for d > 2 or under (Hyp)

for any d ≥ 1. Since the bounded random variable αL converges almost surely to α, we
conclude that (1 + αL)(e⊗ γL) converges strongly to (1 + α)(e⊗ γ) in L2(Ω). Therefore,
identity (3.10) entails that the strong convergence ∇φL → ∇φ in L2(Ω) follows from the
corresponding weak convergence.

Using the uniform bound (3.6) or (3.7) of Step 1, weak compactness in L2(Ω; L2
loc(Rd)) en-

sures that ∇φL converges weakly to some stationary random field Φ ∈ L2(Ω; L2
loc(Rd)d×d)

(along a subsequence, not relabelled). As a weak limit of gradients, Φ is necessarily
gradient-like, hence we may write Φω(x) = ∇φω(x) for some φ ∈ L2(Ω;H1

loc(Rd)d). Com-
bining this with the stabilization condition in (Hδ) in form of 1IωL → 1Iω in L2

loc(Rd) for
almost all ω, we may then pass to the limit in the weak formulation of equation (3.1). More
precisely, we first easily deduce for almost all ω that D(φω) = 0 in Iω and that divφω = 0.
Next, a similar standard argument as in [19, Step 3 of proof of Proposition 2.1] allows to
deduce that φ is a solution of (2.6) in the following weak sense: for almost all ω, for all
test functions ψ ∈ C∞c (Rd)d with D(ψ) = 0 on Iω and divψ = 0, there holds

ˆ
Rd
∇ψ : ∇φω = −αe ·

ˆ
Rd\Iω

ψ + e ·
ˆ
Iω
ψ.

Finally, arguing as in [19, Step 4 of proof of Proposition 2.1], a stationary pressure Πω

can be reconstructed with vanishing expectation and finite second moments, while the
regularity theory for the steady Stokes equation ensures that (φω,Πω) is in fact a classical
solution of (2.6) and that boundary conditions are satisfied in a pointwise sense. �

4. Velocity fluctuations

This section is devoted to the proof of Theorem 2, that is, the estimation of fluctuations
of individual particle velocities, which requires a fine analysis of stochastic cancellations.
The proof is particularly demanding and strongly relies on a novel annealed regularity
theory for the steady Stokes equation with a random suspension, which is briefly described
in Section 4.2.2 and mainly postponed to a forthcoming companion contribution [20]. In-
terestingly, the hyperuniform setting is easier to treat as it only requires a perturbative
regularity result. We also strongly rely on local regularity statements and pressure esti-
mates borrowed from our previous work [19] on colloidal (non-sedimenting) suspensions.
By scaling, we may henceforth assume |e| = 1.
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4.1. Structure of the proof. We start with the following key estimates on the opti-
mal decay of large-scale averages of the gradient field ∇φL. Due to the nonlinearity with
respect to randomness, local norms of ∇φL also appear in the right-hand side; this will
be subsequently absorbed by a buckling argument. Yet, the correct fluctuation scaling
is already manifest: in particular, the first term in (4.1) below displays the CLT scaling
multiplied by a length scale, cf. (2.11), and is the reason why the critical dimension in The-
orem 2(i) is d = 4 instead of d = 2. Importantly, the nonlinear contribution of ∇φL in the
right-hand side is multiplied by the CLT scaling without loss, which is key to our buckling
argument to prove Theorem 2(i): the worse nonlocality only appears in the linear part,
while the nonlinear part always behaves as in homogenization for divergence-form linear
elliptic equations, cf. Section 2.7. In the hyperuniform setting (ii), the suppression of den-
sity fluctuations exactly allows to avoid the worse scaling of the linear part, cf. Section 2.7,
and we recover the CLT scaling (2.12).

Proposition 4.1 (Fluctuation scaling). Let the random point processes (PL)L≥1 satisfy
the general assumptions (Hδ) for some δ > 0.
(i) Under the improved mixing assumption (Mix+), in dimension d > 2, there holds for

all g ∈ C∞per(QL)d×d, 1 ≤ R ≤ L, q ≥ 1, and 1� p <∞,∥∥∥ˆ
QL

g : ∇φL
∥∥∥2

L2p(Ω)
.p ‖g‖2

L
2d
d+2 (QL)

∧ ‖〈·〉g‖2
L2(QL)

+ ‖〈∇〉
1
2 g‖2

L2(QL)

∥∥∥∥(1 +

ˆ
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

. (4.1)

(ii) Under the improved mixing and hyperuniformity assumption (Hyp+), in any dimen-
sion d ≥ 1, there holds for all g ∈ C∞per(QL)d×d, 1 ≤ R ≤ L, q ≥ 1, and 1� p <∞,∥∥∥ˆ

QL

g : ∇φL
∥∥∥2

L2p(Ω)
.p ‖〈∇〉

1
2 g‖2

L2(QL)

∥∥∥∥(1 +

ˆ
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

. (4.2)
♦

In preparation for a buckling argument, the following result allows to bound local
norms of ∇φL as appearing in the right-hand sides of (4.1)–(4.2) by corresponding large-
scale averages. This statement is inspired by [59] in the context of homogenization for
divergence-form linear elliptic equations, and constitutes a compact improved version of [31,
Lemma 2.2].

Proposition 4.2. Let the random point processes (PL)L≥1 satisfy the general assump-
tions (Hδ) for some δ > 0. Choose χ ∈ C∞c (B) with

´
B χ = 1 and set χr(x) := r−dχ(xr ).

There exists η0 > 0 (only depending on d, δ) such that there holds for all 1 ≤ r �χ R ≤ L,
1 ≤ q ≤ 1 + η0, and p ≥ 1,∥∥∥∥(  

BR

|∇φL|2q
) 1
q

∥∥∥∥
Lp(Ω)

.χ R2 +
∥∥∥ˆ

QL

χr∇φL
∥∥∥2

L2p(Ω)
. ♦

We are now in position to prove Theorem 2. Based on the above two propositions
together with a buckling argument, we first deduce moment bounds on ∇φL. Combining
this again with Proposition 4.1, we deduce the optimal fluctuation scaling for large-scale
averages of ∇φL, cf. (2.11)–(2.12). Finally, moment bounds on the velocity field φL simply
follow by integration.
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Proof of Theorem 2. By local regularity for the steady Stokes equation, e.g. [27, Sec-
tion IV], we have

sup
B(x)
|∇φωL| .

( 
B2(x)

|∇φωL|2
) 1

2
, sup

B(x)
|φωL| .

( 
B2(x)

|φωL|2 + |∇φωL|2
) 1

2
, (4.3)

so that it is enough to control moments of local quadratic averages [∇φL]2 and [φL]2; we
omit the detail. We split the proof into three steps.

Step 1. Proof that for all 1 ≤ R ≤ L,

‖[∇φL]2‖2L2p(Ω)
. (Rd)

1− 1
p

∥∥∥ 
BR

|∇φL|2
∥∥∥

Lp(Ω)
.

By the discrete `1 − `p inequality in form of the reverse Jensen’s inequality(  
BR(x)

[∇φL]2p2

) 1
p
. (Rd)

1− 1
p

 
B2R(x)

|∇φL|2,

the claim follows in combination with stationarity of [∇φL]2.

Step 2. Moment bounds on ∇φL: proof of (2.7) and (2.9).
Under (Mix+) in dimension d > 2, combining the results of Propositions 4.1(i) and 4.2, we
find for all 1 ≤ r �χ R ≤ L, 1 < q ≤ 1 + η0, and 1� p <∞,∥∥∥∥( 

BR

|∇φL|2q
) 1
q

∥∥∥∥
Lp(Ω)

.χ R2 +
∥∥∥ˆ

QL

χr∇φL
∥∥∥2

L2p(Ω)

.p,χ R2 + r2−d +
(
R
r

)d
R
− d
q′

∥∥∥∥(1 +

 
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

,

which yields after optimization in r, for R� 1 and q > 1,∥∥∥∥(  
BR

|∇φL|2q
) 1
q

∥∥∥∥
Lp(Ω)

.p R
2,

and the conclusion (2.7) then follows from the result of Step 1.

Under (Hyp+) in any dimension d ≥ 1, combining the results of Propositions 4.1(ii) and 4.2,
we rather find for all 1 ≤ r � R ≤ L, 1 ≤ q < 1 + η0, and 1� p <∞,∥∥∥∥(  

BR

|∇φL|2q
) 1
q

∥∥∥∥
Lp(Ω)

.p R
2 +

(
R
r

)d
R
− d
q′

∥∥∥∥(1 +

 
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

,

and the conclusion (2.9) follows in the same way.

Step 3. Moment bounds on φL: proof of (2.8) and (2.10).
Poincaré’s inequality yields∥∥∥∥[φL −  

B
φL

]
2
(x)

∥∥∥∥
L2p(Ω)

. ‖[∇φL]2‖L2p(Ω) +
∥∥∥ 

B(x)
φL −

 
B
φL

∥∥∥
L2p(Ω)

, (4.4)

and in view of (2.7) and (2.9) it remains to estimate the last right-hand side term. For
that purpose, we write  

B(x)
φL −

 
B
φL =

ˆ
QL

∇φL · ∇hx,L,
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in terms of ∇hx,L := ∇hL(· − x)−∇hL, where hL denotes the unique solution in QL of

−4hL =
1B

|B|
− L−d.

Under (Mix+) in dimension d > 2, appealing to Proposition 4.1(i) together with (2.7)
yields for all p ≥ 1,∥∥∥ˆ

QL

∇φL · ∇hx,L
∥∥∥

L2p(Ω)

.p ‖∇hx,L‖
L

2d
d+2 (QL)

∧ ‖〈·〉∇hx,L‖L2(QL) + ‖〈∇〉
1
2∇hx,L‖L2(QL).

Noting that ‖∇2hx,L‖L2(QL) . 1 and that for d > 2 Riesz potential theory further yields
‖∇hx,L‖L2(QL) . 1, we are reduced to∥∥∥ˆ

QL

∇φL · ∇hx,L
∥∥∥

L2p(Ω)
.p 1 + ‖∇hx,L‖

L
2d
d+2 (QL)

∧ ‖〈·〉∇hx,L‖L2(QL),

while a direct computation with Green’s kernel gives

‖∇hx,L‖
L

2d
d+2 (QL)

∧ ‖〈·〉∇hx,L‖L2(QL) .


1, if d > 4;

log(2 + |x|)
1
2 , if d = 4;

〈x〉
1
2 , if d = 3.

(4.5)

Inserting this into (4.4), the conclusion (2.8) follows. Under (Hyp+), rather appealing to
Proposition 4.1(ii), the conclusion (2.10) follows in the same way. �

4.2. Preliminaries. We introduce a number of general tools that play an important role
in the proof of Propositions 4.1 and 4.2.

4.2.1. Multiscale inequalities for higher moments. The following shows that the multiscale
variance inequalities in assumptions (Mix+) and (Hyp+) imply corresponding functional
inequalities for higher moments. This is proven in [21, Proposition 1.10(ii)] for (Mix+),
and the same proof applies for (Hyp+).

Lemma 4.3. If the random point processes {PL}L≥1 satisfy (Mix+), then there holds for
all p ≥ 1 and all σ(PL)-measurable random variables Y (PL) with E [Y (PL)] = 0,

E
[
|Y (PL)|2p

] 1
p . p2 E

[ˆ L

0

( ˆ
QL

(
∂osc
PL,B`(x)Y (PL)

)2
dx

)p
〈`〉−dpπ(`) d`

] 1
p

. (4.6)

Likewise, if {PL}L≥1 satisfy (Hyp+), then there holds for all p ≥ 1 and all σ(PL)-
measurable random variables Y (PL) with E [Y (PL)] = 0,

E
[
|Y (PL)|2p

] 1
p . p2 E

[ˆ L

0

( ˆ
QL

(
∂hyp
PL,B`(x)Y (PL)

)2
dx

)p
〈`〉−dpπ(`) d`

] 1
p

. (4.7)
♦
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4.2.2. Annealed regularity theory. Another key tool consists of annealed regularity proper-
ties for the steady Stokes equation with a random colloidal (non-sedimenting) suspension.
More precisely, given a random forcing g ∈ L∞(Ω;C∞per(QL)d×d), we consider the unique
solution vL ∈ L∞(Ω;H1

per(QL)) of the following heterogeneous problem, for almost all ω,

−4vωL +∇PωL = divgω, in QL \ IωL ,
divvωL = 0, in QL \ IωL ,
D(vωL) = 0, in IωL ,´
∂Iωn,L

(
gω + σ(vωL, P

ω
L )
)
ν = 0, ∀n,´

∂Iωn,L
Θν ·

(
gω + σ(vωL, P

ω
L )
)
ν = 0, ∀n, ∀Θ ∈Mskew,

(4.8)

with
´
QL

vωL = 0. The energy inequality takes the form

‖∇vωL‖L2(QL) ≤ ‖g
ω‖L2(QL\IωL). (4.9)

Aside from perturbative Meyers type estimates, no corresponding (deterministic) Lp esti-
mate is expected to hold in general due to heterogeneities — unless particles are assumed
to be sufficiently far apart, cf. Remark 4.6 below. However, in view of homogenization, the
heterogeneous Stokes operator can be replaced on large scales by the following “homoge-
nized” one, cf. [19, Theorem 1],{

−∇ · B̄∇v̄ωL +∇P̄ωL = divgω, in QL,
divv̄ωL = 0, in QL,

for which standard constant-coefficient elliptic regularity theory is available. In this spirit,
compared to a generic situation, the solution of (4.8) is expected to have much better
regularity when the suspension is sampled by an ergodic ensemble. This type of result
was pioneered by Avellaneda and Lin [6, 7] in the context of periodic homogenization for
divergence-form linear elliptic equations. In the stochastic setting, while early contributions
in form of annealed Green’s function estimates appeared in [18, 53], a (quenched) large-
scale regularity theory was first outlined by Armstrong and Smart [5] (see also [4]), and
later fully developed in [2, 33]. For the steady Stokes problem (4.8), the development
of a corresponding large-scale regularity theory is postponed to a forthcoming companion
contribution [20] that is devoted to the quantitative homogenization of (4.8). In the present
work, in the spirit of [23], we appeal to large-scale regularity in form of the following
convenient annealed Lp regularity estimate established in [20].

Theorem 4.4 (Annealed Lp regularity [20]). Let the random point process PL be stationary
on QL and satisfy the hardcore condition in (Hδ) for some δ > 0, as well as the improved
mixing assumption (Mix+). Given g ∈ L∞(Ω;C∞per(QL)d×d), the unique solution vL ∈
L∞(Ω;H1

per(QL)d) of (4.8) satisfies for all 1 < p, q <∞ and η > 0,

‖[∇vL]2‖Lq(QL;Lp(Ω)) .p,q,η ‖[g]2‖Lq(QL;Lp+η(Ω)),

and for all 0 ≤ r < d(1− 1
q ),

‖〈·〉r[∇vL]2‖Lq(QL;Lp(Ω)) .p,q,r,η ‖〈·〉r[g]2‖Lq(QL;Lp+η(Ω)). ♦

In the perturbative setting |p− 2|, |q− 2| � 1, the loss of stochastic integrability can be
avoided, that is, the above holds with η = 0, which happens to be a useful tool in the proof
of Proposition 4.1. In addition, such a perturbative statement can be established under
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mere stationarity and ergodicity assumptions, without any mixing. The proof is based on
a simple Meyers type argument and is given in [20].

Theorem 4.5 (Perturbative annealed Lp regularity [20]). Let the random point process PL
be stationary on QL and satisfy the hardcore condition in (Hδ) for some δ > 0. Then,
there exists a constant η0 > 0 (only depending on d, δ) such that the following holds: Given
g ∈ L∞(Ω;C∞per(QL)d×d), the unique solution vL ∈ L∞(Ω;H1

per(QL)d) of (4.8) satisfies for
all p, q with |q − 2|, |p− 2| ≤ η0,

‖[∇vL]2‖Lq(QL;Lp(Ω)) . ‖[g]2‖Lq(QL;Lp(Ω)). ♦

Remark 4.6 (Dilute Lp regularity). In the dilute regime, the recent work of Höfer [41]
on the reflection method easily yields the following version of Theorem 4.4; the proof is
a direct adaptation of [41] and is omitted. This also constitutes a variant of the dilute
Green’s function estimates in [31, Lemma 2.7].
Let the random point processes (PL)L≥1 satisfy the general assumptions (Hδ) for some
δ > 0, and denote by δL the minimal interparticle distance in PL. For all 1 < p, q < ∞,
there exists a constant δq > 0 (only depending on d, q) such that, provided PL is dilute
enough in the sense of δL ≥ δq, we have: Given a random forcing g ∈ L∞(Ω;C∞per(QL)d×d),
the unique solution vL ∈ L∞(Ω;H1

per(QL)d) of (4.8) satisfies

‖∇vL‖Lq(QL;Lp(Ω)) . ‖g‖Lq(QL;Lp(Ω)),

as well as the following deterministic estimate, for almost all ω,

‖∇vωL‖Lq(QL) . ‖gω‖Lq(QL). ♦

4.2.3. Localized pressure estimates. We state the following localized estimate on the pres-
sure for the steady Stokes equation. This is essentially a consequence of standard pressure
estimates in [27] but it requires some additional care since the prefactor in the estimate
is uniform with respect to the size of D although IL consists of an unbounded number of
components. Note that the same result could be stated in Lq for any 1 < q <∞, and that
the Stokes problem below is tailored to cover both equations (3.1) and (4.8).

Lemma 4.7 (Localized pressure estimates). Let a (deterministic) point set PL = {xn,L}n
satisfy the hardcore condition in (Hδ) for some δ > 0. Given g ∈ C∞per(QL)d×d and e′ ∈ Rd,
let vL ∈ H1

per(QL)d denote the unique solution of
−4wL +∇QL = divg − αLe, in QL \ IL,
divwL = 0, in QL \ IL,
D(wL) = 0, in IL,
e′|In,L|+

´
∂In,L

(
g + σ(wL, QL)

)
ν = 0, ∀n,´

∂In,L
Θν ·

(
g + σ(wL, QL)

)
ν = 0, ∀n, ∀Θ ∈Mskew,

with
´
QL

wL = 0. Then there holds for all balls D ⊂ QL with radius rD,∥∥∥QL −  
D\IL

QL

∥∥∥2

L2(D\IL)
. rd+2

D |e|2 + ‖∇wL‖2L2(D)
+ ‖g‖2

L2(D\IL)
. ♦

Proof. Let a ball D ⊂ QL be fixed with radius rD. Using the Bogovskii operator as e.g.
in [19, Step 4.2 of the proof of Proposition 2.1], we can construct a map ζ ∈ H1

0 (D)
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(implicitly extended by 0 on QL \D) such that ζ|In,L is constant for all n and such that

divζ =
(
QL −

 
D\IL

QL

)
1D\IL , ‖∇ζ‖L2(D) .

∥∥∥QL −  
D\IL

QL

∥∥∥
L2(D\IL)

,

where we emphasize that the prefactor in the last estimate is uniformly bounded indepen-
dently of D and L. Arguing as in Step 1 of the proof of Theorem 1, we note that the
equation for wL implies in the weak sense on the whole periodic cell QL,

−4wL +∇(QL1QL\IL) = div(g1QL\IL)− αLe1QL\IL −
∑
n

δ∂In,L
(
g + σ(wL, QL)

)
ν.

Testing this equation with ζ, recalling that ζ is constant inside particles, and using the
boundary conditions for wL, we are led toˆ

QL\IL
QLdivζ =

ˆ
QL

∇ζ : ∇wL +

ˆ
QL\IL

∇ζ : g + αLe ·
ˆ
QL\IL

ζ − e ·
∑
n

ˆ
In,L

ζ.

Inserting the definition of divζ, recalling that |αL| . 1, and using Poincaré’s inequality
on D, we deduce∥∥∥QL −  

D\IL
QL

∥∥∥2

L2(D\IL)
. ‖∇ζ‖L2(D)

(
‖∇wL‖L2(D) + ‖g‖L2(D\IL)

)
+ |e|‖ζ‖L1(D)

. ‖∇ζ‖L2(D)

(
rd+2
D |e|2 + ‖∇wL‖2L2(D)

+ ‖g‖2
L2(D\IL)

) 1
2
,

and the claim follows from the bound on the L2-norm of ∇ζ. �

4.3. Proof of Proposition 4.1. We shall exploit the multiscale variance inequality (2.2),
or its hyperuniform version (2.3), and appeal to a duality argument. Let the (deterministic)
test function g ∈ C∞per(QL)d×d be fixed and for all ω let vωL ∈ H1

per(QL)d denote the unique
solution of the following auxiliary problem,

−4vωL +∇PωL = ∇ · g, in QL \ IωL ,
divvωL = 0, in QL \ IωL ,
D(vωL) = 0, in IωL ,´
∂Iωn,L

(
g + σ(vωL, P

ω
L )
)
ν = 0, ∀n,´

∂Iωn,L
Θν ·

(
g + σ(vωL, P

ω
L )
)
ν = 0, ∀n, ∀Θ ∈Mskew,

(4.10)

with
´
QL

vωL = 0. We split the proof into four main steps: the mixing case (i) is treated
in the first three steps, while the simplifications that appear in the hyperuniform case (ii)
are pointed out in the last step.

Step 1. Fluctuation scaling outside IL: proof that under (Mix+) in dimension d > 2 there
holds for all 1 ≤ R ≤ L, q ≥ 1, and 1� p <∞,∥∥∥ˆ

QL\IL
g : ∇φL

∥∥∥2

L2p(Ω)
.p L

−d
∥∥∥e · ˆ

IL
vL

∥∥∥2

Lp(Ω)

+ ‖g‖2
L

2d
d+2 (QL)

+ ‖〈∇〉
1
2 g‖2

L2(QL)

∥∥∥∥(1 +

ˆ
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

. (4.11)

where alternatively the norm ‖g‖2
L

2d
d+2 (QL)

can be replaced by ‖〈·〉g‖2
L2(QL)

.
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Using the version (4.6) of the multiscale variance inequality (2.2) to control higher mo-
ments, we obtain

∥∥∥ˆ
QL\IL

g : ∇φL
∥∥∥2

L2p(Ω)

. p2 E
[ˆ L

0

(ˆ
QL

(
∂osc
PL,B`(x)

ˆ
QL\IL

g : ∇φL
)2
dx

)p
〈`〉−dp π(`) d`

] 1
p

, (4.12)

and it remains to estimate the oscillation of
´
QL\IL g : ∇φL with respect to PL on any

ball B`(x). Given 0 ≤ ` ≤ L and x ∈ Rd, and given a realization, let P ′L be a locally finite
point set satisfying the hardcore condition in (Hδ), with P ′L|QL\B`(x) = PL|QL\B`(x), and
denote by φ′L the corresponding solution of equation (3.1) with PL replaced by P ′L. We
split the proof into three further substeps.

Substep 1.1. Proof that

∣∣∣ˆ
QL\IL

g : ∇φL −
ˆ
QL\I′L

g : ∇φ′L
∣∣∣ . L−d

∣∣∣e · ˆ
IL
vL

∣∣∣+

ˆ
B`+1(x)

|vL|

+
( ˆ

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

) 1
2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φ′L|2
) 1

2
. (4.13)

First decomposing
´
QL\I′L

=
´
QL\IL +

´
IL\I′L

−
´
I′L\IL

, we find

ˆ
QL\IL

g : ∇φL −
ˆ
QL\I′L

g : ∇φ′L

=

ˆ
QL\IL

g : ∇(φL − φ′L) +

ˆ
I′L\IL

g : ∇φ′L −
ˆ
IL\I′L

g : ∇φ′L,

hence, in view of the inclusion (IL \ I ′L) ∪ (I ′L \ IL) ⊂ B`+1(x),

∣∣∣ˆ
QL\IL

g : ∇φL −
ˆ
QL\I′L

g : ∇φ′L
∣∣∣

.
∣∣∣ ˆ

QL\IL
g : ∇(φL − φ′L)

∣∣∣+
(ˆ

B`+1(x)
|g|2
) 1

2
(ˆ

B`+1(x)
|∇φ′L|2

) 1
2
, (4.14)

and it remains to examine the first right-hand side term. Arguing similarly as in Step 1 of
the proof of Theorem 1, we note that the equation (4.10) for vL implies in the weak sense
on the whole periodic cell QL,

−4vL +∇(PL1QL\IL) = ∇ · (g1QL\IL)−
∑
n

δ∂In,L
(
g + σ(vL, PL)

)
ν. (4.15)

Testing this equation with φL − φ′L, and recalling that the pressure PL is only defined up
to additive constant and that φL and φ′L are divergence-free on the whole periodic cell QL,
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we obtain for any constant c1 ∈ R,
ˆ
QL\IL

g : ∇(φL − φ′L) = −
ˆ
QL

∇vL : ∇(φL − φ′L)

−
∑
n

ˆ
∂In,L

(φL − φ′L) ·
(
g + σ(vL, PL − c1)

)
ν,

hence, in view of the boundary conditions for φL, φ′L, and vL, arguing similarly as in Step 2
of the proof of Theorem 1,
ˆ
QL\IL

g : ∇(φL − φ′L) = −
ˆ
QL

∇vL : ∇(φL − φ′L)

+
∑

n:xn,L∈B`(x)

ˆ
∂In,L

(
φ′L −

 
In,L

φ′L

)
·
(
g + σ(vL, PL − c1)

)
ν. (4.16)

Likewise, testing with vL the equation for φL − φ′L in the form (3.2), we get for any
constants c2, c

′
2 ∈ R,

−
ˆ
QL

∇vL : ∇(φL − φ′L) = αLe ·
ˆ
QL\IL

vL − α′Le ·
ˆ
QL\I′L

vL

+
∑
n

ˆ
∂In,L

vL · σ(φL,ΠL − c2)ν −
∑
n

ˆ
∂I′n,L

vL · σ(φ′L,Π
′
L − c′2)ν,

which, in view of the choice
´
QL

vL = 0 and of the boundary conditions for φL, φ′L, and vL,
turns intoˆ

QL

∇vL : ∇(φL − φ′L) = αLe ·
ˆ
IL
vL − α′Le ·

ˆ
I′L
vL

+
∑

n:xn,L∈B`(x)

e ·
ˆ
In,L

vL −
∑

n:x′n,L∈B`(x)

e ·
ˆ
I′n,L

vL

−
∑

n:x′n,L∈B`(x)

ˆ
∂I′n,L

(
vL −

 
I′n,L

vL

)
· σ(φ′L,Π

′
L − c′2)ν. (4.17)

Combined with (4.16), this yields
ˆ
QL\IL

g : ∇(φL − φ′L) = −(αL − α′L)e ·
ˆ
IL
vL

− (α′L + 1)

( ∑
n:xn,L∈B`(x)

e ·
ˆ
In,L

vL −
∑

n:x′n,L∈B`(x)

e ·
ˆ
I′n,L

vL

)

−
∑

n:x′n,L∈B`(x)

ˆ
∂I′n,L

(
vL −

 
I′n,L

vL

)
· σ(φ′L,Π

′
L − c′2)ν

+
∑

n:xn,L∈B`(x)

ˆ
∂In,L

(
φ′L −

 
In,L

φ′L

)
·
(
g + σ(vL, PL − c1)

)
ν. (4.18)
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In order to control the different right-hand side terms localized at particle boundaries, we
appeal to the local regularity theory for the Stokes equation. We illustrate this on vL: a
trace estimate first yieldsˆ

∂In,L

|∇vL|2 + |PL − c1|2 .
ˆ

(In,L+ 1
2
δB)\In,L

|〈∇〉
1
2∇vL|2 + |〈∇〉

1
2 (PL − c1)|2,

while, for any constant c3 ∈ Rd, replacing vL by vL − c3, the local regularity theory for
the Stokes equation (4.10) satisfied by vL − c3 in (In,L + δB) \ In,L can then be applied in
form of e.g. [27, Theorem IV.5.1],
ˆ
∂In,L

|∇vL|2 + |PL − c1|2

.
ˆ
∂In,L

∣∣〈∇〉(vL − c3)|In,L
∣∣2 +

ˆ
(In,L+δB)\In,L

|∇vL|2 + |PL − c1|2 + |〈∇〉
1
2 g|2,

which yields by Poincaré’s inequality, for the choice c3 :=
ffl
In,L

vL, recalling the linearity
of vL inside particles,ˆ

∂In,L

|∇vL|2 + |PL − c1|2 .
ˆ
In,L+δB

|∇vL|2 + |PL − c1|21QL\IL + |〈∇〉
1
2 g|2. (4.19)

Likewise, as φ′L satisfies (3.1), we findˆ
∂I′n,L

|∇φ′L|2 + |Π′L − c′2|2 .
ˆ
I′n,L+δB

|∇φ′L|2 + |Π′L − c′2|21QL\I′L + |α′L|2. (4.20)

Inserting these bounds into (4.18), recalling that |αL|, |α′L| . 1, and noting that

αL − α′L =
|IL||QL \ I ′L| − |I ′L||QL \ IL|

|QL \ IL||QL \ I ′L|
=
|QL|

(
|IL| − |I ′L|

)
|QL \ IL||QL \ I ′L|

=
|QL|

(
|IL ∩B`+1(x)| − |I ′L ∩B`+1(x)|

)
|QL \ IL||QL \ I ′L|

. L−d〈`〉d,

we are led to∣∣∣ˆ
QL\IL

g : ∇(φL − φ′L)
∣∣∣ . L−d〈`〉d

∣∣∣e · ˆ
IL
vL

∣∣∣+

ˆ
B`+1(x)

|vL|

+
( ˆ

B`+2(x)

(
|∇vL|2 + |PL − c1|21QL\IL + |〈∇〉

1
2 g|2

)) 1
2

×
(ˆ

B`+2(x)

(
|∇φ′L|2 + |Π′L − c′2|21QL\I′L + 1

)) 1
2
.

Choosing c1 :=
ffl
B`+2(x)\IL PL and c′2 :=

ffl
B`+2(x)\I′L

Π′L, and using the pressure estimate of
Lemma 4.7, we deduce∣∣∣ ˆ

QL\IL
g : ∇(φL − φ′L)

∣∣∣ . L−d〈`〉d∣∣∣e · ˆ
IL
vL

∣∣∣+

ˆ
B`+1(x)

|vL|

+
( ˆ

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

) 1
2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φ′L|2
) 1

2
. (4.21)
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Combined with (4.14), this yields the claim (4.13).

Substep 1.2. Proof that in dimension d > 2,ˆ
B`+2(x)

|∇φ′L|2 . 〈`〉d+2 +

ˆ
B`+2(x)

|∇φL|2. (4.22)

Starting from (3.2) and arguing as for (4.17), the energy identity for φL − φ′L takes the
following form, for any constants c4, c

′
4 ∈ R,

ˆ
QL

|∇(φL − φ′L)|2 = −(αL − α′L)e ·
ˆ
QL\IL

(φL − φ′L)

− (α′L + 1)

( ∑
n:xn,L∈B`(x)

e ·
ˆ
In,L

(φL − φ′L)−
∑

n:x′n,L∈B`(x)

e ·
ˆ
I′n,L

(φL − φ′L)

)

+
∑

n:xn,L∈B`(x)

ˆ
∂In,L

(
φ′L −

 
In,L

φ′L

)
·
(
2 D(φL)− (ΠL − c4) Id

)
ν

+
∑

n:x′n,L∈B`(x)

ˆ
∂I′n,L

(
φL −

 
I′n,L

φL

)
·
(
2 D(φ′L)− (Π′L − c′4) Id

)
ν.

Using the local regularity theory for the Stokes equation in form of (4.20) as in Substep 1.1,
this leads to
ˆ
QL

|∇(φL − φ′L)|2 . L−d〈`〉d
ˆ
QL

|φL − φ′L|+
ˆ
B`+1(x)

|φL − φ′L|

+
( ˆ

B`+2(x)
|∇φ′L|2 + |Π′L − c′4|21QL\I′L

) 1
2
(ˆ

B`+2(x)
|∇φL|2 + |ΠL − c4|21QL\IL

) 1
2
.

Hence, choosing c4 :=
ffl
B`+2(x)\IL ΠL and c′4 :=

ffl
B`+2(x)\I′L

Π′L and using the pressure
estimate of Lemma 4.7 for both ΠL and Π′L, we obtain
ˆ
QL

|∇(φL − φ′L)|2 . L−d〈`〉d
ˆ
QL

|φL − φ′L|+
ˆ
B`+1(x)

|φL − φ′L|

+
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φ′L|2
) 1

2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φL|2
) 1

2
. (4.23)

Using Poincaré’s inequality in the form

L−d
ˆ
QL

|φL − φ′L| . L1− d
2

( ˆ
QL

|∇(φL − φ′L)|2
) 1

2
,

and the Poincaré-Sobolev inequality for d > 2 in the form
ˆ
B`+1(x)

|φL − φ′L| . 〈`〉
d
2

+1
(ˆ

QL

[φL − φ′L]
2d
d−2

2

) d−2
2d

. 〈`〉
d
2

+1
(ˆ

QL

|∇(φL − φ′L)|2
) 1

2
, (4.24)
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we deduce in dimension d > 2,

ˆ
QL

|∇(φL − φ′L)|2 . 〈`〉
d
2

+1
( ˆ

QL

|∇(φL − φ′L)|2
) 1

2

+
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φ′L|2
) 1

2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φL|2
) 1

2
,

hence,
ˆ
QL

|∇(φL − φ′L)|2 .
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φ′L|2
) 1

2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φL|2
) 1

2
,

and the claim (4.22) follows by the triangle inequality.

Substep 1.3. Proof of (4.11).
Using the result (4.22) of Substep 1.2 to replace the perturbed corrector φ′L by φL in the
right-hand side of the result (4.13) of Substep 1.1, we obtain

∣∣∣∂osc
P,B`(x)

ˆ
QL\IL

g : ∇φL
∣∣∣ . L−d〈`〉d∣∣∣e · ˆ

IL
vL

∣∣∣+
∣∣∣ ˆ

B`+1(x)
vL

∣∣∣
+
(ˆ

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

) 1
2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φL|2
) 1

2
.

Inserting this into (4.12), we find for all p ≥ 1,

∥∥∥ˆ
QL\IL

g : ∇φL
∥∥∥2

L2p(Ω)
. p2L−d

∥∥∥e · ˆ
IL
vL

∥∥∥2

Lp(Ω)

(ˆ L

0
〈`〉dpπ(`) d`

) 1
p

+ p2
∥∥∥ˆ

QL

|vL|2
∥∥∥

Lp(Ω)

( ˆ L

0
〈`〉dpπ(`) d`

) 1
p

+ p2 E
[ˆ L

0

(ˆ
QL

ζ`(x)2
( 

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

)
dx

)p
〈`〉dpπ(`) d`

] 1
p

, (4.25)

where we have set for abbreviation,

ζ`(x) := 〈`〉+
(  

B`+2(x)
|∇φL|2

) 1
2
.

Before estimating the last right-hand side term in (4.25), we first smuggle in a spatial
average at some arbitrary scale 0 ≤ R ≤ L,
ˆ
QL

ζ`(x)2
( 

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

)
dx

.
ˆ
QL

(
sup
BR(y)

ζ2
`

)( 
B`+2(y)

( 
BR+1(x)

[∇vL]22 + [〈∇〉
1
2 g]22

)
dx

)
dy.
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We then use a duality representation to compute the Lp(Ω)-norm of this expression (in the
following, X denotes a random variable, which is independent of the space variable),

E
[(ˆ

QL

ζ`(x)2
(  

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

)
dx

)p] 1
p

. sup
‖X‖

L2p′ (Ω)
=1

E
[ˆ

QL

(
sup
BR(y)

ζ2
`

)
×
(  

B`+2(y)

(  
BR+1(x)

[∇(XvL)]22 +X2[〈∇〉
1
2 g]22

)
dx

)
dy

]
.

By Hölder’s inequality and by stationarity of ζ`, we find

E
[(ˆ

QL

ζ`(x)2
(  

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

)
dx

)p] 1
p

. E
[

sup
BR

ζ2p
`

] 1
p

× sup
‖X‖

L2p′ (Ω)
=1

ˆ
QL

E
[( 

B`+2(y)

(  
BR+1(x)

[∇(XvL)]22 +X2[〈∇〉
1
2 g]22

)
dx

)p′] 1
p′

dy,

hence, since g (unlike vL) is deterministic, using Jensen’s inequality,

E
[(ˆ

QL

ζ`(x)2
(  

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

)
dx

)p] 1
p

. E
[

sup
BR

ζ2p
`

] 1
p

(
‖〈∇〉

1
2 g‖2

L2(QL)
+ sup
‖X‖

L2p′ (Ω)
=1
‖[∇(XvL)]2‖2L2(QL;L2p′ (Ω))

)
.

By perturbative annealed Lp regularity theory in form of Theorem 4.5 (without loss of
stochastic integrability!), we deduce for p� 1,

E
[(ˆ

QL

ζ`(x)2
( 

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

)
dx

)p] 1
p

. E
[

sup
BR

ζ2p
`

] 1
p ‖〈∇〉

1
2 g‖2

L2(QL)
,

where the supremum of ζ` can be estimated as follows, for all q ≥ 1,

E
[

sup
BR

ζ2p
`

] 1
p
. 〈`〉2 +

∥∥∥∥(ˆ
BR+1

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

,

For all 1 ≤ R ≤ L, q ≥ 1, and p� 1, inserting this into (4.25) yields∥∥∥ˆ
QL\IL

g : ∇φL
∥∥∥2

L2p(Ω)
. p2L−d

∥∥∥e · ˆ
IL
vL

∥∥∥2

Lp(Ω)

(ˆ L

0
〈`〉dpπ(`) d`

) 1
p

+ p2
∥∥∥ˆ

QL

|vL|2
∥∥∥

Lp(Ω)

( ˆ L

0
〈`〉dpπ(`) d`

) 1
p

+ p2‖〈∇〉
1
2 g‖2

L2(QL)

∥∥∥∥(1 +

ˆ
BR+1

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

( ˆ L

0
〈`〉(d+2)pπ(`) d`

) 1
p
.

Using the Poincaré-Sobolev inequality in dimension d > 2, Jensen’s inequality, and the
non-perturbative annealed Lp regularity theory in form of Theorem 4.4, recalling that g is
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deterministic, we find for 1 < p <∞,∥∥∥ˆ
QL

|vL|2
∥∥∥

Lp(Ω)
.

∥∥∥∥(ˆ
QL

|∇vL|
2d
d+2

) d+2
d

∥∥∥∥
Lp(Ω)

. ‖∇vL‖2
L

2d
d+2 (QL;L2p(Ω))

.p ‖g‖2
L

2d
d+2 (QL)

. (4.26)

Combining this with the above, and using the superalgebraic decay of the weight π, the
claim (4.11) follows.

Substep 1.4. Modification of (4.11).
The estimate (4.11) fails to give the correct power of the logarithm in (4.5) in the critical
dimension d = 4, in which case the estimate needs to be slightly modified. To this end,
we use the following refined version of the Poincaré inequality: There exists a universal
constant C > 0 such that for all L ≥ 1 and all ζ ∈ H1

per(QL) with vanishing average´
QL

ζ = 0, we have ˆ
QL

|ζ|2 ≤ C

ˆ
QL

|x|2|∇ζ(x)|2dx, (4.27)

in favor of which we presently argue. By scaling it is enough to consider L = 1, and
we proceed by contradiction. Assume there exists a sequence (ζn)n ⊂ H1

per(Q) with the
following properties:

´
Q |ζn|

2 = 1,
´
Q ζn = 0, and

´
Q |x|

2|∇ζn(x)|2dx → 0. First, by weak
compactness, up to a subsequence, ζn converges weakly to some limit ζ in L2

per(Q), with´
Q ζ = 0. Next, for all ε > 0, we find

´
Q\Bε |∇ζn|

2 ≤ ε−2
´
Q |x|

2|∇ζn(x)|2dx → 0, which
entails that the limit ζ must be a constant in Q, hence ζ = 0 since

´
Q ζ = 0. Using Rellich’s

theorem e.g. in the annulus Q \ 1
2Q, we further find that the restriction ζn|Q\ 1

2
Q converges

strongly to 0 in L2(Q). Given a cut-off function χ ∈ C∞c (Q) with χ| 1
2
Q = 1 and 0 ≤ χ ≤ 1,

we computeˆ
Q
χ2|ζn|2 = 1

d

ˆ
Q
χ(x)2|ζn(x)|2 (div x) dx

= −2
d

ˆ
Q
χ(x)2ζn(x)⊗ x : ∇ζn(x) dx− 2

d

ˆ
Q
χ(x)|ζn(x)|2x · ∇χ(x) dx

.
( ˆ

Q
χ2|ζn|2

) 1
2
(ˆ

Q
|x|2|∇ζn(x)|2 dx+

ˆ
Q
|∇χ|2|ζn|2

) 1
2
,

and thus, using the properties of χ,ˆ
1
2Q
|ζn|2 .

ˆ
Q
|x|2|∇ζn(x)|2 dx+

ˆ
Q\ 1

2
Q
|ζn|2.

As the restriction ζn|Q\ 1
2
Q converges strongly to 0 in L2(Q), we deduce that ζn also con-

verges strongly to 0 in L2(Q), which gives the claimed contradiction.

Applying (4.27) to vL, we thus have
´
QL
|vL|2 .

´
QL
〈·〉2|∇vL|2, and we now appeal to the

non-perturbative weighted annealed Lp regularity theory in form of Theorem 4.4, to the
effect that ∥∥∥ˆ

QL

|vL|2
∥∥∥

Lp(Ω)
.
∥∥∥ˆ

QL

〈·〉2|∇vL|2
∥∥∥

Lp(Ω)
.p ‖〈·〉g‖2L2(QL)

.

Using this estimate instead of (4.26) in Substep 1.3 yields the claimed modification of (4.11).
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Step 2. Proof that under (Mix+) in dimension d > 2 there holds for all 1 ≤ R ≤ L, q ≥ 1,
and 1� p <∞,∥∥∥e · ˆ

IL
vL

∥∥∥2

L2p(Ω)
.p ‖g‖

L
2d
d+2 (QL)

+ ‖〈∇〉
1
2 g‖2

L2(QL)

∥∥∥∥(1 +

ˆ
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

. (4.28)

This estimate allows to upgrade (4.11) to∥∥∥ˆ
QL\IL

g : ∇φL
∥∥∥2

L2p(Ω)
.p ‖g‖2

L
2d
d+2 (QL)

+ ‖〈∇〉
1
2 g‖2

L2(QL)

∥∥∥∥(1 +

ˆ
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

. (4.29)

We turn to the argument for (4.28). Using the version (4.6) of the multiscale variance
inequality (2.2) to control higher moments, we can write∥∥∥e · ˆ

IL
vL

∥∥∥2

L2p(Ω)
. p2 E

[ˆ L

0

(ˆ
QL

(
∂osc
PL,B`(x) e ·

ˆ
IL
vL

)2
dx

)p
〈`〉−dp π(`) d`

] 1
p

, (4.30)

and it remains to estimate the oscillation. Given 0 ≤ ` ≤ L and x ∈ QL, and given a
realization, let P ′L be a locally finite point set satisfying the hardcore condition in (Hδ),
with P ′L|QL\B`(x) = PL|QL\B`(x), and denote by v′L the corresponding solution of (4.10)
with PL replaced by P ′L. We decompose∣∣∣e · ˆ

IL
vL − e ·

ˆ
I′L
v′L

∣∣∣ ≤ ∣∣∣e · ˆ
I′L

(vL − v′L)
∣∣∣+
∣∣∣e · ˆ

IL
vL − e ·

ˆ
I′L
vL

∣∣∣
.

∣∣∣e · ˆ
I′L

(vL − v′L)
∣∣∣+

ˆ
B`+1(x)

|vL|. (4.31)

Testing the equation (3.2) for φ′L with vL − v′L, we obtain for any constant c′1 ∈ R,
ˆ
QL

∇φ′L : ∇(vL − v′L)

= −α′Le ·
ˆ
QL\I′L

(vL − v′L)−
∑
n

ˆ
∂I′n,L

(vL − v′L) · σ(φ′L,Π
′
L − c′1)ν,

hence, in view of the boundary conditions and of the choice
´
QL

(vL − v′L) = 0,

(α′L + 1) e ·
ˆ
I′L

(vL − v′L) =

ˆ
QL

∇φ′L : ∇(vL − v′L)

+
∑

n:x′n,L∈B`(x)

ˆ
∂I′n,L

(
vL −

 
I′n,L

vL

)
· σ(φ′L,Π

′
L − c′1)ν.

Next, testing the equation (4.15) for vL − v′L with φ′L, we obtain for any constant c2 ∈ R,

(α′L + 1) e ·
ˆ
I′L

(vL − v′L) = −
∑

n:xn,L∈B`(x)

ˆ
∂In,L

(
φ′L −

 
In,L

φ′L

)
·
(
g + σ(vL, PL − c2)

)
+

∑
n:x′n,L∈B`(x)

ˆ
∂I′n,L

(
vL −

 
I′n,L

vL

)
· σ(φ′L,Π

′
L − c′1)ν.
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In view of the local regularity theory for the Stokes equation in form of (4.19) and (4.20),
together with the pressure estimates of Lemma 4.7, we deduce∣∣∣e · ˆ

I′L
(vL − v′L)

∣∣∣ . (〈`〉d+2 +

ˆ
B`+2(x)

|∇φ′L|2
) 1

2
(ˆ

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

) 1
2
.

Using the bound (4.22) of Substep 1.2 to replace φ′L by φL in the right-hand side, and
inserting this into the decomposition (4.31), we are led to∣∣∣∂osc

PL,B`(x)e ·
ˆ
IL
vL

∣∣∣ . ∣∣∣ ˆ
B`+1(x)

vL

∣∣∣
+
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φL|2
) 1

2
(ˆ

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

) 1
2
.

Inserting this into (4.30), the claim (4.28) follows as in Substep 1.3.

Step 3. Fluctuation scaling on IL: proof that under (Mix+) in dimension d > 2 there holds
for all 1 ≤ R ≤ L, q ≥ 1, and 1� p <∞,∥∥∥ˆ

IL
g : ∇φL

∥∥∥2

L2p(Ω)
.p ‖g‖2

L
2d
d+2 (QL)

+ ‖g‖2
L2(QL)

∥∥∥∥(1 +

ˆ
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

,

which yields the conclusion (i) in combination with (4.29).

Using the version (4.6) of the multiscale variance inequality (2.2) to control higher mo-
ments, we can write∥∥∥ˆ

IL
g : ∇φL

∥∥∥2

L2p(Ω)

. p2 E
[ˆ L

0

(ˆ
QL

(
∂osc
PL,B`(x)

ˆ
IL
g : ∇φL

)2
dx

)p
〈`〉−dp π(`) d`

] 1
p

, (4.32)

and it remains to estimate the oscillation. Given 0 ≤ ` ≤ L and x ∈ Rd, and given a
realization, let P ′L be a locally finite point set satisfying the hardcore condition in (Hδ), with
P ′L|QL\B`(x) = PL|QL\B`(x), and denote by φ′L the corresponding solution of equation (3.1)
with PL replaced by P ′L. We decompose∣∣∣ˆ

IL
g : ∇φL −

ˆ
I′L
g : ∇φ′L

∣∣∣ ≤ ∣∣∣∣ ∑
n:xn,L 6∈B`(x)

ˆ
In,L

g : (∇φL −∇φ′L)

∣∣∣∣
+

∣∣∣∣ ∑
n:xn,L∈B`(x)

ˆ
In,L

g : ∇φL −
∑

n:x′n,L 6∈B`(x)

ˆ
I′n,L

g : ∇φ′L
∣∣∣∣.

Since φL and φ′L are both affine inside particles In,L’s with xn,L /∈ B`(x), we can further
write∣∣∣ˆ

IL
g : ∇φL −

ˆ
I′L
g : ∇φ′L

∣∣∣ . ∣∣∣∣∑
n

( 
In,L

g
)

:

ˆ
In,L

(∇φL −∇φ′L)

∣∣∣∣
+
(ˆ

B`+1(x)
|g|2
) 1

2
( ˆ

B`+1(x)
|∇φL|2 + |∇φ′L|2

) 1
2
.
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Using the bound (4.22) of Substep 1.2 to replace φ′L by φL in the right-hand side, this
yields∣∣∣ˆ

IL
g : ∇φL −

ˆ
I′L
g : ∇φ′L

∣∣∣ . ∣∣∣∣∑
n

( 
In,L

g
)

:

ˆ
In,L

(∇φL −∇φ′L)

∣∣∣∣
+
( ˆ

B`+1(x)
|g|2
) 1

2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φL|2
) 1

2
. (4.33)

It remains to estimate the first right-hand side term. By a standard use of the Bogovskii
operator in form of [27, Theorem III.3.1], we can construct a divergence-free tensor field
hL ∈ H1

per(QL)d×d such that hL = 0 outside IL + δB = {x ∈ QL : dist(x, IL) < δ} and
such that for all n there hold

hL|In,L+δB ∈ H1
0 (In,L + δB)d×d, hL|In,L =

 
In,L

g,

‖hL‖H1(In,L+δB) . ‖g‖L2(In,L). (4.34)

In these terms, using that hL is divergence-free, we can write by means of Stokes’ formula,∑
n

(  
In,L

g
)

:

ˆ
In,L

(∇φL −∇φ′L) =
∑
n

(  
In,L

g
)

:

ˆ
∂In,L

(φL − φ′L)⊗ ν

=
∑
n

ˆ
∂In,L

hL : (φL − φ′L)⊗ ν

= −
ˆ
QL\IL

∇i
(
hL : (φL − φ′L)⊗ ei

)
= −

ˆ
QL\IL

hL : ∇(φL − φ′L),

so that we are reduced to the sensitivity of the gradient ∇φL outside particles as already
studied in Step 1. Appealing to the bound (4.21) of Substep 1.1 together with the re-
sult (4.22) of Substep 1.2, and combining with (4.33), we obtain∣∣∣∂osc

P,B`(x)

ˆ
IL
g : ∇φL

∣∣∣ . L−d〈`〉d∣∣∣e · ˆ
IL
vL,h

∣∣∣+

ˆ
B`+1(x)

|vL,h|

+
( ˆ

B`+2(x)
|∇vL,h|2 + |〈∇〉

1
2hL|2 + |g|2

) 1
2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φL|2
) 1

2
,

where vL,h denotes the solution of the auxiliary problem (4.10) with g replaced by hL.
Inserting this into (4.32), proceeding as in Substep 1.3, and taking advantage of the
bound (4.34) in form of the pointwise estimate [〈∇〉hL]2(x) .

´
B4(x)[g]22, the claim fol-

lows.

Step 4. Hyperuniform case (ii).
The hyperuniformity assumption (Hyp+) allows to replace the multiscale inequality (4.6)
by its version (4.7), where the oscillation derivative ∂osc is replaced by its hyperuniform
counterpart ∂hyp := ∂mov + L−1∂osc. The main part ∂mov only accounts for local per-
turbations with a fixed number of points, in accordance with the suppression of density
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fluctuations, while the second part involves the full oscillation ∂osc but has the small pref-
actor L−1. Given a random variable Y (PL) with E [Y (PL)] = 0, we write (4.7) as

‖Y (PL)‖2
L2p(Ω)

. p2 Ehyp
p [Y (PL)] ≤ p2 Emov

p [Y (PL)] + p2L−2Eosc
p [Y (PL)], (4.35)

where we have set for abbreviation, for ? = osc, hyp, mov,

E∗p [Y (PL)] := E
[ˆ L

0

(ˆ
QL

(
∂?PL,B`(x)Y (PL)

)2
dx

)p
〈`〉−dpπ(`) d`

] 1
p

.

We split the proof into two substeps, separately considering the contribution of Emov
p and

of L−2Eosc
p for Y (PL) =

´
QL

g : ∇φL.

Substep 4.1. Main contribution Emov
p .

In Step 1, given 0 ≤ ` ≤ L and x ∈ Rd, and given a realization, we now let P ′L be a locally
finite point set satisfying the hardcore condition in QL, with P ′L|QL\B`(x) = PL|QL\B`(x)

and with the additional constraint ]P ′L|B`(x) = ]PL|B`(x). In particular, the latter implies
αL = α′L, so that (4.18) becomes

ˆ
QL\IL

g : ∇(φL − φ′L) = −(αL + 1)

( ∑
n:xn,L∈B`(x)

e ·
ˆ
In,L

vL −
∑

n:x′n,L∈B`(x)

e ·
ˆ
I′n,L

vL

)

−
∑

n:x′n,L∈B`(x)

ˆ
∂I′n,L

(
vL −

 
I′n,L

vL

)
· σ(φ′L,Π

′
L − c′2)ν

+
∑

n:xn,L∈B`(x)

ˆ
∂In,L

(
φ′L −

 
In,L

φ′L

)
·
(
g + σ(vL, PL − c1)

)
ν. (4.36)

The last two terms are estimated as in Substep 1.1, but we argue differently for the first
one. The restriction ]P ′L|B`(x) = ]PL|B`(x) allows to write PL|B`(x) := {xnj ,L}mj=1 and
P ′L|B`(x) := {x′n′j ,L}

m
j=1 for some 0 ≤ m . 〈`〉d. We can then easily reformulate as follows

the first right-hand side term of (4.36), using number conservation and disjointness,∣∣∣∣ ∑
n:xn,L∈B`(x)

e ·
ˆ
In,L

vL −
∑

n:x′n,L∈B`(x)

e ·
ˆ
I′n,L

vL

∣∣∣∣
≤

m∑
j=1

∣∣∣∣ˆ
B(xnj,L)

vL −
ˆ
B(x′

n′
j
,L

)
vL

∣∣∣∣ . 〈`〉ˆ
B`+1(x)

|∇vL|,

so that the result (4.13) of Substep 1.1 is replaced by∣∣∣ˆ
QL\IL

g : ∇φL −
ˆ
QL\I′L

g : ∇φ′L
∣∣∣ . 〈`〉ˆ

B`+1(x)
|∇vL|

+
( ˆ

B`+2(x)
|∇vL|2 + |〈∇〉

1
2 g|2

) 1
2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φ′L|2
) 1

2
.
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Next, a similar argument as above shows that the bound (4.23) in Substep 1.2 is replaced
byˆ

QL

|∇(φL − φ′L)|2 . 〈`〉
ˆ
B`+1(x)

|∇(φL − φ′L)|

+
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φ′L|2
) 1

2
(
〈`〉d+2 +

ˆ
B`+2(x)

|∇φL|2
) 1

2
,

so that the result (4.22) now holds in any dimension d ≥ 1. Arguing as in Substep 1.3, the
result (4.11) of Step 1 is then replaced by the following: under (Hyp+) in any dimension,
for all 1 ≤ R ≤ L, q ≥ 1, and 1� p <∞,

Emov
p

[ˆ
QL\IL

g : ∇φL
]
.p ‖〈∇〉

1
2 g‖2

L2(QL)

∥∥∥∥(1 +

ˆ
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

.

Likewise, the result of Step 3 is replaced by the following: under (Hyp+) in any dimension,
for all 1 ≤ R ≤ L, q ≥ 1, and 1� p <∞,

Emov
p

[ˆ
IL
g : ∇φL

]
.p ‖g‖2L2(QL)

∥∥∥∥(1 +

ˆ
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

,

and hence,

Emov
p

[ˆ
QL

g : ∇φL
]
.p ‖〈∇〉

1
2 g‖2

L2(QL)

∥∥∥∥(1 +

ˆ
BR

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

.

Substep 4.2. Remainder term L−2Eosc
p .

The contribution of Eosc
p has already been computed in Steps 1–3 in dimension d > 2, and

it remains to show that the same bound hold for L−2Eosc
p in any dimension. We only need

to revisit the two places where the restriction to d > 2 is used, that is, Substep 1.2 and
the estimate (4.26) in Substep 1.3.

We start with revisiting Substep 1.2. Instead of using the Poincaré-Sobolev inequal-
ity (4.24), we use Poincaré’s inequality in the following form,ˆ

B`+1(x)
|φL − φ′L| . 〈`〉

d
2

(ˆ
QL

|φL − φ′L|2
) 1

2
. L〈`〉

d
2

(ˆ
QL

|∇(φL − φ′L)|2
) 1

2
,

so that the conclusion (4.22) is replaced by the following, in any dimension d ≥ 1,ˆ
B`+2(x)

|∇φ′L|2 . L2〈`〉d +

ˆ
B`+2(x)

|∇φL|2. (4.37)

Next, we revisit the estimate (4.26) in Substep 1.3: instead of appealing to the Poincaré-
Sobolev inequality and to non-perturbative annealed Lp regularity in form of Theorem 4.4,
we simply use Poincaré’s inequality and the energy inequality (4.9), in any dimension d ≥ 1,∥∥∥ˆ

QL

|vL|2
∥∥∥

Lp(Ω)
. L2

∥∥∥ˆ
QL

|∇vL|2
∥∥∥

Lp(Ω)
. L2‖g‖2

L2(QL)
. (4.38)

Up to these two modifications (4.37) and (4.38), the conclusion of Steps 1–3 becomes the
following, for any dimension d ≥ 1, for all 1 ≤ R ≤ L, q ≥ 1, and 1� p <∞,

Eosc
p

[ ˆ
QL

g : ∇φL
]
.p L

2‖〈∇〉
1
2 g‖2

L2(QL)

∥∥∥∥(1 +

ˆ
BR+1

[∇φL]2q2

) 1
q

∥∥∥∥
Lp(Ω)

.



SEDIMENTATION OF RANDOM SUSPENSIONS 41

Multiplying both sides by L−2, and inserting this into (4.35) together with the result of
Substep 4.1, the conclusion (ii) follows. In contrast with the proof of (i), we note that (ii)
only requires perturbative annealed Lp regularity in form of Theorem 4.5. �

4.4. Proof of Proposition 4.2. Given a ball D ⊂ QL with radius rD ≥ 3 and given
arbitrary constants cD ∈ Rd and c′D ∈ R, testing the equation (3.2) for φL with η2

D(φL−cD),
where ηD denotes a cut-off function with ηD = 1 inD, ηD = 0 outside 2D, and |∇ηD| . 1

rD
,

such that ηD is constant in In,L for all n, using the boundary conditions and recalling that
divφL = 0, we easily obtain the following Caccioppoli type estimate,
ˆ
D
|∇φL|2 .

1

r2
D

ˆ
2D
|φL − cD|2

+
(ˆ

2D
|ΠL − c′D|21QL\IL

) 1
2
( 1

r2
D

ˆ
2D
|φL − cD|2

) 1
2

+

ˆ
2D
|φL − cD|.

Bounding the last right-hand side term by
ˆ

2D
|φL − cD| . rd+2

D +
1

r2
D

ˆ
2D
|φL − cD|2,

choosing c′D :=
ffl

2D\IL ΠL, and applying the pressure estimate of Lemma 4.7, we obtain
for all K ≥ 1,

 
D
|∇φL|2 .

K2

r2
D

 
2D
|φL − cD|2 +

1

K2

 
2D
|∇φL|2 + r2

D. (4.39)

Using the Poincaré-Sobolev inequality to estimate the first right-hand side term, with the
choice cD :=

ffl
2D φL, we deduce(  
D
|∇φL|2

) 1
2
. K

(  
2D
|∇φL|

2d
d+2

) d+2
2d

+
1

K

( 
2D
|∇φL|2

) 1
2

+ rD.

While this is proven here for all balls D with radius rD ≥ 3, smuggling in local quadratic
averages at scale 1 allows to infer that for all balls D (with any radius rD > 0) and K ≥ 1,( 

D
[∇φL]22

) 1
2
. K

(  
3D

[∇φL]
2d
d+2

2

) d+2
2d

+
1

K

( 
3D

[∇φL]22

) 1
2

+ rD + 1.

Choosing K large enough and applying Gehring’s lemma [28, 30], we deduce the following
Meyers type estimate: there exists some η0 > 0 (only depending on d, δ) such that for all
1 ≤ q ≤ 1 + η0 and all R ≥ 3,( 

BR

[∇φL]2q2

) 1
q
. R2 +

 
B3R

[∇φL]22.

Combining this with (4.39), we obtain for all K ≥ 1, for any constant cR ∈ Rd,( 
BR

[∇φL]2q2

) 1
q
.
K2

R2

 
B8R

|φL − cR|2 +
1

K2

 
B8R

|∇φL|2 +R2. (4.40)
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For 1 ≤ r ≤ R, choosing cR :=
ffl
B8R

χr ∗ φL, Poincaré’s inequality yields 
B8R

|φL − cR|2 .
 
B8R

|φL − χr ∗ φL|2 +

 
B8R

|χr ∗ φL − cR|2

.χ r2

 
B8R

|∇φL|2 +R2

 
B8R

|χr ∗ ∇φL|2.

Inserting this into (4.40), we find( 
BR

|∇φL|2q
) 1
q
.
(
K2 r

2

R2
+

1

K2

) 
B8R

|∇φL|2 +K2

 
B8R

|χr ∗ ∇φL|2 +R2.

Since stationarity and Jensen’s inequality yield∥∥∥ 
B8R

|∇φL|2
∥∥∥

Lp(Ω)
.
∥∥∥ 

BR

|∇φL|2
∥∥∥

Lp(Ω)
.

∥∥∥∥( 
BR

|∇φL|2q
) 1
q

∥∥∥∥
Lp(Ω)

and

E
[(  

B8R

|χr ∗ ∇φL|2
)p]
≤ E

[ 
B8R

|χr ∗ ∇φL|2p
]

= E
[
|χr ∗ ∇φL|2p

]
,

this implies∥∥∥∥( 
BR

|∇φL|2q
) 1
q

∥∥∥∥
Lp(Ω)

.χ
(
K2 r

2

R2
+

1

K2

)∥∥∥∥( 
BR

|∇φL|2q
) 1
q

∥∥∥∥
Lp(Ω)

+K2
∥∥∥ˆ

QL

χr∇φL
∥∥∥2

L2p(Ω)
+R2.

Choosing K � 1 and R �χ,K r, the first right-hand side term can be absorbed and the
conclusion follows. �

5. Homogenization result

The proof of Theorem 3 combines the quantitative estimates of Theorems 1–2 together
with the homogenization result for colloidal (non-sedimenting) suspensions in [19, Theo-
rem 1]. In particular, this qualitative result requires mixing assumptions and quantitative
estimates.

Proof of Theorem 3. We start with a suitable splitting of the Stokes problem (2.13). In
terms of the renormalized pressure P̃ε := Pε − 1

ελe · x, rewriting the boundary conditions
as follows,

0 = εd−1e|Iωn |+
ˆ
ε∂Iωn

σ(uωε , P
ω
ε )ν

= εd−1e|Iωn | −
ˆ
ε∂Iωn

1
ε (λe · x)ν +

ˆ
ε∂Iωn

σ(uωε , P̃
ω
ε )ν

= εd−1(1− λ)e|Iωn |+
ˆ
ε∂Iωn

σ(uωε , P̃
ω
ε )ν,

and for all Θ ∈Mskew,

0 =

ˆ
ε∂Iωn

Θν · σ(uωε , P
ω
ε )ν =

ˆ
ε∂Iωn

Θν · σ(uωε , P̃
ω
ε )ν,
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we can rewrite (2.13) in the following equivalent form,

−4uωε +∇P̃ωε = f − 1
ελe, in U \ Iωε (U),

divuωε = 0, in U \ Iωε (U),
uωε = 0, on ∂U,
D(uωε ) = 0, in Iωε (U),

εd−1(1− λ)e|Iωn |+
´
ε∂Iωn

σ(uωε , P̃
ω
ε )ν = 0, ∀n ∈ N ω

ε (U),´
ε∂Iωn

Θν · σ(uωε , P̃
ω
ε )ν = 0, ∀n ∈ N ω

ε (U), ∀Θ ∈Mskew,

(5.1)

By linearity and since α = λ
1−λ , we may then decompose the solution into two parts,

uωε = uωε,1 + (1− λ)uωε,2, P̃ωε = Pωε,1 + (1− λ)Pωε,2,

where (uωε,1, P
ω
ε,1) solves

−4uωε,1 +∇Pωε,1 = f, in U \ Iωε (U),
divuωε,1 = 0, in U \ Iωε (U),
uωε,1 = 0, on ∂U,
D(uωε,1) = 0, in Iωε (U),´
ε∂Iωn

σ(uωε,1, P
ω
ε,1)ν = 0, ∀n ∈ N ω

ε (U),´
ε∂Iωn

Θν · σ(uωε,1, P
ω
ε,1)ν = 0, ∀n ∈ N ω

ε (U), ∀Θ ∈Mskew,

(5.2)

while (uωε,2, P
ω
ε,2) is a rescaled proxy with Dirichlet boundary conditions on U for the “sed-

imentation corrector” (φ,Π) in Theorem 1, cf. (2.6),

−4uωε,2 +∇Pωε,2 = −1
εαe, in U \ Iωε (U),

divuωε,2 = 0, in U \ Iωε (U),
uωε,2 = 0, on ∂U,
D(uωε,2) = 0, in Iωε (U),

εd−1e|Iωn |+
´
ε∂Iωn

σ(uωε,2, P
ω
ε,2)ν = 0, ∀n ∈ N ω

ε (U),´
ε∂Iωn

Θν · σ(uωε,2, P
ω
ε,2)ν = 0, ∀n ∈ N ω

ε (U), ∀Θ ∈Mskew,

(5.3)

where we recall α = λ
1−λ . We split the proof into two steps, and analyze the two contribu-

tions separately.

Step 1. Homogenization of (5.2).
The system (5.2) coincides with the equations for a steady Stokes fluid with a colloidal
(non-sedimenting) suspension, as we already studied in [19]. In view of [19, Theorem 1],
for almost all ω, there holds uωε,1 ⇀ ū weakly in H1

0 (U) and(
Pωε,1−

 
U\Iωε (U)

Pωε,1

)
1U\Iωε (U)−

(
P̄+b : D(ū)−

 
U
P̄
)
1U\Iωε (U) ⇀ 0, weakly in L2(U),

where (ū, P̄ ) denotes the unique weak solution of the homogenized problem (2.14). More-
over, provided f ∈ Lp(U) for some p > d, for almost all ω, in view of [19, Theorem 1], a
corrector result holds for the velocity field in form of∥∥∥uωε,1 − ū− ε∑

E∈E
ψωE( ·ε)∇E ū

∥∥∥
H1(U)

→ 0, (5.4)
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and for the pressure field in form of

inf
κ∈R

∥∥∥Pωε,1 − P̄ − b : D(ū)−
∑
E∈E

(Σω
E1Rd\Iω)( ·ε)∇E ū− κ

∥∥∥
L2(U\Iωε (U))

→ 0. (5.5)

Step 2. Analysis of (5.3): proof that, under (Mix+) for d > 2 or under (Hyp+) for any
d ≥ 1, there holds for almost all ω,

‖uωε,2 − εφω( ·ε)‖H1(U) → 0, (5.6)

inf
κ∈R

∥∥Pωε,2 − (Πω1Rd\Iω)( ·ε)− κ
∥∥2

L2(U\Iωε (U))
→ 0,

where we recall that (φ,Π) is the unique solution of the infinite-volume problem (2.6) as
given by Theorem 1. More precisely, we claim that for all 1 ≤ p <∞,

‖uε,2 − εφ( ·ε)‖
2
Lp(Ω;H1(U)) .p εµd(

1
ε )

3
2 , (5.7)

inf
κ∈R

∥∥(Pε,2 − (Π1Rd\I)(
·
ε)− κ

)
1U\Iε(U)

∥∥2

Lp(Ω;L2(U))
.p εµd(

1
ε )

3
2 ,

and that for all κ > 0 there exists a random variable Xκ with bounded moments such that
for almost all ω,

‖uωε,2 − εφω( ·ε)‖
2
H1(U) . (X ωκ )2ε1−2κµd(

1
ε )

3
2 , (5.8)

inf
κ∈R

∥∥(Pωε,2 − (Πω1Rd\Iω)( ·ε)− κ
)
1U\Iε(U)

∥∥2

L2(U)
. (X ωκ )2ε1−2κµd(

1
ε )

3
2 ,

in terms of

µd(r) :=


1 : under (Mix+) with d > 4, or under (Hyp+) with d > 2;

log(2 + r)
1
2 : under (Mix+) with d = 4, or under (Hyp+) with d = 2;

〈r〉
1
2 : under (Mix+) with d = 3, or under (Hyp+) with d = 1.

We focus on the convergence of uε,2. The corresponding convergence of the pressure Pε,2
is obtained similarly, further using the Bogovskii operator as in the proof of Lemma 4.7
(see also [19, Substep 8.3 of Section 3]); details are omitted. We split the proof into three
further substeps.

Substep 2.1. Proof that for all 1 ≤ R ≤ 1
ε ,

‖uωε,2 − εφω( ·ε)‖
2
H1(U) . εR

3 + εd
ˆ
∂RUε

( 1

R2
|φω|2 + |∇φω|2

)
, (5.9)

where we use the short-hand notation Uε := 1
εU and ∂RUε := {x ∈ Uε : dist(x, ∂Uε) < R}.

We start by rescaling the equations: the functions vε(x) := 1
εuε,2(εx) and Qε(x) := Pε,2(εx)

on Uε satisfy 

−4vωε +∇Qωε = −αe, in Uε \ Iω(Uε),
divvωε = 0, in Uε \ Iω(Uε),
vωε = 0, on ∂Uε,
D(vωε ) = 0, in Iω(Uε),
e|Iωn |+

´
∂Iωn

σ(vωε , Q
ω
ε )ν = 0, ∀n ∈ N ω(Uε),´

∂Iωn
Θν · σ(vωε , Q

ω
ε )ν = 0, ∀n ∈ N ω(Uε), ∀Θ ∈Mskew,

(5.10)

where we use the short-hand notation Iω(Uε) := Iω1 (Uε) and N ω(Uε) := N ω
1 (Uε). This

Stokes system (5.10) is formally the approximation of the infinite-volume problem (2.6) on



SEDIMENTATION OF RANDOM SUSPENSIONS 45

the set Uε with homogeneous Dirichlet boundary conditions (and discarding particles that
are close to the boundary of Uε); the claim (5.6) is therefore not surprising. Arguing as in
Step 1 of the proof of Theorem 1, we note that the Stokes equation for vωε implies in the
weak sense on the whole rescaled domain Uε,

−4vωε +∇(Qωε 1Uε\Iω(Uε)) = −αe1Uε\Iω(Uε) −
∑

n∈Nω(Uε)

δ∂Iωn σ(vωε , Q
ω
ε )ν, (5.11)

which we compare to the corresponding equation for φω on the whole space Rd, cf. (2.6),

−4φω +∇(Πω1Rd\Iω) = −αe1Rd\Iω −
∑
n

δ∂Iωn σ(φω,Πω)ν.

We choose a smooth cut-off function ηωε : Rd → [0, 1] such that ηωε is supported in Uε,
ηωε is constant inside the particles Iωn and vanishes in Iωn for n /∈ N ω(Uε). In addition,
given some 1 ≤ R ≤ 1

ε (that will be chosen later depending on ε and d), we assume that
ηωε satisfies ηωε (x) = 1 for all x ∈ Uε with dist(x, ∂Uε) ≥ R, and |∇ηωε | . 1

R . The above
equation for φω entails that ηωε φω satisfies the following in the weak sense on the whole
space Rd,

−4(ηωε φ
ω) +∇(ηωε Πω1Rd\Iω) = −ηωε αe1Rd\Iω − ηωε

∑
n

δ∂Iωn σ(φω,Πω)ν

−
(
∇φω −Πω1Rd\Iω

)
∇ηωε −∇ · (φω ⊗∇ηωε ). (5.12)

Substracting (5.12) from (5.11), and adding arbitrary constants to the pressures, we obtain
for any c, c′ ∈ R,

−4(vωε − ηωε φω) = ∇
(
ηωε (Πω − c)1Rd\Iω − (Qωε − c′)1Uε\Iω(Uε)

)
+ e
(
αηωε 1Rd\Iω − α1Uε\Iω(Uε)

)
+
(
∇φω − (Πω − c)1Rd\Iω

)
∇ηωε +∇ · (φω ⊗∇ηωε )

+
∑

n∈Nω(Uε)

δ∂Iωn

(
ηωε σ(φω,Πω − c)− σ(vωε , Q

ω
ε − c′)

)
ν.

Testing this equation with vωε − ηωε φ
ω ∈ H1

0 (Uε), recalling that both vωε and φω are
divergence-free, noting that vωε −ηωε φω is constant inside the particles Iωn with n ∈ N ω(Uε),
using the boundary conditions for vωε and φω, and using the properties of ηωε , we are led to
ˆ
Uε

|∇(vωε − ηωε φω)|2 .
ˆ
∂RUε

|vωε − ηωε φω|

+
1

R

ˆ
∂RUε

|φω|
(
|Qωε − c′|1Uε\Iω(Uε) + |Πω − c|1Rd\Iω

)
+

1

R

ˆ
∂RUε

|vωε − ηωε φω|
(
|∇φω|+ |Πω − c|1Rd\Iω

)
+

1

R

ˆ
∂RUε

|∇(vωε − ηωε φω)||φω|. (5.13)

We separately estimate the different right-hand side terms, and we start with the first one.
Using Cauchy-Schwarz’ inequality and Poincaré’s inequality on H1

0 (Uε) restricted to the
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annulus ∂RUε (with Poincaré constant O(R)), we find for all K ≥ 1,ˆ
∂RUε

|vωε − ηωε φω| . (ε1−dR)
1
2

(ˆ
∂RUε

|vωε − ηωε φω|2
) 1

2

. (ε1−dR3)
1
2

(ˆ
∂RUε

|∇(vωε − ηωε φω)|2
) 1

2

. K2ε1−dR3 +
1

K2

ˆ
∂RUε

|∇(vωε − ηωε φω)|2.

We turn to the second right-hand side term in (5.13). Using Cauchy-Schwarz’ inequality
and the pressure estimate of Lemma 4.7 with c :=

ffl
∂RUε\Iω Πω and c′ :=

ffl
∂RUε\Iω(Uε)

Qωε
(the proof of Lemma 4.7 needs to be repeated on the annulus ∂RUε, using Poincaré’s
inequality as above), we obtain for all K ≥ 1,

1

R

ˆ
∂RUε

|φω|
(
|Qωε − c′|1Uε\Iω(Uε) + |Πω − c|1Rd\Iω

)
.

( 1

R2

ˆ
∂RUε

|φω|2
) 1

2
(ˆ

∂RUε

|Qωε − c′|21Uε\Iω(Uε) + |Πω − c|21Rd\Iω
) 1

2

.
( 1

R2

ˆ
∂RUε

|φω|2
) 1

2
(
ε1−dR3 +

ˆ
∂RUε

|∇φω|2 + |∇vωε |2
) 1

2

. ε1−dR3 +K2

ˆ
∂RUε

( 1

R2
|φω|2 + |∇φω|2

)
+

1

K2

ˆ
∂RUε

|∇(vωε − ηωε φω)|2.

It remains to analyze the last two right-hand side terms in (5.13). Proceeding similarly as
above, we obtain for all K ≥ 1,

1

R

ˆ
∂RUε

|vωε − ηωε φω|
(
|∇φω|+ |Πω − c|1Rd\Iω

)
. K2ε1−dR3 +K2

ˆ
∂RUε

|∇φω|2 +
1

K2

ˆ
∂RUε

|∇(vωε − ηωε φω)|2,

and also
1

R

ˆ
∂RUε

|∇(vωε − ηωε φω)||φω| . K2

ˆ
∂RUε

1

R2
|φω|2 +

1

K2

ˆ
∂RUε

|∇(vωε − ηωε φω)|2.

Inserting the above estimates into (5.13) and choosing K large enough to absorb part of
the right-hand side terms into the left-hand side, we are led toˆ

Uε

|∇(vωε − ηωε φω)|2 . ε1−dR3 +

ˆ
∂RUε

( 1

R2
|φω|2 + |∇φω|2

)
,

which yields (5.9) after rescaling and using Poincaré’s inequality.

Substep 2.2. Proof of (5.7).
Taking the expectation of the p-th power of (5.9) and using the quantitative estimates of
Theorem 2, under (Mix+) for d > 2 or under (Hyp+) for any d ≥ 1, we deduce for all
1 ≤ p <∞ and 1 ≤ R ≤ 1

ε ,

‖uε,2 − εφ( ·ε)‖
2
Lp(Ω;H1(U)) .p ε

( 1

R
µd(

1
ε )2 +R3

)
,

and the claim (5.7) follows for the choice R = µd(
1
ε )

1
2 .
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Substep 2.3. Proof of (5.8).
Starting point is again (5.9) for R = µd(

1
ε )1/2. We need to convert the optimal annealed

bounds (2.7)–(2.8) and (2.9)–(2.10) into suboptimal quenched bounds and prove that for
all κ > 0 there exists a random variable Xκ with finite algebraic moments such that for
all x ∈ Rd,

|φω(x)| ≤ X ωκ 〈x〉κµd(|x|), |∇φω(x)| ≤ X ωκ 〈x〉κ. (5.14)
Indeed, equipped with these bounds, we deduce for all 0 < κ� 1 and almost all ω,

εd
ˆ
∂RUε

( 1

R2
|φω|2 + |∇φω|2

)
. (X ωκ )2ε1−2κµd(

1
ε )

3
2
ε↓0−−→ 0,

so that (5.8) follows from (5.9). To prove (5.14), we set

X ωκ := sup
x∈Rd

(
〈x〉−κµd(|x|)−1|φω(x)|+ 〈x〉−κ|∇φω(x)|

)
,

and it suffices to check that this random variable has bounded moments. By local regularity
in form of (4.3), a covering argument yields

X ωκ . sup
x∈ 1√

d
Zd

(
〈x〉−κµd(|x|)−1

(  
B2(x)

|φω|2
) 1

2
+ 〈x〉−κ

( 
B2(x)

|∇φω|2
) 1

2

)
.

Hence, given κ > 0, since the function x 7→ 〈x〉−pκ is integrable on Rd for p > d/κ, the
moment bounds (2.7)–(2.8) and (2.9)–(2.10) lead (after bounding the supremum on 1√

d
Zd

by the sum) to

E [(Xκ)p] .p
∑

x∈ 1√
d
Zd
〈x〉−pκ E

[
µd(|x|)−p

( 
B2(x)

|φ|2
) p

2
+
( 

B2(x)
|∇φ|2

) p
2

]

.p
∑

x∈ 1√
d
Zd
〈x〉−pκ .p 1,

that is, Xκ ∈ Lp(Ω) (which is therefore almost surely finite). �

Appendix A. Functional-analytic version of hyperuniformity

The present appendix is devoted to a more detailed discussion and motivation of the
hyperuniformity assumptions (Hyp) and (Hyp+). Pioneered by Lebowitz [50, 43] in the
physical literature for Coulomb systems, the notion of hyperuniformity for a point process P
on Rd was first coined and theorized by Torquato and Stillinger [69] (see also [67, 29]) as
the suppression of density fluctuations. More precisely, while for a Poisson point process
one has Var [](P ∩BR)] ∝ |BR|, the process P is said to be hyperuniform if rather

lim
R↑∞

Var [](P ∩BR)]

|BR|
= 0. (A.1)

Typically, this concerns processes for which number fluctuations are a boundary effect, that
is, Var [](P ∩BR)] . |∂BR|. Hyperuniformity can be interpreted as a hidden form of order
on large scales and has been observed in various types of physical and biological systems,
see e.g. [69, 67]. For Coulomb gases, rigorous results on the hyperuniformity of the Gibbs
state have been recently obtained in [9, 49, 64]. The simplest examples of hyperuniform
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processes are given by perturbed lattices, e.g. P := {z + Uz : z ∈ Zd} where the lattice
points in Zd are pertubed by iid random variables {Uz}z∈Zd (this model however only
enjoys discrete stationarity due to the lattice structure; see [61, 73] for refined properties).

Alternatively, hyperuniformity is known to be equivalent to the vanishing of the structure
factor in the small-wavenumber limit, that is,

lim
k→0

S(k) = 0,

where the structure factor is defined as the Fourier transform S(k) := ĥ2(k) of the total
pair correlation function h2, cf. Definition 2.1. If the pair correlation function is integrable,
this can equivalently be written as

S(0) =

ˆ
Rd
h2 = 0. (A.2)

The advantage of this reformulation in terms of the structure factor S(k) is that the latter
can be directly observed in diffraction experiments. This property of vanishing structure
factor is reminiscent of crystals, and indeed hyperuniform processes share crystalline prop-
erties on large scales, although they can be statistically isotropic like gases, thereby leading
to a new state of matter [68].

In the spirit of (A.2), in our periodized setting, for a family {PL}L≥1 of random point
processes PL onQL, we consider the following slightly relaxed definition of hyperuniformity,
cf. (Hyp),

sup
L≥1

L2
∣∣∣ ˆ

QL

h2,L

∣∣∣ < ∞, (A.3)

which is viewed as the approximate vanishing of the corresponding structure factors at 0
in the limit L ↑ ∞. The precise rate O(L−2) is chosen in view of Lemma A.2 below.
As claimed, such a definition of hyperuniformity in terms of structure factors implies the
suppression of density fluctuations in the following sense.

Lemma A.1 (Density fluctuations [69, 29]). Let a family {PL}L≥1 of random point pro-
cesses PL on QL be hyperuniform in the sense of (A.3). Then, for all 1 ≤ R ≤ L,

Var [](PL ∩BR)] . ρ2
L|BR|

(
L−2 +

ˆ
QL

(
1 ∧ |x|LR

)
|g2,L(x)| dx

)
.

In particular, provided that the pair correlation function g2,L has fast enough decay in the
sense of supL≥1

´
QL
|x|L|g2,L(x)| dx <∞, we deduce for all 1 ≤ R ≤ L,

Var [](PL ∩BR)] . ρ2
L|∂BR|. ♦

Proof. Number fluctuations are computed as follows,

Var [](PL ∩BR)] = Var

[∑
n

1BR(xn,L)

]
= ρ2

L

¨
BR×BR

h2,L(x− y) dxdy

= ρ2
L

ˆ
QL

|BR(−x) ∩BR|h2,L(x) dx.

Hence, decomposing

|BR(−x) ∩BR| = |BR| − |BR \BR(−x)| = |BR|+
(
1 ∧ |x|LR

)
O(|BR|),
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where the last summand is a continuous function that vanishes at x = 0, we deduce∣∣∣∣ 1

|BR|
Var [](PL ∩BR)]− ρ2

L

ˆ
QL

h2,L

∣∣∣∣ . ρ2
L

ˆ
QL

(
1 ∧ |x|LR

)
|g2,L(x)| dx,

and the conclusion follows. �

Recall that a Poisson point process P = {xn}n on Rd satisfies Var [
∑

n ζ(xn)] ∝
´
Rd |ζ|

2

for all ζ ∈ C∞c (Rd), and that similarly any point process P with integrable pair correlation
function satisfies

Var

[∑
n

ζ(xn)

]
= ρ2

¨
Rd×Rd

ζ(x)ζ(y)h2(x− y) dxdy . ρ2

ˆ
Rd
|ζ|2. (A.4)

The suppression of density fluctuations under hyperuniformity is naturally expected to
lead to an improved version of such a variance estimate. Indeed, given an independent
copy {x′n}n of P = {xn}n, we may represent

Var

[∑
n

ζ(xn)

]
= EE′

[
1

2

(∑
n

ζ(xn)−
∑
n

ζ(x′n)
)2
]
,

and the suppression of density fluctuations would formally allow to locally couple the
random point sets {x′n}n and {xn}n, only comparing points of the two realizations one to
one locally, which would ideally translate into the gain of a derivative: for all ζ ∈ C∞c (Rd),

Var

[∑
n

ζ(xn)

]
. ρ2

ˆ
Rd
|∇ζ|2. (A.5)

Indeed, provided that the pair correlation function has fast enough decay, it can be checked
that hyperuniformity (A.1) is equivalent to this improved variance inequality (A.5). In our
periodized setting, a rigorous statement is as follows.

Lemma A.2 (Functional characterization of hyperuniformity). Consider a family {PL}L≥1

of random point processes PL = {xn,L}n on QL and assume that the pair correlation func-
tion g2,L has fast enough decay in the sense of

sup
L≥1

ˆ
QL

|x|2L|g2,L(x)| dx <∞.

Then {PL}L≥1 is hyperuniform in the sense of (A.3) if and only if for all L ≥ 1 and
ζ ∈ C∞per(QL) we have

Var

[∑
n

ζ(xn,L)

]
. ρ2

L

ˆ
QL

|∇ζ|2 + L−2ρ2
L

ˆ
QL

|ζ|2. (A.6)

In particular, the latter implies for all ζ ∈ C∞per(QL) with E [
∑

n ζ(xn,L)] = ρL
´
QL

ζ = 0,

Var

[∑
n

ζ(xn,L)

]
. ρ2

L

ˆ
QL

|∇ζ|2. ♦

Proof. By the definition of the total pair correlation function h2,L, cf. Definition 2.1, recall
that

Var

[∑
n

ζ(xn,L)

]
= ρ2

L

¨
QL×QL

ζ(x)ζ(y)h2,L(x− y) dxdy.



50 M. DUERINCKX AND A. GLORIA

Choosing ζ = 1, the variance inequality (A.6) yields∣∣∣ ˆ
QL

h2,L

∣∣∣ . L−2,

that is, our definition (A.3) of hyperuniformity, and it remains to prove the converse
implication. Recomposing the square, the above identity for the variance takes the form

Var

[∑
n

ζ(xn,L)

]
= −1

2
ρ2
L

¨
QL×QL

|ζ(x)−ζ(y)|2 g2,L(x−y) dxdy+
(
ρ2
L

ˆ
QL

|ζ|2
)(ˆ

QL

h2,L

)
.

Using the decay of correlations to estimate the first right-hand side term, and hyperuni-
formity (A.3) to estimate the last one, the variance inequality (A.6) follows. �

While the above variance inequality is restricted to linear functionals YL =
∑

n ζ(xn,L) of
the point process, the analysis of nonlinear multibody interactions requires a corresponding
tool for general nonlinear functionals. For general functionals Y = Y (P) of a Poisson
point process P with unit intensity on Rd, the following variance inequality is known to
hold [72, 48],

Var [Y (P)] ≤ E
[ˆ

Rd

(
∂add
y Y (P)

)2
dy

]
, ∂add

y Y (P) := Y (P ∪ {y})− Y (P),

where the difference operator ∂add is known as the add-one-point operator. More general
versions of this type of functional inequality have been considered in the literature as a
convenient quantification of nonlinear mixing in order to cover various classes of exam-
ples. In this spirit, our improved mixing assumption (Mix+) is formulated in terms of
the multiscale variance inequality (2.2) of [21, 22]. As shown in [22, Section 3], this cov-
ers most examples of interest in materials science [66], including for instance (periodized)
hardcore Poisson processes and random parking processes. Applied to a linear functional
YL =

∑
n ζ(xn,L), this variance inequality (2.2) clearly reduces to (A.4), so that (2.2) can

indeed be viewed as a nonlinear version of (A.4).

In the hyperuniform setting, as number fluctuations are suppressed, the add-one-point
operator in the above or the general oscillation in (Mix+) could be intuitively replaced
by a suitable “move-point” operator, only allowing to locally move points of the process,
but not add or remove any. A general version of this idea is formalized as the improved
hyperuniformity assumption (Hyp+) in form of (2.3). Again, applied to a linear functional
YL =

∑
n ζ(xn,L), this new variance inequality (2.3) clearly reduces to (A.6), so that (2.3)

can be viewed as a nonlinear version. We believe that this new functional inequality is of
independent interest.

Example A.3 (Perturbed lattices). We briefly show that assumption (Hyp+) in terms of
the hyperuniform multiscale variance inequality (2.3) is not empty. For that purpose, we
consider the simplest example of a hyperuniform process on QL, that is, the perturbed
lattice PL := {z+Uz : z ∈ Zd ∩QL}, where the lattice points in Zd ∩QL are perturbed by
iid random variables {Uz}z∈Zd∩QL , say with values in the unit ball B. This model PL is
easily checked to satisfy the following stronger version of the variance inequality (2.3): for
all σ(PL)-measurable random variables Y (PL),

Var [Y (PL)] ≤ 1

2
E
[ˆ

QL

(
∂mov
PL,B1+

√
d/2(z)Y (PL)

)2
dz

]
, (A.7)
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where we recall that the move-point derivative ∂mov is defined in (Hyp+). This is indeed
a direct consequence of the Efron-Stein inequality [24] for the iid sequence {Uz}z∈Zd∩QL in
the following form: for PL,z := {y + Uy}y:y 6=z ∪ {z + U ′z} with {U ′z}z an iid copy of {Uz}z,

Var [Y (PL)] ≤ 1

2
E
[ ∑
z∈Zd∩QL

(
Y (PL)− Y (PL,z)

)2]
,

while Y (PL)− Y (PL,z) can be bounded by ∂mov
P,B(z)Y (P), thus leading to (A.7). ♦
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