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Abstract. In his PhD thesis, Einstein derived an explicit first-order expansion for the
effective viscosity of a Stokes fluid with a suspension of small rigid particles at low density.
His formal derivation relied on two implicit assumptions: (i) there is a scale separation
between the size of the particles and the observation scale; and (ii) at first order, dilute
particles do not interact with one another. In mathematical terms, the first assumption
amounts to the validity of a homogenization result defining the effective viscosity tensor,
which is now well understood. Next, the second assumption allowed Einstein to approx-
imate this effective viscosity at low density by considering particles as being isolated.
The rigorous justification is, in fact, quite subtle as the effective viscosity is a nonlinear
nonlocal function of the ensemble of particles and as hydrodynamic interactions have
borderline integrability. In the present memoir, we establish Einstein’s effective viscosity
formula in the most general setting. In addition, we pursue the low-density expansion to
arbitrary order in form of a cluster expansion, where the summation of hydrodynamic
interactions crucially requires suitable renormalizations. In particular, we justify a cel-
ebrated result by Batchelor and Green on the second-order correction and we explicitly
describe all higher-order renormalizations for the first time. In some specific settings,
we further address the summability of the whole cluster expansion. Our approach relies
on a combination of combinatorial arguments, variational analysis, elliptic regularity,
probability theory, and diagrammatic integration methods.
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1. General overview

1.1. Historical context. At the dawn of the 20th century, the debate was still raging
on the existence of atoms, and Einstein’s PhD thesis “A New Determination of Molecular
Dimensions” [21] aimed to support the atomic theory. This was the second of his five
celebrated 1905 contributions and constitutes his most cited work. The main part was
devoted to the hydrodynamic derivation of a formula for the effective viscosity of a fluid
with a dilute suspension of rigid particles: the so-called Einstein formula in fluid mechanics,
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which is the focus of the present memoir. Next, in the same work, Einstein derived a
relation between the diffusion constant for suspended particles and their mobility: the
so-called Einstein relation in kinetic theory. He then applied these two relations to sugar
dissolved in water: using available empirical data, he deduced an estimate of the Avogadro
number and of the size of sugar molecules (after eliminating a calculation error [22]). We
refer to [60] for an inspiring account of this seminal work. As discussed by Perrin in his
extensive report [57] at the first Solvay conference in 1911 in Brussels, these discoveries were
confirmed by further experiments and shown to agree with other methods to determine
the Avogadro number, which sealed the triumph of the atomic theory.

We briefly describe Einstein’s argument to estimate the effective viscosity of a dilute
suspension. Viscosity of a fluid is usually measured by shear-flow experiments: a cylindri-
cal vessel is filled with the fluid, a rotating spindle is immersed in it, and one measures
the torque needed to make it rotate at constant angular speed. Assume now that the fluid
contains a suspension of small rigid spherical particles and consider their influence on the
measured viscosity. As particles are rigid, they act as obstacles and hinder the fluid flow,
thus effectively increasing the measured viscosity. A first challenging question concerns
the dynamics of the particles: do they reach a statistical steady state? If this is the case
and if one indeed measures a constant-in-time effective viscosity, then the latter depends
on the steady state, hence possibly on the speed of the spindle itself, which corresponds to
possible non-Newtonian behaviors [30, Section 7]. Einstein’s main idea in [21] was that, in
the low-density regime, for spherical particles, the first-order effective change in viscosity
should only depend on the volume fraction of the particles and not on their distribution. In
particular, this universality would relegate non-Newtonian effects to higher-order correc-
tions. More precisely, in 3D, given a fluid with isotropic viscosity Id and given suspended
spherical particles with small volume fraction ϕ � 1, Einstein’s formula for the effective
viscosity takes the form

B̄ = Id
(
1 + 5

2ϕ+ o(ϕ)
)
. (1.1)

Heuristically, the argument is as follows: at low density, particles are scarce and typically
well separated, hence their interactions are negligible to leading order. The first-order effect
on the viscosity should thus be proportional to the volume fraction and correspond to the
energy dissipation of a single isolated particle in the fluid. The latter can be computed
explicitly for spherical particles and leads to the celebrated 5

2 factor in (1.1); we refer to
Section 2.6 below, where this classical calculation is reproduced.

This type of low-density expansions was not new in the physics community at the time,
but was very much in line with other work on the micromechanics of heterogeneous media
of the late 19th century. Einstein’s formula is indeed comparable to the Clausius–Mossotti
formula for the effective dielectric constant [50, 51, 10], to Maxwell’s formula for the effec-
tive conductivity in electrostatics [48], or to the Lorentz–Lorenz formula for the effective
refractive index in optics [46, 45]; we refer to [47] for an account of the historical context.

Einstein’s formula triggered a lot of long-lasting activity in fluid mechanics: the large-
scale rheology of suspensions was soon considered as a topic in its own right [41, 23, 40].
Various works have aimed at understanding to what extent Einstein’s formula is robust
and accurate. Robustness has been addressed in particular by establishing corresponding
formulas for particles of different shapes, as e.g. the explicit formulas by Jeffery [39] for
suspensions of ellipsoids (see also [43, 34]). Accuracy is a more subtle issue and essentially
amounts to capturing the next-order term in the low-density expansion. While particle
interactions are neglected at first order, the next-order correction consists of including the
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effects of pairwise interactions. Due to their long-range nature, the sum of pairwise con-
tributions is not summable and some renormalization is therefore needed. This was first
achieved by Batchelor and Green [7], and we refer to [33, 55, 1] for other formal renor-
malization ideas. A related, yet different, topic concerns the sedimentation of suspended
particles under gravity and the computation of their effective settling speed, which happens
to require a similar renormalization: the above-mentioned contribution by Batchelor and
Green [7] was indeed inspired by Batchelor’s work [6] on sedimentation. Interestingly, the
renormalization of higher-order corrections to the effective viscosity had remained open in
the physics community.

We also refer to [62, 54, 2] for the asymptotic analysis of the effective viscosity for dilute
periodic arrays of suspended particles and, in a more mathematical spirit, we mention the
pioneering work by Sánchez-Palencia et al. [59, 44] using formal two-scale expansions for
locally periodic suspensions.

1.2. Mathematical reformulation and objectives. As described above, Einstein’s for-
mal derivation of (1.1) in [21] relies the following two implicit hypotheses:
(E1) Scale separation. There is a scale separation between the “microscopic” particle size

and the “macroscopic” observation scale. Therefore, the suspension behaves on the
observation scale like an “effective” fluid with some effective viscosity tensor B̄ that
can then be measured by shear-flow experiments.

(E2) Particle interactions are negligible. In the low-density regime, particles are typically
well-separated and therefore, to leading order, they do not interact and can be treated
as being isolated.

We briefly discuss the validity of these two working hypotheses and then turn to describing
the literature and our objectives in the present memoir.

1.2.1. Einstein’s hypothesis (E1): scale separation. This first hypothesis concerns the defi-
nition of a notion of effective viscosity for suspensions when the particle size O(ε) is much
smaller than the observation scale O(1). Consider a shear-flow experiment to measure the
viscosity, say using a rotational viscosimeter. Let D denote the fluid domain in this device
and let {xtε,n}n ⊂ D stand for positions of suspended particles at time t, which evolve over
time with the fluid flow. If inertia is neglected, the dynamics is greatly simplified: given
particle positions at a given time, the fluid velocity satisfies steady Stokes equations, which
determine instantaneous particle velocities. In this context, the emergence of an effective
viscosity can be split into two parts:
— Steady-state microstructure. As the measured effective viscosity is expected not to

depend on time, it implicitly requires particle positions to reach a statistical steady
state in the long run. Focussing on a portion of the fluid in the bulk, we may consider
without much loss of generality that the statistical ensemble is stationary (henceforth,
“stationarity” stands for statistical spatial homogeneity). In other words, the point set
{xtε,n}n can be approximately replaced by a random point set {εxn : εxn ∈ D} that is
the ε-rescaling of some stationary random point process P = {xn}n. The law of this
steady state may depend itself on the prescribed shear flow in the viscosimeter, which
leads to possible non-Newtonian effects [30, Section 7].

— Steady homogenization problem. Given a statistical ensemble of particle positions, under
an ergodicity assumption, the steady Stokes equations for the fluid velocity are expected
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to homogenize on the macroscopic observation scale and can be replaced by effective
steady Stokes equations with some effective viscosity tensor B̄.

While the rigorous analysis of the steady-state flow-induced microstructure remains a fully
open problem at this time, the steady homogenization problem, in contrast, has been
extensively studied under various assumptions in our recent series of articles [18, 12, 17, 19]
and is by now very well understood. Given a statistical ensemble of particle positions, this
provides a rigorous definition of the effective viscosity together with a homogenization
result. More precisely, considering the system at the particle scale, we denote by I = ∪nIn
the random ensemble of particles (not necessarily spherical), centered at the points of a
point process P = {xn}n, say in the d-dimensional Euclidean space Rd for generality. The
effective viscosity tensor B̄ is defined as a quadratic form on the set Msym

0 ⊂ Rd×d of
trace-free symmetric matrices,

E : B̄E := E
[
|D(ψE) + E|2

]
= |E|2 + E

[
|D(ψE)|2

]
, E ∈Msym

0 , (1.2)

where D(ψE) is the unique stationary symmetric gradient solution, with bounded second
moment and vanishing expectation, of the corrector problem

−4ψE +∇ΣE = 0, in Rd \ I,
div(ψE) = 0, in Rd \ I,
D(ψE + Ex) = 0, in I,´
∂In

σEν = 0, ∀n,´
∂In

Θ(x− xn) · σEν = 0, ∀n, ∀Θ ∈Mskew,

(1.3)

in terms of the associated Cauchy stress tensor

σE := σ(ψE + Ex,ΣE) := 2 D(ψE + Ex)− ΣE Id, (1.4)

where Mskew ⊂ Rd×d is the set of skew-symmetric matrices. Throughout this work,
we assume for simplicity that the plain fluid has isotropic viscosity Id. Equation (1.3)
can be viewed as describing the velocity field ψE + Ex of a Stokes fluid in the whole
space in presence of rigid suspended particles {In}n with linear strain imposed at infinity,
ψE + Ex ∼ Ex as |x| ↑ ∞. The last two boundary conditions in (1.3) correspond to the
balance of forces and torques on each particle. Note that, if I contains an unbounded
chain of touching particles, then the rigidity constraint D(ψE + Ex)|I = 0 entails that the
field ψE would grow linearly along this chain, which would prevent D(ψE) from having van-
ishing expectation: it shows that this corrector problem can only be well-posed provided
that some suitable non-clustering assumption is made. Different sets of sufficient assump-
tions are recalled in Section 2.1 below and we refer to our previous work [18, 12, 17, 19]
for a detailed account.

1.2.2. Einstein’s hypothesis (E2): interactions are negligible. As it appears from (1.3), the
corrector ψE depends nonlocally and nonlinearly on the set I of particles via boundary con-
ditions: this corresponds to the multibody nature of hydrodynamic interactions. Einstein’s
second hypothesis can be reinterpreted as claiming that ψE can be approximated around
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each inclusion In by the unique decaying solution ψ{n}E of the single-particle problem

−4ψ{n}E +∇Σ
{n}
E = 0, in Rd \ In,

div(ψ
{n}
E ) = 0, in Rd \ In,

D(ψ
{n}
E + Ex) = 0, in In,´

∂In
σ(ψ

{n}
E + Ex,Σ

{n}
E )ν = 0,´

∂In
Θ(x− xn) · σ(ψ

{n}
E + Ex,Σ

{n}
E )ν = 0, ∀Θ ∈Mskew.

(1.5)

This amounts to neglecting the effect of other particles on ψE around In, thus precisely
neglecting the multibody nature of the problem. To give a more precise statement, consider
the Voronoi tessellation {Vn}n associated with the set of particles {In}n, that is,

Vn :=
{
x : dist(x, In) < inf

m:m6=n
dist(x, Im)

}
.

The relevant approximation of ψE then takes the form

D(ψE) ≈ ΨEinstein
E :=

∑
n

D(ψ
{n}
E )1Vn . (1.6)

Inserting this into the definition (1.2) of the effective viscosity yields after straightforward
calculations, in case of spherical particles,

E : B̄E = |E|2 + E
[
|D(ψE)|2

]
≈ |E|2 + E

[
|ΨEinstein

E |2
]

= |E|2
(
1 + d+2

2 ϕ+ o(ϕ)
)
, (1.7)

in terms of the particle volume fraction

ϕ := ϕ(I) := lim
R↑∞

R−d|I ∩RQ|, (1.8)

where in 3D we recover the celebrated 5
2 factor, cf. (1.1); we refer to Section 2.6 for

the detailed computation. Corrections to Einstein’s formula are obtained by taking into
account that ψE does, in fact, depend on the positions of all particles at once. As we shall
see, in the low-density regime, this is naturally written in form of a cluster expansion: the
next-order correction, known in the physics literature as the Batchelor–Green correction [7],
involves the two-particle problem, and so on.

1.2.3. Objectives. In this memoir, we focus on the rigorous analysis of Einstein’s hypothe-
sis (E2): we start from the relevant notion of effective viscosity (1.2) as defined by homog-
enization theory and we study its asymptotic behavior at low density, aiming to justify
Einstein’s formula (1.7) and to describe all higher-order corrections.

The early works [59, 44, 31] focussed on Einstein’s formula for locally periodic dilute
arrays of particles. It was extended in [53, 32] to the dilute disordered setting under the
simplifying assumption that the minimal interparticle distance is large enough (that is,
`(P)� 1 with the notation (1.13) below). The next-order Batchelor–Green correction was
captured in [26, 28] in the same setting. The uniform separation assumption is particularly
convenient as it allows to exploit the reflection method and rigorously neglect many-particle
interactions, e.g. [38, 37, 35, 53, 36], but it is physically quite restrictive and unsatisfactory.
More recently, it was replaced in [27] by some weaker non-concentration condition in the
proof of Einstein’s formula, however still requiring some control on the minimal interparticle
distance. In this context, we shall address the following two main points:
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— We shall justify Einstein’s formula under the weakest assumptions under which homog-
enization is known to hold, in particular covering the case of the general subcritical
percolation condition in [17]. At the same time, we aim at optimal error estimates:
the error o(ϕ) in (1.1) was often claimed to be O(ϕ2), but we shall see that it actually
strongly depends on the structure of the random ensemble of particles.

— We shall describe higher-order corrections to Einstein’s formula in form of a cluster ex-
pansion. Due to the long-range nature of hydrodynamic interactions, renormalizations
are needed to make sense of cluster contributions. In the physics literature, formal
renormalizations were actually still lacking beyond the second-order Batchelor–Green
correction. On the rigorous side, even the justification of the latter was restricted to
some specific regimes [26, 28, 25].

In terms of techniques, previous results on the topic relied on deterministic analysis, more
precisely on various forms of the reflection method. In the present memoir, we rather take
inspiration from our work [14] on the Clausius–Mossotti conductivity formula based on
the triad consisting of: (1) finite-volume approximation; (2) cluster expansion; (3) uniform
`1 − `2 energy estimates. Substantially refining on this analysis, we go far beyond [14] by
covering general dilute regimes (beyond the case of explicit dilution by random deletion),
and we shall further describe the explicit renormalization of cluster coefficients.

1.3. Cluster expansion formalism. While Einstein’s formula (1.7) is obtained by con-
sidering dilute particles as being isolated, next-order corrections amount to taking into
account many-particle interactions and the multibody structure of the corrector field ψE .
At low density, particles are scarce and one might want to consider contributions of fi-
nite subsets of particles only. As in [14], taking inspiration from statistical mechanics, see
e.g. [61, Chapter 19], this is naturally performed by means of cluster expansions, which
provide natural asymptotic series at low density. We recall the formalism, discuss the
accuracy of cluster expansions, and describe the key difficulty to apply it to the effective
viscosity problem: the long-range nature of hydrodynamic interactions.

1.3.1. Cluster expansions of multibody quantities. We recall the cluster expansion formal-
ism in the form that we introduced in [14]. As particles are indexed by natural numbers, we
denote by P (N) the set of subsets of the index set N and we consider the spaceM(N) of set
functions from P (N) to a given vector space V . Starting from the corrector problem (1.3),
for any index subset H ∈ P (N), we may consider1 the associated corrector ψHE obtained by
replacing the full set I of particles by its corresponding subset IH := ∪n∈HIn. The map
ψ#
E : H 7→ ψHE is then viewed as an element of M(N), where ψ∅

E ≡ 0 and where ψN
E ≡ ψE

is the original corrector defined in (1.3).
In this setting, for all n ∈ N, we introduce a difference operator δ{n} : M(N) → M(N),

defined for all Φ ∈M(N) by

δ{n}ΦH := δ{n}ΦH∪# := ΦH∪{n} − ΦH , H ⊂ N,
which provides a natural measure of the sensitivity of Φ with respect to the index n (it
plays the role of a discrete derivative). Note that for all n 6= m,

(δ{n})2 = −δ{n}, δ{n}δ{m} = δ{m}δ{n}.

1The corrector problem (1.3) is, in fact, not well-posed in general for a given deterministic infinite
subset H of particles. In the sequel, we shall rather consider finite-volume approximations of the corrector
problem, for which well-posedness is trivial. We skip this detail at the level of the present discussion.



ON EINSTEIN’S EFFECTIVE VISCOSITY FORMULA 7

For any finite F ⊂ N, we also define the higher-order difference operator

δF :=
∏
n∈F

δ{n},

which acts as follows: for all Φ ∈M(N),

δFΦH =
∑
G⊂F

(−1)|F\G|ΦG∪H , H ⊂ N. (1.9)

We take the natural convention δ∅ΦH := ΦH . These difference operators are the building
blocks to construct the so-called cluster expansions, e.g. [61, Chapter 19]: to order k, the
cluster expansion of Φ ∈M(N) takes the form

ΦN ∼ Φ∅ +
∑
n

δ{n}Φ∅ + 1
2!

6=∑
n1,n2

δ{n1,n2}Φ∅ + . . .+ 1
k!

6=∑
n1,...,nk

δ{n1,...,nk}Φ∅,

where we use the short-hand notation
∑ 6=

n1,...,nj
for sums over j-tuples (n1, . . . , nj) of

distinct indices. This can be rewritten in the more compact form

ΦN ∼
k∑
j=0

∑
]F=j

δFΦ∅, (1.10)

where
∑

]F=j stands for the sum over all sets F of j distinct indices. This expansion is
particularly relevant in the low-density regime when particles are very scarce: the 0th-order
term corresponds to the situation without any particle, the 1st-order term corresponds to
contributions of isolated particles, the 2nd-order term to contributions of pairs of particles,
etc. Formally, it can be viewed as a Taylor expansion associated with the difference oper-
ator δ, where under suitable assumptions higher-order terms will be shown to be indeed
of higher order at low density. Note that, if Φ ∈M(N) only depends on indices in a finite
subset K ⊂ N in the sense that ΦH = ΦH∩K for all H ⊂ N, then the expansion (1.10) is
always a finite sum and is actually equal to ΦN provided k ≥ ]K.

1.3.2. Multi-point intensities. The general estimation of the terms in the cluster expan-
sion (1.10) naturally leads to the notion of multi-point intensities, which appear as refined
measures of diluteness and seem new to the literature. Given an ergodic stationary point
process P = {xn}n, we start by recalling the standard notion of intensity of the point
process (or one-point intensity in our terminology below),

λ(P) := λ1(P) := E [](P ∩Q)] ,

where Q := [−1
2 ,

1
2 ]d stands for the unit cube. By the ergodic theorem, we have almost

surely
λ(P) = lim

R↑∞
R−d ]{n : xn ∈ RQ}. (1.11)

In particular, provided that random shapes satisfy |I◦n| ' 1 almost surely for all n, this
relates to the particle volume fraction (1.8) via

ϕ(I) ' λ(P), (1.12)

so that the low-density regime ϕ(I) � 1 is equivalently characterized by the condi-
tion λ(P) � 1. Yet, as we consider nonlinear functions of the point process (like the
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effective viscosity B̄), this linear notion of diluteness is not strong enough and we need to
introduce refined notions of “multi-point intensities”.

For that purpose, we start by introducing a notation for the minimal distance of the
point process P,

` := `(P) := inf
n6=m
|xn − xm|∞, (1.13)

which is almost surely a deterministic characteristic length of P. The point process is
called hardcore if `(P) > 0, which is the case of all the processes considered in this memoir,
cf. (Hρ) below. For all j ≥ 1, provided ` = `(P) > 0, we then define the j-point intensity

λj(P) := sup
z1,...,zj

E
[ 6=∑
n1,...,nj

`−d1Q`(z1)(xn1) . . . `−d1Q`(zj)(xnj )

]
, (1.14)

where Qr(z) := z + rQ stands for the cube of sidelength r centered at z. Note that,
by definition (1.13), each cube Q`(z) contains at most one point of P. This definition
corresponds to the maximum expected number of j-tuples of points of P that lie in the
`-neighborhood of an element of (Rd)j , properly normalized by `. Alternatively, recalling
that the j-point density fj associated with P is the non-negative function defined by the
following relation,

E
[ 6=∑
n1,...,nj

ζ(xn1 , . . . , xnj )

]
=

ˆ
(Rd)j

ζfj for all ζ ∈ C∞c ((Rd)j), (1.15)

the definition (1.14) of j-point intensity can be reformulated as

λj(P) = sup
z1,...,zj

 
Q`(z1)×...×Q`(zj)

fj . (1.16)

In the case `(P) = 0, this definition is naturally extended to λj(P) = ‖fj‖L∞((Rd)j) for
completeness. In view of upcoming arguments, it is convenient to further introduce the
following quantities,

λj(P) := min∑
i ji=j

∏
i

λji(P) ≤ λj(P) := max∑
i ji=j

∏
i

λji(P). (1.17)

For a Poisson point process, these quantities are, in fact, equivalent since independence
yields λj(P) = λ(P)j for all j ≥ 1, hence λj(P) = λj(P) = λ(P)j . For a hardcore
Poisson point process, we similarly find λj(P) 'j λ(P)j . In other words, the one-point
intensity λ(P) is enough to fully describe low-density regimes in those cases. However,
multi-point intensities are non-trivial in general: for any β ∈ [0, 1], one can construct
examples of point processes with λ2(P) ' λ(P)1+β (see last paragraph of Section 5.1).
For instance, given e ∈ Rd, the point process Pe := P ∪ (P + e) consists of pairs of points
{xn, xn + e} and thus satisfies λ2(Pe) ' `(Pe)−dλ(Pe), hence λ2(Pe) ' λ(Pe) provided Pe
is hardcore. The following lemma states some general properties.

Lemma 1.1 (Multi-point intensities). Let P = {xn}n be an ergodic stationary random
point process.
(i) For all j ≥ 1, we have

λj+1(P) ≤ `(P)−dλj(P).
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(ii) If P is strongly mixing, then for all j ≥ 1 we have

λ(P)j = λj(P) ≤ λj(P) = λj(P).

(The same holds for all j ≤ n under the mixing assumption (Mixnω) introduced in
Section 4.3 provided the rate ω decays at infinity.)

(iii) Given j ≥ 2 and θ ∈ [0, 1], for any nonnegative function φ ∈ C∞c ((Rd)j) that satisfies
φ(z1, . . . , zj) ≤ Cφ(z′1, . . . , z

′
j) for all z1, z

′
1, . . . , zj , z

′
j provided maxi |zi−z′i|∞ ≤ θ`(P)

and minj 6=i |zi − zj |∞ ≥ `(P), we haveˆ
(Rd)k

φfk ≤ Cθ−dkλk(P)

ˆ
(Rd)k

φ. ♦

Proof. As each cubeQ`(z) contains at most one point of P, we find
∑

n `
−d1Q`(z)(xn) ≤ `−d

for all z, so that item (i) readily follows from definition (1.14).

We turn to the proof of (ii). Given j ≥ 1, for any partition 0 = k1 < k2 < . . . < kl = j,
setting ji := ki+1 − ki, the strong mixing of the point process implies

 
Q`(z1)×...×Q`(zj)

fj −
l∏

i=1

(  
Q`(zki+1)×...×Q`(zki+1

)
fji

)
−→ 0,

as mini 6=i′ dist(Zi, Zi′)→∞, where we use the short-hand notation Zi := {zki+1, . . . , zki+1
}.

In view of (1.16), using stationarity, this proves the estimate λj(P) ≥
∏l
i=1 λji(P), from

which the claim (ii) easily follows.

Finally, item (iii) is a direct consequence of definition (1.16) of multi-point intensities,
further using that the j-point density satisfies fj(x1, . . . , xj) = 0 whenever there are some
i 6= i′ with |xi − xi′ | < `(P). �

1.3.3. Scaling of cluster expansions. With the above definitions, we may now determine the
scaling of the terms in the cluster expansion (1.10) and show the relevance of multi-point
intensities. For that purpose, by way of illustration, we place ourselves in the elementary
setting of short-range interactions, which will serve as a guideline in the sequel. More
precisely, consider a set function Φ : P (N)→ R of the form

ΦH := E
[
g
(∑
n∈H

h(xn)
)]
, (1.18)

for some h : Rd → R and g : R→ R such that
(a) h is short-range, in the sense that

´
Rd(supB(z) |h|) dz <∞;

(b) g is smooth, in the sense that g ∈ C∞b (R).
The cluster expansion of ΦN, cf. (1.10), then takes the form

ΦN ∼
∞∑
j=0

1
j! Φ̄

j , where Φ̄j := j!
∑
]F=j

δFΦ∅. (1.19)

Although cluster coefficients {Φ̄j}j are defined by infinite series, these series are always
summable in this short-range setting and we show that they are naturally estimated
by multi-point intensities.In particular, the second-order coefficient Φ̄2 is bounded by
O(λ2(P)), which contradicts in general the bound O(λ(P)2) = O(ϕ2) that one could have
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naively expected. Our main goal in this memoir is precisely to establish corresponding
expansions and estimates for the effective viscosity (1.1) & (1.2).

Lemma 1.2 (Cluster expansions in the short-range setting). Let P = {xn}n be an ergodic
stationary point process on Rd with `(P) . 1, let Φ be a set function of the form (1.18)
satisfying the short-range and smoothness assumptions (a) & (b) above, and let {Φ̄j}j be
the associated cluster coefficients (1.19). Then we have for all k ≥ 1,

∣∣∣ΦN −
k∑
j=0

1
j! Φ̄

j
∣∣∣ .k,g,h λk+1(P), |Φ̄k| .k,g,h λk(P), (1.20)

in terms of multi-point intensities {λj(P)}j, cf. (1.14). ♦

Proof. Given a sequence Y := {yn}n ⊂ R, define a set function ΨY : P (N)→ R by

ΨH
Y := g

(∑
n∈H

yn

)
, H ⊂ N.

By definition of difference operators, cf. (1.9), we find, in the spirit of Taylor’s remainder
formulas,

δ{n1,...,nk}Ψ∅
Y =

ˆ yn1

0
. . .

ˆ ynk

0
g(k)(t1 + . . .+ tk) dt1 . . . dtk,

ΨN
Y −

k∑
j=0

∑
]F=j

δFΨ∅
Y =

∑
n1<...<nk+1

ˆ yn1

0
. . .

ˆ ynk+1

0

×g(k+1)
(
t1 + . . .+ tk+1 +

∑
n>nk+1

yn

)
dt1 . . . dtk+1.

These identities yield in particular

|δ{n1,...,nk}Ψ∅
Y | ≤ ‖g(k)‖L∞(Rd)

k∏
j=1

|ynj |,

∣∣∣ΨN
Y −

k∑
j=0

∑
]F=j

δFΨ∅
Y

∣∣∣ ≤ ‖g(k+1)‖L∞(Rd)

∑
]F=k+1

∏
n∈F
|yn|.

Setting Y := {h(xn)}n, noting that definition (1.18) reads ΦH = E
[
ΨH
Y

]
, inserting the

definition (1.19) of cluster coefficients, and recalling the definition (1.15) of multi-point
density functions, this yields

|Φ̄k| ≤ ‖g(k)‖L∞(Rd)

ˆ
(Rd)k

|h|⊗kfk,

∣∣∣ΦN −
k∑
j=0

1

j!
Φ̄j
∣∣∣ ≤ 1

(k+1)!‖g
(k+1)‖L∞(Rd)

ˆ
(Rd)k+1

|h|⊗(k+1)fk+1.

By definition (1.16) of multi-point intensities, the conclusion follows. �
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1.3.4. Effective viscosity: long-range issues and renormalization. We apply the above clus-
ter expansion formalism to the effective viscosity (1.2). For a finite subset H ⊂ N, recall
the notation ψHE for the solution of the corrector problem (1.3) where the full set I of par-
ticles is replaced by its subset IH = ∪n∈HIn (this corrector problem is trivially well-posed
when H is finite). We then define a symmetric linear map B̄H on Msym

0 by

E : B̄HE := E
[
|D(ψHE )(0) + E|2

]
, E ∈Msym

0 .

In these terms, the formal cluster expansion of the effective viscosity (1.2) takes the form

B̄ ∼
∞∑
j=0

1
j!B̄

j , where B̄j := j!
∑
]F=j

δF B̄∅. (1.21)

Note that B̄0 = Id is the plain fluid viscosity. In contrast with the short-range setting of
Lemma 1.2 above, however, series defining cluster coefficients {B̄j}j≥1 are not summable
due to the long-range nature of hydrodynamic interactions. Indeed, the first coefficient B̄1

takes the form

E : B̄1E =
∑
n

E : δ{n}B̄∅E

=
∑
n

E
[
|D(ψ

{n}
E )(0)|2 + 2E : D(ψ

{n}
E )(0)

]
. (1.22)

As ψ{n}E satisfies the single-particle problem (1.5), it decays like |D(ψ
{n}
E )(x)| . 〈x−xn〉−d,

which entails that the above series is not absolutely convergent,∑
n

E
[
|D(ψ

{n}
E )(0)|

]
=∞.

The same borderline divergence is observed for all cluster coefficients {B̄j}j≥1 in (1.21).
In order to make sense of cluster coefficients, suitable renormalization procedures are thus
required and constitute the major difficulty of the problem.

To first order, the needed renormalization happens to be trivial: by definition of the
intensity of the point process, identity (1.22) can be equivalently rewritten as follows (say,
in case of deterministic particle shapes),

E : B̄1E = λ(P)

ˆ
Rd

(
|D(ψ◦E)|2 + 2E : D(ψ◦E)

)
,

where ψ◦E stands for the solution of the single-particle problem (1.5) with a particle centered
at the origin. Here, we observe that in any finite-volume approximation the linear term´
Rd E : D(ψ◦E) would be given a vanishing value as the integral of a gradient. Removing
this linear term, we are left with the following summable integral,

E : B̄1E = λ(P)

ˆ
Rd
|D(ψ◦E)|2, (1.23)

which happens to coincide with Einstein’s formula (1.7) in case of spherical particles. In
contrast, higher-order renormalizations are not obtained by such simple cancellations. In
the physics literature, the difficulty was recognized by Batchelor and Green [7], who man-
aged to provide a heuristic renormalization for the second-order term B̄2. The systematic
renormalization of higher orders is more involved and has remained an open problem so
far even on the heuristic level in physics. The present memoir is precisely devoted to
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the systematic treatment of this difficulty: we provide suitable renormalizations of cluster
coefficients and in turn justify the expansion (1.21) to all orders. In the end, we prove es-
sentially the same estimates on the cluster expansion as in the short-range setting (1.20),
up to (sharp) logarithmic corrections that are persisting manifestations of the long-range
nature of interactions, cf. (1.26) below.

1.4. Main results. This section is devoted to a brief, informal account of the main results
of this memoir, with precise references to the relevant sections. We refer to the conclusion
in Section 5 for a detailed recap of all our results. We start with the main assumptions on
the ensemble of rigid particles.

1.4.1. Main assumptions. Given an underlying probability space (Ω,P), let P = {xn}n be
a random point process on Rd, consider an associated collection of random shapes {I◦n}n,
where each I◦n is a random connected open subset of the unit ball B, centered at the origin
in the sense of

´
I◦n
y dy = 0, and then define the corresponding inclusions

In := xn + I◦n.

Note that random shapes are not required to be independent of the point process P.
We then consider the random set I :=

⋃
n In, which we assume to satisfy the following

conditions. Note that the disjointness and ρ-regularity conditions below entail that the
point process P is hardcore with `(P) & ρ, cf. (1.13).

Assumption (Hρ) — General conditions with parameter ρ > 0.
• Stationarity and ergodicity: The point process P = {xn}n and the associated random
set I are stationary and ergodic.2

• Disjointness: There holds In ∩ Im = ∅ almost surely for all n 6= m.
• ρ-Regularity: Random shapes {I◦n}n almost surely satisfy interior and exterior ball
conditions with radius ρ. ♦

Next, we define the effective viscosity tensor B̄ associated with the suspension I as the
quadratic form on Msym

0 given in (1.2). We emphasize that the corrector problem (1.3) only
makes sense provided that all particles {In}n are separated. If this separation is uniform,
the pressure ΣE1Rd\I can also be uniquely constructed as a stationary field with finite
second moment and vanishing expectation, cf. [18, Proposition 2.1]. When particles are
not well separated, the corrector problem should rather be considered via its variational
formulation and the effective viscosity is then defined as the minimum value

E : B̄E = inf
{
E
[
|D(ψ) + E|2

]
: ψ ∈ L2(Ω;H1

loc(Rd)d), ∇ψ stationary,

div(ψ) = 0, (D(ψ) + E)|I = 0, E [D(ψ)] = 0
}
. (1.24)

At this stage, nothing prevents this infimum from being infinite: as explained after (1.3)
above, the problem originates from the possible existence of unbounded chains of touching
particles. This will be excluded by means of further geometric assumptions, cf. (Hunif

ρ ),

2More precisely, stationarity means that the laws of the translated point process x+P and of translated
set x+I are independent of the shift x ∈ Rd. Ergodicity then means that a measurable function of P or I
is almost surely unchanged for P or I replaced by x+P or x+ I for any x ∈ Rd only if it is almost surely
constant. Note that shifts x ∈ Rd can be replaced by discrete shifts x ∈ Zd, and periodic point sets can be
considered as a particular case, for which the expectation is replaced by the average over a period.
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(Hmom
ρ,κ ), or (Hperc

ρ,κ ) below. Even if the infimum is finite, nothing ensures in general
that B̄ defines the effective viscosity in the sense of homogenization theory: we view this
as a separate question, which is extensively discussed in different settings in our previous
work [18, 12, 17, 19] and will not be further discussed here. We are now in the position to
describe our main results.

1.4.2. First-order expansion: Einstein’s formula. Assuming that particles are uniformly
separated by a positive distance, cf. (Hunif

ρ ), we prove in the general ergodic stationary
setting,

|B̄− Id−B̄1| . λ2(P) log
(
2 + λ(P)

λ2(P)

)
, |B̄1| ' λ(P), (1.25)

where B̄1 is given by the renormalized cluster formula (1.23) and takes the explicit form
of Einstein’s formula B̄1 = d+2

2 ϕ in case of spherical particles. This error estimate is new
and optimal, and the stochastic assumption of mere ergodicity is minimal. In particular,
we find that Einstein’s formula B̄ ≈ Id +B̄1 is accurate to leading order provided that
λ2(P)� λ(P)

|log λ(P)| , which amounts to a very weak local independence assumption. Yet, the
uniform separation assumption is not satisfactory from the physical point of view. At the
price of weakening the error estimate (1.25), we may relax this assumption as we did for the
homogenization result in [12, 17]: either we assume moment bounds on the interparticle
distance (Hmom

ρ,κ ) (see also [27]), or we consider a subcritical percolation condition (Hperc
ρ,κ )

(in which case particles are allowed to touch provided they do not cluster — which is new).
We refer to Theorem 1 in Section 2 for a detailed statement.

1.4.3. Higher-order cluster corrections. For the higher-order analysis, we assume for sim-
plicity that particles are uniformly separated by a positive distance, cf. (Hunif

ρ ). Under
a slight strengthening of ergodicity, the formal cluster expansion is well-defined, up to
suitable renormalization of cluster coefficients (1.21), and it essentially3 satisfies for all
k ≥ 1, ∣∣∣B̄− k∑

j=0

B̄j
∣∣∣ . λk+1(P)|log λ(P)|k, |B̄k| . λk(P) |log λ(P)|k−1. (1.26)

These estimates coincide remarkably with the corresponding result (1.20) in the short-range
setting, to the exception of logarithmic corrections that are precisely the manifestation of
the long-range nature of hydrodynamic interactions. The result is new for any k ≥ 2
and logarithmic corrections are expected to be optimal (optimality is proved for k = 2,
cf. Theorem 7). We also believe that the slightly strengthened ergodicity assumption
is necessary for the result to hold. We refer to Theorem 9 in Section 5 for a detailed
statement. In particular, our analysis justifies the Batchelor–Green formula for the second-
order term B̄2, cf. Proposition 4.6 (see also Corollary 12), and we develop a systematic
renormalization scheme for all higher-order cluster coefficients by means of diagrammatic
expansions, cf. Section 4.4.

We emphasize that the above result (1.26) holds without any structural assumption on
the dilution process (which we call the model-free setting). If we make the dilution more
specific, considering for instance a random deletion procedure (as in [14]) or dilation, then
the cluster expansion can be shown to define an absolutely converging series. We refer to

3The true estimate is in general slightly more complicated than what is stated here; cf. Theorem 9 in
Section 5.
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Theorem 11 for a detailed analyticity statement. All previous results on the second-order
expansion [26, 28, 25] were, in fact, essentially restricted to such specific settings.

1.5. Roadmap to the main results. The rest of the memoir is divided into four sections.
Section 2 is dedicated to the proof of Einstein’s formula. Section 3 studies the cluster
expansion of finite-volume approximations {B̄L}L of the effective viscosity B̄. In Section 4,
we deal with the issue of systematic renormalization of cluster coefficients, which leads us to
justifying the cluster expansion of B̄. Our different results are combined and summarized
in Section 5. We briefly describe below our approach for each step.

1.5.1. Einstein’s formula: first-order expansion — Section 2. We develop a new, purely
variational approach to Einstein’s formula (1.25); a short self-contained proof is given in
Section 2. It amounts to constructing competitors for the variational problem (1.24) and
to controlling their energy difference by means of elliptic regularity. The variational nature
of the argument allows us to avoid uniform particle separation assumptions and to cover
in particular the case of colliding particles under a general non-clustering assumption. It
also allows to avoid the need for fine pressure estimates, which is crucial as such estimates
would be problematic in case of colliding particles.

1.5.2. Cluster expansion of the effective viscosity — Section 3. While coefficients in the
formal cluster expansion of the effective viscosity B̄ are given by infinite series that are not
summable due to the long-range nature of hydrodynamic interactions, cf. Section 1.3.4,
we start by considering finite-volume approximations {B̄L}L≥1 obtained by periodization
of the variational problem (1.24). Section 3 provides a detailed analysis of the cluster
expansion of B̄L for fixed L.

• First, we give explicit formulas for the coefficients {B̄j
L}j of the cluster expansion, as

well as an explicit estimate for the remainder Rk+1
L := B̄L −

∑k
j=0

1
j!B̄

j
L, in terms of

correctors associated with finite subsets of particles; see Theorem 3. The argument is
essentially combinatorial. Note that the proof of remainder estimates further makes key
use of the rigidity of the particles.

• Second, we prove that the cluster coefficients {B̄j
L}j and the remainder Rk+1

L are bounded
uniformly in L. The idea of the proof is as follows: if infinite-volume cluster formulas are
given by infinite series that are not summable, they can in fact be viewed as complicated
(non-explicit) combinations of Calderón–Zygmund kernels. As the effective viscosity is
an L2-based quantity, we may expect to estimate cluster formulas by means of suitable
energy estimates, carefully avoiding to take absolute values of any Calderón–Zygmund
kernel. Taking inspiration from our previous work [14], this is achieved by means of a hi-
erarchy of so-called interpolating `1−`2 energy estimates (also crucially used in [29, 20]).
As a corollary, uniform estimates allow to define infinite-volume cluster coefficients in the
limit {B̄j}j := limL↑∞{B̄j

L}j . Yet, being based on energy arguments, these estimates do
not display the desired dependence (1.26) on multi-point intensities {λj}j .
• Third, we prove corresponding cluster estimates that have the same dependence on
multi-point intensities as in the short-range setting, but display a logarithmic divergence
in the large-volume limit. This is obtained by proceeding as for the short-range setting
of Lemma 1.2, and the logarithmic divergence follows from estimating hydrodynamic
interactions too roughly.
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It remains to show that the dependence on multi-point intensities is actually kept in the
large-volume limit (at the price of logarithmic corrections).

1.5.3. Renormalization of cluster formulas — Section 4. In order to prove the relevant
infinite-volume cluster estimates (1.26), we need a better understanding of cluster formulas
and of the underlying compensations that make them well-defined in the large-volume
limit. A first route proceeds by assuming an algebraic convergence rate for the finite-
volume approximations {B̄L}L of the effective viscosity: this is known to hold under
quantitative α-mixing condition whose rate is then transmitted (suboptimally) to cluster
coefficients {B̄j

L}j , which allows in turn to keep the desired dependence on multi-point
intensities in the cluster estimates while removing the logarithmic divergence. This implicit
renormalization argument is particularly robust (see also [14]), but it does not provide any
understanding of underlying cancellations and leaves several questions open.

Next, further assuming that particle shapes are independent of particle positions, we
show that an explicit renormalization of cluster formulas can be developed: taking advan-
tage of several explicit cancellations, cluster formulas can be transformed into summable
integral formulas. This renormalization is trivial for B̄1, cf. (1.23), and the required can-
cellations are already more involved for B̄2, as formally understood by Batchelor and
Green [8]. At higher-order, renormalizations rely on a suitable diagrammatic decompo-
sition of cluster formulas to make cancellations manifest. Next, the direct analysis of
renormalized formula allows to recover the desired cluster estimates (1.26) and to show
that logarithmic corrections in those bounds are actually optimal in general.
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Notation.
• For vector fields u, u′ and matrix fields T, T ′, we set (∇u)ij = ∇jui, div(T )i = ∇jTij ,
T : T ′ = TijT

′
ij , (u⊗ u′)ij = uiu

′
j , where we systematically use Einstein’s summation

convention on repeated indices. We also denote by (D(u))ij = 1
2(∇jui + ∇iuj) the

symmetrized gradient. For a velocity field u and associated pressure field P , we define
the associated Cauchy stress tensor, cf. (1.4),

σ(u, P ) := 2 D(u)− P Id . (1.27)

• We denote by Msym
0 ⊂ Rd×d the subset of symmetric trace-free matrices, and by Mskew

the subset of skew-symmetric matrices.
• We use the notation . (resp. &) for ≤ C× (resp. ≥ 1

C×) with a constant C that
depends only on the dimension d and on the parameters appearing in the different
assumptions when applicable. Note that the value of the constant C is allowed to
change from one line to another. We add subscripts to C, ., or & to indicate the
dependence on other parameters. We write a ' b when both a . b and a & b hold.
In addition, we write � (resp. �) for ≤ 1

C× (resp. ≥ C×) for some sufficiently large
constant C.
• The ball centered at x of radius r in Rd is denoted by Br(x), and we set B(x) = B1(x),
Br = Br(0), and B = B1(0). We denote by Qr(x) = x + [− r

2 ,
r
2)d the cube of

sidelength r centered at x, and we set Q(x) = Q1(x), Qr = Qr(0), and Q = Q1(0).
• For x ∈ Rd, we denote by |x| its Euclidean norm and by |x|∞ its supremum norm. We
also set 〈x〉 = (1 + |x|2)1/2, and similarly 〈∇〉 = (1−4)1/2.
• We use the short-hand notation

∑6=
n1,...,nj

for sums over j-tuples (n1, . . . , nj) of distinct
indices. We also use the notation

∑
]F=j for the sum over all subsets F of j distinct

indices.
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2. Einstein’s formula: first-order expansion

2.1. Main result. Assumption (Hρ) first needs to be complemented with suitable geo-
metric assumptions on the ensemble of particles to ensure that the effective viscosity (1.24)
is finite. This can either be performed by means of conditions on interparticle distances,

ρn :=
1

2
min
m:m6=n

dist(In, Im), (2.1)

or in terms of conditions on the size of clusters of close particles. This has been the subject
of our recent series of articles [18, 12, 17], where the finiteness of the effective viscosity and
the validity of a homogenization result are obtained under any of the following three types
of assumptions:
— interparticle distances are uniformly bounded below, cf. [18];
— interparticle distances satisfy suitable reciprocal moment bounds, cf. [12];
— diameters of clusters of close particles satisfy suitable moment bounds in a subcritical

percolation perspective, cf. [17].
These are formulated more precisely in Assumptions (Hunif

ρ ), (Hmom
ρ,κ ), and (Hperc

ρ,κ ) below,
respectively.

Assumption (Hunif
ρ ) — Uniform separation with parameter ρ > 0.

Particles are uniformly separated with minimal distance ρn > ρ, that is, we have almost
surely (In + ρB) ∩ (Im + ρB) = ∅ for all n 6= m. ♦

Assumption (Hmom
ρ,κ ) — Moment condition with parameters ρ > 0, κ > 1.

• ρ-Uniform non-degeneracy of contact points: Pairs of “ρ-close” particles can be “ρ-
locally” included in pairs of disjoint spheres with “ρ-uniformly” bounded radius. For
“ρ-close” particles, instead of (2.1), we then define ρn as (half of) the distance between
locally covering spheres. For a more precise statement of this geometric condition, we
refer to [12, Assumption (H′δ)]. Note that this condition is trivially satisfied in case
of spherical particles.
• Reciprocal moment bound: There exists Kκ <∞ such that

lim
R↑∞

(
1

]{n : In ⊂ QR}
∑

n:In⊂QR

µ(ρn)κ
) 1
κ

≤ Kκ,

in terms of

µ(t) :=

 t−
1
2

(5−d) : d < 5,
log(2 + 1

t ) : d = 5,
1 : d > 5.

(2.2)

Note that this condition is trivially satisfied for any κ > 1 in case d > 5. ♦

Assumption (Hperc
ρ,κ ) — Cluster condition with parameters ρ > 0, κ > 1.

Let {Kq,ρ}q be the family of connected components of the fattened set I+ρB, and consider
the corresponding clusters

Jq,ρ :=
⋃

In⊂Kq,ρ

In.
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Given p0 � 1 large enough (related to the existence of correctors in [17, Proposition 2]),
there exists Kκ <∞ such that

lim
R↑∞

(
1

]{q : Jq,ρ ∩QR 6= ∅}
∑

q:Jq,ρ∩QR 6=∅

diam(Jq,ρ)
κp0+d

) 1
κ

≤ Kκ. (2.3)
♦

Assumptions (Hmom
ρ,κ ) and (Hperc

ρ,κ ) are always weaker than (Hunif
ρ ). While (Hmom

ρ,κ )
only allows for particle contacts in dimension d > 5 and is in particular incompatible
with the 3D steady-state behavior of the two-particle density as computed in [8], Assump-
tion (Hperc

ρ,κ ) is of a different nature and allows for particle contacts in any dimension, but
implicitly requires some strong mixing condition to ensure the validity of moment bounds
on cluster diameters, cf. [17]. In [18, 12, 17], we show that these assumptions ensure the
finiteness of the effective viscosity (1.24) and the well-posedness of the corrector problem.
In case of (Hmom

ρ,κ ) or (Hperc
ρ,κ ), the validity of the homogenization result requires further

strengthened conditions.
The following theorem states the validity of Einstein’s formula under each of those

assumptions. The proof is split between Sections 2.2, 2.3, 2.4, and 2.5 below.

Theorem 1 (Einstein’s formula). Under Assumption (Hρ) and either Assumption (Hunif
ρ ),

(Hmom
ρ,κ ), or (Hperc

ρ,κ ), for some ρ > 0 and κ > 1, we have

|B̄− (Id +B̄1)| .ρ λ2(P) log
(
2 + λ(P)

λ2(P)

)
(2.4)

+

{
0 : in case of (Hunif

ρ ),
Kκ λ2(P)1− 1

κλ(P)
1
κ : in case of (Hmom

ρ,κ ) or (Hperc
ρ,κ ),

where B̄1 satisfies
|B̄1| ' λ(P),

and is defined for all E ∈Msym
0 by

E : B̄1E :=
∑
n

E
[
10∈In
|In|

ˆ
Rd
|D(ψ

{n}
E )|2

]
, (2.5)

where ψ{n}E is the unique decaying solution of the single-particle problem (1.5). In particu-
lar, the estimate |B̄− (Id +B̄1)| = o(λ(P)) holds provided the point process P satisfies the
weak local independence condition λ2(P) = o(λ(P)/|log λ(P)|). ♦

As outlined in Section 2.2, our proof is variational and amounts to proving lower and
upper bounds on B̄ that match with Id +B̄1 to the required accuracy. This approach is
particularly robust: it allows to obtain the first optimal error estimate and to cover the
most general setting regarding particle separation assumptions. We briefly emphasize these
two points:
— Optimality: In case of (Hunif

ρ ), the error estimate (2.4) for Einstein’s formula is new
and sharp. As will be seen in Theorem 7, it indeed coincides with the general scaling of
the next term B̄2 in the cluster expansion: the logarithmic correction is related to the
long-range nature of hydrodynamic interactions and cannot be avoided in general, thus
contrasting with the short-range setting (1.20).4 In case of (Hmom

ρ,κ ) or (Hperc
ρ,κ ), the

4In some special cases, however, for instance in the statistically isotropic setting, the logarithmic cor-
rection can be removed, cf. Theorem 7(i).
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error estimate (2.4) displays a further algebraic loss, which is also new and expected
to be optimal in general. If for some exponent γ ≥ 1 the moment bounds in (Hmom

ρ,κ )
or (Hperc

ρ,κ ) hold with constant Kκ . κγ for all κ ≥ 1,5 then the error estimate (2.4)
could be upgraded to λ2(P) log1∨γ(2 + λ(P)

λ2(P)) after optimizing in κ.

— Particle separation: Most works on the topic [53, 32, 26, 28, 27, 25] have focussed so far
on the simplest setting of (Hunif

ρ ) in case when diluteness further holds in the strong
form of `(P) � 1. The only exception is the recent independent work [27], where
this last condition is relaxed and where the case of (Hmom

ρ,κ ) is further covered. More
generally, our approach allows to further cover essentially any situation for which the
effective viscosity (1.24) can be proved to be finite. Applied to (Hperc

ρ,κ ), it allows to
treat for the first time a 3D setting where particles are allowed to touch.
Next, we further simplify formula (2.5) for the first-order cluster coefficient B̄1 in the

case when particle shapes are independent: we recover the formula obtained in [32], as well
as Einstein’s explicit formula (1.7) in case of spherical particles. The proof is postponed
to Section 2.6.

Proposition 2 (First-order coefficient). On top of Assumption (Hρ), further assume
(Indep) Independent shapes: Random shapes {I◦n}n are iid copies of a given random

open subset I◦ in the unit ball B, independent of the point process P.
Then, the first-order coefficient B̄1 defined in (2.5) can be written as

B̄1 = λ(P)B̂1, E : B̂1E = E
[ˆ

Rd
|D(ψ◦E)|2

]
, (2.6)

in terms of the unique decaying solution of the single-particle problem
−4ψ◦E +∇Σ◦E = 0, in Rd \ I◦,
div(ψ◦E) = 0, in Rd \ I◦,
D(ψ◦E) + E = 0, in I◦,´
∂I◦ σ

◦
Eν = 0,´

∂I◦ Θx · σ◦Eν = 0, ∀Θ ∈Mskew.

(2.7)

In case of spherical particles, In = B(xn, rn), with iid random radii {rn}n, this reduces to
Einstein’s celebrated formula

B̄1 = d+2
2 ϕ Id, (2.8)

where the volume fraction is in this case ϕ = λ(P)E [|I0|]. ♦

2.2. Variational approach. This section is devoted to setting up our variational ap-
proach to prove Theorem 1, which is partly inspired by the theory of optimal bounds in
homogenization; see e.g. [49, Chapters 13 & 23]. The new main ingredients are the use
of Voronoi tessellations and of elliptic regularity. Let E ∈ Msym

0 be fixed. In the spirit
of the heuristic approximation (1.6) for the corrector, we start by defining single-particle
problems in the neighborhood of each particle. For a random set I satisfying (Hρ), we
define the associated Voronoi tessellation {Vn}n as follows,

Vn :=
{
x ∈ Rd : dist(x, In) < dist(x, Im) ∀m 6= n

}
.

5For (Hmom
ρ,κ ), this would amount to having stretched exponential moment bounds. For (Hperc

ρ,κ ), this
holds for some point processes such as the random parking measure with γ large enough, cf. [17].
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By definition, these Voronoi cells pave the whole space Rd and each Vn contains exactly one
inclusion In. We then consider the single-particle problems in Vn, with either homogeneous
Dirichlet or Neumann boundary conditions on ∂Vn,

En,D := inf

{ˆ
Vn

|D(ψ)|2 : ψ ∈ H1
0 (Vn)d, div(ψ) = 0, (D(ψ) + E)|In = 0

}
, (2.9)

En,N := inf

{ˆ
Vn

|D(ψ)|2 : ψ ∈ H1(Vn)d, div(ψ) = 0, (D(ψ) + E)|In = 0

}
. (2.10)

Provided En,D < ∞, the Dirichlet problem (2.9) is well-posed and we denote by ψn,D
its unique minimizer. The Neumann problem (2.10), on the other hand, is always well-
posed and one has the deterministic uniform bound En,N . 1. We denote by ψn,N the
corresponding minimizer: as it is only defined up to a rigid motion, it can be uniquely
chosen such that (ψn,N + E(x − xn))|In = 0. Next, we define the single-particle problem
on the whole space via

En,∞ := inf

{ˆ
Rd
|D(ψ)|2 : ψ ∈ H1(Rd)d, div(ψ) = 0, (D(ψ) + E)|In = 0

}
. (2.11)

Note that the unique minimizer ψn,∞ of this variational problem coincides with the solu-
tion ψ

{n}
E of (1.5). In case of (Hperc

ρ,κ ), as we only control clusters of close particles, we
naturally merge Voronoi cells that intersect the same cluster: more precisely, we consider
the Voronoi cell associated with each cluster Jq,ρ,

Wq :=
⋃

n:In⊂Jq,ρ

Vn

and we then partition the whole space as

Rd =
( ⋃
n∈S

Vn

)
∪
( ⋃
q∈S′

Wq

)
,

where S := {n : ρn ≥ ρ} is the set of indices for well-separated particles and where S ′ is
the set of indices q such that the cluster Jq,ρ is made of at least two particles. For n ∈ S
we shall consider the single-inclusion problems En,D, En,N , En,∞ as above, while for q ∈ S ′
it will suffice to consider the single-cluster problem with Dirichlet conditions,

Fq,D := inf

{ˆ
Wq

|D(ψ)|2 : ψ ∈ H1
0 (Wq)

d, div(ψ) = 0, (D(ψ) + E)|Jq,ρ = 0

}
. (2.12)

The upcoming lemma shows that the error in the first-order expansion B̄ ∼ Id +B̄1 can
be controlled using single-particle problems (as well as single-cluster problems in case
of (Hperc

ρ,κ )). This provides a drastic reduction of complexity since B̄ itself involves the
corrector ψE with the full set of particles. The proof is postponed to Section 2.4 below.
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Lemma 2.1. Under the assumptions of Theorem 1, using the above notation (2.9)–(2.12),
we have∣∣E :

(
B̄− (Id +B̄1)

)
E
∣∣ (2.13)

.


E
[∑

n
10∈In
|In| (En,D − En,N )

]
: in case of (Hunif

ρ ) or (Hmom
ρ,κ ),

E
[∑

n∈S
10∈In
|In| (En,D − En,N )

]
+E
[∑

q∈S′
10∈Jq,ρ
|Jq,ρ| Fq,D

]
: in case of (Hperc

ρ,κ ),

where B̄1 is defined in (2.5). ♦

It remains to control the right-hand side in the error estimate (2.13), which amounts
to comparing the single-particle problems with Dirichlet or Neumann boundary conditions
on Voronoi cells. The proof is postponed to Section 2.5 below.

Lemma 2.2. For all n, we have almost surely

0 ≤ En,D − En,N . µ(ρn)1ρn<1 + ρ−dn 1ρn≥1, (2.14)

where we recall that ρn stands for (half of) the interparticle distance, cf. (2.1), and that
the weight µ is defined in (2.2). In addition, there is p0 <∞ such that for all q,

Fq,D . diam(Jq,ρ)
p0 . (2.15)

♦

With these two lemmas at hand, combining the estimates, we may now quickly conclude
the proof of Theorem 1.

Proof of Theorem 1. Combining Lemmas 2.1 and 2.2, we get

|B̄− (Id +B̄1)| (2.16)

.


E
[∑

n
10∈In
|In|

(
µ(ρn)1ρn<1 + ρ−dn 1ρn≥1

)]
: in case of (Hunif

ρ ) or (Hmom
ρ,κ ),

E
[∑

n
10∈In
|In| ρ

−d
n 1ρn≥ρ

]
+E
[∑

q∈S′
10∈Jq,ρ
|Jq,ρ| diam(Jq,ρ)

p0

]
: in case of (Hperc

ρ,κ ),

and it remains to estimate these expectations. We split the proof into two steps.

Step 1. Proof that, if g ∈ L∞(R+) is non-increasing with g(r) ↓ 0 as r ↑ ∞, then

E
[∑

n

10∈In
|In|

g(ρn)

]
. λ2(P)‖g‖L∞(R+) +

ˆ ∞
0
|g′(r)|

(
(λ2(P) 〈r〉d) ∧ λ(P)

)
dr. (2.17)

To start with, we rewrite the left-hand side as

E
[∑

n

10∈In
|In|

g(ρn)

]
=

ˆ ∞
0

g(r) dΛ(r), (2.18)

where the positive measure Λ on R+ is defined by its distribution function

Λ([0, r]) := E
[∑

n

10∈In
|In|

1ρn≤r

]
= E

[∑
n

10∈In
|In|

1∃m 6=n: 1
2

dist(Im,In)≤r

]
.
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As In ⊂ B(xn) for all n, we can estimate the latter as

Λ([0, r]) ≤ E
[∑

n

1|xn|≤1 1∃m 6=n: |xm−xn|≤2(r+1)

]
.

Recalling that ` = `(P) is the minimal distance (1.13), we deduce that Λ([0, r]) = 0 for all
r ≤ 1

2`− 1. Moreover, we can bound, on the one hand,

Λ([0, r]) ≤ E
[∑

n

1|xn|≤1

]
= λ(P)|B|,

and on the other hand, in terms of the two-point density and intensity, for r ≥ 1
2`− 1,

Λ([0, r]) ≤ E
[ ∑
n6=m

1|xn|≤1 1|xm−xn|≤2(r+1)

]
=

¨
B×B2(r+1)

f2(x, x+ y) dxdy

= (2(r + 1))−d
¨
B2(r+1)×B2(r+1)

f2(x, x+ y) dxdy

. λ2(P)〈r〉d.
Combining these estimates yields

Λ([0, r]) . (λ2(P)〈r〉d) ∧ λ(P). (2.19)

Under our assumptions on g, an integration by parts yieldsˆ ∞
0

g(r) dΛ(r) = −g(0)Λ({0}) +

ˆ ∞
0
|g′(r)|Λ([0, r]) dr,

and the conclusion follows in combination with (2.18) and (2.19).

Step 2. Conclusion.
In case of (Hunif

ρ ), as we have ρn ≥ ρ for all n, the contributions of ρn < ρ can be removed
in (2.16). Applying (2.17) with g(r) = 〈r〉−d, we are then led to

|B̄− (Id +B̄1)| . E
[∑

n

10∈In
|In|

〈ρn〉−d
]

. λ2(P) +

ˆ ∞
0
〈r〉−d−1

(
(λ2(P)〈r〉d) ∧ λ(P)

)
dr,

and the conclusion (2.4) follows after estimating this integral.

Next, in case of (Hmom
ρ,κ ), repeating the same computation as above for the contributions

of ρn ≥ 1 in (2.16), and separating the contributions of ρn ≤ 1, we find

|B̄− (Id +B̄1)| . λ2(P) log
(
2 + λ(P)

λ2(P)

)
+ E

[∑
n

10∈In
|In|

µ(ρn)1ρn≤1

]
,

and it remains to estimate the last term. By Hölder’s inequality, we can write for any κ ≥ 1,

E
[∑

n

10∈In
|In|

µ(ρn)1ρn≤1

]
≤ E

[∑
n

10∈In
|In|

1ρn≤1

]1− 1
κ

E
[∑

n

10∈In
|In|

µ(ρn)κ
] 1
κ

.
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On the one hand, (2.19) yields

E
[∑

n

10∈In
|In|

1ρn≤1

]
= Λ([0, 1]) . λ2(P).

On the other hand, by the ergodic theorem, using (1.11) and the reciprocal moment con-
dition in (Hmom

ρ,κ ), we find

E
[∑

n

10∈In
|In|

µ(ρn)κ
]

= lim
R↑∞

R−d
∑
n

|In ∩QR|
|In|

µ(ρn)κ

≤ lim sup
R↑∞

]{n : In ∩QR 6= ∅}
Rd

1

]{n : In ∩QR 6= ∅}
∑

n:In∩QR 6=∅

µ(ρn)κ

≤ λ(P)(Kκ)κ,

and the conclusion (2.4) follows.

Finally, in case of (Hperc
ρ,κ ), repeating again the same computation for the contributions

of ρn ≥ ρ in (2.16), we find

|B̄− (Id +B̄1)| . λ2(P) log
(
2 + λ(P)

λ2(P)

)
+ E

[∑
q∈S′

10∈Jq,ρ
|Jq,ρ|

diam(Jq,ρ)
p0

]
,

and it remains to estimate the last term. By Hölder’s inequality, we can write for any κ ≥ 1,

E
[∑
q∈S′

10∈Jq,ρ
|Jq,ρ|

diam(Jq,ρ)
p0

]
≤ E

[∑
q∈S′

10∈Jq,ρ
|Jq,ρ|

]1− 1
κ

E
[∑

q

10∈Jq,ρ
|Jq,ρ|

diam(Jq,ρ)
κp0

] 1
κ

.

On the one hand, by definition of S ′, (2.19) yields

E
[∑
q∈S′

10∈Jq,ρ
|Jq,ρ|

]
= E

[∑
n

10∈In
|In|

1ρn≤ρ

]
= Λ([0, ρ]) . λ2(P).

On the other hand, by the ergodic theorem, using (1.11), the condition (2.3) in (Hperc
ρ,κ ),

and the fact that there are less clusters than particles, we find

E
[∑

q

10∈Jq,ρ
|Jq,ρ|

diam(Jq,ρ)
κp0

]
= lim

R↑∞
R−d

∑
q

|Jq,ρ ∩QR|
|Jq,ρ|

diam(Jq,ρ)
κp0

≤ lim sup
R↑∞

]{q : Jq,ρ ∩QR 6= ∅}
Rd

1

]{q : Jq,ρ ∩QR 6= ∅}
∑

q:Jq,ρ∩QR 6=∅

diam(Jq,ρ)
κp0

≤ lim sup
R↑∞

]{n : In ∩QR 6= ∅}
Rd

1

]{q : Jq,ρ ∩QR 6= ∅}
∑

q:Jq,ρ∩QR 6=∅

diam(Jq,ρ)
κp0

≤ λ(P)(Kκ)κ,

and the conclusion (2.4) follows. �
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2.3. Preliminary lemmas. Before turning to the proof of Lemmas 2.1 and 2.2, which
are key to Theorem 1 as explained above, we start with a couple of preliminary PDE and
probabilistic lemmas. We first prove the following trace estimates at particle boundaries.

Lemma 2.3 (Trace estimates).
(i) For any ψ ∈ H1(In), we have

inf
κ∈Rd,Θ∈Mskew

ˆ
∂In

|ψ − (κ+ Θ(x− xn))|2 .
ˆ
In

|D(ψ)|2.

(ii) For any ψ ∈ H1(In + ρB) satisfying the following relations, for some E ∈Msym
0 , −4ψ +∇Σ = 0, in (In + ρB) \ In,

div(ψ) = 0, in (In + ρB) \ In,
D(ψ) + E = 0, in In,

we have
inf
c∈R

ˆ
∂In

|σ(ψ,Σ)− c Id|2 .
ˆ
In+ρB

|D(ψ)|2,

where we recall that multiplicative constants may implicitly depend on ρ. ♦

Proof. We split the proof into two steps.

Step 1. Proof of (i).
We appeal to a trace estimate in form ofˆ

∂In

|ψ − (κ+ Θ(x− xn))|2 .
ˆ
In

|〈∇〉
1
2 (ψ − (κ+ Θ(x− xn)))|2,

and the conclusion follows from Poincaré’s and Korn’s inequalities.

Step 2. Proof of (ii).
By definition of the Cauchy stress tensor, a trace estimate yieldsˆ

∂In

|σ(ψ,Σ)− c Id|2 .
ˆ

(In+ 1
2
ρB)\In

|〈∇〉
1
2∇ψ|2 + |〈∇〉

1
2 (Σ− c)|2. (2.20)

By the local regularity theory for the steady Stokes equation near a boundary, e.g. [24,
Theorems IV.5.1–5.3], we have for all m ≥ 0, for all constants κ ∈ Rd and c ∈ R,

‖∇ψ‖Hm+1((In+ 1
2
ρB)\In) + ‖Σ− c Id‖Hm+1((In+ 1

2
ρB)\In)

. ‖ψ|In − κ‖Hm+ 3
2 (∂In)

+ ‖ψ − κ‖H1((In+ρB)\In) + ‖Σ− c Id‖L2((In+ρB)\In).

Choosing c :=
ffl

(In+ρB)\In Σ and using a local pressure estimate for the steady Stokes
equation, e.g. [19, Lemma 3.3], we find

‖Σ− c Id‖L2((In+ρB)\In) . ‖∇ψ‖L2((In+ρB)\In),

so that the above reduces to

‖∇ψ‖Hm+1((In+ 1
2
ρB)\In) + ‖Σ− c Id‖Hm+1((In+ 1

2
ρB)\In)

. ‖ψ|In − κ‖Hm+ 3
2 (∂In)

+ ‖ψ − κ‖H1((In+ρB)\In).

As ψ is affine in In, we have

‖ψ|In − κ‖Hm+ 3
2 (∂In)

. ‖ψ − κ‖Hm+2(In) = ‖ψ − κ‖H1(In),
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and the above then becomes

‖∇ψ‖Hm+1((In+ 1
2
ρB)\In) + ‖Σ− c Id‖Hm+1((In+ 1

2
ρB)\In) . ‖ψ − κ‖H1(In+ρB).

Further choosing κ :=
ffl
In+ρB ψ and applying Poincaré’s inequality, we deduce

‖∇ψ‖Hm+1((In+ 1
2
ρB)\In) + ‖Σ− c Id‖Hm+1((In+ 1

2
ρB)\In) . ‖∇ψ‖L2(In+ρB).

In particular, combined with (2.20), this leads us to

inf
c∈R

ˆ
∂In

|σ(ψ,Σ)− c Id|2 .
ˆ
In+ρB

|∇ψ|2.

Noting that σ(ψ,Σ) and the equations satisfied by (ψ,Σ) are unchanged if a rigid motion
is added to ψ, the conclusion now follows from Korn’s inequality. �

Next, we recall the following standard elliptic regularity estimate for solutions of the
free steady Stokes equation.

Lemma 2.4 (Mean-value property). Given r > 0, if (ψ,Σ) is a weak solution of the free
Stokes equation in Br,

−4ψ +∇Σ = 0, div(ψ) = 0, in Br,

then it satisfies

|D(ψ)(0)|2 .
 
Br

|D(ψ)|2. ♦

Proof. By scaling, it suffices to consider r = 1. For m > d
2 , the Sobolev embedding yields

|D(ψ)(0)| . ‖D(ψ)‖Hm( 1
2
B), (2.21)

and it remains to estimate this Sobolev norm. By the local regularity theory for the steady
Stokes equation, e.g. [24, Theorem IV.4.1], we find for all κ ∈ Rd and c ∈ R,

‖∇ψ‖Hm( 1
2
B) + ‖Σ− c‖Hm( 1

2
B) . ‖ψ − κ‖H1(B) + ‖Σ− c‖L2(B).

Choosing c =
ffl
B Σ and using a local pressure estimate for the steady Stokes equation,

e.g. [19, Lemma 3.3], we find

‖Σ− c‖L2(B) . ‖∇ψ‖L2(B).

Inserting this into the above and applying Poincaré’s inequality for the choice κ =
ffl
B ψ,

we deduce
‖∇ψ‖Hm( 1

2
B) . ‖∇ψ‖L2(B).

For any Θ ∈Mskew, this entails

‖D(ψ)‖Hm( 1
2
B) ≤ ‖∇(ψ −Θx)‖Hm( 1

2
B) . ‖∇(ψ −Θx)‖L2(B),

hence, by Korn’s inequality,

‖D(ψ)‖Hm( 1
2
B) . ‖D(ψ)‖L2(B).

Inserting this into (2.21), the conclusion follows. �

Finally, the following lemma provides a useful property of Voronoi tessellations. Al-
though it could be obtained as a direct consequence of Palm theory, we include a more
elementary proof by means of an approximation argument.
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Lemma 2.5 (Property of Voronoi tessellations). For all stationary random fields ζ with
E [|ζ|] <∞, we have in case of (Hunif

ρ ) or (Hmom
ρ,κ ),

E [ζ] = E
[∑

n

10∈In
|In|

ˆ
Vn

ζ

]
, (2.22)

and in case of (Hperc
ρ,κ ),

E [ζ] = E
[∑
n∈S

10∈In
|In|

ˆ
Vn

ζ +
∑
q∈S′

10∈Jq,ρ
|Jq,ρ|

ˆ
Wq

ζ

]
. (2.23)

♦

Proof. By the monotone convergence theorem, it is enough to prove the result for any
bounded non-negative random field 0 ≤ ζ ≤ M with any fixed M > 0. Let such a ζ be
fixed. We split the proof into two steps.

Step 1. Proof of (2.22) & (2.23) under the additional assumption that almost surely

sup
n

diam(Vn) < ∞. (2.24)

In that case, let K ≥ 1 be such that diam(Vn) ≤ K almost surely for all n. We con-
sider (2.22) and (2.23) separately, and split the proof into two further substeps.

Substep 1.1. Proof of (2.22) under assumption (2.24).
By the ergodic theorem, we have almost surely

E
[∑

n

10∈In
|In|

ˆ
Vn

ζ

]
= lim

R↑∞
R−d

∑
n

|In ∩QR|
|In|

ˆ
Vn

ζ.

As ζ ≥ 0 and as assumption (2.24) entails Vn ⊂ BK(xn) for all n, we easily get the
two-sided estimate

ˆ
QR−CK

ζ ≤
∑
n

|In ∩QR|
|In|

ˆ
Vn

ζ ≤
ˆ
QR+CK

ζ,

and the claim (2.22) then follows from the ergodic theorem.

Substep 1.2. Proof of (2.23) under assumption (2.24).
By the ergodic theorem, we have almost surely

E
[∑
n∈S

10∈In
|In|

ˆ
Vn

ζ +
∑
q∈S′

10∈Jq,ρ
|Jq,ρ|

ˆ
Wq

ζ

]

= lim
R↑∞

R−d
(∑
n∈S

|In ∩QR|
|In|

ˆ
Vn

ζ +
∑
q∈S′

|Jq,ρ ∩QR|
|Jq,ρ|

ˆ
Wq

ζ

)
.
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As 0 ≤ ζ ≤M and as assumption (2.24) entails Vn ⊂ BK(xn) for all n, we get the two-sided
estimateˆ

QR−CK

ζ − M
∑

q:Jq,ρ∩(QR+1\QR)6=∅

|Wq|

≤
∑
n∈S

|In ∩QR|
|In|

ˆ
Vn

ζ +
∑
q∈S′

|Jq,ρ ∩QR|
|Jq,ρ|

ˆ
Wq

ζ

≤
ˆ
QR+CK

ζ + M
∑

q:Jq,ρ∩(QR+1\QR)6=∅

|Wq|.

By the ergodic theorem, in order to prove (2.23), it thus remains to show almost surely

lim
R↑∞

R−d
∑

q:Jq,ρ∩(QR+1\QR) 6=∅

|Wq| = 0,

which would follow provided that we show almost surely

lim sup
R↑∞

R−d
∑

q:Jq,ρ∩QR 6=∅

|Wq| < ∞. (2.25)

As |Wq| . (diam(Jq,ρ) +K)d, we can estimate

R−d
∑

q:Jq,ρ∩QR 6=∅

|Wq|

. Kd
(
R−d ]{q : Jq,ρ ∩QR 6= ∅}

)( 1

]{q : Jq,ρ ∩QR 6= ∅}
∑

q:Jq,ρ∩QR 6=∅

diam(Jq,ρ)
d

)
.

To bound the first factor, we simply note that

R−d ]{q : Jq,ρ ∩QR 6= ∅} ≤ R−d ]{n : In ∩QR 6= ∅}

≤ R−d ]{n : xn ∈ QR+1}
R↑∞−−−→ λ(P).

Appealing to the condition (2.3) in (Hperc
ρ,κ ) to estimate the second factor, the claim (2.25)

follows.

Step 2. Relaxing assumption (2.24).
It remains to consider the case when supn diam(Vn) =∞, and we proceed by approxima-
tion. Consider a point process P ′ = {x′n}n independent of P, I such that almost surely

min
n6=m
|x′n − x′m| ≥ 1

2 , min
m:m6=n

|x′n − x′m| ≤ 1 for all n.

For instance, P ′ can be chosen as the random parking process of parameter 1
4 , cf. [56].

Now, for any integer α ≥ 1, we define the ‘enriched’ point process Pα as follows,

Pα := P ∪
{

22αx′n : dist(22αx′n,P) ≥ 22α+3
}
,

as well as the corresponding random set

Iα := I ∪
⋃

n:dist(22αx′n,P)≥22α+3

B(22αx′n).
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Denote by Vα(xn) the Voronoi cell associated with In in Iα, and by Vα(x′n) the Voronoi
cell associated with B(22αx′n). By construction, it can be checked that for all n,

Vn ∩B22α+2(xn) ⊂ Vα(xn) ⊂ Vn ∩B22α+4(xn),

which entails that Vα(xn) ↑ Vn increasingly as α ↑ ∞ (over integers). In addition, Pα, Iα
satisfy (Hρ), as well as (2.24) with Voronoi diameters bounded by O(22α). They fur-
ther satisfy Assumption (Hunif

ρ ), (Hmom
ρ,κ ), or (Hperc

ρ,κ ) provided that P, I satisfy the cor-
responding assumption. We focus on the case of (Hunif

ρ ) or (Hmom
ρ,κ ), while the case

of (Hperc
ρ,κ ) is analogous. Applying the result (2.22) of Step 1, by definition of Pα, we get

E [ζ] = E
[∑

n

10∈In
|In|

ˆ
Vα(xn)

ζ

]
+ E

[∑
n

1dist(22αx′n,P)≥22α+3

10∈B(22αx′n)

|B|

ˆ
Vα(x′n)

ζ

]
.

As 0 ≤ ζ ≤ M , as Voronoi diameters are bounded by C22α almost surely, and using
stationarity and the independence of P, I and P ′, I ′, the second right-hand side term
satisfies

0 ≤ E
[∑

n

1dist(22αx′n,P)≥22α+3

10∈B(22αx′n)

|B|

ˆ
Vα(x′n)

ζ

]
. M22αd E

[∑
n

1dist(22αx′n,P)≥22α+3

10∈B(22αx′n)

|B|

]
= M22αd E

[∑
n

10∈B(22αx′n)

|B|

]
P
[
dist(0,P) ≥ 22α+3

]
= Mλ(P ′)P

[
dist(0,P) ≥ 22α+3

]
.

Inserting this into the above, we deduce

E
[∑

n

10∈In
|In|

ˆ
Vα(xn)

ζ

]
≤ E [ζ] ≤ E

[∑
n

10∈In
|In|

ˆ
Vα(xn)

ζ

]
+ CMλ(P ′)P

[
dist(0,P) ≥ 22α+3

]
.

and the conclusion (2.22) follows from the monotone convergence theorem. �

2.4. Proof of Lemma 2.1. Without loss of generality, we can assume that En,D < ∞
almost surely as otherwise the claimed estimate (2.13) would be trivial. The variational
definition of the effective viscosity (1.24) can be written as

E : B̄E = |E|2 + inf
{
E
[
|D(ψ)|2

]
: ψ ∈ L2(Ω;H1

loc(Rd)d), ∇ψ stationary,

div(ψ) = 0, (D(ψ) + E)|I = 0, E [D(ψ)] = 0
}
, (2.26)

and the definition (2.5) of B̄1 as

E : B̄1E = E
[∑

n

10∈In
|In|

En,∞
]
. (2.27)
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Note that an energy estimate for (2.11) using Bogovskii’s construction yields the uniform
bound En,∞ . |E|2. In order to prove (2.13), it remains to compare (2.26) to a superpo-
sition of the single-particle problems {En,∞}n and to recognize (2.27). We split the proof
into three steps.

Step 1. Upper bound: proof that we have in case of (Hunif
ρ ) or (Hmom

ρ,κ ),

E : B̄E ≤ |E|2 + E
[∑

n

10∈In
|In|

En,D
]
, (2.28)

and in case of (Hperc
ρ,κ ),

E : B̄E ≤ |E|2 + E
[∑
n∈S

10∈In
|In|

En,D +
∑
q∈S′

10∈Jq,ρ
|Jq,ρ|

Fq,D
]
. (2.29)

We focus on (2.29), the proof of (2.28) being identical. We define almost surely

ψD :=
∑
n∈S

ψn,D +
∑
q∈S′

ψq,D ∈ H1
loc(Rd)d,

where the summands ψn,D ∈ H1
0 (Vn)d and ψq,D ∈ H1

0 (Wq)
d are implicitly extended by

zero outside Vn and Wq, respectively. Properties of Dirichlet minimizers {ψn,D}n, {ψq,D}q
ensure that ∇ψD is stationary and satisfies div(ψD) = 0 and (D(ψD) +E)|I = 0. Assume
that D(ψD) ∈ L2(Ω)d×d (for otherwise the claim is trivial by (2.23)). Then, appealing
to (2.23), we find E [D(ψD)] = 0. We may then use ψD as a test function in the variational
problem (2.26), to the effect of

E : B̄E ≤ |E|2 + E
[
|D(ψD)|2

]
,

and the claim (2.29) now follows from (2.23).

Step 2. Lower bound: proof that

E : B̄E ≥ |E|2 + E
[∑

n

10∈In
|In|

En,N
]
. (2.30)

By (2.22), we can write

E : B̄E = |E|2 + E
[
|D(ψE)|2

]
= |E|2 + E

[∑
n

10∈In
|In|

ˆ
Vn

|D(ψE)|2
]
.

Using the corrector ψE as a test function for the Neumann single-particle problem (2.10),
we find En,N ≤

´
Vn
|D(ψE)|2 and the claim (2.30) follows.

Step 3. Conclusion.
In view of (2.28) and (2.30), it remains to compare En,D and En,N to En,∞. On the one
hand, since ψn,D is an admissible test function for En,∞, we have

En,∞ ≤
ˆ
Rd
|D(ψn,D)|2 =

ˆ
Vn

|D(ψn,D)|2 = En,D.

On the other hand, since the restriction ψn,∞|Vn is an admissible test function for En,N ,
we have

En,N ≤
ˆ
Vn

|D(ψn,∞)|2 ≤ En,∞.
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This yields
En,N ≤ En,∞ ≤ En,D,

or alternatively,
|En,N − En,∞|+ |En,D − En,∞| = En,D − En,N .

Further note that the minimality of Neumann problems entails∑
n:In⊂Jq,ρ

En,N ≤ Fq,D,

and thus

E
[∑
n/∈S

10∈In
|In|

En,N
]

= E
[∑
q∈S′

10∈Jq,ρ
|Jq,ρ|

∑
n:In⊂Jq,ρ

En,N
]
≤ E

[∑
q∈S′

10∈Jq,ρ
|Jq,ρ|

Fq,D
]
.

Combining these observations with (2.28)–(2.30), the conclusion (2.13) follows. �

2.5. Proof of Lemma 2.2. The bound (2.15) on Fq,D follows from Bogovskii’s construc-
tion in form of [17, Lemma 4.2]. We turn to the proof of (2.14). By [12, Section 4.1], there
exists wn ∈ W 1,∞

0 (Vn)d that is an admissible test function for the Dirichlet problem En,D
such that

En,D ≤
ˆ
Vn

|D(wn)|2 . µ(ρn),

which entails
0 ≤ En,D − En,N ≤ En,D . µ(ρn).

To prove (2.14), it remains to show that in the case ρn ≥ 1 we have

En,D − En,N ≤ ρ−dn . (2.31)

This amounts to investigating the role of the different boundary conditions on ∂Vn. The
proof will require us to establish in passing the following two fine estimates,ˆ

Vn

|D(ψn,D − ψn,N )|2 . ρ−dn , (2.32)
ˆ
In+ 1

2
B
|D(ψn,D − ψn,N )|2 . ρ−2d

n . (2.33)

We assume from now on that ρn ≥ 1 and, without loss of generality, xn = 0. We drop the
index n to simplify notation and we set r = ρn (to avoid confusion with the constant ρ in
Assumption (Hρ) and elsewhere). We split the argument into three steps.

Step 1. Proof that
ED − E∞ . r−d. (2.34)

First recall the following standard bounds on the whole-space single-particle solution ψ∞
and on the associated pressure field Σ∞,

|ψ∞(x)| . 〈x〉1−d, |∇ψ∞(x)|+ |Σ∞(x)| . 〈x〉−d. (2.35)

Define the neighborhood I+
r := I + r

2B, which satisfies I ⊂ I+
r ⊂ V and dist(I+

r , ∂V ) = r
2 ,

and let χ ∈ C∞c (V ) be a smooth cut-off function with

χ|I+
r
≡ 1, suppχ ⊂ I + rB ⊂ V, 0 ≤ χ ≤ 1, |∇χ| . r−1.
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Now consider the map χψ∞ ∈ H1
0 (V )d, which coincides with ψ∞ on I+

r . To make it an
admissible test function for the Dirichlet problem ED, we need to make it divergence-free
in V \ I+

r . As the properties of the cut-off function χ and the incompressibility of ψ∞ yieldˆ
V \I+

r

div(χψ∞) =

ˆ
∂V

χψ∞ · ν −
ˆ
I+
r

div(χψ∞) = 0,

Bogovskii’s construction entails that there exists w ∈ H1
0 (V \ I+)d such that

div(w) = div(χψ∞) = ∇χ · ψ∞ in V \ I+
r ,ˆ

V \I+
r

|∇w|2 .
ˆ
V \I+

r

|∇χ · ψ∞|2. (2.36)

By construction, the map χψ∞−w is now an admissible test function for ED and we deduce

ED ≤
ˆ
V
|D(χψ∞ − w)|2

=

ˆ
V
χ2|D(ψ∞)|2 + 2

ˆ
V
χD(ψ∞) : (∇χ⊗ ψ∞)

+
1

4

ˆ
V
|ψ∞ ⊗∇χ+∇χ⊗ ψ∞|2 +

ˆ
V
|D(w)|2 − 2

ˆ
V

D(w) : D(χψ∞).

Using (2.35), (2.36), and properties of the cut-off function χ, the claim (2.34) follows.

Step 2. Proof that
E∞ − EN . r−d. (2.37)

More precisely, we shall note that

E∞ − EN =

ˆ
V
|D(ψN − ψ∞)|2, (2.38)

and we shall establish the following more precise estimates,ˆ
V
|D(ψD − ψ∞)|2 +

ˆ
V
|D(ψ∞ − ψN )|2 . r−d, (2.39)

ˆ
I+

|D(ψD − ψ∞)|2 +

ˆ
I+

|D(ψ∞ − ψN )|2 . r−2d, (2.40)

where we use the short-hand notation I+ := I + 1
2B. We split the proof into five further

substeps.

Substep 2.1. Proof of (2.38).
By the Euler–Lagrange equation for ψN in form ofˆ

V
D(ψN ) : D(ψ∞ − ψN ) = 0,

we find ˆ
V
|D(ψ∞)|2 −

ˆ
V
|D(ψN )|2 =

ˆ
V

D(ψ∞ + ψN ) : D(ψ∞ − ψN )

=

ˆ
V
|D(ψ∞ − ψN )|2,

that is, (2.38).



32 M. DUERINCKX AND A. GLORIA

Substep 2.2. Proof thatˆ
V
|D(ψN − ψ∞)|2 . r−d +

(ˆ
I+

|D(ψN − ψ∞)|2
) 1

2
. (2.41)

As in (1.5), the Euler–Lagrange equation for ψ∞ takes the following form, in terms of the
associated pressure field Σ∞ and Cauchy stress tensor σ∞ := σ(ψ∞ + Ex,Σ∞),

−4ψ∞ +∇Σ∞ = 0, in Rd \ I,
div(ψ∞) = 0, in Rd \ I,
D(ψ∞ + Ex) = 0, in I,´
∂I σ∞ν = 0,´
∂I Θx · σ∞ν = 0, ∀Θ ∈Mskew,

(2.42)

and similarly the equation for ψN is as follows, in terms of the associated pressure ΣN and
Cauchy stress tensor σN := σ(ψN + Ex,ΣN ),

−4ψN +∇ΣN = 0, in V \ I,
div(ψN ) = 0, in V \ I,
σNν = 0, on ∂V ,
D(ψN + Ex) = 0, in I,´
∂I σNν = 0,´
∂I Θx · σNν = 0, ∀Θ ∈Mskew.

Testing both equations with ψN − ψ∞, we obtain

2

ˆ
V
|D(ψN − ψ∞)|2 = −

ˆ
∂V

(ψN − ψ∞) · σ∞ν. (2.43)

In order to estimate the right-hand side, we note that, testing the equation for ψN with ψ∞
and the equation for ψ∞ with ψN in V yields

2

ˆ
V

D(ψ∞) : D(ψN ) = −
ˆ
∂I
ψ∞ · σNν,

2

ˆ
V

D(ψN ) : D(ψ∞) =

ˆ
∂V
ψN · σ∞ν −

ˆ
∂I
ψN · σ∞ν,

from which we deduceˆ
∂V
ψN · σ∞ν =

ˆ
∂I
ψN · σ∞ν −

ˆ
∂I
ψ∞ · σNν.

Inserting this into (2.43), recalling (ψN+Ex)|I = (ψ∞+Ex)|I = 0, and using the boundary
conditions for ψN , ψ∞, we get

2

ˆ
V
|D(ψN − ψ∞)|2 =

ˆ
∂V
ψ∞ · σ∞ν −

ˆ
∂I
Ex · (σN − σ∞)ν.

In view of (2.35), this entailsˆ
V
|D(ψN − ψ∞)|2 . r−d +

ˆ
∂I
|σN − σ∞|,

and thus, by the trace estimate in Lemma 2.3(ii), the claim (2.41) follows.

Substep 2.3. Proxy for ψN − ψ∞.
If the difference ψ := ψN − ψ∞ satisfied the free steady Stokes equation in the whole
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domain V , then Lemma 2.4 would yield
´
I+ |D(ψ)|2 . r−d

´
V |D(ψ)|2, and the conclu-

sion (2.39) for ψ would already follow from (2.41) together with Young’s inequality. How-
ever, ψ is rigid in I and does not satisfy the free steady Stokes equation in the whole
domain.6 To overcome this issue, we shall compare ψ to a suitable proxy: we consider the
solution (ψ̃, Σ̃) of the following auxiliary Neumann problem in V ,

−4ψ̃ +∇Σ̃ = 0, in V ,
div(ψ̃) = 0, in V ,
σ(ψ̃, Σ̃)ν = −σ∞ν, on ∂V .

(2.44)

Note that the solution is only defined up to a rigid motion, which can be fixed for instance
by choosing

´
V ψ̃ = 0 and

´
V ∇ψ̃ ∈Msym

0 .

The rest of this step is devoted to the proof of the following estimates for ψ̃,ˆ
V
|D(ψ̃)|2 . r−d,

ˆ
I+

|D(ψ̃)|2 . r−2d. (2.45)

For that purpose, we start by testing equation (2.44) with ψ̃ itself, to the effect of

2

ˆ
V
|D(ψ̃)|2 = −

ˆ
∂V
ψ̃ · σ∞ν.

In order to estimate the right-hand side, we note that, testing the equation for ψ̃ with ψ∞
and the equation for ψ∞ with ψ̃,

2

ˆ
V

D(ψ∞) : D(ψ̃) = −
ˆ
∂V
ψ∞ · σ∞ν,

2

ˆ
V

D(ψ̃) : D(ψ∞) =

ˆ
∂V
ψ̃ · σ∞ν −

ˆ
∂I
ψ̃ · σ∞ν,

from which we deducê

∂V
ψ̃ · σ∞ν = −

ˆ
∂V
ψ∞ · σ∞ν +

ˆ
∂I
ψ̃ · σ∞ν.

Inserting this into the above yields

2

ˆ
V
|D(ψ̃)|2 =

ˆ
∂V
ψ∞ · σ∞ν −

ˆ
∂I
ψ̃ · σ∞ν,

and thus, using (2.35), noting that any rigid motion can be added to ψ̃, and appealing to
the trace estimate in Lemma 2.3(i),ˆ

V
|D(ψ̃)|2 . r−d +

(ˆ
I
|D(ψ̃)|2

) 1
2
.

As ψ̃ satisfies the free steady Stokes equation in V and as |I+| . 1 and dist(I+, ∂V ) ≥ r
2 ,

we may now appeal to Lemma 2.4, to the effect ofˆ
I+

|D(ψ̃)|2 . r−d
ˆ
V
|D(ψ̃)|2, (2.46)

and the claim (2.45) follows.

6As showed in Lemma A.2 in Appendix A, the mean-value property can actually be extended in presence
of rigid particles. Rather than appealing to this general result here, we provide a self-contained and more
elementary approach in the present single-particle setting.
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Substep 2.4. Proof of (2.39) & (2.40) for ψ = ψN − ψ∞.
Decomposing ψ = (ψ − ψ̃) + ψ̃ and using (2.45), we findˆ

I+

|D(ψ)|2 . r−2d +

ˆ
V
|D(ψ − ψ̃)|2, (2.47)

and thus, inserting this into (2.41),ˆ
V
|D(ψ)|2 . r−d +

(ˆ
V
|D(ψ − ψ̃)|2

) 1
2
. (2.48)

Next, noting that ψ satisfies

−4ψ +∇Σ = 0, in V \ I,
div(ψ) = 0, in V \ I,
σ(ψ,Σ)ν = −σ∞ν, on ∂V ,
D(ψ) = 0, in I,´
∂I σ(ψ,Σ)ν = 0,´
∂I Θx · σ(ψ,Σ)ν = 0, ∀Θ ∈Mskew,

(2.49)

and testing this equation as well as (2.44) with ψ − ψ̃, we find

2

ˆ
V
|D(ψ − ψ̃)|2 =

ˆ
∂I
ψ̃ · σ(ψ,Σ)ν.

As we may add any rigid motion to ψ̃, the trace estimates in Lemma 2.3 lead us toˆ
V
|D(ψ − ψ̃)|2 .

( ˆ
I
|D(ψ̃)|2

) 1
2
( ˆ

I+

|D(ψ)|2
) 1

2
.

Decomposing again ψ = (ψ − ψ̃) + ψ̃ and using Young’s inequality, we getˆ
V
|D(ψ − ψ̃)|2 .

ˆ
I+

|D(ψ̃)|2.

Inserting this into (2.48) and appealing again to (2.45), the conclusion (2.39) & (2.40)
follows for ψ = ψN − ψ∞.

Substep 2.5. Proof of (2.39) & (2.40) for ψD − ψ∞.
Although this part is in fact not needed for the proof of (2.37), it is included for future
reference. We start by decomposingˆ

V
|D(ψD − ψ∞)|2 =

ˆ
V
|D(ψD)|2 −

ˆ
V
|D(ψ∞)|2 − 2

ˆ
V

D(ψD − ψ∞) : D(ψ∞).

Testing the equation for ψ∞ with ψD − ψ∞, we find

2

ˆ
V

D(ψD − ψ∞) : D(ψ∞) = −
ˆ
∂V
ψ∞ · σ∞ν,

so that the above becomesˆ
V
|D(ψD − ψ∞)|2 = ED − E∞ +

ˆ
∂V
ψ∞ · σ∞ν.

Using (2.34) and (2.35), this entailsˆ
V
|D(ψD − ψ∞)|2 . r−d, (2.50)

that is, (2.39) for ψD − ψ∞.
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It remains to prove (2.40). For that purpose, as above, we proceed by defining a suitable
proxy for ψD − ψ∞ satisfying the free steady Stokes equation in the whole domain V : we
consider the solution (ψ̂, Σ̂) of the following auxiliary Dirichlet problem in V ,

−4ψ̂ +∇Σ̂ = 0, in V ,
div(ψ̂) = 0, in V ,
ψ̂ = −ψ∞, on ∂V .

A straightforward adaptation of the proof of (2.45) yieldsˆ
V
|D(ψ̂)|2 . r−d,

ˆ
I+

|D(ψ̂)|2 . r−2d.

From this together with (2.50), the conclusion (2.40) for ψD−ψ∞ easily follows by similar
arguments as in Substep 2.4. �

2.6. Explicit form of Einstein’s formula. This last section is devoted to the proof of
Proposition 2. Under Assumption (Indep), the definition (2.5) of B̄1 becomes

E : B̄1E = λ(P)E
[ˆ

Rd
|D(ψ◦E)|2

]
,

that is, (2.6) in terms of the unique decaying solution ψ◦E of the single-particle prob-
lem (2.7). It remains to prove Einstein’s formula (2.8) for spherical particles, In = B(x,rn),
with iid random radii {rn}n. By scaling, the above becomes

E : B̄1E = λ(P)E
[
(rn)d

]ˆ
Rd
|D(ψ̃◦E)|2,

in terms of the unique decaying solution ψ̃◦E of the rescaled elementary problem
−4ψ̃◦E +∇Σ̃◦E = 0, in Rd \B,
div(ψ̃◦E) = 0, in Rd \B,
D(ψ̃◦E + Ex) = 0, in B,´
∂B σ(ψ̃◦E + Ex, Σ̃◦E)ν = 0,´
∂B Θx · σ(ψ̃◦E + Ex, Σ̃◦E)ν = 0, ∀Θ ∈Mskew.

Alternatively, using the energy identity for this equation,

E : B̄1E = 1
2λ(P)E

[
(rn)d

]ˆ
∂B
Ex · σ(ψ̃◦E + Ex, Σ̃)ν. (2.51)

As is well-known, e.g. [30, Section 2.1.3], ψ̃◦E coincides with the unique solution of
−4ψ̃◦E +∇Σ̃◦E = 0, in Rd \B,
div(ψ̃◦E) = 0, in Rd \B,
ψ̃◦E = −Ex, on ∂B,

and is explicitly given by the following formulas for |x| ≥ 1,

ψ̃◦E(x) := −d+ 2

2

(x · Ex)x

|x|d+2
− 1

2

(
2
Ex

|x|d+2
− (d+ 2)

(x · Ex)x

|x|d+4

)
,

Σ̃◦E(x) := −(d+ 2)
x · Ex
|x|d+2

.
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Inserting this into (2.51), a direct computation yields

E : B̄1E = d+2
2 λ(P)E

[
(rn)d

]
|B||E|2,

that is, Einstein’s formula (2.8). �
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3. Cluster expansion of the effective viscosity

This section is devoted to the higher-order cluster expansion of the effective viscosity B̄:
starting from finite-volume approximations, we establish cluster formulas and prove uni-
form estimates in the large-volume limit. These results are mainly inspired by our previous
work [14] on the Clausius–Mossotti conductivity formula, where we introduced the triad
consisting of: (1) finite-volume approximation; (2) cluster expansion; (3) uniform `1 − `2
energy estimates. We further refine the analysis of [14], in particular improving on error
estimates, and properly estimating cluster coefficients in case of large uniform particle sep-
aration `(P) � 1; there are also some new twists due to the rigidity of the inclusions.
Henceforth, in the rest of this memoir, we assume that particles are uniformly separated
in the sense of (Hρ) and (Hunif

ρ ).

3.1. Finite-volume approximations. In order to make sense of cluster expansions and
avoid diverging series, we start by defining finite-volume approximations of the effective
viscosity, obtained by a periodization procedure, which will in turn provide an implicit
renormalization of cluster coefficients in the large-volume limit. More precisely, we define
a restriction PL on QL of the point process P via

PL := {xn : n ∈ NL}, NL := {n : xn ∈ QL,ρ}, QL,ρ := QL−2(`(P)∨(1+ρ))

and we consider the corresponding random set

IL :=
⋃
n∈NL In, In = xn + I◦n. (3.1)

For convenience, we choose an enumeration PL = {xn,L}n and set In,L = xn,L + I◦n,L.
Under Assumptions (Hρ) and (Hunif

ρ ), the periodic extension of IL satisfies

• Regularity and separation: For all L, the periodized random set IL +LZd satisfies the
ρ-regularity and uniform separation assumptions in (Hρ) and (Hunif

ρ ). Moreover, the
periodized point process PL + LZd satisfies `(PL + LZd) ≥ `(P) & 1.
• Stabilization: For all L, there holds PL|QL,ρ = P|QL,ρ .

We then define the following finite-volume approximation of the effective viscosity B̄,

E : B̄LE := E
[ 

QL

|D(ψE;L) + E|2
]
, (3.2)

where ψE;L ∈ L2(Ω;H1
per(QL)d) is almost surely the unique solution in H1

per(QL)d, with
vanishing average

´
QL

ψE;L = 0, of the periodized version of the corrector problem (1.3),
−4ψE;L +∇ΣE;L = 0, in QL \ I,
div(ψE;L) = 0, in QL \ I,
D(ψE;L + Ex) = 0, in IL,´
∂In;L

σE;Lν = 0, ∀n,´
∂In;L

Θ(x− xn;L) · σE;Lν = 0, ∀n, ∀Θ ∈Mskew,

(3.3)

where we use the short-hand notation σE;L := σ(ψE;L + Ex,ΣE;L) for the Cauchy stress
tensor. As a corollary of [18, Theorem 1],7 in view of the above stabilization property, this

7This requires to replace Dirichlet boundary conditions in [18] by periodic conditions, as is standard in
homogenization theory.
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finite-volume approximation (3.2) is consistent in the sense of

lim
L↑∞

B̄L = B̄. (3.4)

As opposed to B̄, we emphasize that the approximation B̄L depends only on the finite
number of inclusions {In,L}n. Indeed, by (Hρ), the number of inclusions in QL has almost
surely a deterministic upper bound CLd. The associated cluster expansion is therefore
well-defined.

3.2. Main results. We start with the cluster expansion of the finite-volume approxima-
tion B̄L, establishing suitable formulas for cluster coefficients and for the remainder. This
is analogous to formulas obtained in our previous work on the conductivity problem [14].
While the formula (3.9) for the remainder naturally involves the original corrector with
the whole set PL of particles, we emphasize that the bound (3.10) only involves correctors
associated with finite numbers of inclusions (uniformly in L): this is key to the optimal
estimates obtained in the sequel and constitutes the first twist wrt [14]. Indeed, this con-
trol is based on the rigidity of the particles and is therefore not available in the generality
considered for the conductivity problem in [14]; it was first observed at second order by
Gérard-Varet in [25]. The proof is displayed in Section 3.4.

Theorem 3 (Finite-volume cluster expansion). Under Assumptions (Hρ) and (Hunif
ρ ),

finite-volume approximations of the effective viscosity can be expanded for all L and k ≥ 1,

B̄L = Id +
k∑
j=1

1
j!B̄

j
L +Rk+1

L , (3.5)

where the coefficients and remainders are defined as follows:
• The coefficients {B̄j

L}j are given by cluster formulas, cf. (1.21),

E : B̄j
LE = j!

∑
]F=j

E
[ 

QL

δF
(
|D(ψ∅

E;L) + E|2
)]
, (3.6)

which can be alternatively expressed as

E : B̄j
LE = 1

2j!L
−d
∑
]F=j

∑
n∈F

E
[ˆ

∂In,L

E(x− xn,L) · δF\{n}σ{n}E;Lν

]
(3.7)

= 1
2j!L

−d
∑
]F=j

∑
n∈F

E
[ˆ

∂In,L

δF\{n}
(
ψ∅
E;L + E(x− xn,L)

)
· σFE;Lν

]
, (3.8)

where we use the short-hand notation σFE;L := σ(ψFE;L + Ex,ΣF
E;L) for the Cauchy stress

tensor.
• The remainder Rk+1

L can be represented as

E : Rk+1
L E = 1

2L
−d

∑
]F=k+1

∑
n∈F

E
[ˆ

∂In,L

δF\{n}
(
ψ∅
E;L + E(x− xn,L)

)
· σE;Lν

]
, (3.9)

and is estimated as follows,

|E : Rk+1
L E| . E

[
L−d

∑
n

ˆ
In,L

∣∣∣ ∑
]F=k
n/∈F

D(δFψ∅
E;L)

∣∣∣2] (3.10)
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+

k∑
j=1

E
[
L−d

∑
n

(ˆ
In,L

∣∣∣ ∑
]F=k
n/∈F

D(δFψ∅
E;L)

∣∣∣2) 1
2

×
(ˆ

In,L+ρB

∣∣∣ ∑
]F=j−1
n/∈F

D
(
δF (ψ

{n}
E;L + E(x− xn,L))

)∣∣∣2) 1
2
]
. ♦

In view of the short-range setting (1.20), we expect B̄j
L = O(λj(P)) and we aim to prove

uniform-in-L estimates that would allow to pass to the large-volume limit and recover a
dilute expansion for the original effective viscosity B̄. This is partially achieved in the
upcoming theorem, which states fine estimates on cluster coefficients and on the remain-
der. However note that we cannot directly obtain uniform-in-L estimates with the desired
scalings O(λj(P)). Instead, the result is twofold:

— Uniform estimates: In item (i), we state uniform-in-L estimates, which further display
the optimal scaling in the order j and in the minimal distance ` = `(P), but fail to
capture the general expected dependence on multi-point intensities {λj(P)}j .

— Non-uniform estimates: In item (ii), we state non-uniform estimates, which display a
logarithmic divergence in the large-volume limit L ↑ ∞, but have the merit of capturing
the correct dependence on multi-point intensities.

Uniform estimates in (i) allow to deduce the convergence of cluster coefficients {B̄j
L}j in

the large-volume limit L ↑ ∞, cf. (3.13) below: this actually defines infinite-volume cluster
coefficients in a meaningful way, providing an implicit renormalization of diverging series
and answering the question raised in Section 1.3.4. As they display the optimal dependence
on the minimal distance ` = `(P), these estimates already yield the desired infinite-volume
cluster expansion in the large-separation regime `� 1 with λj(P) replaced by (`−d)j , which
is optimal in some cases (see dilation setting in Theorem 11). To treat the general model-
free dilute setting, however, uniform estimates need to be further derived with the correct
dependence on multi-point intensities: this requires to overcome logarithmic divergences
in non-uniform estimates in (ii), which is the subject of Section 4. The proof of the present
result is split between Sections 3.5, 3.6, 3.7, and 3.8.

Theorem 4 (Cluster estimates and large-volume limit). Under Assumptions (Hρ) and
(Hunif

ρ ), the coefficients and the remainder of the finite-volume cluster expansion in The-
orem 3 satisfy the following two classes of estimates.

(i) Uniform estimates: For all L and k, j ≥ 1,

|B̄j
L| ≤ j!(C`−d)j ,

|Rk+1
L | ≤ (C`−d)k+1. (3.11)

(ii) Non-uniform estimates: For all L and k, j ≥ 1,

|B̄j
L| .j λj(P) (logL)j−1,

|Rk+1
L | .k

2k∑
l=k

λl+1(P)(logL)l. (3.12)
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In particular, as a consequence of (i), for all k, j ≥ 1, the following large-volume limits are
well-defined,

B̄j := lim
L↑∞

B̄j
L, Rk+1 := lim

L↑∞
Rk+1
L , (3.13)

so that the cluster expansion (3.5) becomes, for all k ≥ 1,∣∣∣∣B̄− ( Id +

k∑
j=1

1
j!B̄

j
)∣∣∣∣ ≤ |Rk+1| ≤ (C`−d)k+1. (3.14)

♦

3.3. Preliminary lemmas. Henceforth, we fix E with |E| = 1 and we skip the associated
subscript for notational convenience. Before turning to the proof of Theorems 3 and 4, we
state a series of preliminary lemmas. We start with the following useful reformulation of
the corrector equation (1.3), where the rigidity constraint is viewed as generating a source
term concentrated at particle boundaries in steady Stokes equations.

Lemma 3.1 (Reformulation of the corrector equation). For all H ⊂ N we have in QL,

−4ψHL +∇(ΣH
L 1QL\IHL

) = −
∑
n∈H

δ∂In,Lσ
H
L ν, (3.15)

where δ∂In,L stands for the Hausdorff measure on the boundary of In,L.8 ♦

Proof. For any test function φL ∈ C∞per(QL)d, recalling that ψHL is divergence-free and that
it satisfies D(ψHL ) + E = 0 in IHL , we findˆ

QL

∇φL : ∇ψHL −
ˆ
QL\IHL

ΣH
L div(φL)

= 2

ˆ
QL

∇φL : D(ψHL )−
ˆ
QL\IHL

ΣH
L div(φL)

=

ˆ
QL\IHL

∇φL : σ(ψHL + Ex,ΣH
L ).

Since the steady Stokes equation for ψHL writes div(σ(ψHL +Ex,ΣH
L )) = 0 in QL \ IHL , we

deduce, after integration by parts,ˆ
QL

∇φL : ∇ψHL −
ˆ
QL\IHL

ΣH
L div(φL) = −

∑
n∈H

ˆ
∂In,L

φL · σ(ψHL + Ex,ΣH
L )ν.

By the arbitrariness of φL, this proves (3.15). �

Next, the following result provides corresponding Stokes equations for corrector differ-
ences, which will be used abundantly in the sequel.

Lemma 3.2 (Equations for corrector differences). For all disjoint subsets F,H ⊂ N with F
finite, we have in QL,

−4δFψHL +∇δF
(
ΣH
L 1QL\IHL

)
(3.16)

= −
∑
n∈H

δ∂In,Lδ
FσHL ν −

∑
n∈F

δ∂In,Lδ
F\{n}σ

H∪{n}
L ν. ♦

8More precisely, we define
´
QL

φL δ∂In,L :=
´
∂In,L

φL for any test function φL ∈ C∞per(QL).
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Proof. The starting point is the equation (3.15) satisfied by ψS∪HL ,

−4ψS∪HL +∇
(
ΣS∪H
L 1QL\IS∪HL

)
= −

∑
n∈S∪H

δ∂In,Lσ
S∪H
L ν.

Using the definition (1.9) of the difference operator, we deduce

−4δFψHL +∇δF
(
ΣH
L 1QL\IHL

)
= −

∑
S⊂F

(−1)|F\S|
∑

n∈S∪H
δ∂In,Lσ

S∪H
L ν,

and it remains to reformulate the right-hand side. For that purpose, we decompose

−4δFψHL +∇δF
(
ΣH
L 1QL\IHL

)
= −

∑
n∈H

δ∂In,L
∑
S⊂F

(−1)|F\S|σS∪HL ν −
∑
n∈F

δ∂In,L
∑
S⊂F

1n∈S(−1)|F\S|σS∪HL ν.

Changing summation variables and recognizing the definition (1.9) of the difference oper-
ator, the conclusion follows. �

We now state and prove trace estimates, which constitute an upgraded version of
Lemma 2.3. We shall repeatedly appeal to these estimates to control force terms at particle
boundaries, which appear in our formulation (3.16) of equations for corrector differences.

Lemma 3.3 (Trace estimates). Under Assumptions (Hρ) and (Hunif
ρ ), for all families F

of finite subsets of N, for all H ⊂ N and n ∈ N with n /∈
⋃
F∈F F , we have

inf
κ∈Rd,Θ∈Mskew

ˆ
∂In,L

∣∣∣ ∑
F∈F

δFψHL − (κ+ Θ(x− xn,L))
∣∣∣2 . ˆ

In,L

∣∣∣ ∑
F∈F

D(δFψHL )
∣∣∣2,

and

inf
c∈R

ˆ
∂In,L

∣∣∣ ∑
F∈F

δFσHL − c Id
∣∣∣2 . ˆ

In,L+ρB

∣∣∣ ∑
F∈F

D(δF (ψHL + Ex))
∣∣∣2. ♦

Proof. We split the proof into three steps. We set for abbreviation

ψF ,HL :=
∑
F∈F

δFψHL , ΣF ,HL :=
∑
F∈F

δFΣH
L , σF ,HL :=

∑
F∈F

δFσHL .

We also use the short-hand notation ψ̄HL := ψHL + Ex and ψ̄F ,HL :=
∑

F∈F δ
F ψ̄HL . This

expression is equal to
∑

F∈F δ
FψHL + Ex if ∅ ∈ F , and to

∑
F∈F δ

FψHL otherwise.

Step 1. Proof of the first estimate on ψF ,HL .
By the trace estimateˆ

∂In,L

|ψF ,HL − (κ+ Θ(x− xn,L))|2 .
ˆ
In,L

∣∣〈∇〉 1
2
(
ψF ,HL − (κ+ Θ(x− xn,L))

)∣∣2,
combined with Poincaré’s inequality, the conclusion follows.

Step 2. Proof of the second estimate on σF ,HL in the case n /∈ H.
As σF ,HL = σ(ψ̄F ,HL ,ΣF ,HL ), a trace estimate yieldsˆ

∂In,L

|σF ,HL − c Id |2 .
ˆ

(In,L+ 1
2
ρB)\In,L

|〈∇〉
1
2∇ψ̄F ,HL |2 + |〈∇〉

1
2 (ΣF ,HL − c)|2. (3.17)
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Given n /∈ H, as the uniform separation assumption in (Hunif
ρ ) ensures that no other

particle intersects In,L + ρB, we note that (ψ̄F ,HL ,ΣF ,HL ) satisfies

−4ψ̄F ,HL +∇ΣF ,HL = 0, in In,L + ρB. (3.18)

By the local regularity theory for steady Stokes equations, e.g. [24, Theorem IV.4.1], we
deduce for all m ≥ 0, for all constants κ ∈ Rd and c ∈ R,

‖∇ψ̄F ,HL ‖Hm+1(In,L+ 1
2
ρB) + ‖ΣF ,HL − c‖Hm+1(In,L+ 1

2
ρB)

. ‖ψ̄F ,HL − κ‖H1(In,L+ρB) + ‖ΣF ,HL − c‖L2(In,L+ρB).

Choosing c :=
ffl
In,L+ρB ΣF ,HL and using a local pressure estimate for the steady Stokes

equation, e.g. [19, Lemma 3.3], we find

‖ΣF ,HL − c‖L2(In,L+ρB) . ‖∇ψ̄
F ,H
L ‖L2(In,L+ρB),

so that the above reduces to

‖∇ψ̄F ,HL ‖Hm+1(In,L+ 1
2
ρB) + ‖ΣF ,HL − c‖Hm+1(In,L+ 1

2
ρB) . ‖ψ̄

F ,H
L − κ‖H1(In,L+ρB).

Further choosing κ :=
ffl
In,L+ρB ψ̄

F ,H
L and applying Poincaré’s inequality, we conclude

‖∇ψ̄F ,HL ‖Hm+1(In,L+ 1
2
ρB) + ‖ΣF ,HL − c‖Hm+1(In,L+ 1

2
ρB) . ‖∇ψ̄

F ,H
L ‖L2(In,L+ρB). (3.19)

In particular, combining this with (3.17) and noting that the Cauchy stress tensor σF ,HL is
unchanged if we add a rigid motion to ψ̄F ,HL , the conclusion follows from Korn’s inequality.

Step 3. Proof of the second estimate on σF ,HL in the case n ∈ H.
The starting point is again (3.17). Now, given n ∈ H, we note that (ψ̄F ,HL ,ΣF ,HL ) satisfies,
instead of (3.18),

−4ψ̄F ,HL +∇ΣF ,HL = 0, in (In,L + ρB) \ In,L, (3.20)

and ψ̄F ,HL is affine in In,L. By the local regularity theory for the steady Stokes equation near
a boundary, e.g. [24, Theorem IV.5.1–5.3], we obtain for all m ≥ 0, for all constants κ ∈ Rd
and c ∈ R,

‖∇ψ̄F ,HL ‖Hm+1((In,L+ 1
2
ρB)\In,L) + ‖ΣF ,HL − c‖Hm+1((In,L+ 1

2
ρB)\In,L)

. ‖ψ̄F ,HL |In,L − κ‖Hm+ 3
2 (∂In,L)

+ ‖ψ̄F ,HL − κ‖H1((In,L+ρB)\In,L)

+ ‖ΣF ,HL − c‖L2((In,L+ρB)\In,L).

Choosing c :=
ffl

(In,L+ρB)\In,L ΣF ,HL and using a local pressure estimate for the steady Stokes
equation, e.g. [19, Lemma 3.3], we find

‖ΣF ,HL − c‖L2((In,L+ρB)\In,L) . ‖∇ψ̄
F ,H
L ‖L2((In,L+ρB)\In,L),

so that the above reduces to

‖∇ψ̄F ,HL ‖Hm+1((In,L+ 1
2
ρB)\In,L) + ‖ΣF ,HL − c‖Hm+1((In,L+ 1

2
ρB)\In,L)

. ‖ψ̄F ,HL |In,L − κ‖Hm+ 3
2 (∂In,L)

+ ‖ψ̄F ,HL − κ‖H1((In,L+ρB)\In,L).
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As ψ̄F ,HL is affine in In,L, we have

‖ψ̄F ,HL |In,L − κ‖Hm+ 3
2 (∂In,L)

. ‖ψ̄F ,HL − κ‖Hm+2(In,L) = ‖ψ̄F ,HL − κ‖H1(In,L),

and the above then becomes

‖∇ψ̄F ,HL ‖Hm+1((In,L+ 1
2
ρB)\In,L) + ‖ΣF ,HL − c‖Hm+1((In,L+ 1

2
ρB)\In,L)

. ‖ψ̄F ,HL − κ‖H1(In,L+ρB).

Further choosing κ :=
ffl
In,L+ρB ψ̄

F ,H
L and applying Poincaré’s inequality, we deduce

‖∇ψ̄F ,HL ‖Hm+1((In,L+ 1
2
ρB)\In,L) + ‖ΣF ,HL − c‖Hm+1((In,L+ 1

2
ρB)\In,L) . ‖∇ψ̄

F ,H
L ‖L2(In,L+ρB).

In particular, combined with (3.17), this yields the conclusion as in Step 2. �

3.4. Cluster formulas. This section is devoted to the proof of Theorem 3. We start by
establishing the validity of expansion (3.5) with coefficients given by formula (3.8) and with
the explicit remainder (3.9). The proof is similar to its counterpart for the conductivity
problem in our previous work [14].

Lemma 3.4 (Finite-volume cluster expansion). Under Assumptions (Hρ) and (Hunif
ρ ),

finite-volume approximations of the effective viscosity can be expanded for all L and k ≥ 1
as

B̄L = Id +

k∑
j=1

1
j!B̄

j
L +Rk+1

L , (3.21)

where the coefficients {B̄j
L}j and the remainder Rk+1

L are given by formulas (3.8) and (3.9),
respectively. ♦

Proof. Given E ∈Msym
0 with |E| = 1, we recall that we drop the corresponding subscripts

in the notation. We split the proof into three steps.

Step 1. General strategy.
The starting point is formula (3.2) for the finite-volume approximation of the effective
viscosity,

E : B̄LE = 1 + E
[ 

QL

|D(ψL)|2
]
.

The energy identity for the corrector equation (3.3) takes the form

2

ˆ
QL

|D(ψL)|2 =
∑
n

ˆ
∂In,L

E(x− xn,L) · σLν, (3.22)

and thus, further decomposing σL = σ
{n}
L + (σL − σ{n}L ), we obtain

E
[
2

ˆ
QL

|D(ψL)|2
]

=
∑
n

E
[ˆ

∂In,L

E(x− xn,L) · σ{n}L ν

]
+
∑
n

E
[ˆ

∂In,L

E(x− xn,L) · (σL − σ{n}L )ν

]
. (3.23)
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In addition, we shall prove below that for all k ≥ 1,

∑
]F=k

∑
n∈F

E
[ˆ

∂In,L

δF\{n}
(
ψ∅
L + E(x− xn,L)

)
· (σL − σFL )ν

]

=
∑

]F=k+1

∑
n∈F

E
[ˆ

∂In,L

δF\{n}ψ∅
L · σLν

]
. (3.24)

We note that (3.22) already proves the claim (3.21) for k = 0. Next, we proceed by
induction: if (3.21) holds for some k ≥ 0, formulas (3.8) and (3.9) for Rk+1

L , B̄k+1
L allow to

decompose

E : Rk+1
L E = 1

(k+1)!E : B̄k+1
L E

+ 1
2L
−d

∑
]F=k+1

∑
n∈F

E
[ˆ

∂In,L

δF\{n}
(
ψ∅
L + E(x− xn,L)

)
· (σL − σFL )ν

]
.

Inserting identity (3.24), noting that for ]F = k + 2 there holds

δF\{n}ψ∅
L = δF\{n}

(
ψ∅
L + E(x− xn,L)

)
,

and recognizing formula (3.9) for Rk+2
L , we deduce

Rk+1
L = 1

(k+1)!B̄
k+1
L +Rk+2

L ,

hence the claim (3.21) follows with k replaced by k + 1. It remains to prove (3.24), which
we do in the next two steps.

Step 2. Proof that for all ]F = k ≥ 1 and G ⊂ F ,

∑
n∈F\G

ˆ
∂In,L

(
ψGL + E(x− xn,L)

)
· (σL − σFL )ν =

∑
n/∈F

ˆ
∂In,L

(ψFL − ψGL ) · σLν. (3.25)

On the one hand, testing the equation (3.15) for ψGL with the difference ψL−ψFL , and using
the boundary conditions for ψL, ψFL , ψ

G
L on ∂In,L with n ∈ G ⊂ F , we find

ˆ
QL

∇(ψL − ψFL ) : ∇ψGL = −
∑
n∈G

ˆ
∂In,L

(ψL − ψFL ) · σGL ν = 0. (3.26)

On the other hand, equations (3.15) for ψL and ψFL entail

−4(ψL − ψFL ) +∇
(
ΣL1QL\IL − ΣF

L1QL\IFL

)
= −

∑
n/∈F

δ∂In,LσLν −
∑
n∈F

δ∂In,L(σL − σFL )ν,
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and thus, testing with ψGL and using the boundary conditions for ψL, ψFL , ψ
G
L on ∂In,L with

n ∈ G ⊂ F ,ˆ
QL

∇ψGL : ∇(ψL − ψFL )

= −
∑
n/∈F

ˆ
∂In,L

ψGL · σLν −
∑
n∈F

ˆ
∂In,L

ψGL · (σL − σFL )ν

= −
∑
n/∈F

ˆ
∂In,L

ψGL · σLν −
∑

n∈F\G

ˆ
∂In,L

ψGL · (σL − σFL )ν

+
∑
n∈G

ˆ
∂In,L

E(x− xn,L) · (σL − σFL )ν.

Combined with (3.26), this entails∑
n∈F\G

ˆ
∂In,L

ψGL · (σL − σFL )ν =
∑
n∈G

ˆ
∂In,L

E(x− xn,L) · (σL − σFL )ν −
∑
n/∈F

ˆ
∂In,L

ψGL · σLν,

or alternatively,∑
n∈F\G

ˆ
∂In,L

(
ψGL + E(x− xn,L)

)
· (σL − σFL )ν

=
∑
n∈F

ˆ
∂In,L

E(x− xn,L) · (σL − σFL )ν −
∑
n/∈F

ˆ
∂In,L

ψGL · σLν. (3.27)

For G = F , the left-hand side vanishes, hence∑
n∈F

ˆ
∂In,L

E(x− xn,L) · (σL − σFL )ν =
∑
n/∈F

ˆ
∂In,L

ψFL · σLν,

which allows us to reformulate (3.27) into (3.25).

Step 4. Proof of (3.24).
Denote by Tk,L the left-hand side of (3.24). By the definition (1.9) of the difference
operator, we have

Tk,L = −
∑
]F=k

∑
n∈F

∑
G⊂F\{n}

(−1)|F\G| E
[ˆ

∂In,L

(
ψGL + E(x− xn,L)

)
· (σL − σFL )ν

]
,

or alternatively, after changing summation variables,

Tk,L = −
∑
]F=k

∑
G⊂F

(−1)|F\G| E
[ ∑
n∈F\G

ˆ
∂In,L

(
ψGL + E(x− xn,L)

)
· (σL − σFL )ν

]
.

We now appeal to (3.25), to the effect of

Tk,L = −
∑
]F=k

∑
G⊂F

(−1)|F\G| E
[∑
n/∈F

ˆ
∂In,L

(ψFL − ψGL ) · σLν
]
.
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Using that
∑

G⊂F (−1)|F\G| = 0 for F 6= ∅ and recalling the definition (1.9) of the difference
operator, this implies

Tk,L =
∑
]F=k

∑
G⊂F

(−1)|F\G| E
[∑
n/∈F

ˆ
∂In,L

ψGL · σLν
]

=
∑
]F=k

E
[∑
n/∈F

ˆ
∂In,L

δFψ∅
L · σLν

]
,

and the claim (3.24) follows after changing summation variables. �

In the above result, we have naturally come up with the definition (3.8) of cluster
coefficients {B̄j

L}j . We now further establish the alternative formulas (3.6) and (3.7). Note
that (3.6) coincides with the periodized version of the expected cluster formula (1.21).

Lemma 3.5 (Equivalent cluster formulas). Under Assumptions (Hρ) and (Hunif
ρ ), for

all L and j ≥ 1, the finite-volume cluster coefficient B̄j
L defined by formula (3.8) is equiv-

alently given by (3.6) and (3.7). ♦

Proof. We split the proof into two steps.

Step 1. Equivalence of (3.7) and (3.8).
It suffices to prove that for all finite F ⊂ N,∑
n∈F

ˆ
∂In,L

δF\{n}
(
ψ∅
L +E(x−xn,L)

)
·σFL ν =

∑
n∈F

ˆ
∂In,L

E(x−xn,L) · δF\{n}σ{n}L ν. (3.28)

Decomposing δF\{n}ψ∅
L = δF\{n}ψ

{n}
L −δFψ

∅
L for n ∈ F and using the boundary conditions,

we find ∑
n∈F

ˆ
∂In,L

δF\{n}
(
ψ∅
L + E(x− xn)

)
· σFL ν = −

∑
n∈F

ˆ
∂In,L

δFψ∅
L · σ

F
L ν.

Testing the equation (3.15) for ψFL with δFψ∅
L , this becomes∑

n∈F

ˆ
∂In,L

δF\{n}
(
ψ∅
L + E(x− xn)

)
· σFL ν =

ˆ
QL

∇δFψ∅
L : ∇ψFL .

Now testing the equation (3.16) for δFψ∅
L with ψFL , and using the boundary conditions, we

deduce∑
n∈F

ˆ
∂In,L

δF\{n}
(
ψ∅
L + E(x− xn)

)
· σFL ν = −

∑
n∈F

ˆ
∂In,L

ψFL · δF\{n}σ
{n}
L ν

=
∑
n∈F

ˆ
∂In,L

E(x− xn,L) · δF\{n}σ{n}L ν,

that is, (3.28).

Step 2. Equivalence of (3.6) and (3.7).
It suffices to prove for all finite F ⊂ N, 

QL

δF |D(ψ∅
L )|2 = 1

2L
−d
∑
n∈F

ˆ
∂In,L

E(x− xn,L) · δF\{n}σ{n}L ν. (3.29)
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Recalling the definition (1.9) of the difference operator, we can write 
QL

δF |D(ψ∅
L )|2 =

∑
G⊂F

(−1)|F\G|
 
QL

|D(ψGL )|2,

which entails, in view of the energy identity for ψGL , cf. (3.22), 
QL

δF |D(ψ∅
L )|2 = 1

2L
−d
∑
G⊂F

∑
n∈G

(−1)|F\G|
ˆ
∂In,L

E(x− xn,L) · σGL ν.

After changing summation variables and using again the definition (1.9) of the difference
operator, this yields the claim (3.29). �

To conclude the proof of Theorem 3, it remains to establish the control (3.10) of the
remainder, which is inspired by a recent work of Gérard-Varet [25] and which we prove in
the slightly refined form of (3.30) below. This extends the argument of [25] to all k > 2.

Lemma 3.6 (Control of the remainder). Under Assumptions (Hρ) and (Hunif
ρ ), for all L

and j ≥ 1, the remainder term defined in (3.9) can be estimated by

|Rk+1
L | ≤ E

[
L−d

∑
n

ˆ
In,L

∣∣∣ ∑
]F=k
n/∈F

D(δFψ∅
L )
∣∣∣2]

+

k∑
j=1

∣∣∣∣E[L−d∑
n

ˆ
In,L

( ∑
]F=k
n/∈F

D(δFψ∅
L )
)

:
( ∑
]F=j−1
n/∈F

D(δF ψ̂
{n}
n,L)

)]∣∣∣∣, (3.30)

where in view of (1.9) we have defined, with a slight abuse of notation,

δF ψ̂
{n}
n,L :=

∑
G⊂F

(−1)|F\G|ψ̂
G∪{n}
n,L , (3.31)

where for all H ⊂ N and n ∈ H we denote by ψ̂Hn,L the solution of the following Neumann
boundary value problem in the inclusion In,L (unique up to a rigid motion),

−4ψ̂Hn,L +∇Σ̂H
n,L = 0, in In,L,

div(ψ̂Hn,L) = 0, in In,L,
σ(ψ̂Hn,L, Σ̂

H
n,L)ν = σHL ν, on ∂In,L.

(3.32)

In particular, this yields the bound (3.10). ♦

Proof. We split the proof into two steps, first showing that (3.32) is well-posed, and then
proving the bound (3.30).

Step 1. Proof that the Neumann problem (3.32) is well-posed for all H ⊂ N and n ∈ H,
and that the solution satisfiesˆ

In,L

|D(ψ̂Hn,L)|2 .
ˆ
In,L+ρB

|D(ψHL ) + E|2. (3.33)

In addition, the proof yields similarlyˆ
In,L

∣∣∣ ∑
]F=j−1
n/∈F

D(δF ψ̂
{n}
n,L)

∣∣∣2 . ˆ
In,L+ρB

∣∣∣ ∑
]F=j−1
n/∈F

D
(
δF (ψ

{n}
L + Ex)

)∣∣∣2.
This last estimate entails that the bound (3.10) follows from (3.30).
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We turn to the proof of (3.33). The weak formulation of equation (3.32) yields for all φ ∈
H1(In,L)d with div(φ) = 0

2

ˆ
In,L

D(φ) : D(ψ̂Hn,L) =

ˆ
∂In,L

φ · σHL ν. (3.34)

Let us analyze the linear functional defining the right-hand side. Using the incompressibil-
ity of φ in form of

´
∂In,L

φ · ν = 0, we can add any multiple of the identity matrix to σHL .
Further noting that the boundary conditions for ψHL on ∂In,L with n ∈ H allow to subtract
a rigid motion from the test function φ, we are led to∣∣∣ ˆ

∂In,L

φ · σHL ν
∣∣∣ ≤ ( inf

κ∈Rd,Θ∈Mskew

ˆ
∂In,L

|φ− (κ+ Θ(x− xn,L))|2
) 1

2

×
(

inf
c∈R

ˆ
∂In,L

|σHL − c Id |2
) 1

2
.

Appealing to the trace estimates of Lemma 3.3, this becomes∣∣∣ˆ
∂In,L

φ · σHL ν
∣∣∣ . (ˆ

In,L

|D(φ)|2
) 1

2
(ˆ

In,L+ρB
|D(ψHL ) + E|2

) 1
2
. (3.35)

This proves that the right-hand side in the weak formulation (3.34) is a continuous lin-
ear functional with respect to D(φ) ∈ L2(In,L)d×d. The Lax–Milgram theorem then en-
sures that equation (3.32) is well-posed in the sense that it admits a unique solution
D(ψ̂Hn,L) ∈ L2(In,L)d×d, and the a priori bound (3.33) follows.

Step 2. Proof of (3.30).
Inserting the energy identity (3.22) and the formula (3.7) for the coefficients, the cluster
expansion (3.5) yields the following formula for the remainder,

E : Rk+1
L E = E : B̄LE − 1−

k∑
j=1

1
j!E : B̄j

LE

= 1
2L
−d E

[∑
n

ˆ
∂In,L

E(x− xn,L) · σLν
]

−
k∑
j=1

1
2L
−d
∑
]F=j

∑
n∈F

E
[ˆ

∂In,L

E(x− xn,L) · δF\{n}σ{n}L ν

]
,

or equivalently, changing summation variables,

E : Rk+1
L E = 1

2L
−d E

[∑
n

ˆ
∂In,L

E(x− xn,L) ·
(
σL −

k∑
j=1

∑
]F=j−1
n/∈F

δFσ
{n}
L

)
ν

]
. (3.36)

Consider the cluster expansion error

Ψk
L := ψL −

k∑
j=1

∑
]F=j

δFψ∅
L , (3.37)

ΞkL := ΣL1QL\IL −
k∑
j=1

∑
]F=j

δF
(
Σ∅
L1QL\I∅L

)
,
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and note that in view of (3.16) it satisfies the following equation in QL,

−4Ψk
L +∇ΞkL = −

∑
n

δ∂In,L

(
σL −

k∑
j=1

∑
]F=j−1
n/∈F

δFσ
{n}
L

)
ν. (3.38)

Testing this equation with ψL and using the boundary conditions, the identity (3.36) for
the remainder becomes

E : Rk+1
L E = E

[ 
QL

D(ψL) : D(Ψk
L)

]
.

Adding and subtracting
∑k

j=1

∑
]F=j δ

Fψ∅
L to ψL, we deduce by (3.37),

|E : Rk+1
L E| ≤ E

[ 
QL

|D(Ψk
L)|2

]
+

k∑
j=1

∣∣∣∣E[ 
QL

D(Ψk
L) :

∑
]F=j

D(δFψ∅
L )

]∣∣∣∣.
The conclusion (3.30) then follows from the estimateˆ

QL

|D(Ψk
L)|2 .

∑
n

ˆ
In,L

∣∣∣ ∑
]F=k
n/∈F

D(δFψ∅
L )
∣∣∣2, (3.39)

and from the identity for all 1 ≤ j ≤ kˆ
QL

D(Ψk
L) :

∑
]F=j

D(δFψ∅
L ) =

∑
n

ˆ
In,L

( ∑
]F=k
n/∈F

D(δFψ∅
L )
)

:
( ∑
]F=j−1
n/∈F

D(δF ψ̂
{n}
n,L)

)
, (3.40)

which we prove in the next two substeps, respectively.

Substep 2.1. Proof of (3.39).
In view of (3.38), the cluster expansion error Ψk

L satisfies

−4Ψk
L +∇ΞkL = 0, div(Ψk

L) = 0, in QL \ IL,
which entailsˆ

QL

|D(Ψk
L)|2 =

∑
n

ˆ
In,L

|D(Ψk
L)|2 +

ˆ
QL\IL

|D(Ψk
L)|2

=
∑
n

ˆ
In,L

|D(Ψk
L)|2 − 1

2

∑
n

ˆ
∂In,L

Ψk
L · σ(Ψk

L,Ξ
k
L)ν.

Hence, using the boundary conditions and the incompressibility constraint to smuggle in
arbitrary constants in the different factors, as in the proof of (3.35), and appealing to the
trace estimates of Lemma 2.3, we findˆ

QL

|D(Ψk
L)|2 .

∑
n

ˆ
In,L

|D(Ψk
L)|2 +

∑
n

(ˆ
In,L

|D(Ψk
L)|2

) 1
2
(ˆ

I+
n,L

|D(Ψk
L)|2

) 1
2
,

from which we deduce by Young’s inequality,9ˆ
QL

|D(Ψk
L)|2 .

∑
n

ˆ
In,L

|D(Ψk
L)|2. (3.41)

9As argued in [25], this estimate (3.41) can alternatively be deduced from minimizing properties of
Stokes equations for Ψk

L in QL \ IL with prescribed symmetric gradient in IL. We rather give a PDE
argument that is more in line with the other arguments of this memoir.
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Next, the definition of Ψk
L and the rigidity constraint for ψL in In,L yield

D(Ψk
L) = −E −

k∑
j=1

∑
]F=j

D(δFψ∅
L ) in In,L. (3.42)

Distinguishing between the cases n ∈ F and n /∈ F , and noting that for n ∈ F we can
decompose δFψ∅

L = δF\{n}ψ
{n}
L − δF\{n}ψ∅

L , we find∑
]F=j

D(δFψ∅
L ) =

∑
]F=j
n/∈F

D(δFψ∅
L ) +

∑
]F=j−1
n/∈F

D(δFψ
{n}
L )−

∑
]F=j−1
n/∈F

D(δFψ∅
L ),

and thus, in view of the rigidity constraint for δFψ{n}L in In,L,∑
]F=j

D(δFψ∅
L ) = −E1j=1 +

∑
]F=j
n/∈F

D(δFψ∅
L )−

∑
]F=j−1
n/∈F

D(δFψ∅
L ) in In,L.

Inserting this into (3.42) and recognizing a telescoping sum, we deduce for all n,

D(Ψk
L) = −

∑
]F=k
n/∈F

D(δFψ∅
L ) in In,L. (3.43)

Combined with (3.41), this yields the claim (3.39).

Substep 2.2. Proof of (3.40).
Testing the equation (3.16) for δFψ∅

L with Ψk
L, and changing summation variables, we find

2

ˆ
QL

D(Ψk
L) :

∑
]F=j

D(δFψ∅
L ) = −

∑
]F=j

∑
n∈F

ˆ
∂In,L

Ψk
L · δF\{n}σ

{n}
L ν

= −
∑
n

ˆ
∂In,L

Ψk
L ·

∑
]F=j−1
n/∈F

δFσ
{n}
L ν.

In view of the equation (3.34) for D(δF ψ̂
{n}
n,L), this can be rewritten asˆ

QL

D(Ψk
L) :

∑
]F=j

D(δFψ∅
L ) = −

∑
n

ˆ
In,L

D(Ψk
L) :

∑
]F=j−1
n/∈F

D(δF ψ̂
{n}
n,L).

Combined with (3.43), this yields the claim (3.40). �

3.5. Uniform `1 − `2 energy estimates. In order to prove uniform cluster estimates,
cf. Theorem 4(i), our main analytical achievement is the following hierarchy of interpolating
`1 − `2 energy estimates for corrector differences, inspired by our previous work [14] on
the conductivity problem (which also considers ‘overlapping particles’; see [29, 20] for
refinements in that direction). More precisely, we consider the following quantities, for
all H ⊂ N, all L, and k, j ≥ 0,

SHL (k, j) :=
∑
]G=k

 
QL

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪GψHL )
∣∣∣2,

THL (k, j) := L−d
∑
]G=k

∑
n/∈G∪H

ˆ
In,L+ρB

∣∣∣ ∑
]F=j

F∩(G∪{n})=∅

D(δF∪GψHL )
∣∣∣2,
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and we prove the following result. The novelty with respect to [14] is that we further
identify the optimal dependence on the minimal distance ` = `(P) & 1, which appears
to be surprisingly challenging and relies on a fine use of elliptic regularity via a duality
argument.

Theorem 3.7 (Uniform `1−`2 energy estimates). Under Assumptions (Hρ) and (Hunif
ρ ),

we have for all H ⊂ N, all L, and k, j ≥ 0,

SHL (k, j) .

{
`−d : k = j = 0;

(C`−d)2(k+j)−1 : k, j ≥ 0, k + j ≥ 1;

THL (k, j) .

{
`−2d : k = j = 0;

(C`−d)2(k+j)+1 : k, j ≥ 0, k + j ≥ 1.
♦

The proof is split into two parts in the following two subsections: to simplify the pre-
sentation, we first give a short proof in the spirit of [14] without keeping track of the
`-dependence, and we then establish the estimates in their stated optimal form.

3.5.1. Proof of Theorem 3.7 without `-dependence. This section is devoted to the proof
that for all H ⊂ N, all L, and k, j ≥ 0,

SHL (k, j) + THL (k, j) . Ck+j . (3.44)

For notational convenience, we set SHL (k, j) = THL (k, j) = 0 for j < 0 or k < 0. We split
the proof into three steps.

Step 1. Reduction to SHL : for all H ⊂ N and L, k, j,

THL (k, j) . SHL (k, j) + SHL (k, j − 1), (3.45)

which entails in particular that it suffices to prove the bound (3.44) for SHL .

First note that for all maps f and all n /∈ G we have∑
]F=j
F∩G=∅

f(F ∪G) =
∑
]F=j

F∩(G∪{n})=∅

f(F ∪G) +
∑

]F=j−1
F∩(G∪{n})=∅

f(F ∪G ∪ {n}). (3.46)

Using this identity to decompose THL (j, k) and changing summation variables, we find

THL (k, j) . L−d
∑
]G=k

∑
n/∈G∪H

ˆ
In,L+ρB

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪GψHL )
∣∣∣2

+ L−d
∑

]G=k+1

∑
n∈G\H

ˆ
In,L+ρB

∣∣∣ ∑
]F=j−1
F∩G=∅

D(δF∪GψHL )
∣∣∣2,

and thus, using the disjointness of the fattened inclusions {In,L + ρB}n and recognizing
the definition of SHL , the claim (3.45) follows.

Step 2. Energy estimate for correctors: for all H ⊂ N,
SHL (0, 0) . 1. (3.47)

As in (3.22), the energy identity for the corrector equation (3.15) for ψHL takes the form

2

ˆ
QL

|D(ψHL )|2 =
∑
n∈H

ˆ
∂In,L

E(x− xn,L) · σHL ν. (3.48)
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Using the incompressibility constraint tr(E) = 0 to add an arbitrary constant to the
pressure in σHL , as in the proof of (3.35), and then appealing to the trace estimates of
Lemma 2.3(ii), we obtainˆ

QL

|D(ψHL )|2 .
∑
n∈H

(ˆ
In,L+ρB

|D(ψHL ) + E|2
) 1

2
.

Since the fattened inclusions {In,L + ρB}n are disjoint, the Cauchy–Schwarz inequality
then yields, recalling the choice of the periodization (3.1),ˆ

QL

|D(ψHL )|2 . ]{n ∈ H : xn ∈ QL}. (3.49)

As the right-hand side is bounded by CLd, the claim (3.47) follows. For future reference,
we also note that this bound entails, when taking the expectation,

E
[ 

QL

|D(ψL)|2
]
. λ(P). (3.50)

Step 3. Key recurrence relation: for all H ⊂ N and k, j ≥ 0,

SHL (k, j) . 1k+j≤1 + SHL (k + 1, j − 1)

+ SHL (k, j − 1) + SHL (k − 1, j) + SHL (k, j − 2) + SHL (k − 1, j − 1), (3.51)

which then leads to the conclusion (3.44) by a direct double induction argument.

Let a finite subset G ⊂ N be momentarily fixed. In view of (3.16), the following equation
holds in QL, for any F ⊂ N with F ∩G = ∅,

−4δF∪GψHL +∇δF∪G
(
ΣH
L 1QL\IHL

)
= −

∑
n∈H

δ∂In,Lδ
F∪GσHL ν

−
∑

n∈F\H

δ∂In,Lδ
(F\{n})∪Gσ

H∪{n}
L ν −

∑
n∈G\H

δ∂In,Lδ
F∪(G\{n})σ

H∪{n}
L ν.

Hence, after summing over F and changing summation variables,

−4
( ∑

]F=j
F∩G=∅

δF∪GψHL

)
+∇

( ∑
]F=j
F∩G=∅

δF∪G(ΣH
L 1QL\IHL

)

)

= −
∑
n∈H

δ∂In,L

( ∑
]F=j
F∩G=∅

δF∪GσHL ν

)
−

∑
n/∈G∪H

δ∂In,L

( ∑
]F=j−1

F∩(G∪{n})=∅

δF∪Gσ
H∪{n}
L ν

)

−
∑

n∈G\H

δ∂In,L

( ∑
]F=j
F∩G=∅

δF∪(G\{n})σ
H∪{n}
L ν

)
.

Testing this equation with the solution
∑

]F=j:F∩G=∅ δ
F∪GψHL itself, we obtain the energy

identity

2

ˆ
QL

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪GψHL )
∣∣∣2 = A1

L(G, j) +A2
L(G, j) +A3

L(G, j), (3.52)
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in terms of

A1
L(G, j) := −

∑
n∈H

ˆ
∂In,L

( ∑
]F=j
F∩G=∅

δF∪GψHL

)
·
( ∑

]F=j
F∩G=∅

δF∪GσHL ν

)
, (3.53)

A2
L(G, j) := −

∑
n/∈G∪H

ˆ
∂In,L

( ∑
]F=j
F∩G=∅

δF∪GψHL

)
·
( ∑

]F=j−1
F∩(G∪{n})=∅

δF∪Gσ
H∪{n}
L ν

)
,

A3
L(G, j) := −

∑
n∈G\H

ˆ
∂In,L

( ∑
]F=j
F∩G=∅

δF∪GψHL

)
·
( ∑

]F=j
F∩G=∅

δF∪(G\{n})σ
H∪{n}
L ν

)
.

We analyze these three contributions separately and we start with the first one. In view
of the boundary conditions for δF∪GψHL on ∂In,L with n ∈ H, we can rewrite

A1
L(G, j) =

∑
n∈H

ˆ
∂In,L

( ∑
]F=j
F∩G=∅

δF∪G(E(x− xn,L))

)
·
( ∑

]F=j
F∩G=∅

δF∪GσHL ν

)

= 1G=∅,j=0

∑
n∈H

ˆ
∂In,L

E(x− xn,L) · σHL ν.

Summing over G ⊂ N with ]G = k, and using the energy identity (3.48), we deduce

L−d
∑
]G=k

A1
L(G, j) = 1k=j=0 S

H
L (0, 0). (3.54)

We turn to the second term A2
L in (3.52). Using the boundary conditions and the incom-

pressibility constraints to smuggle in arbitrary constants in the different factors, as in the
proof of (3.35), and then appealing to the trace estimates of Lemma 3.3, we find

|A2
L(G, j)| .

∑
n/∈G∪H

( ˆ
In,L

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪GψHL )
∣∣∣2) 1

2

×
(ˆ

In,L+ρB

∣∣∣ ∑
]F=j−1

F∩(G∪{n})=∅

D(δF∪G(ψ
H∪{n}
L + Ex))

∣∣∣2) 1
2

. (3.55)

Decomposing the second factor via the following identity, for all n /∈ F ∪G∪H and F ∩G =
∅,

δF∪G(ψ
H∪{n}
L + Ex) = 1G=F=∅Ex+ δF∪GψHL + δF∪G∪{n}ψHL ,

summing over G ⊂ N with ]G = k, using the Cauchy–Schwarz inequality, and using the
disjointness of the fattened inclusions {In,L + ρB}n, we get

L−d
∑
]G=k

|A2
L(G, j)| .

(
SHL (k, j)

) 1
2

(
1k=0,j=1 + THL (k, j − 1) +SHL (k+ 1, j − 1)

) 1
2
. (3.56)

We turn to the third contribution A3
L in (3.52). Decomposing for n ∈ G\H and F ∩G = ∅,

δF∪GψHL = δF∪(G\{n})ψ
H∪{n}
L − δF∪(G\{n})ψHL ,
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and using the boundary conditions, we can rewrite

A3
L,`(G, j) = 1]G=1,j=0

∑
n∈G\H

ˆ
∂In,L

E(x− xn,L) · σH∪{n}L ν

+
∑

n∈G\H

ˆ
∂In,L

( ∑
]F=j
F∩G=∅

δF∪(G\{n})ψHL

)
·
( ∑

]F=j
F∩G=∅

δF∪(G\{n})σ
H∪{n}
L ν

)
.

Using the boundary conditions and the incompressibility constraints to smuggle in arbitrary
constants in the different factors, as in the proof of (3.35), and then appealing to the trace
estimates of Lemma 3.3, we find

|A3
L(G, j)| . 1]G=1,j=0

∑
n∈G\H

( ˆ
In,L+ρB

|D(ψ
H∪{n}
L ) + E|2

) 1
2

+
∑

n∈G\H

( ˆ
In,L

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪(G\{n})ψHL )
∣∣∣2) 1

2

×
( ˆ

In,L+ρB

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪(G\{n})(ψ
H∪{n}
L + Ex))

∣∣∣2) 1
2

. (3.57)

Decomposing the first right-hand side term and the last factor of the second term via the
following identities, for all n ∈ G \H and F ∩G = ∅,

ψ
H∪{n}
L = ψHL + δ{n}ψHL , (3.58)

δF∪(G\{n})(ψ
H∪{n}
L + Ex) = 1]G=1,]F=0Ex+ δF∪(G\{n})ψHL + δF∪(G\{n})δ{n}ψHL ,

summing over G ⊂ N with ]G = k, and using the Cauchy–Schwarz inequality and the
disjointness of the fattened inclusions {In,L + ρB}n, this becomes

L−d
∑
]G=k

|A3
L(G, j)| . 1k=1,j=0

(
1 + SHL (0, 0) + SHL (1, 0)

) 1
2

+
(
THL (k − 1, j)

) 1
2

(
1k=1,j=0 + THL (k − 1, j) + SHL (k, j)

) 1
2
. (3.59)

Inserting this into (3.52), together with (3.54) and (3.56), we obtain

SHL (k, j) . 1k=0,j=0 S
H
L (0, 0) + 1k=1,j=0

(
1 + SHL (0, 0) + SHL (1, 0)

) 1
2

+
(
SHL (k, j)

) 1
2

(
1k=0,j=1 + THL (k, j − 1) + SHL (k + 1, j − 1)

) 1
2

+
(
THL (k − 1, j)

) 1
2

(
1k=1,j=0 + THL (k − 1, j) + SHL (k, j)

) 1
2
.
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Using Young’s inequality to absorb the occurrences of SHL (k, j) in the right-hand side into
the left-hand side, we are led to

SHL (k, j) . 1k=0,j=0 S
H
L (0, 0) + 1k=0,j=1 + 1k=1,j=0

(
1 + SHL (0, 0)

) 1
2

+ SHL (k + 1, j − 1) + THL (k, j − 1) + THL (k − 1, j),

and the claim (3.51) now follows in combination with (3.45) and (3.47). �

3.5.2. Proof of Theorem 3.7 with optimal `-dependence. It remains to refine the proof of the
previous section to capture the optimal dependence on the minimal distance ` = `(P) & 1.
The proof involves a new intricate induction argument that combines both SHL and THL ,
and the optimal scaling is then captured by a suitable application of elliptic regularity via
a duality argument. By the result of the previous section, we may assume `� 1, in which
case the uniform separation assumption in (Hunif

ρ ) holds in the stronger form of
1
2 inf
n6=m

dist(In,L, Im,L) ≥ 1
2`− 1 ≥ 1

4` ≥ ρ, (3.60)

and the definition (3.1) of the periodization further ensures

inf
n

dist(In,L, ∂QL) ≥ `− 1 ≥ 1
2` ≥ ρ.

We split the proof into four steps.

Step 1. Energy estimate for correctors: for all H ⊂ N,

SHL (0, 0) =

 
QL

|D(ψHL )|2 . `−d, (3.61)

THL (0, 0) = L−d
∑
n/∈H

ˆ
In,L+ρB

|D(ψHL )|2 . `−2d. (3.62)

By the `-separation property (3.60), the number of points of the process PL in QL is
bounded by C(L/`)d, so that the first estimate (3.61) follows from (3.49). It remains to
prove (3.62). For that purpose, first note that for n /∈ H the `-separation property (3.60)
entails that the following free steady Stokes equations hold in In,L + 1

4`B ⊂ QL \ I
H
L ,

−4ψHL +∇ΣH
L = 0, div(ψHL ) = 0, in In,L + 1

4`B. (3.63)

Elliptic regularity in form of Lemma 2.4 then yieldsˆ
In,L+ρB

|D(ψHL )|2 . `−d
ˆ
In,L+ 1

4
`B
|D(ψHL )|2. (3.64)

Summing this over n /∈ H and using the `-separation property (3.60) in form of the
disjointness of the fattened inclusions {In,L + 1

4`B}n, we deduce∑
n/∈H

ˆ
In,L+ρB

|D(ψHL )|2 . `−d
ˆ
QL

|D(ψHL )|2,

and the claim (3.62) now follows from (3.61).

Step 2. Recurrence relation for SHL : for all H ⊂ N and k, j ≥ 0,

SHL (k, j) . 1k+j≤1`
−d + SHL (k + 1, j − 1)

+ THL (k, j) + THL (k, j − 1) + THL (k − 1, j). (3.65)
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This provides a refined version of the recurrence relation (3.51), which can indeed be
recovered by appealing to (3.45) to bound THL in terms of SHL . The present refined version
will be combined with a recurrence relation for THL in the next step.

Let G ⊂ N be momentarily fixed. As in the proof of (3.51), the starting point is iden-
tity (3.52), that is,

2

ˆ
QL

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪GψHL )
∣∣∣2 = A1

L(G, j) +A2
L(G, j) +A3

L(G, j), (3.66)

where we recall that A1
L, A

2
L, A

3
L are defined in (3.53). We analyze these contributions sep-

arately. The first one satisfies (3.54), and thus, combined with the energy estimate (3.61),

L−d
∑
]G=k

A1
L(G, j) = 1k=j=0 S

H
L (0, 0) . 1k=j=0`

−d. (3.67)

It remains to prove refined versions of (3.56) and (3.59) for A2
L and A3

L, and we start with
the contribution of A2

L. The starting point is the trace estimate (3.55) used in the proof
of (3.56), that is,

|A2
L(G, j)| .

∑
n/∈G∪H

( ˆ
In,L

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪GψHL )
∣∣∣2) 1

2

×
(ˆ

In,L+ρB

∣∣∣ ∑
]F=j−1

F∩(G∪{n})=∅

D(δF∪G(ψ
H∪{n}
L + Ex))

∣∣∣2) 1
2

,

which we shall now analyze more carefully. Using identity (3.46) to decompose the first
factor, and decomposing the second factor via the following identity, for all n /∈ F ∪G∪H
and F ∩G = ∅,

δF∪G(ψ
H∪{n}
L + Ex) = 1G=F=∅Ex+ δF∪GψHL + δF∪G∪{n}ψHL ,

we find

|A2
L(G, j)| .

∑
n/∈G∪H

( ˆ
In,L

∣∣∣ ∑
]F=j

F∩(G∪{n})=∅

D(δF∪GψHL )
∣∣∣2

︸ ︷︷ ︸
♣

+
∣∣∣ ∑

]F=j−1
F∩(G∪{n})=∅

D(δF∪G∪{n}ψHL )
∣∣∣2

︸ ︷︷ ︸
♦

) 1
2

×
(
1]G=0,j=1 +

ˆ
In,L+ρB

∣∣∣ ∑
]F=j−1

F∩(G∪{n})=∅

D(δF∪GψHL )
∣∣∣2

︸ ︷︷ ︸
♠

+
∣∣∣ ∑

]F=j−1
F∩(G∪{n})=∅

D(δF∪G∪{n}ψHL )
∣∣∣2

︸ ︷︷ ︸
♦

) 1
2

.

Summing over G ⊂ N with ]G = k, using Young’s inequality, using the separation property
in form of the disjointness of the fattened inclusions {In,L + ρB}n, using that the number
of points of the process PL in QL is bounded by C(L/`)d, and reorganizing the terms, we
conclude

L−d
∑
]G=k

|A2
L(G, j)| . `−d1k=0,j=1 + SHL (k + 1, j − 1) + THL (k, j) + THL (k, j − 1), (3.68)
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where the last three right-hand side terms come from ♦, ♣, ♠, respectively.

We turn to the contribution of A3
L. The starting point is the trace estimate (3.57) used in

the proof of (3.59). Further using the decomposition (3.58), this estimate becomes

|A3
L(G, j)| . 1]G=1,j=0

∑
n∈G\H

(
1 +

ˆ
In,L+ρB

|D(ψHL )|2 + |D(δ{n}ψHL )|2
) 1

2

+
∑

n∈G\H

( ˆ
In,L

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪(G\{n})ψHL )
∣∣∣2) 1

2

×
( ˆ

In,L+ρB

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪(G\{n})ψHL )
∣∣∣2 +

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪GψHL )
∣∣∣2) 1

2

. (3.69)

Summing the first right-hand side term over G ⊂ N with ]G = 1, using the Cauchy–
Schwarz inequality, recalling that the number of points of the process PL in QL is bounded
by C(L/`)d, and appealing to the energy estimate (3.62), we find

∑
n/∈H

(
1 +

ˆ
In,L+ρB

|D(ψHL )|2 + |D(δ{n}ψHL )|2
) 1

2

. L
d
2 `−

d
2

(
Ld`−d +

∑
n/∈H

ˆ
In,L+ρB

|D(ψHL )|2 +
∑
n/∈H

ˆ
QL

|D(δ{n}ψHL )|2
) 1

2

. Ld
(
`−2d + `−dSHL (1, 0)

) 1
2
.

Now summing (3.69) over G ⊂ N with ]G = k, inserting the above estimate for the first
right-hand side term, and using the Cauchy–Schwarz inequality, we find

L−d
∑
]G=k

|A3
L(G, j)| . 1k=1,j=0

(
`−2d + `−dSHL (1, 0)

) 1
2

+
(
THL (k − 1, j)

) 1
2
(
THL (k − 1, j) + SHL (k, j)

) 1
2
. (3.70)

Inserting this into (3.66), together with (3.67) and (3.68), we conclude

SHL (k, j) . 1k=0,j≤1`
−d + 1k=1,j=0

(
`−2d + `−dSHL (1, 0)

) 1
2

+ SHL (k + 1, j − 1)

+ THL (k, j) + THL (k, j − 1) +
(
THL (k − 1, j)

) 1
2
(
THL (k − 1, j) + SHL (k, j)

) 1
2
.

Using Young’s inequality to absorb the occurrence of SHL (k, j) in the right-hand side into
the left-hand side, the claim (3.65) follows.
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Step 3. Recurrence relation for THL : for all H ⊂ N and k, j ≥ 0,

THL (k, j) . 1k=j=0`
−2d + 1k+j=1`

−3d

+ `−2d
(
THL (k − 1, j) + THL (k, j − 1) + THL (k + 1, j − 2)

+ SHL (k, j) + SHL (k + 1, j − 1) + SHL (k + 2, j − 2)
)
. (3.71)

Let k, j ≥ 0 be fixed with k + j ≥ 1 (the case k = j = 0 already follows from (3.62)).
For G ⊂ N and n /∈ G, the `-separation property (3.60) implies that the following free
steady Stokes equations hold in In,L + 1

4`B,

−4
( ∑

]F=j
F∩(G∪{n})=∅

δF∪GψHL

)
+∇

( ∑
]F=j

F∩(G∪{n})=∅

δF∪G(ΣH
L 1QL\IHL

)

)
= 0,

div

( ∑
]F=j

F∩(G∪{n})=∅

δF∪GψHL

)
= 0, in In,L + 1

4`B,

so that elliptic regularity in form of Lemma 2.4 yields

THL (k, j) . L−d`−d
∑
]G=k

∑
n/∈G∪H

ˆ
In,L+ 1

4
`B

∣∣∣ ∑
]F=j

F∩(G∪{n})=∅

D(δF∪GψHL )
∣∣∣2. (3.72)

In order to analyze the right-hand side, we shall appeal to elliptic regularity a second time,
now via a duality argument. For that purpose, we use the following dual representation

∑
]G=k

∑
n/∈G∪H

ˆ
In,L+ 1

4
`B

∣∣∣ ∑
]F=j

F∩(G∪{n})=∅

D(δF∪GψHL )
∣∣∣2

= sup
α,h

{
I(α, h)2 :

∑
]G=k

∑
n/∈G∪H

|αn,G|2 = 1,

ˆ
QL

|hn,G|2 = 1, supphn,G ⊂ In,L + 1
4`B, ∀n,G

}
, (3.73)

where for any α = {αn,G}n,G ⊂ R and h = {hn,G}n,G ⊂ L2(QL)d×dsym we have set for
abbreviation

I(α, h) :=
∑
]G=k

∑
n/∈G∪H

αn,G

ˆ
QL

hn,G :

( ∑
]F=j

F∩(G∪{n})=∅

D(δF∪GψHL )

)
. (3.74)

Let α = {αn,G}n,G ⊂ R and h = {hn,G}n,G ⊂ L2(QL)d×dsym be momentarily fixed, satisfying
the constraints in (3.73),∑

]G=k

∑
n/∈G∪H

|αn,G|2 = 1,

ˆ
QL

|hn,G|2 = 1, supphn,G ⊂ In,L + 1
4`B, ∀n,G. (3.75)
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For n /∈ G ∪ H, consider the periodic solution wh,n,G of the following auxiliary steady
Stokes problem,

−4wh,n,G +∇Ph,n,G = div(hn,G), in QL \ IHL ,
div(wh,n,G) = 0, in QL \ IHL ,
D(wh,n,G) = 0, in IHL ,´
∂Im,L

σ(wh,n,G, Ph,n,G)ν = 0, ∀m ∈ H,´
∂Im,L

Θ(x− xm,L) · σ(wh,n,G, Ph,n,G)ν = 0, ∀Θ ∈Mskew, ∀m ∈ H.

(3.76)

Note that this problem is well-posed since hn,G is supported in In,L+ 1
4`B ⊂ QL \I

H
L . The

same argument as for (3.15) shows that wh,n,G satisfies in QL,

−4wh,n,G +∇
(
Ph,n,G1QL\IHL

)
= div(hn,G)−

∑
m∈H

δ∂Im,Lσ(wh,n,G, Ph,n,G)ν,

and, appealing to (3.16) and changing summation variables, we also find in QL,

−4
( ∑

]F=j
F∩(G∪{n})=∅

δF∪GψHL

)
+∇

( ∑
]F=j

F∩(G∪{n})=∅

δF∪G(ΣH
L 1QL\IHL

)

)

= −
∑
m∈H

δ∂Im,L

( ∑
]F=j

F∩(G∪{n})=∅

δF∪GσHL ν

)

−
∑

m∈G\H

δ∂Im,L

( ∑
]F=j

F∩(G∪{n})=∅

δF∪(G\{m})σ
H∪{m}
L ν

)

−
∑

m/∈G∪H∪{n}

δ∂Im,L

( ∑
]F=j−1

F∩(G∪{n,m})=∅

δF∪Gσ
H∪{m}
L ν

)
.

Testing the second of these two equations with the solution of the first one, and vice
versa, and using the boundary conditions, we can reformulate I(α, h) in (3.74) as follows,
provided k + j ≥ 1,

I(α, h) = −
∑
]G=k

∑
n/∈G∪H

2αn,G

ˆ
QL

D(wh,n,G) :

( ∑
]F=j

F∩(G∪{n})=∅

D(δF∪GψHL )

)
= I1(α, h) + I2(α, h), (3.77)

where we have set

I1(α, h) :=
∑
]G=k

∑
n/∈G∪H

αn,G
∑

m∈G\H

ˆ
∂Im,L

wh,n,G ·
( ∑

]F=j
F∩(G∪{n})=∅

δF∪(G\{m})σ
H∪{m}
L ν

)
,

I2(α, h) :=
∑
]G=k

∑
n/∈G∪H

αn,G
∑

m/∈G∪H∪{n}

ˆ
∂Im,L

wh,n,G ·
( ∑

]F=j−1
F∩(G∪{n,m})=∅

δF∪Gσ
H∪{m}
L ν

)
.
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We only treat I1(α, h) in detail since the argument for I2(α, h) is similar. Appealing to
identity (3.46), we can rewrite

I1(α, h) =
∑
]G=k

∑
m∈G\H

ˆ
∂Im,L

( ∑
n/∈G∪H

αn,Gwh,n,G

)
·
( ∑

]F=j
F∩G=∅

δF∪(G\{m})σ
H∪{m}
L ν

)

−
∑
]G=k

∑
n/∈G∪H

αn,G
∑

m∈G\H

ˆ
∂Im,L

wh,n,G ·
( ∑

]F=j−1
F∩(G∪{n})=∅

δF∪(G\{m})∪{n}σ
H∪{m}
L ν

)
,

or equivalently, after further changing summation variables in the second term,

I1(α, h) =
∑
]G=k

∑
m∈G\H

ˆ
∂Im,L

( ∑
n/∈G∪H

αn,Gwh,n,G

)
·
( ∑

]F=j
F∩G=∅

δF∪(G\{m})σ
H∪{m}
L ν

)

−
∑

]G=k+1

∑
m∈G\H

ˆ
∂Im,L

( ∑
n∈G\(H∪{m})

αn,G\{n}wh,n,G\{n}

)

·
( ∑
]F=j−1
F∩G=∅

δF∪(G\{m})σ
H∪{m}
L ν

)
.

Now using the boundary conditions and the incompressibility constraints to add arbitrary
constants to the different factors, as in the proof of (3.35), and appealing to the trace
estimates of Lemma 3.3, we are led to

|I1(α, h)| . I1,1(α, h) + I1,2(α, h), (3.78)

where we have set

I1,1(α, h) :=
∑
]G=k

∑
m∈G\H

(ˆ
Im,L

∣∣∣ ∑
n/∈G∪H

αn,G D(wh,n,G)
∣∣∣2) 1

2

×
( ˆ

Im,L+ρB

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪(G\{m})(ψ
H∪{m}
L + Ex))

∣∣∣2) 1
2

,

I1,2(α, h) :=
∑

]G=k+1

∑
m∈G\H

(ˆ
Im,L

∣∣∣ ∑
n∈G\(H∪{m})

αn,G\{n}D(wh,n,G\{n})
∣∣∣2) 1

2

×
( ˆ

Im,L+ρB

∣∣∣ ∑
]F=j−1
F∩G=∅

D(δF∪(G\{m})(ψ
H∪{m}
L + Ex))

∣∣∣2) 1
2

.

We start by estimating I1,1(α, h). Decomposing the second factor via the following identity,
for all m ∈ G \H and F ∩G = ∅,

δF∪(G\{m})(ψ
H∪{m}
L + Ex) = 1]G=1,]F=0Ex+ δF∪(G\{m})ψHL + δF∪GψHL ,

noting that the `-separation property (3.60) entails that
∑

n/∈G∪H αn,Gwh,n,G satisfies the
free steady Stokes equations in Im,L+ 1

4`B for allm /∈ H, and appealing to elliptic regularity
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in form of Lemma 2.4, we find

I1,1(α, h) .
∑
]G=k

∑
m∈G\H

(
`−d

ˆ
Im,L+ 1

4
`B

∣∣∣ ∑
n/∈G∪H

αn,G D(wh,n,G)
∣∣∣2) 1

2

×
(
1k=1,j=0 +

ˆ
Im,L+ρB

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪(G\{m})ψHL )
∣∣∣2

+

ˆ
Im,L+ρB

∣∣∣ ∑
]F=j
F∩G=∅

D(δF∪GψHL )
∣∣∣2) 1

2

. (3.79)

Next, the energy estimate for (3.76) yields∑
]G=k

ˆ
QL

∣∣∣ ∑
n/∈G∪H

αn,G D(wh,n,G)
∣∣∣2 . ∑

]G=k

ˆ
QL

∣∣∣ ∑
n/∈G∪H

αn,Ghn,G

∣∣∣2,
and thus, using the constraints (3.75) on α, h, and noting that the `-separation prop-
erty (3.60) entails that the hn,G’s have disjoint supports for different n’s,∑

]G=k

ˆ
QL

∣∣∣ ∑
n/∈G∪H

αn,G D(wh,n,G)
∣∣∣2 . ∑

]G=k

∑
n/∈G∪H

|αn,G|2
ˆ
QL

|hn,G|2 = 1.

Inserting this into (3.79), using the Cauchy–Schwarz inequality, the `-separation prop-
erty (3.60) in form of the disjointness of the fattened inclusions {Im,L + 1

4`B}m, using
that the number of points of the process PL in QL is bounded by C(L/`)d, and changing
summation variables, we deduce

L−dI1,1(α, h)2 . 1k=1,j=0`
−2d + `−d

(
THL (k − 1, j) + SHL (k, j)

)
. (3.80)

We turn to a corresponding estimation for I1,2(α, h). For that purpose, we first note that
the disjointness of fattened inclusions {Im,L + 1

4`B}m allows to decompose∑
]G=k+1

∑
m∈G\H

ˆ
Im,L+ 1

4
`B

∣∣∣ ∑
n∈G\(H∪{m})

αn,G\{n}D(wh,n,G\{n})
∣∣∣2

.
∑

]G=k+1

ˆ
QL

∣∣∣ ∑
n∈G\H

αn,G\{n}D(wh,n,G\{n})
∣∣∣2

+
∑

]G=k+1

∑
m∈G\H

|αm,G\{m}|2
ˆ
QL

|D(wh,m,G\{m})|2,

and the energy estimate for (3.76) then yields∑
]G=k+1

∑
m∈G\H

ˆ
Im,L+ 1

4
`B

∣∣∣ ∑
n∈G\(H∪{m})

αn,G\{n}D(wh,n,G\{n})
∣∣∣2

.
∑

]G=k+1

ˆ
QL

∣∣∣ ∑
n∈G\H

αn,G\{n}hn,G\{n}

∣∣∣2 +
∑

]G=k+1

∑
m∈G\H

|αm,G\{m}|2
ˆ
QL

|hm,G\{m}|2,
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from which we deduce, using the constraints (3.75) on α, h and recalling that the hn,G’s
have disjoint supports for different n’s,∑

]G=k+1

∑
m∈G\H

ˆ
Im,L+ 1

4
`B

∣∣∣ ∑
n∈G\(H∪{m})

αn,G\{n}D(wh,n,G\{n})
∣∣∣2

.
∑

]G=k+1

∑
n∈G\H

|αn,G\{n}|2 =
∑
]G=k

∑
n/∈G∪H

|αn,G|2 = 1.

With this estimate at hand, we may now repeat the same argument as for (3.80) and we
obtain

L−dI1,2(α, h)2 . 1k=0,j=1`
−2d + `−d

(
THL (k, j − 1) + SHL (k + 1, j − 1)

)
. (3.81)

Likewise, the second term I2(α, h) in (3.77) is easily estimated as follows,

L−dI2(α, h)2 . 1k=0,j=1`
−2d + `−d

(
THL (k, j − 1) + THL (k + 1, j − 2)

+ SHL (k + 1, j − 1) + SHL (k + 2, j − 2)
)
. (3.82)

Combining these different estimates, that is, (3.78), (3.80), (3.81), and (3.82), inserting
them into (3.73), and recalling (3.72), the claim (3.71) follows.

Step 4. Conclusion.
By a direct double induction argument, starting with (3.62), the recurrence relation (3.71)
entails, for all H ⊂ N and k, j ≥ 0,

THL (k, j) . 1k=j=0`
−2d + 1k+j≥1(C`−d)2(k+j)+1

+

k+j−1∑
l=0

(C`−d)2(l+1)

2(l+1)∑
i=0

SHL (k + i− l, j − i). (3.83)

Combined with the other recurrence relation (3.65), this yields

SHL (k, j) . 1k=j=0`
−d + 1k+j≥1(C`−d)2(k+j)−1 + SHL (k + 1, j − 1)

+

k+j−1∑
l=0

(C`−d)2(l+1)
2l+2∑
i=0

SHL (k + i− l, j − i)

+

k+j−2∑
l=0

(C`−d)2(l+1)
2l+3∑
i=0

SHL (k + i− l − 1, j − i).

For `� 1, occurrences of SHL (k, j) in the right-hand side can be absorbed into the left-hand
side, and we are then left with

SHL (k, j) . 1k=j=0`
−d + 1k+j≥1(C`−d)2(k+j)−1 + SHL (k + 1, j − 1) + SHL (k + 2, j − 2)

+

k+j−1∑
l=1

(C`−d)2(l+1)
2l+2∑
i=0

SHL (k + i− l, j − i)

+

k+j−2∑
l=0

(C`−d)2(l+1)
2l+3∑
i=0

SHL (k + i− l − 1, j − i).
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By a double induction argument, this relation leads to the conclusion

SHL (k, j) .

{
`−d : k = j = 0,

(C`−d)2(k+j)−1 : k, j ≥ 0, k + j ≥ 1.

Combining this with (3.83) further yields

THL (k, j) .

{
`−2d : k = j = 0,

(C`−d)2(k+j)+1 : k, j ≥ 0, k + j ≥ 1.

Recalling that the case ` ' 1 was already covered in (3.44), this finally concludes the proof
of Theorem 3.7. �

3.6. Uniform cluster estimates. This section is devoted to the proof of Theorem 4(i),
based on the interpolating `1 − `2 energy estimates of Theorem 3.7. We focus on the
bound (3.11) on the remainder Rk+1

L , while the corresponding bounds on cluster coeffi-
cients follow along the same lines. For k ≥ 1, after changing summation variables, the
definition (3.9) of the remainder can be written as

E : Rk+1
L E = 1

2L
−d
∑
n

E
[ˆ

∂In,L

( ∑
]F=k
n/∈F

δFψ∅
L

)
· σLν

]
.

Using the boundary conditions and the incompressibility constraint to smuggle in arbitrary
constants in the different factors, as in the proof of (3.35), using the Cauchy–Schwarz
inequality, and then appealing to the trace estimates of Lemma 3.3, we find

|E : Rk+1
L E| . L−d E

[∑
n

ˆ
In,L

∣∣∣ ∑
]F=k
n/∈F

D(δFψ∅
L )
∣∣∣2] 1

2

E
[∑

n

ˆ
In,L+ρB

|D(ψL) + E|2
] 1

2

.

Recalling the disjointness of the fattened inclusions {In,L+ρB}n, recognizing the definition
of SL and T∅

L , and using that in case ` � 1 the `-separation property (3.60) entails that
the number of points of the process PL in QL is bounded by C(L/`)d, we are led to

|Rk+1
L | . E

[
T∅
L (0, k)

] 1
2

(
`−d + E [SL(0, 0)]

) 1
2
,

and the conclusion (3.11) then follows from Theorem 3.7. �

3.7. Convergence of finite-volume approximations. This section is devoted to the
proof of the convergence result (3.13) in Theorem 4. The idea is as follows: if {B̄j

L}j could
be viewed as derivatives of B̄L in some sense, then the convergence of B̄L as L ↑ ∞ and the
uniform bounds on {B̄j

L}j would ensure the convergence of latter. We split the proof into
two steps, first appealing to a probabilistic argument to view {B̄j

L}j as true derivatives,
and then concluding by means of standard real analysis.

Step 1. Dilution by random deletion.
Given p ∈ [0, 1], we consider a sequence {b(p)n }n of iid Bernoulli variables, independent
of P, I, with parameter

p = P
[
b(p)n = 1

]
,

and we define the corresponding decimated process

P(p) := {xn}n∈N(p) , I(p) :=
⋃
n∈N(p) In, where N (p) := {n : b

(p)
n = 1}. (3.84)
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Similarly, in the periodized setting (3.1), we set

P(p)
L := {xn,L}n∈N(p) , I(p)

L :=
⋃
n∈N(p) In,L.

By definition, the decimated processes P(p), I(p) satisfy (Hρ) and (Hunif
ρ ) whenever P, I

do, and their periodized versions P(p)
L , I(p)

L satisfy the same separation and stabilization
properties as PL, IL in Section 3.1. We use the notation B̄(p), B̄

(p)
L , {B̄(p),j

L }j , {R(p),k+1
L }k

for the effective viscosity, its periodized approximation, cluster coefficients, and cluster re-
mainders associated with decimated processes I(p), I(p)

L . As a corollary of [18, Theorem 1],
as in (3.4), we have for all p ∈ [0, 1],

lim
L↑∞

B̄
(p)
L = B̄(p). (3.85)

In the next two substeps, we shall further prove for all k, j ≥ 1,

B̄
(p),j
L = pjB̄j

L, (3.86)

|R(p),k+1
L | ≤ (Cp`−d)k+1. (3.87)

Combined with the cluster expansion (3.5), this yields for all L and k ≥ 1,∣∣∣∣B̄(p)
L −

(
Id +

k∑
j=1

pj

j! B̄
j
L

)∣∣∣∣ ≤ (Cp`−d)k+1, (3.88)

which entails that B̄j
L can be seen as the jth derivative of the map p 7→ B̄

(p)
L at p = 0.

(Note that this estimate further shows that this map is real-analytic; we shall later come
back to this observation as part of Theorem 11.)

Substep 1.1. Proof of (3.86).
By definition of decimated processes, the cluster formula (3.6) for B̄(p),j

L can be written as

E : B̄
(p),j
L E = j!

∑
]F=j

E
[
1F⊂N(p)

 
QL

δF
(
|D(ψ∅

L ) + E|2
)]
.

As N (p) is independent of I and as P
[
F ⊂ N (p)

]
= P

[
b
(p)
n = 1, ∀n ∈ F

]
= p]F , we get

E : B̄
(p),j
L E = j!pj

∑
]F=j

E
[ 

QL

δF
(
|D(ψ∅

L ) + E|2
)]

= pjE : B̄j
LE, (3.89)

that is, (3.86).

Substep 1.2. Proof of (3.87).
Let k ≥ 1. By definition of decimated processes, the remainder formula (3.9) for R(p),k+1

L
can be written as

E : R
(p),k+1
L E = 1

2L
−d

∑
]F=k+1

∑
n∈F

E
[
1F⊂N(p)

ˆ
∂In,L

δF\{n}ψ∅
L · σ

(p)
L ν

]
,

or equivalently, using the constraint F ⊂ N (p) to replace σ(p)
L = σN

(p)

L by σN(p)∪F
L ,

E : R
(p),k+1
L E = 1

2L
−d

∑
]F=k+1

∑
n∈F

E
[
1F⊂N(p)

ˆ
∂In,L

δF\{n}ψ∅
L · σ

N(p)∪F
L ν

]
.
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In this expression, the integral ˆ
∂In,L

δF\{n}ψ∅
L · σ

N(p)∪F
L ν

does not depend on the value of {b(p)n }n∈F and is thus independent of

1F⊂N(p) =
∏
n∈F 1b(p)n =1

,

hence we are led to

E : R
(p),k+1
L E = 1

2p
k+1L−d

∑
]F=k+1

∑
n∈F

E
[ˆ

∂In,L

δF\{n}ψ∅
L · σ

N(p)∪F
L ν

]
. (3.90)

It remains to estimate the right-hand side and deduce (3.87), which is easily done by
adapting the proof of Theorem 4(i) in Section 3.6. For that purpose, we first note that,
for all F ⊂ N, using that

∑
H′⊂H(−1)|H

′| = 0 if H 6= ∅, we have∑
G⊂F

δGσ
(p)
L =

∑
G⊂F

∑
G′⊂G

(−1)|G\G
′|σN

(p)∪G′
L

=
∑
G′⊂F

( ∑
G′′⊂F\G′

(−1)|G
′′|
)
σN

(p)∪G′
L

= σN
(p)∪F

L ,

so that formula (3.90) can be decomposed as follows, after changing summation variables,

E : R
(p),k+1
L E = 1

2p
k+1L−d

∑
]F=k

∑
n/∈F

∑
G⊂F∪{n}

E
[ˆ

∂In,L

δFψ∅
L · δ

Gσ
(p)
L ν

]
.

Using the following identity, for all maps f and all n /∈ F ,∑
G⊂F∪{n}

f(G) =
∑
G⊂F

f(G) +
∑
G⊂F

f(G ∪ {n}),

we deduce

E : R
(p),k+1
L E = 1

2p
k+1L−d

∑
]F=k

∑
G⊂F

∑
n/∈F

E
[ˆ

∂In,L

δFψ∅
L ·
(
δGσ

(p)
L + δG∪{n}σ

(p)
L

)
ν

]
,

or equivalently, further changing summation variables,

E : R
(p),k+1
L E = 1

2p
k+1L−d

k∑
j=0

∑
]G=j

∑
n/∈G

E
[ˆ

∂In,L

( ∑
]F=k−j

F∩(G∪{n})=∅

δF∪Gψ∅
L

)

·
(
δGσ

(p)
L + δG∪{n}σ

(p)
L

)
ν

]
.

Using the boundary conditions for δGσ(p)
L + δG∪{n}σ

(p)
L = δGσ

N(p)∪{n}
L and using the in-

compressibility constraint to smuggle in arbitrary constants in the different factors, as in
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the proof of (3.35), and then appealing to the trace estimates of Lemma 3.3, we find

|E : R
(p),k+1
L E| . pk+1L−d

k∑
j=0

∑
]G=j

∑
n/∈G

E
[ˆ

In,L

∣∣∣ ∑
]F=k−j

F∩(G∪{n})=∅

D(δF∪Gψ∅
L )
∣∣∣2] 1

2

× E
[
1j=0 +

ˆ
In,L+ρB

|D(δGψ
(p)
L )|2 + |D(δG∪{n}ψ

(p)
L )|2

] 1
2

.

Recalling the disjointness of fattened inclusions {In,L + ρB}n, recognizing the definition
of S(p)

L and T∅
L , and using that in case `� 1 the `-separation property (3.60) entails that

the number of points of the process PL in QL is bounded by C(L/`)d, we deduce

|E : R
(p),k+1
L E|

. pk+1
k∑
j=0

E
[
T∅
L (j, k − j)

] 1
2

(
1j=0`

−d + E
[
S

(p)
L (j, 0)

]
+ E

[
S

(p)
L (j + 1, 0)

]) 1
2
.

Now appealing to Theorem 3.7, the claim (3.87) follows.

Step 2. Conclusion.
While the uniform estimates of Theorem 4(i) ensure that the sequence {B̄j

L}L≥1 converges
as L ↑ ∞ up to extraction of a subsequence, we shall use their interpretation as derivatives
of the map p 7→ B̄

(p)
L at p = 0, together with some real analysis, to deduce the convergence

of the full sequence. We argue by induction: given k ≥ 0, we assume that the limits
B̄j = limL↑∞ B̄j

L exist for all 1 ≤ j ≤ k, and we shall then prove that the limit

B̄k+1 = lim
L↑∞

B̄k+1
L

also exists. As B̄k+1
L is bounded uniformly in L by Theorem 4(i), it admits a limit C̄k+1

as L ↑ ∞ up to extraction of a subsequence. Passing to the limit along this subsequence
in (3.88), with k replaced by k + 1, and using (3.85) and the induction assumptions, we
get for all p, ∣∣∣∣B̄(p) −

(
Id +

k∑
j=1

pj

j! B̄
j + pk+1

(k+1)!C̄
k+1
)∣∣∣∣ ≤ (Cp)k+2, (3.91)

which proves that C̄k+1 satisfies

C̄k+1 = lim
p↓0

(k+1)!
pk+1

(
B̄(p) −

(
Id +

k∑
j=1

pj

j! B̄
j
))

,

where in particular the limit exists. Since the right-hand side does not depend on the
choice of the extracted subsequence, we deduce that the limit C̄k+1 is uniquely defined,
hence the limit B̄k+1 := C̄k+1 = limL↑∞ B̄k+1

L actually exists. By induction, this concludes
the proof of the convergence result (3.13) in Theorem 4. �
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3.8. Non-uniform cluster estimates. This section is devoted to the proof of Theo-
rem 4(ii). Taking inspiration from [13, Section 5.A], we proceed by a direct analysis of
Green representation formulas for corrector differences. More precisely, we introduce op-
erators {J nL;H}n,H that describe the fluid velocity generated by localized force dipoles in
the presence of a finite number of rigid inclusions: these are viewed as Stokeslets for the
problem with rigid inclusions and lead to a useful decomposition of corrector differences,
cf. (3.95) below. The following lemma defines such operators and states their optimal decay
properties, which are shown to coincide with the decay for the explicit Stokeslet associated
with the problem in free space without rigid particles. This result is a particular case of
Lemma A.1, the proof of which is postponed to Appendix A.

Lemma 3.8 (Decay of Stokeslets with rigid inclusions). Let Assumptions (Hρ) and (Hunif
ρ )

hold, let H ⊂ N be finite and n /∈ H, and let (ζ, P ) satisfies the following Stokes problem
in a neighborhood of In,L,

−4ζ +∇P = 0, in (In,L + ρB) \ In,L,
div(ζ) = 0, in (In,L + ρB) \ In,L,
D(ζ) = 0, in In,L,´
∂In,L

σ(ζ, P )ν = 0,´
∂In,L

Θ(x− xn,L) · σ(ζ, P )ν = 0, ∀Θ ∈Mskew.

(3.92)

Denote by J nL;Hζ ∈ H1
per(QL)d the solution of the following Stokes problem,

−4J nL;Hζ +∇QnL;Hζ = −δ∂In,Lσ(ζ, P )ν, in QL \ IHL ,
div(J nL;Hζ) = 0, in QL \ IHL ,
D(J nL;Hζ) = 0, in IHL ,´
∂Im,L

σ(J nL;Hζ,QnL;Hζ)ν = 0, ∀m ∈ H,´
∂Im,L

Θ(x− xm,L) · σ(J nL;Hζ,QnL;Hζ)ν = 0, ∀m ∈ H, ∀Θ ∈Mskew.

(3.93)

Then, we have for all z ∈ QL,(ˆ
B(z)
|D(J nL;Hζ)|2

) 1
2
.]H 〈(z − xn,L)L〉−d

( ˆ
In,L+ρB

|D(ζ)|2
) 1

2
. (3.94)

♦

The above definition of operators {J nL;H}n,H is motivated by the following observation:
for all F,H ⊂ N with F finite and nonempty, equations (3.16) for corrector differences
entail, in these terms,

δFψHL =
∑

n∈F\H

J nL;Hδ
F\{n}(ψ

H∪{n}
L + Ex). (3.95)

Iterating this identity allows to write δFψHL as a combination of iterations of J nL;H ’s, which
are viewed as elementary single-particle contributions. With the above result at hand, we
may now conclude with the proof of Theorem 4(ii).

Proof of Theorem 4(ii). We focus on the bound (3.12) on the remainder Rk+1
L , while the

corresponding bound on cluster coefficients follows along the same lines. We split the proof
into two steps.
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Step 1. Estimation of corrector differences.
For all finite F,H ⊂ N with F nonempty, and for all n ∈ N, recalling the decomposi-
tion (3.95) for corrector differences, Lemma 3.8 yields(ˆ

In,L+ρB
|D(δFψHL )|2

) 1
2

.]H
∑

m∈F\H

〈(xn,L − xm,L)L〉−d
( ˆ

Im,L+ρB

∣∣D(δF\{m}(ψH∪{m}L + Ex)
)∣∣2) 1

2
.

Iterating this bound, and recalling that the energy estimate (3.49) gives for all finite G ⊂ Nˆ
QL

|D(ψGL )|2 . ]G,

we deduce for all n, setting k := ]F ≥ 1,(ˆ
In,L+ρB

|D(δFψ∅
L )|2 + |D(δFψ

{n}
L )|2

) 1
2

.k

6=∑
n1,...,nk∈F

〈(xn,L − xn1,L)L〉−d〈(xn1,L − xn2,L)L〉−d . . . 〈(xnk−1,L − xnk,L)L〉−d. (3.96)

Step 2. Conclusion.
The starting point is the estimate (3.10) in Theorem 3 for the cluster remainder,

|E : Rk+1
L E| . A◦k +

k∑
j=1

Aj,k, (3.97)

in terms of

A◦k := E
[
L−d

∑
n

ˆ
In,L

∣∣∣ ∑
]F=k
n/∈F

D(δFψ∅
L )
∣∣∣2], (3.98)

Aj,k := E
[
L−d

∑
n

( ˆ
In,L

∣∣∣ ∑
]F=k
n/∈F

D(δFψ∅
L )
∣∣∣2) 1

2

×
(ˆ

In,L+ρB

∣∣∣ ∑
]F=j−1
n/∈F

D
(
δF (ψ

{n}
L + Ex)

)∣∣∣2) 1
2
]
.

We shall prove for all 1 ≤ j ≤ k,

A◦k .k

k∑
l=0

λk+l+1(P)(logL)2l, (3.99)

Aj,k .k

j−1∑
l=0

λk+l+1(P)(logL)2l+k−j+1. (3.100)

Inserting this into (3.97), the conclusion (3.12) follows. We split the proof into two further
substeps, separately proving (3.99) and (3.100).
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Substep 2.1. Proof of (3.99).
Let k ≥ 1. The deterministic bound (3.96) yields∑
]F=k

( ˆ
In,L

|D(δFψ∅
L )|2 + |D(δFψ

{n}
L )|2

) 1
2
.k

6=∑
n1,...,nk

DL(xn,L, xn1,L, . . . , xnk,L), (3.101)

where we have set

DL(y0, y1, . . . , yk) :=
k−1∏
j=0

〈(yj − yj+1)L〉−d.

Inserting this in the definition (3.98) of A◦k, expanding the square, separating the different
intersection patterns, and reformulating in terms of multi-points densities, cf. (1.15), we
are led to

A◦k .k

k∑
l=0

L−d
ˆ

(QL)k+l+1
DL(x, x1, . . . , xk)DL(x, x1, . . . , xk−l, y1, . . . , yl)

× fk+l+1(x, x1, . . . , xk, y1, . . . , yl) dx dx1 . . . dxk dy1 . . . dyl,

hence, in terms of multi-point intensities, appealing to Lemma 1.1(iii),

A◦k .k

k∑
l=0

λk+l+1(P)L−d
ˆ

(QL)k+l+1
DL(x, x1, . . . , xk)

×DL(x, x1, . . . , xk−l, y1, . . . , yl) dx dx1 . . . dxk dy1 . . . dyl.

First evaluating integrals over xk−l+1, . . . , xk, y1, . . . , yl, and noting thatˆ
QL

〈(x− y)L〉−d dy . logL,

we find

A◦k .k

k∑
l=0

λk+l+1(P)(logL)2lL−d
ˆ

(QL)k−l+1
DL(x, x1, . . . , xk−l)

2 dx dx1 . . . dxk−l.

Now evaluating the remaining integrals, noting that the square yields an integrable decay,
the claim (3.99) follows.

Substep 2.2. Proof of (3.100).
Let k ≥ j ≥ 1. Inserting (3.101) into the definition (3.98) of Aj,k, expanding the square,
and separating the different intersection patterns, we now find

Aj,k .k

j−1∑
l=0

L−d
ˆ

(QL)k+l+1
DL(x, x1, . . . , xk)DL(x, x1, . . . , xj−l−1, y1, . . . , yl)

× fk+l+1(x, x1, . . . , xk, y1, . . . , yl) dx dx1 . . . dxk dy1 . . . dyl,

where for notational convenience we define DL(x) := 1. This integral can be evaluated
exactly as in the proof of (3.99) and the claim (3.100) follows. �
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4. Renormalization of cluster formulas

This section is devoted to the proof of infinite-volume cluster estimates with optimal
dependence on multi-point intensities {λj(P)}j . It amounts to improving on the non-
uniform cluster estimates (3.12) in Theorem 4, which captures the ‘short-range’ depen-
dence on multi-point intensities but displays a logarithmic divergence in the large-volume
limit. This requires a better understanding of cluster formulas and of the underlying
compensations that make them well-defined in the large-volume limit.

4.1. Main results. We explore two different routes for the renormalization of infinite-
volume cluster formulas, leading to two complementary results, cf. Theorems 5 and 6
below. We also discuss the optimality of our cluster estimates, cf. Theorem 7.

4.1.1. Implicit renormalization. Our first route relies on a slight algebraic quantification
of the convergence of periodic approximations, cf. assumption (QPE) below: it implies a
corresponding convergence rate for periodized cluster formulas, cf. (4.2) below, which in
turn allows to remove the logarithmic divergence in the non-uniform cluster estimates of
Theorem 4. This result is particularly general given that the quantitative periodization
assumption (QPE) holds under a mere algebraic α-mixing condition for I, cf. Remark 4.1
below. The obtained cluster estimates (4.1) differ from the canonical short-range setting
of Lemma 1.2 by some logarithmic factors, which are expected to be optimal in general in
link with the long-range nature of hydrodynamic interactions, cf. Theorem 7 below. The
proof is displayed in Section 4.2.

Theorem 5 (Implicit renormalization of cluster formulas). On top of Assumptions (Hρ)
and (Hunif

ρ ), let the following hold:
(QPE) Quantitative periodization assumption: There exist C, γ > 0 such that we have

|B̄(p)
L − B̄(p)| ≤ CL−γ for all L ≥ 1 and p ∈ [0, 1], where B̄

(p)
L , B̄(p) refer to the

random deletion procedure introduced in Section 3.7, cf. (3.84).
Then, we have the following estimates for the coefficients and the remainder of the infinite-
volume cluster expansion defined by (3.13) in Theorem 4: for all k, j ≥ 1,

|B̄j | .j λj(P)|log λj(P)|j−1, (4.1)

|Rk+1| .k
2k+1∑
l=k+1

λl(P)|log λk+1(P)|l−1.

In addition, the convergence result (3.13) for finite-volume approximations can be quanti-
fied: for all L and k, j ≥ 1,

|B̄j
L − B̄j | .j L−2−jγ , |Rk+1

L −Rk+1| .k L−2−kγ , (4.2)

where γ is the exponent in (QPE). ♦

Remark 4.1 (Quantitative periodization assumption). The validity of Assumption (QPE)
can be shown to follow from a slight quantitative mixing condition for the inclusion pro-
cess I, such as the following:
(Mix) Algebraic α-mixing condition: There exist C, β > 0 such that for all Borel sub-

sets U, V ⊂ Rd and all events A ⊂ σ(I|U ) and B ∈ σ(I|V ) we have

|P [A ∩B]− P [A]P [B]| ≤ C dist(U, V )−β. (4.3)
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More precisely, this condition (Mix) implies the validity of (QPE) for some 0 < γ � β
(depending on β, d) and for all 0 ≤ p ≤ 1 (since random deletion preserves (4.3)). This
follows by-now from standard quantitative homogenization theory: we refer to Appendix B,
where we adapt the techniques developed by Armstrong, Kuusi, Mourrat, and Smart [5,
4, 3] to the present fluid context. ♦

The above result provides optimal cluster estimates and its proof is extremely short,
cf. Section 4.2. Yet, it has three main disadvantages, which call for a more detailed analysis.

— No explicit renormalization: While infinite-volume cluster formulas take the form of di-
verging series, cf. Section 1.3.4, cluster coefficients are defined as limits of finite-volume
approximations, cf. (3.13). Using straightforward cancellations, we showed that the
first-order cluster coefficient B̄1 can be represented by a summable integral, cf. Propo-
sition 2. A similar explicit renormalization was formally performed for the second-order
coefficient B̄2 by Batchelor and Green [7], based on more subtle cancellations. The im-
plicit renormalization approach sheds no light on such questions. We aim to recover the
Batchelor–Green renormalized formula for B̄2 rigorously, as also discussed in [26, 28, 25],
and to investigate how explicit renormalizations can be pursued to higher orders.

— Mixing assumption: In view of cluster formulas in Theorem 3, bounds on the cluster
coefficient B̄j should only require assumptions on the j-point density. Likewise, in view
of (3.10), bounds on the remainder Rk+1

L should only require assumptions on the 2k-
point density. Instead, assumptions (QPE) and (Mix) boldly involve the whole law
of the inclusion process I, which we aim to refine.

— Convergence rates: As the above approach builds on a convergence rate for periodic
approximations of the effective viscosity B̄, cf. (QPE), it does not exploit the fact
that cluster formulas only involve a finite number of particles at a time and are thus
significantly simpler than B̄ itself. In particular, convergence rates for periodic approx-
imations of cluster coefficients are not expected to be worse than for approximations
of B̄ (on the contrary!), while the above result (4.2) displays an exponential degradation
of the rates for higher-order coefficients.

4.1.2. Explicit renormalization. Our second route to renormalization of cluster formulas
aims to remedy the above three issues and we proceed by an explicit analysis of can-
cellations. As in Proposition 2, we assume for convenience that particles have indepen-
dent shapes, cf. (Indep), which makes cluster formulas somewhat simpler. While for B̄1

and B̄2 relatively simple cancellations are enough to turn cluster formulas into summable
integrals, higher-order coefficients require a much deeper analysis: we are led to introduc-
ing a diagrammatic decomposition of corrector differences that allows to capture relevant
cancellations. This fully resolves the higher-order renormalization question that was still
open in the physics community. We refer in particular to Section 4.4 for an explicit dis-
play of renormalized formulas for B̄2 and B̄3, cf. Proposition 4.6 and 4.7: we recover the
Batchelor–Green formula for B̄2 and provide the first renormalized formula for B̄3. Inciden-
tally, these results only require assumptions on finite-order multi-point densities (instead
of mixing assumptions) and Dini-type decay (instead of algebraic), which is beyond the
reach of quantitative homogenization methods (and thus of our implicit renormalization).
Renormalized formulas allow to recover the same cluster estimates (4.1) as obtained above
via implicit renormalization and to further prove essentially optimal convergence rates for
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finite-volume approximations: the convergence rate (4.4) for B̄j below only degrades loga-
rithmically when increasing j (as opposed to the exponential degradation in (4.2)), and it
is always better (as it should) than the rate for approximations of the effective viscosity B̄
itself (cf. γ � β in Remark 4.1). The proof is displayed in Section 4.4.

Theorem 6 (Explicit renormalization of cluster formulas). On top of Assumptions (Hρ)
and (Hunif

ρ ), let the independence assumption (Indep) hold for particle shapes, as well as
the following, for some rate ω ∈ C∞b (R+):
(Mixω) α-Mixing assumption with rate ω: For all Borel subsets U, V ⊂ Rd and all events

A ⊂ σ(I|U ) and B ∈ σ(I|V ), we have

|P [A ∩B]− P [A]P [B]| ≤ ω(dist(U, V )).

Then, the following hold.
(i) For all j ≥ 2, provided ω satisfies the Dini type condition

´∞
1 t−1(log t)j−2ω(t) dt <∞,

the infinite-volume cluster coefficient B̄j can be described by means of summable in-
tegrals as detailed in Section 4.4.

(ii) In case of an algebraic mixing rate ω(t) ≤ Ct−β for some C, β > 0, renormalized
formulas lead to the same cluster estimates (4.1) for all k, j ≥ 1. In addition, the
following holds for finite-volume approximations: for all L and j ≥ 1,

|B̄j
L − B̄j | .j (logL)j−1

Lβ∧1 . (4.4)

Finally, assumption (Mixω) can be replaced by corresponding assumptions on the j-point
density for results on B̄j, and on the (2k + 1)-point density for results on Rk+1. ♦

4.1.3. Optimality of cluster estimates. The following result states that logarithmic factors
in cluster estimates (4.1) are optimal in general. These factors contrast with the canonical
short-range setting of Lemma 1.2: they are related to the long-range nature of hydrody-
namic interactions and appear due to the lack of L∞-boundedness of Calderón–Zygmund
operators. We focus on the second-order coefficient B̄2 for illustration, but, starting from
renormalized formulas, the argument could be extended to higher orders as well. The proof
is displayed in Section 4.5.

Theorem 7 (Optimality of estimates on B̄2).
(i) Isotropic setting: On top of Assumptions (Hρ), (Hunif

ρ ), and (Indep), assume that
the 2-point correlation function h2(x, y) := f2(x, y) − λ(P)2 satisfies the following
decay assumption, ¨

B(x)×B(y)
|h2| ≤ ω(|x− y|), (4.5)

with some rate ω satisfying the Dini condition
´∞

1 t−1ω(t) dt <∞. If in addition the
point process P is statistically isotropic, which entails that the correlation function is
radial, then the following improved estimate holds,

|B̄2| . λ2(P).

(ii) Optimality in the general setting: There exists an inclusion process I that satisfies
Assumptions (Hρ), (Hunif

ρ ), (Indep), and (4.5), as well as the local independence
condition λ2(P) ' λ(P)2 � 1, such that we have

|B̄2| ' λ2(P)|log λ2(P)|. ♦
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4.2. Implicit renormalization of cluster formulas. This section is devoted to the
short proof of Theorem 5, which we split into two steps. We start with the quantita-
tive convergence result (4.2) for finite-volume approximations of cluster coefficients, which
we obtain by quantifying the argument for the corresponding qualitative result (3.13) in
Section 3.7. The claimed cluster estimates (4.1) then follow by optimization.

Step 1. Suboptimal convergence result: proof of (4.2).
Starting from the cluster expansion (3.5) in Theorem 3, the triangle inequality yields for
all k ≥ 0,

|Rk+1
L −Rk+1| ≤ |B̄L − B̄|+

k∑
j=1

|B̄j
L − B̄j |,

so that the convergence rate for the remainder in (4.2) follows from Assumption (QPE)
together with the convergence rate for cluster coefficients. It remains to prove the latter,
that is, for all j ≥ 1,

|B̄j
L − B̄j | .j L−2−jγ . (4.6)

For that purpose, we quantify the induction argument in the proof of the corresponding
qualitative convergence result (3.13) in Section 3.7. Let k ≥ 0 and assume that (4.6) holds
for all 1 ≤ j ≤ k. Taking the same notation as in Section 3.7 for the random deletion
procedure, we recall the cluster expansion (3.88), for all L, p,∣∣∣∣B̄(p)

L −
(

Id +

k+1∑
j=1

pj

j! B̄
j
L

)∣∣∣∣ ≤ (Cp)k+2.

Hence, comparing to the corresponding estimate in the large-volume limit, we find∣∣∣∣(B̄(p)
L − B̄(p))−

k+1∑
j=1

pj

j! (B̄j
L − B̄j)

∣∣∣∣ ≤ (Cp)k+2.

Isolating the difference B̄k+1
L − B̄k+1, and using Assumption (QPE) and the induction

hypothesis to estimate other contributions, we deduce

|B̄k+1
L − B̄k+1| ≤ (k+1)!

pk+1

(
(Cp)k+2 + |B̄(p)

L − B̄(p)|+
k∑
j=1

pj

j! |B̄
j
L − B̄j |

)

.k p+
k∑
j=0

pj−k−1L−2−jγ .

The choice p = L−2−k−1γ then yields |B̄k+1
L − B̄k+1| .k L−2−k−1γ , and the claim (4.6)

follows by induction for all j ≥ 1.

Step 2. Uniform cluster estimates: proof of (4.1).
Combining the non-uniform estimates (3.12) of Theorem 4 with the suboptimal convergence
result (4.2), we find for all k ≥ j ≥ 1,

|B̄j | .j L−2−jγ + λj(P)(logL)j−1,

|Rk+1| .j L−2−kγ +

2k∑
l=k

λl+1(P)(logL)l,
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and the conclusion (4.1) follows from the choice L−2−jγ = λj(P) or L−2−kγ = λk+1(P),
respectively. �

4.3. Preliminary to explicit renormalization. Before turning to the explicit renor-
malization of cluster formulas and to the proof of Theorem 6, we start with some pre-
liminary definitions and technical tools: we define multi-point correlation functions, which
provide a convenient framework to weaken the α-mixing condition, we revisit the decompo-
sition (3.95) for corrector differences in terms of elementary single-particle contributions,
and we state several crucial estimates on the latter.

4.3.1. Multi-point correlation functions. Multi-point correlation functions {hj}j of the point
process P can be defined inductively from the multi-point densities {fj}j , cf. (1.15), via
the following relations:10 for all j ≥ 1,

fj(x1, . . . , xj) =
∑
π

∏
H∈π

h]H(xH), (4.7)

where π runs over all partitions of the index set {1, . . . , j}, where H runs over all cells of
the partition π, and where for H = {i1, . . . , il} we set xH := (xi1 , . . . , xil). For the first
values of k, these relations read

f1(z) = h1(z) = λ(P),

f2(y, z) = λ(P)2 + h2(y, z),

f3(x, y, z) = λ(P)3 + λ(P)
(
h2(x, y) + h2(y, z) + h2(z, x)

)
+ h3(x, y, z),

from which h1, h2, h3 are easily extracted. More generally, note that the inductive defini-
tion (4.7) can be explicitly inverted: for all j ≥ 1, we find

hj(x1, . . . , xj) :=
∑
π

(]π − 1)! (−1)]π−1
∏
H∈π

f]H(xH), (4.8)

where π runs over all partitions of the index set {1, . . . , j} and where ]π stands for the
number of cells H ∈ π. The j-point correlation function hj is thus a symmetric function
on the product (Rd)j and is a polynomial combination of multi-point densities (fi)i≤j . The
definition of multi-point intensities (1.16) then entails the following bounds on correlations,
for all j ≥ 1,

sup
z1,...,zj

 
Q`(z1)×...×Q`(zj)

|hj | .j λj(P), (4.9)

where we recall the notation (1.17). It is easily checked that the α-mixing assump-
tion (Mixω) implies the decay of correlation functions in the following quantitative sense.
Since we could not find any precise reference in the literature, we include a short proof
below for completeness.

Lemma 4.2. Assume that the point process P satisfies the α-mixing condition (Mixω)
with a non-increasing rate ω ∈ C∞b (R+). Then, correlation functions satisfy for all j ≥ 2

and x1, . . . , xj ∈ Rd,ˆ
B(x1)×...×B(xj)

|hj | ≤ Cjj! min
i 6=l

ω
(
(1
j |xi − xl| − 2)+

)
. (4.10)

♦
10Incidentally, these relations are known as Mayer’s cluster expansions — although unrelated to the

kind of cluster expansions otherwise studied in this work.
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In this view, it is natural to consider a “truncated” version of the α-mixing condi-
tion (Mixω) in form of the decay of a finite number of correlation functions only. This is
the natural setting for cluster estimates.

(Mixnω) Mixing assumption with rate ω to order n: Multi-point correlation functions sat-
isfy for all 2 ≤ j ≤ n and x1, . . . , xj ∈ Rd,

ˆ
B(x1)×...×B(xj)

|hj | ≤ min
i 6=l

ω(|xi − xl|).

Proof of Lemma 4.2. We argue by induction: given j ≥ 2, we assume that the claimed
decay estimate (4.10) is already known to hold for h2, . . . , hj−1, and we prove that it
also holds for hj . Let x1, . . . , xj ∈ Rd be fixed. The conclusion (4.10) is trivial when
maxi 6=l

1
j |xi−xl| ≤ 2, and we may thus assume maxi 6=l

1
j |xi−xl| > 2. Up to relabeling the

points, we may further assume that there is 1 ≤ j∗ < j such that

|x1 − xj | = maxi 6=l |xi − xl|,
|xi − xl| ≥ 1

j |x1 − xj | > 2 for all 1 ≤ i ≤ j∗ < l ≤ j. (4.11)

(The latter condition is obtained by dividing the space between x1 and xj into j stripes of
width 1

j |x1− xj |, by selecting the one that contains none of the points xi’s with 1 < i < j,
and by distinguishing the points on either side of this stripe.) Let φ ∈ C((Rd)j∗) and
φ′ ∈ C((Rd)j−j∗) be supported in B(x1)× . . .×B(xj∗) and in B(xj∗+1)× . . .×B(xj), re-
spectively, with ‖φ‖L∞((Rd)j∗ ) = ‖φ′‖L∞((Rd)j−j∗ ) = 1. Appealing to a standard covariance
inequality, see e.g. [11, Lemma 1.2.3], the α-mixing condition (Mixω) then yields

∣∣∣∣Cov

[ 6=∑
n1,...,nj∗

φ(xn1 , . . . , xnj∗ );

6=∑
nj∗+1,...,nj

φ′(xnj∗+1 , . . . , xnj )

]∣∣∣∣
≤ 4ω

(
dist

( j∗⋃
i=1

B(xi),

j⋃
i=j∗+1

B(xi)
))
≤ 4ω

(
1
j |x1 − xj | − 2

)
. (4.12)

Now we expand the covariance in terms of multi-point densities: in view of (4.11) and of
the support condition for φ, φ′, we find that the product φ(xn1 , . . . , xnj∗ )φ

′(xnj∗+1 , . . . , xnj )
vanishes whenever ni = nl for some 1 ≤ i ≤ j∗ < l ≤ j, hence

Cov

[ 6=∑
n1,...,nj∗

φ(xn1 , . . . , xnj∗ );

6=∑
nj∗+1,...,nj

φ′(xnj∗+1 , . . . , xnj )

]
=

ˆ
(Rd)j

(φ⊗ φ′) (fj − fj∗ ⊗ fj−j∗). (4.13)

Recalling the relation (4.7) for density functions in terms of correlations, we get

(fj − fj∗ ⊗ fj−j∗)(z1, . . . , zj) =
∑
π

1∃H∈π:H∩{1,...,j∗}6=∅6=H∩{j∗+1,...,j}
∏
H∈π

h]H(zH).
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Combining this with (4.12) and (4.13), and isolating the contribution of the j-point corre-
lation hj (obtained for ]π = 1), we are led to∣∣∣ˆ

(Rd)j
(φ⊗ φ′)hj

∣∣∣ ≤ ∑
π:]π>1

1∃H∈π:H∩{1,...,j∗}6=∅6=H∩{j∗+1,...,j}
∏
H∈π

ˆ
B(xH)

|h]H |

+ 4ω
(

1
j |x1 − xj | − 2

)
,

where for H = {i1, . . . , il} we set B(xH) := B(xi1) × . . . × B(xil). In view of (4.11), the
induction hypothesis for {hl}l<j entails∣∣∣ˆ

(Rd)j
(φ⊗ φ′)hj

∣∣∣ ≤ j∑
`=2

∑
i1+...+i`=j

(
j

i1, . . . , i`

)∏̀
s=1

(
Cisis!ω(1

j |x1 − xj | − 2)is
)

+ 4ω
(

1
j |x1 − xj | − 2

)
,

from which we easily infer |
´

(Rd)j (φ⊗φ
′)hj | ≤ Cjj!ω(1

j |x1−xj |− 2). By the arbitrariness
of φ, φ′ and of x1, . . . , xj , the conclusion (4.10) follows for hj . �

4.3.2. Estimates on single-particle contributions. For notational simplicity, we henceforth
assume that particles are spherical with unit radius, In = B(xn); the adaptation to the
general case (Indep) with independent particle shapes is straightforward. As we shall see,
the explicit renormalization of B̄j is particularly intricate for j ≥ 3 since cancellations are
not as apparent as they are for the first two orders: it will require to decompose corrector
differences into elementary single-particle contributions in the spirit of (3.95). We start
by slightly changing the point of view for correctors, focussing on particle positions rather
than on particle indices in the notation: given a set Y ⊂ QL of “background” positions
such that

dist(B(y), B(y′)) > 2ρ, dist(B(y), ∂QL) > ρ, for all y, y′ ∈ Y, y 6= y′, (4.14)

we denote by ψYL ∈ H1
per(QL)d the solution of the following periodic corrector problem,

using the short-hand notation σYL := σ(ψYL + Ex,ΣY
L ),

−4ψYL +∇ΣY
L = 0, in QL \ ∪y∈YB(y),

div(ψYL ) = 0, in QL \ ∪y∈YB(y),
D(ψYL + Ex) = 0, in ∪y∈YB(y),´
∂B(y) σ

Y
L ν = 0, ∀y ∈ Y,´

∂B(y) Θ(x− y) · σYL ν = 0, ∀Θ ∈Mskew, ∀y ∈ Y.

Next, similarly as in (1.9), for any z ∈ QL and any finite subset Z ⊂ QL, provided that
the union set {z} ∪ Z ∪ Y satisfies (4.14), we can define corrector differences

δ{z}ψYL := ψ
{z}∪Y
L − ψYL , δZψYL :=

∑
W⊂Z

(−1)|Z\W |ψW∪YL .

Compared with the notation that we use elsewhere in this memoir, this means for all index
sets F,H ⊂ N,

ψHL ≡ ψ
{xn,L}n∈H
L , δFψHL ≡ δ{xn,L}n∈Fψ

{xn,L}n∈H
L .

For Y = {y1, . . . , ym} and Z = {z1, . . . , zn}, we shall also write for convenience

ψy1,...,ym
L := ψYL , δz1,...,znψy1,...,ym

L := δZψYL . (4.15)
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Recall that Lemma 3.2 states that the corrector difference δZψYL satisfies

−4δZψYL +∇δZΣY
L = −

∑
z∈Z

δ∂B(z)δ
Z\{z}σ

Y ∪{z}
L ν in QL \ ∪y∈YB(y), (4.16)

together with the rigidity contraint D(δZψYL ) = 0 in ∪y∈YB(y) and with associated
boundary conditions. In view of this equation, as in (3.95), we can decompose correc-
tor differences into elementary single-particle contributions that we express in terms of
operators {J zL;Y }z,Y defined as follows: given a “tagged” position z ∈ QL, given a pair
(ζ, P ) ∈ H1(B1+ρ(z))

d×L2(B1+ρ(z) \B(z)) satisfying the following Stokes equations in a
neighborhood of B(z),


−4ζ +∇P = 0, in B1+ρ(z) \B(z),
div(ζ) = 0, in B1+ρ(z) \B(z),
D(ζ) = 0, in B(z),´
∂B(z) σ(ζ, P )ν = 0,´
∂B(z) Θ(x− z) · σ(ζ, P )ν = 0, ∀Θ ∈Mskew,

(4.17)

and given a finite subset Y ⊂ QL of “background” positions such that {z}∪Y satisfies (4.14),
we denote by J zL;Y ζ ∈ H1

per(QL)d the solution of the following Stokes problem,



−4J zL;Y ζ +∇QzL;Y ζ = −δ∂B(z)σ(ζ, P )ν, in QL \ ∪y∈YB(y),

div(J zL;Y ζ) = 0, in QL \ ∪y∈YB(y),

D(J zL;Y ζ) = 0, in ∪y∈YB(y),´
∂B(y) σ(J zL;Y ζ,QzL;Y ζ)ν = 0, ∀y ∈ Y,´
∂B(y) Θ(x− y) · σ(J zL;Y ζ,QzL;Y ζ)ν = 0, ∀Θ ∈Mskew, ∀y ∈ Y.

These operators {J zL;Y }z,Y describe the fluid velocity generated by localized force dipoles
in the presence of a finite number of rigid inclusions and are thus viewed as Stokeslets
for the problem with rigid inclusions. In view of our upcoming analysis (see in particular
cancellation properties in Lemma 4.3 below), we further extend the definition of J zL;Y

when the support B(z) of the force dipole intersects rigid inclusions ∪y∈YB(y) or the
cell boundary ∂QL, which was excluded above by assuming that {z} ∪ Y satisfies (4.14).
A convenient way to proceed is as follows: given z ∈ QL and Y ⊂ QL with only Y
satisfying (4.14), we define J zL;Y ζ ∈ H1

per(QL)d as the solution of the following Stokes
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problem,

−4J zL;Y ζ +∇QzL;Y ζ = −δ∂BL(z)σ(ζ, P )ν, in QL \ ∪y∈YB(y),

div(J zL;Y ζ) = 0, in QL \ ∪y∈YB(y),

D(J zL;Y ζ) = 0, in ∪y∈Y \YzB(y),´
∂B(y) σ(J zL;Y ζ,QzL;Y ζ)ν = 0, ∀y ∈ Y \ Yz,´
∂B(y) Θ(x− y) · σ(J zL;Y ζ,QzL;Y ζ)ν = 0, ∀Θ ∈Mskew, ∀y ∈ Y \ Yz,
J zL;Y ζ = Vz + Θz(x− z), in ∪y∈YzB(y),

for some Vz ∈ Rd,Θz ∈Mskew,∑
y∈Yz

´
∂B(y) σ(J zL;Y ζ,QzL;Y ζ)ν

=
∑

y∈Yz
´
B(y)∩∂BL(z) σ(ζ, P )ν,∑

y∈Yz
´
∂B(y) Θ(x− z) · σ(J zL;Y ζ,QzL;Y ζ)ν

=
∑

y∈Yz
´
B(y)∩∂BL(z) Θ(x− z) · σ(ζ, P )ν, ∀Θ ∈Mskew,

(4.18)
where BL(z) := (B(z) + LZd) ∩ QL stands for the periodization of the ball B(z) in QL,
where we have set Yz := {y ∈ Y : B(y) ∩ BL(z) 6= ∅}, and where we have implicitly
extended (ζ, P ) periodically to B1+ρ(z) + LZd. We emphasize that these equations are
equivalent to the previous simpler ones when {z} ∪ Y satisfies (4.14) (hence Yz = ∅). The
solution J zL;Y ζ is only defined up to a rigid motion in QL, which we fix by further choosing

ˆ
QL

J zL;Y ζ = 0,

ˆ
QL

∇J zL;Y ζ ∈ Msym
0 .

Note that J zL;Y ζ depends of course on the pair (ζ, P ), not only on ζ, but we leave the
pressure field implicit in the notation for convenience. We further define

J zLζ := J zL;∅ζ,

for which the defining Stokes problem (4.18) reduces to

−4J zLζ +∇QzLζ = −δ∂BL(z)σ(ζ, P )ν, div(J zLζ) = 0, in QL, (4.19)

and we define J zY ζ,J zζ as the corresponding operators on whole space, that is, with BL(z)

and QL replaced by B(z) and Rd, respectively, in (4.18) and (4.19). In these terms, as
in (3.95), given Y, Z ⊂ QL, provided that Y ∪ Z satisfies (4.14), the equation (4.16) for
corrector differences allows to decompose

δZψYL =
∑
z∈Z
J zL;Y δ

Z\{z}(ψ
{z}∪Y
L + Ex). (4.20)

The above definition (4.18) of J zL;Y , with the particular choice of the extension to all z ∈ QL,
is dictated by the following key observation. This constitutes the precise cancellation prop-
erty that we shall repeatedly use for the explicit renormalization of cluster formulas.

Lemma 4.3 (Cancellation property). For any Y ⊂ QL satisfying (4.14), and for any
function ζ satisfying (4.17) around z = 0, we have for ζz := ζ(· − z),ˆ

QL

(
J zL;Y ζ

z
)
dz = 0. ♦
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Proof. Integrating equations (4.18) for J zL;Y ζ
z over z, and noting that

ˆ
QL

( ∑
y∈Yz

ˆ
B(y)∩∂BL(z)

σ(ζz, P z)ν
)
dz = ]Y |B|

ˆ
∂B
σ(ζ, P )ν

= 0,

and similarlyˆ
QL

(
δ∂BL(z)\∪y∈Y B(y)σ(ζz, P z)ν

)
dz

=

ˆ
QL

ˆ
∂BL(z)

σ(ζz, P z)ν dz −
ˆ
QL

( ∑
y∈Yz

ˆ
B(y)∩∂BL(z)

σ(ζz, P z)ν
)
dz

= |QL \ ∪y∈YB(y)|
ˆ
∂B
σ(ζ, P )ν = 0,

the conclusion follows from the uniqueness of the solution to the Stokes problem (4.18). �

Next, we establish optimal decay estimates for these operators {J zL;Y }z,Y , which are
shown to coincide with the decay for the explicit Stokeslets {J zL}z associated with the
problem in free space without rigid inclusions. This result corresponds to Lemma 3.8 and
the proof is postponed to Appendix A in form of Lemma A.1.

Lemma 4.4 (Decay of Stokeslets with rigid inclusions). Let z ∈ QL, let (ζ, P ) sat-
isfy (4.17) at z, and let Y ⊂ QL satisfy (4.14). Then, we have for all x ∈ QL,(ˆ

BL(x)
|D(J zL;Y ζ)|2

) 1
2
.]Y 〈(x− z)L〉−d

(ˆ
B1+ρ(z)

|D(ζ)|2
) 1

2
,

(ˆ
B(x)
|D(J zY ζ)|2

) 1
2
.]Y 〈x− z〉−d

(ˆ
B1+ρ(z)

|D(ζ)|2
) 1

2
. ♦

Finally, since we aim at finite-volume approximation error estimates, we need to quantify
the difference J zL;Y − J zY between periodized and whole-space Stokeslets. The proof is
postponed to Appendix A in form of Lemma A.3. We emphasize that the stated bounds
are not optimal, but will be good enough for our purposes.

Lemma 4.5 (Periodization error). Let z ∈ QL, let (ζ, P ) satisfy (4.17) at z, and let Y ⊂ QL
such that {z} ∪ Y satisfies (4.14). Then, we have for all x ∈ QL,(ˆ

BL1+ρ(x)
|D(J zL;Y ζ − J zY ζ)|2

) 1
2
.]Y

(ˆ
B1+ρ(z)

|D(ζ)|2
) 1

2

×
(
1|x−z|>L

4
〈(x− z)L〉−d + 1|x−z|≤L

4
dist(Y \ {x, z}, ∂QL)−d

)
,

where we set for notational convenience dist(∅, ∂QL) := L, and where we denote by
BL
r (z) = (Br(z) + LZd) ∩QL the periodization of the ball Br(z) in QL. In addition,(ˆ

BL1+ρ(x)
|D(ψYL − ψY )|2

) 1
2
.]Y

(
〈dist(x, ∂QL)〉+ 〈dist(Y \ {x}, ∂QL)〉

)−d
. ♦
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4.4. Explicit renormalization of cluster formulas. This section is devoted to the
proof of Theorem 6. We first describe the explicit renormalization of the second and third
cluster coefficients B̄2 and B̄3, cf. Propositions 4.6 and 4.7 below, before turning to the
general case, cf. Proposition 4.8. For notational simplicity, we assume that particles are
spherical with unit radius, In = B(xn), but we emphasize that the general case follows
along the same lines under the independence assumption (Indep). More precisely, it
suffices to replace each occurence of spherical particles below by iid random shapes and to
further take the expectation with respect to the latter; we omit the detail.

4.4.1. Explicit renormalization of B̄2: Batchelor–Green formula. We start with the anal-
ysis of B̄2 and rigorously establish the so-called Batchelor–Green formula [7].

Proposition 4.6 (Batchelor–Green renormalization of B̄2). Let (Hρ) and (Hunif
ρ ) hold,

and assume for simplicity that particles are spherical with unit radius, In = B(xn). Let
also the mixing assumption (Mixnω) hold to order n = 2 with some non-increasing rate
ω ∈ C∞b (R+) satisfying the Dini condition

´∞
1

1
t ω(t) dt <∞, as well as the doubling con-

dition ω(2t) ' ω(t) for all t ≥ 0. Then, the infinite-volume second-order cluster coeffi-
cient B̄2 defined in (3.13) can be expressed as follows,

E : B̄2E =

ˆ
Rd

( ˆ
∂B
ψz · σ0ν

)
h2(0, z) dz +

ˆ
Rd

(ˆ
∂B
ψz · δzσ0ν

)
f2(0, z) dz, (4.21)

where both integrals are absolutely converging and where we use the notation (4.15). In
addition, the following estimates hold:
(i) Uniform cluster estimate:

|B̄2
L| . λ2(P) +

ˆ ∞
1

1
t

(
ω(t) ∧ λ2(P)

)
dt,

hence, in case of an algebraic weight ω(t) ≤ Ct−β for some C, β > 0,

|B̄2
L| . λ2(P)|log λ(P)|.

(ii) Periodization error estimate:

|B̄2
L − B̄2| . (ω(L) + 1

L) logL+

ˆ ∞
1

1
t+L ω(t) dt.

(iii) Uniform remainder estimate: If (Mixnω) further holds with n = 3, then

|R2
L| . λ2(P) +

ˆ ∞
1

1
t

(
ω(t) ∧ λ2(P)

)
dt+

ˆ ∞
1

log t
t

(
ω(t) ∧ λ3(P)

)
dt,

hence, in case of an algebraic weight ω(t) ≤ Ct−β for some C, β > 0,

|R2
L| . λ2(P)|log λ(P)|+ λ3(P)|log λ(P)|2. ♦

Proof. We split the proof into four steps. Given E ∈ Msym
0 with |E| = 1, for notational

convenience, we write B̄2
L, B̄

2, and R2
L for E : B̄2

LE, E : B̄2E, and E : R2
LE.

Step 1. Reformulation of B̄2
L:

B̄2
L = L−d

¨
QL,ρ×QL,ρ

(ˆ
∂B(y)

ψzL · σ
y
Lν
)
h2(y, z) dydz

+ L−d
¨
QL,ρ×QL,ρ

(ˆ
∂B(y)

ψzL · δzσ
y
Lν
)
f2(y, z) dydz
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− λ(P)2L−d
¨
QL,ρ×(QL\QL,ρ)

(ˆ
∂B(y)

ψzL · σ
y
Lν
)
dydz, (4.22)

where we recall the short-hand notation QL,ρ = QL−2(`∨(1+ρ)), cf. (3.1).

By definition, cf. (3.8), the finite-volume approximation B̄2
L is given by

B̄2
L = L−d

∑
m 6=n

E
[ˆ

∂B(xn,L)
ψ
{m}
L · σ{m,n}L ν

]
.

Decomposing σ{m,n}L = σ
{n}
L + δ{m}σ

{n}
L , this turns into

B̄2
L = L−d

∑
m 6=n

E
[ˆ

∂B(xn,L)
ψ
{m}
L · σ{n}L ν

]
+ L−d

∑
m6=n

E
[ˆ

∂B(xn,L)
ψ
{m}
L · δ{m}σ{n}L ν

]
.

In terms of multi-point densities, cf. (1.15), recalling the choice of the finite-volume ap-
proximation with PL = {xn : xn ∈ QL,ρ}, cf. (3.1), and using the notation (4.15), we can
rewrite

B̄2
L = L−d

¨
QL,ρ×QL,ρ

(ˆ
∂B(y)

ψzL · σ
y
Lν
)
f2(y, z) dydz

+ L−d
¨
QL,ρ×QL,ρ

(ˆ
∂B(y)

ψzL · δzσ
y
Lν
)
f2(y, z) dydz, (4.23)

and it remains to further analyze the first right-hand side term. For that purpose, we note
that ψzL = ψ0

L(· − z) and σyL = σ0
L(· − y), so thatˆ

∂B(y)
ψzL · σ

y
Lν =

ˆ
∂B
ψ0
L(·+ y − z) · σ0

Lν.

Integrating over z, using the periodicity of ψ0
L, and recalling that

´
∂B σ

0
Lν = 0, we deduceˆ

QL

( ˆ
∂B(y)

ψzL · σ
y
Lν
)
dz = 0. (4.24)

Decomposing f2(y, z) = λ(P)2 + h2(y, z) in terms of the 2-point correlation function h2,
and then using this cancellation property (4.24) to reformulate the first right-hand side
term in (4.23), the claim (4.22) follows.

Step 2. Uniform estimate: proof of (i).
Using the boundary conditions and the incompressibility constraints to smuggle in arbitrary
constants in the different factors, as in the proof of (3.35), and appealing to the trace
estimates of Lemma 2.3, we find∣∣∣ ˆ

∂B(y)
ψzL · σ

y
Lν
∣∣∣ . (ˆ

B(y)
|D(ψzL)|2

) 1
2
(ˆ

B1+ρ(y)
|D(ψyL)|2

) 1
2
,∣∣∣ ˆ

∂B(y)
ψzL · δzσ

y
Lν
∣∣∣ . ( ˆ

B(y)
|D(ψzL)|2

) 1
2
(ˆ

B1+ρ(y)
|D(δzψyL)|2

) 1
2
. (4.25)

Hence, applying the decay estimates of Lemma 4.4 to ψzL = J zL(ψzL + Ex) and to δzψyL =
J zL;y(ψ

y,z
L + Ex), combined with the energy estimate (3.49), we get∣∣∣ˆ

∂B(y)
ψzL · σ

y
Lν
∣∣∣ . 〈(y − z)L〉−d,
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∣∣∣ ˆ
∂B(y)

ψzL · δzσ
y
Lν
∣∣∣ . 〈(y − z)L〉−2d. (4.26)

Formula (4.22) for B̄2
L can then be estimated as follows,

|B̄2
L| . L−d

¨
QL×QL

〈(y − z)L〉−d|h2(y, z)| dydz

+L−d
¨
QL×QL

〈(y− z)L〉−2df2(y, z) dydz + λ(P)2L−d
¨
QL×(QL\QL,ρ)

〈(y− z)L〉−d dydz.

In terms of the two-point intensity, recalling that λ2(P) = λ2(P) by Lemma 1.1(ii) in view
of (Mixnω), we can estimate the 2-point correlation function as follows: appealing both
to (4.9) and to the decay assumption (Mixnω), and arguing as in Lemma 1.1(iii), we find
¨
QL×QL

〈(y − z)L〉−d|h2(y, z)| dydz

.
¨
QL×QL

〈(y − z)L〉−d
(
ω(|y − z|) ∧ λ2(P)

)
dydz. (4.27)

The above then becomes

|B̄2
L| . L−d

¨
QL×QL

〈(y − z)L〉−d
(
ω(|y − z|) ∧ λ2(P)

)
dydz

+ λ2(P)

(
L−d

¨
QL×QL

〈(y − z)L〉−2ddydz + L−d
¨
QL×(QL\QL,ρ)

〈(y − z)L〉−d dydz
)
.

As ω is non-increasing and as |(y−z)L| ≤ |y−z|, the first right-hand side term is bounded
by

L−d
¨
QL×QL

〈(y − z)L〉−d
(
ω(|y − z|) ∧ λ2(P)

)
dydz

≤ L−d
¨
QL×QL

〈(y − z)L〉−d
(
ω(|(y − z)L|) ∧ λ2(P)

)
dydz

.
ˆ
QL

〈z〉−d
(
ω(|z|) ∧ λ2(P)

)
dz

.
ˆ ∞

1

1
t

(
ω(t) ∧ λ2(P)

)
dt,

and the conclusion (i) follows after similarly estimating the other terms.

Step 3. Convergence result: proof of (ii).
Comparing identities (4.21) and (4.22), we have

|B̄2
L − B̄2| ≤ A1

L +A2
L +A3

L, (4.28)

where we have set for abbreviation

A1
L :=

∣∣∣∣L−d¨
QL,ρ×QL,ρ

( ˆ
∂B(y)

ψzL · σ
y
Lν
)
h2(y, z) dydz

−
ˆ
Rd

(ˆ
∂B
ψz · σ0ν

)
h2(0, z) dz

∣∣∣∣,
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A2
L :=

∣∣∣∣L−d¨
QL,ρ×QL,ρ

( ˆ
∂B(y)

ψzL · δzσ
y
Lν
)
f2(y, z) dydz

−
ˆ
Rd

(ˆ
∂B
ψz · δzσ0ν

)
f2(0, z) dz

∣∣∣∣,
A3
L := λ(P)2L−d

¨
QL,ρ×(QL\QL,ρ)

∣∣∣ˆ
∂B(y)

ψzL · σ
y
Lν
∣∣∣ dydz.

We estimate these three contributions separately and we start with A1
L. Noting that

stationarity yields h2(y, z) = h2(0, z − y), and using that ψz = ψz−y(· − y) and σy =
σ0(· − y), we can write

L−d
¨
QL,ρ×QL,ρ

(ˆ
∂B(y)

ψz · σyν
)
h2(y, z) dydz

= L−d
¨
QL,ρ×QL,ρ

(ˆ
∂B
ψz−y · σ0ν

)
h2(0, z − y) dydz

=

ˆ
Rd
L−d|QL,ρ ∩ (QL,ρ + z)|

( ˆ
∂B
ψz · σ0ν

)
h2(0, z) dz,

and thus, setting for abbreviation γ2
L,ρ(z) := L−d|QL,ρ ∩ (QL,ρ + z)|, we get by the triangle

inequality,

A1
L .

ˆ
Rd

(
1− γ2

L,ρ(z)
)∣∣∣ ˆ

∂B
ψz · σ0ν

∣∣∣|h2(0, z)| dz (4.29)

+ L−d
¨
QL×QL

(∣∣∣ ˆ
∂B(y)

(ψzL − ψz) · σ
y
Lν
∣∣∣+
∣∣∣ˆ

∂B(y)
ψz · (σyL − σ

y)ν
∣∣∣)|h2(y, z)| dydz.

Appealing to the trace estimates of Lemma 3.3, decomposing

ψzL − ψz = J zL(ψzL + Ex)− J z(ψz + Ex)

= J z(ψzL − ψz) + (J zL − J z)(ψzL + Ex),

using the decay estimates of Lemma 4.4, the periodization error estimates of Lemma 4.5,
and the energy estimate (3.49), we find∣∣∣ ˆ

∂B(y)
(ψzL − ψz) · σ

y
Lν
∣∣∣

.
(ˆ

B(y)
|D(ψzL − ψz)|2

) 1
2
(ˆ

QL

|D(ψyL + Ex)|2
) 1

2

.
(ˆ

B(y)
|D(J z(ψzL − ψz))|2 + |D((J zL − J z)(ψzL + Ex))|2

) 1
2

. 〈y − z〉−d
(ˆ

B1+ρ(z)
|D(ψzL − ψz)|2

) 1
2

+
(
1|y−z|>L

4
〈(y − z)L〉−d + 1|y−z|≤L

4
L−d

)( ˆ
QL

|D(ψzL + Ex)|2
) 1

2

. 1|y−z|>L
4
〈(y − z)L〉−d + 1|y−z|≤L

4
L−d,
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and similarly, ∣∣∣ ˆ
∂B
ψz · σ0ν

∣∣∣ . 〈z〉−d,∣∣∣ ˆ
∂B(y)

ψz · (σyL − σ
y)ν
∣∣∣ . L−d〈y − z〉−d.

Inserting these estimates into (4.29), we get

A1
L .

ˆ
Rd

(
1− γ2

L,ρ(z)
)
〈z〉−d|h2(0, z)| dz

+ L−d
¨
QL×QL

(
1|y−z|>L

4
〈(y − z)L〉−d + 1|y−z|≤L

4
L−d

)
|h2(y, z)| dydz.

Using the decay assumption (Mixnω) for h2, noting that

1− γ2
L,ρ(z) = 1− L−d|QL,ρ ∩ (QL,ρ + z)| . |z|

L ∧ 1, (4.30)

and using that
´
QL
〈y〉−ddy . logL, we conclude after straightforward simplifications,

A1
L .

ˆ
Rd

( |z|
L ∧ 1

)
〈z〉−dω(|z|) dz + ω(L) logL+ L−d

ˆ
Q2L

ω(|z|) dz

. ω(L) logL+

ˆ ∞
0

1
t+L ω(t) dt. (4.31)

We turn to the estimation of the second term A2
L in (4.28). By stationarity, as above, we

find

A2
L .

ˆ
Rd

(
1− γ2

L,ρ(z)
)∣∣∣ ˆ

∂B
ψz · δzσ0ν

∣∣∣f2(0, z) dz

+L−d
¨
QL×QL

(∣∣∣ˆ
∂B(y)

(ψzL−ψz) · δzσ
y
Lν
∣∣∣+ ∣∣∣ ˆ

∂B(y)
ψz · (δzσyL− δ

zσy)ν
∣∣∣) f2(y, z) dydz.

Recalling ψzL − ψz = J z(ψzL − ψz) + (J zL − J z)(ψzL + Ex), further decomposing

δzψyL − δ
zψy = J zL;y(ψ

y,z
L + Ex)− J zy (ψy,z + Ex)

= J zy (ψy,zL − ψ
y,z) + (J zL;y − J zy )(ψy,zL + Ex),

and using the trace estimates of Lemma 3.3, the decay estimates of Lemma 4.4, the peri-
odization error estimates of Lemma 4.5, and the energy estimate (3.49), we find∣∣∣ ˆ

∂B
ψz · δzσ0ν

∣∣∣ . 〈z〉−2d,∣∣∣ ˆ
∂B(y)

(ψzL − ψz) · δzσ
y
Lν
∣∣∣ . 〈(y − z)L〉−d

(
dL(y) + dL(z)

)−d
∣∣∣ˆ

∂B(y)
ψz · (δzσyL − δ

zσy)ν
∣∣∣ . 〈y − z〉−2d

(
dL(y) + dL(z)

)−d
+ L−d〈(y − z)L〉−d.

where we have set for abbreviation dL(z) := 〈dist(z, ∂QL)〉. Inserting these estimates into
the above, we get

A2
L .

ˆ
Rd

(
1− γ2

L,ρ(z)
)
〈z〉−2df2(0, z) dz + L−d

¨
QL×QL

〈(y − z)L〉−ddL(y)−df2(y, z) dydz.
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In terms of the two-point intensity, appealing to Lemma 1.1(iii), recalling (4.30), and using
that

´
QL
〈y〉−ddy . logL and

´
QL

dL(y)−ddy . Ld−1, we deduce

A2
L . λ2(P)

ˆ
Rd

( |z|
L ∧ 1

)
〈z〉−2ddz + λ2(P)L−d

¨
QL×QL

〈(y − z)L〉−ddL(y)−d dydz

. λ2(P) logL
L . (4.32)

It remains to estimate the last term A3
L in (4.28). Using again the trace estimates of

Lemma 3.3, the decay estimates of Lemma 4.4, and the energy estimate (3.49), we find∣∣∣ ˆ
∂B(y)

ψzL · σ
y
Lν
∣∣∣ . 〈(y − z)L〉−d,

and thus

A3
L . λ(P)2 L−d

¨
QL,ρ×(QL\QL,ρ)

〈(y − z)L〉−d dydz

. λ(P)2 logL
L . (4.33)

Combining this with (4.28), (4.31), and (4.32), the conclusion (ii) follows.

Step 4. Uniform remainder estimate: proof of (iii).
The starting point is the refined estimate (3.30) on remainders, which reads in this case

|R2
L| ≤ E

[
L−d

∑
n

ˆ
B(xn,L)

∣∣∣ ∑
m:m6=n

D(ψ
{m}
L )

∣∣∣2]

+

∣∣∣∣E[L−d∑
n

ˆ
B(xn,L)

( ∑
m:m6=n

D(ψ
{m}
L )

)
: D(ψ̂

{n}
n,L)

]∣∣∣∣,
where we recall that ψ̂{n}n,L is defined by (3.32). Expanding the square and separating the
different intersection patterns, this can be rewritten as follows, in terms of multi-point
densities,

|R2
L| ≤ L−d

¨
(QL,ρ)2

(ˆ
B(x)
|D(ψyL)|2

)
f2(x, y) dxdy

+ L−d
∣∣∣∣˚

(QL,ρ)3

( ˆ
B(x)

D(ψyL) : D(ψzL)
)
f3(x, y, z) dxdydz

∣∣∣∣
+ L−d

∣∣∣∣¨
(QL,ρ)2

( ˆ
B(x)

D(ψyL) : D(ψ̂xx,L)
)
f2(x, y) dxdy

∣∣∣∣,
where we use the obvious notation for ψ̂xx,L such that ψ̂xnxn,L := ψ̂

{n}
n,L . Replacing f2, f3 by

their expansions (4.7) in terms of correlation functions, and noting that several contribu-
tions can be turned into boundary terms by application of the identity

´
QL

D(ψyL) dy = 0,
we obtain

|R2
L| . L−d

¨
(QL,ρ)2

(ˆ
B(x)
|D(ψyL)|2

)
f2(x, y) dxdy

+ L−d
∣∣∣∣˚

(QL,ρ)3

( ˆ
B(x)

D(ψyL) : D(ψzL)
)(
λ(P)h2(y, z) + h3(x, y, z)

)
dxdydz

∣∣∣∣
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+ L−d
∣∣∣∣¨

(QL,ρ)2

( ˆ
B(x)

D(ψyL) : D(ψ̂xx,L)
)
h2(x, y) dxdy

∣∣∣∣
+ λ(P)L−d

∣∣∣∣˚
(QL,ρ)2×(QL\QL,ρ)

( ˆ
B(x)

D(ψyL) : D(ψzL)
)
h2(x, y) dxdydz

∣∣∣∣
+ λ(P)3L−d

∣∣∣∣˚
QL,ρ×(QL\QL,ρ)2

(ˆ
B(x)

D(ψyL) : D(ψzL)
)
dxdydz

∣∣∣∣
+ λ(P)2L−d

∣∣∣∣¨
QL,ρ×(QL\QL,ρ)

(ˆ
B(x)

D(ψyL) : D(ψ̂xx,L)
)
dxdy

∣∣∣∣.
Using (3.33) to estimate ψ̂xx,L in terms of ψxL,ˆ

B(x)
|D(ψ̂xx,L)|2 .

ˆ
B1+ρ(x)

|D(ψxL) + E|2 . 1,

and appealing to the decay estimates of Lemma 4.4, we deduce

|R2
L| . L−d

¨
(QL,ρ)2

〈(x− y)L〉−2df2(x, y) dxdy

+ L−d
˚

(QL,ρ)3

〈(x− y)L〉−d〈(x− z)L〉−d
(
λ(P)|h2(y, z)|+ |h3(x, y, z)|

)
dxdydz

+ L−d
¨

(QL,ρ)2

〈(x− y)L〉−d|h2(x, y)| dxdy

+ λ(P)L−d
˚

(QL,ρ)2×(QL\QL,ρ)
〈(x− y)L〉−d〈(x− z)L〉−d|h2(x, y)| dxdydz

+ λ(P)3L−d
˚

QL,ρ×(QL\QL,ρ)2

〈(x− y)L〉−d〈(x− z)L〉−d dxdydz

+ λ(P)2L−d
¨
QL,ρ×(QL\QL,ρ)

〈(x− y)L〉−d dxdy.

In terms of multi-point intensities, appealing to Lemma 1.1(ii)–(iii), and using both (4.9)
and the decay assumption (Mixnω) to estimate correlation functions similarly as in (4.27),
the conclusion (iii) follows after straightforward computations. �

4.4.2. Explicit renormalization of B̄3. The explicit renormalization of B̄2 above is solely
based on the simple and neat cancellation property (4.24). Higher-order cluster formulas
require more subtle cancellations, which can only be captured after suitably decomposing
corrector differences in terms of elementary single-particle contributions as in (4.20). Before
turning to the general case and proving Theorem 6, we start with a detailed account of
the third-order cluster coefficient B̄3, which contains all the necessary new ingredients.

Proposition 4.7 (Renormalization of B̄3). Let (Hρ) and (Hunif
ρ ) hold, and assume for

simplicity that particles are spherical with unit radius, In = B(xn). Let also the mixing
assumption (Mixnω) hold to order n = 3 with some non-increasing rate ω ∈ C∞b (R+)

satisfying the Dini type condition
´∞

1
log t
t ω(t) dt < ∞, as well as the doubling condition

ω(2t) ' ω(t) for all t ≥ 0. Then, the infinite-volume third-order cluster coefficient B̄3
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defined in (3.13) can be expressed as follows,

E : B̄3E = 3

¨
Rd×Rd

(ˆ
∂B

(
J yJ zy (ψz + Ex)

)
· σ0ν

)(
λ(P)h2(0, z) + h3(0, y, z)

)
dydz

+ 3

¨
Rd×Rd

(ˆ
∂B

(J yJ zy δyψz) · σ0ν
)(
f3(0, y, z)− λ(P)f2(y, z)

)
dydz

+ 3

¨
Rd×Rd

(ˆ
∂B

(
J yJ zy (ψz + Ex)

)
· δyσ0ν

)(
f3(0, y, z)− λ(P)f2(0, y)

)
dydz

+ 3

¨
Rd×Rd

(ˆ
∂B

(J zδyψz) · δyσ0ν
)
f3(0, y, z) dydz

+ 3

¨
Rd×Rd

(ˆ
∂B

(J yJ zy δyψz) · δyσ0ν
)
f3(0, y, z) dydz

+ 3
2

¨
Rd×Rd

(ˆ
∂B
δy,zψ∅ · δy,zσ0ν

)
f3(0, y, z) dydz, (4.34)

where all the integrals are absolutely convergent and where we use the notation (4.15). In
addition, the following estimates hold:
(i) Uniform cluster estimate:

|B̄3
L| . λ3(P) +

ˆ ∞
1

log t
t

(
ω(t) ∧ λ3(P)

)
dt,

hence, in case of an algebraic weight ω(t) ≤ Ct−β for some C, β > 0,

|B̄3
L| . λ3(P)|log λ(P)|2.

(ii) Periodization error estimate:

|B̄3
L − B̄3| . logL

L + ω(L)(logL)2 +

ˆ ∞
1

log t
t+L ω(t) dt.

(iii) Uniform remainder estimate: If (Mixnω) further holds with n = 5, then

|R3
L| . λ3(P) +

5∑
j=3

ˆ ∞
1

(log t)j−2

t

(
ω(t) ∧ λj(P)

)
dt,

hence, in case of an algebraic weight ω(t) ≤ Ct−β for some C, β > 0,

|R3
L| . λ3(P)|log λ(P)|2 + λ4(P)|log λ(P)|3 + λ5(P)|log λ(P)|4. ♦

Proof. We split the proof into four steps. Given E ∈ Msym
0 with |E| = 1, for notational

convenience, we write B̄3
L, B̄

3, and R3
L for E : B̄3

LE, E : B̄3E, and E : R3
LE.

Step 1. Reformulation of B̄3
L

B̄3
L = E3

L (4.35)

+ 3L−d̊

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)(
λ(P)h2(x, z) + h3(x, y, z)

)
dxdydz

+ 3L−d̊

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · σxLν

)(
f3(x, y, z)− λ(P)f2(y, z)

)
dxdydz

+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν

)(
f3(x, y, z)− λ(P)f2(x, y)

)
dxdydz
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+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J zLJ
y
L;zψ̄

y,z
L ) · δyσxLν

)
f3(x, y, z) dxdydz

+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · δyσxLν

)
f3(x, y, z) dxdydz

+ 3
2L
−d

˚
(QL,ρ)3

(ˆ
∂B(x)

δy,zψ∅
L · δ

y,zσxLν
)
f3(x, y, z) dxdydz,

where we henceforth use the short-hand notation ψ̄YL := ψYL + Ex, and where E3
L stands

for boundary terms,

E3
L := 3λ(P)3L−d

˚
QL,ρ×(QL\QL,ρ)2

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)
dxdydz

− 3λ(P)L−d
˚

(QL,ρ)2×(QL\QL,ρ)

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)
h2(x, y) dxdydz

− 3λ(P)L−d
˚

(QL\QL,ρ)×(QL,ρ)2

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)
h2(y, z) dxdydz

− 3λ(P)L−d
˚

(QL\QL,ρ)×(QL,ρ)2

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · σxLν

)
f2(y, z) dxdydz

− 3λ(P)L−d
˚

(QL,ρ)2×(QL\QL,ρ)

( ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν

)
f2(x, y) dxdydz.

By definition, cf. (3.8), the finite-volume approximation B̄3
L is given by

B̄3
L = 3

2L
−d

6=∑
n,m,p

E
[ˆ

∂B(xn,L)
δ{m,p}ψ∅

L · σ
{n,m,p}
L ν

]
.

Decomposing
σ
{n,m,p}
L = σ

{n}
L + δ{m}σ

{n}
L + δ{p}σ

{n}
L + δ{m,p}σ

{n}
L ,

this becomes by symmetry,

B̄3
L = 3

2L
−d

6=∑
n,m,p

E
[ˆ

∂B(xn,L)
δ{m,p}ψ∅

L · σ
{n}
L ν

]

+ 3L−d
6=∑

n,m,p

E
[ˆ

∂B(xn,L)
δ{m,p}ψ∅

L · δ
{m}σ

{n}
L ν

]

+ 3
2L
−d

6=∑
n,m,p

E
[ˆ

∂B(xn,L)
δ{m,p}ψ∅

L · δ
{m,p}σ

{n}
L ν

]
.

In terms of multi-point densities, cf. (1.15), recalling the choice of the finite-volume ap-
proximation with PL = {xn : xn ∈ QL,ρ}, cf. (3.1), we can rewrite

B̄3
L = 3

2L
−d

˚
(QL,ρ)3

( ˆ
∂B(x)

δy,zψ∅
L · σ

x
Lν
)
f3(x, y, z) dxdydz

+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

δy,zψ∅
L · δ

yσxLν
)
f3(x, y, z) dxdydz
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+ 3
2L
−d

˚
(QL,ρ)3

(ˆ
∂B(x)

δy,zψ∅
L · δ

y,zσxLν
)
f3(x, y, z) dxdydz. (4.36)

It remains to further analyze the first two right-hand side terms and we split the proof into
two further substeps. To capture cancellations, we shall expand δy,zψ∅

L and δyψxL in terms
of one-particle contributions as in (4.20).

Substep 1.1. Proof that

L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

δy,zψ∅
L · σ

x
Lν
)
f3(x, y, z) dxdydz (4.37)

= E3,1
L + 2L−d̊

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)(
λ(P)h2(x, z) + h3(x, y, z)

)
dxdydz

+2L−d̊

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · σxLν

)(
f3(x, y, z)− λ(P)f2(y, z)

)
dxdydz,

where we recall the short-hand notation ψ̄YL = ψYL+Ex, and where E3,1
L stands for boundary

terms,

E3,1
L := 2λ(P)3L−d

˚
QL,ρ×(QL\QL,ρ)2

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)
dxdydz

− 2λ(P)L−d
˚

(QL,ρ)2×(QL\QL,ρ)

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)
h2(x, y) dxdydz

− 2λ(P)L−d
˚

(QL\QL,ρ)×(QL,ρ)2

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)
h2(y, z) dxdydz

− 2λ(P)L−d
˚

(QL\QL,ρ)×(QL,ρ)2

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · σxLν

)
f2(y, z) dxdydz.

In view of (4.20), corrector differences can be decomposed as

δy,zψ∅
L = J yLδ

zψyL + J zLδyψzL
= J yLJ

z
L;yψ̄

y,z
L + J zLJ

y
L;zψ̄

y,z
L , (4.38)

and thus, further writing

ψy,zL = ψzL + δyψzL = ψzL + J yL;zψ̄
y,z
L

= ψyL + δzψyL = ψyL + J zL;yψ̄
y,z
L ,

we deduce

δy,zψ∅
L = J yLJ

z
L;yψ̄

z
L + J zLJ

y
L;zψ̄

y
L + J yLJ

z
L;yJ

y
L;zψ̄

y,z
L + J zLJ

y
L;zJ

z
L;yψ̄

y,z
L . (4.39)

From this decomposition, we get by symmetry

L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

δy,zψ∅
L · σ

x
Lν
)
f3(x, y, z) dxdydz (4.40)

= 2L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)
f3(x, y, z) dxdydz

+2L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · σxLν

)
f3(x, y, z) dxdydz.
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We are now in position to exploit cancellations properties. First, we note that Lemma 4.3
yields, recalling ψzL = ψ0

L(· − z), ˆ
QL

(J zL;yψ̄
z
L) dz = 0, (4.41)

and thus, for all x, y ∈ Rd,ˆ
QL

( ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)
dz = 0.

In addition, similarly to what was done in (4.24) for the renormalization of B̄2
L, writingˆ

∂B(x)
(J yLJ

z
L;yψ̄

z
L) · σxLν =

ˆ
∂B

(J yLJ
z
L;yψ̄

z
L)(·+ x) · σ0

Lν,

and using the condition
´
∂B σ

0
Lν = 0, we findˆ

QL

( ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν

)
dx = 0, (4.42)

and likewise, ˆ
QL

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · σxLν

)
dx = 0.

Turning back to (4.40), replacing f3 by its expansion (4.7) in terms of correlation functions,
and using these three cancellation properties, the claim (4.37) follows.

Substep 1.2. Proof that

L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

δy,zψ∅
L · δ

yσxLν
)
f3(x, y, z) dxdydz (4.43)

= E3,2
L + L−d̊

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν

)(
f3(x, y, z)− λ(P)f2(x, y)

)
dxdydz

+L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J zLJ
y
L;zψ̄

y,z
L ) · δyσxLν

)
f3(x, y, z) dxdydz

+L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · δyσxLν

)
f3(x, y, z) dxdydz,

where E3,2
L stands for a boundary term,

E3,2
L := −λ(P)L−d

˚
(QL,ρ)2×(QL\QL,ρ)

( ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν

)
f2(x, y) dxdydz.

Inserting this into (4.36), together with (4.37), the claim (4.35) follows.

We turn to the proof of (4.43). As this term benefits from some additional decay due to
the factor δyσxL, we only need the following (asymetric) simpler version of (4.39),

δy,zψ∅
L = J yLJ

z
L;yψ̄

z
L + J zLJ

y
L;zψ̄

y,z
L + J yLJ

z
L;yJ

y
L;zψ̄

y,z
L , (4.44)

which leads us to

L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

δy,zψ∅
L · δ

yσxLν
)
f3(x, y, z) dxdydz (4.45)
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= L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν

)
f3(x, y, z) dxdydz

+L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J zLJ
y
L;zψ̄

y,z
L ) · δyσxLν

)
f3(x, y, z) dxdydz

+L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · δyσxLν

)
f3(x, y, z) dxdydz,

and it remains to analyze the first right-hand side term. For that purpose, we use again
the elementary cancellation property (4.41), now in form ofˆ

QL

( ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν

)
dz = 0,

which entails

L−d
˚

(QL,ρ)3

( ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν

)
f3(x, y, z) dxdydz

= L−d
˚

(QL,ρ)3

( ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν

)(
f3(x, y, z)− λ(P)f2(x, y)

)
dxdydz

−λ(P)L−d
˚

(QL,ρ)2×(QL\QL,ρ)

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν

)
f2(x, y) dxdydz,

and the claim (4.43) follows.

Step 2. Uniform estimates: proof of (i).
As in the proof of Proposition 4.6(i), appealing to the trace estimates of Lemma 2.3, the
decay estimates of Lemma 4.4, and the energy estimate (3.49), formula (4.35) for B̄3

L can
be estimated as follows,

|B̄3
L| . |E3

L|

+ L−d̊

(QL)3

〈(x− y)L〉−d〈(y − z)L〉−d
(
λ(P)|h2(x, z)|+ |h3(x, y, z)|

)
dxdydz

+ L−d̊

(QL)3

〈(x− y)L〉−d〈(y − z)L〉−2d|f3(x, y, z)− λ(P)f2(y, z)| dxdydz

+ L−d
˚

(QL)3

〈(x− z)L〉−d〈(z − y)L〉−d〈(y − x)L〉−df3(x, y, z) dxdydz

+ L−d
˚

(QL)3

〈(x− y)L〉−2d〈(y − z)L〉−2df3(x, y, z) dxdydz,

and, for boundary terms,

|E3
L| . λ(P)3L−d

˚
QL×(QL\QL,ρ)2

〈(x− y)L〉−d〈(y − z)L〉−d dxdydz

+ λ(P)L−d
˚

(QL\QL,ρ)×(QL)2

〈(x− y)L〉−d〈(y − z)L〉−d|h2(y, z)| dxdydz

+ λ(P)L−d
˚

(QL\QL,ρ)×(QL)2

〈(x− y)L〉−d〈(y − z)L〉−2df2(y, z) dxdydz.
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In terms of multi-point intensities, appealing to Lemma 1.1, using both (4.9) and the decay
assumption (Mixnω) to estimate correlation functions similarly as in (4.27), we deduce after
straightforward computations

|B̄3
L| . |E3

L|+ λ3(P) +

ˆ ∞
1

log t
t

(
ω(t) ∧ λ3(P)

)
dt,

|E3
L| .

logL
L

(
λ3(P) +

ˆ L

1

1
t

(
ω(t) ∧ λ3(P)

)
dt

)
, (4.46)

and the conclusion (i) follows.

Step 3. Convergence result: proof of (ii).
In terms of γ3

L,ρ(y, z) := L−d|QL,ρ∩(y+QL,ρ)∩(z+QL,ρ)|, using stationarity and recalling
that δyψz = J yz ψ̄y,z, the formula (4.34) for the infinite-volume cluster coefficient B̄3 takes
the equivalent form

B̄3 = E4
L

+ 3L−d̊

(QL,ρ)3

(ˆ
∂B(x)

(J yJ zy ψ̄z) · σxν
)(
λ(P)h2(x, z) + h3(x, y, z)

)
dxdydz

+ 3L−d̊

(QL,ρ)3

(ˆ
∂B(x)

(J yJ zy J yz ψ̄y,z) · σxν
)(
f3(x, y, z)− λ(P)f2(y, z)

)
dxdydz

+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yJ zy ψ̄z) · δyσxν
)(
f3(x, y, z)− λ(P)f2(x, y)

)
dxdydz

+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J zJ yz ψ̄y,z) · δyσxν
)
f3(x, y, z) dxdydz

+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yJ zL;yJ yz ψ̄y,z) · δyσxν
)
f3(x, y, z) dxdydz

+ 3
2L
−d

˚
(QL,ρ)3

(ˆ
∂B(x)

δy,zψ∅ · δy,zσxν
)
f3(x, y, z) dxdydz,

where

E4
L := 3

¨
Rd×Rd

(1− γ3
L,ρ(y, z))

(ˆ
∂B

(J yJ zy ψ̄z) · σ0ν
)(
λ(P)h2(0, z) + h3(0, y, z)

)
dydz

+ 3

¨
Rd×Rd

(1− γ3
L,ρ(y, z))

(ˆ
∂B

(J yJ zy δyψz) · σ0ν
)(
f3(0, y, z)− λ(P)f2(y, z)

)
dydz

+ 3

¨
Rd×Rd

(1− γ3
L,ρ(y, z))

(ˆ
∂B

(J yJ zy ψ̄z) · δyσ0ν
)(
f3(0, y, z)− λ(P)f2(0, y)

)
dydz

+ 3

¨
Rd×Rd

(1− γ3
L,ρ(y, z))

(ˆ
∂B

(J zδyψz) · δyσ0ν
)
f3(0, y, z) dydz

+ 3

¨
Rd×Rd

(1− γ3
L,ρ(y, z))

(ˆ
∂B

(J yJ zy δyψz) · δyσ0ν
)
f3(0, y, z) dydz

+ 3
2

¨
Rd×Rd

(1− γ3
L,ρ(y, z))

(ˆ
∂B
δy,zψ∅ · δy,zσ0ν

)
f3(0, y, z) dydz,
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so that the identity (4.35) for B̄3
L entails

B̄3
L − B̄3 = E3

L − E4
L (4.47)

+ 3L−d̊

(QL,ρ)3

( ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν − (J yJ zy ψ̄z) · σxν

)
×
(
λ(P)h2(x, z) + h3(x, y, z)

)
dxdydz

+ 3L−d̊

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · σxLν − (J yJ zy J yz ψ̄y,z) · σxν

)
×
(
f3(x, y, z)− λ(P)f2(y, z)

)
dxdydz

+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · δyσxLν − (J yJ zy ψ̄z) · δyσxν

)
×
(
f3(x, y, z)− λ(P)f2(x, y)

)
dxdydz

+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J zLJ
y
L;zψ̄

y,z
L ) · δyσxLν − (J zJ yz ψ̄y,z) · δyσxν

)
f3(x, y, z) dxdydz

+ 3L−d
˚

(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yJ

y
L;zψ̄

y,z
L ) · δyσxLν − (J yJ zy J yz ψ̄y,z) · δyσxν

)
× f3(x, y, z) dxdydz

+ 3
2L
−d

˚
(QL,ρ)3

( ˆ
∂B(x)

δy,zψ∅
L · δ

y,zσxLν − δy,zψ∅ · δy,zσxν
)
f3(x, y, z) dxdydz.

The first boundary contribution E3
L is already estimated in (4.46). Noting that

1− γ3
L,ρ(y, z) .

〈y〉
L ∧ 1 + 〈z〉

L ∧ 1,

using the trace estimates of Lemma 3.3, the decay estimates of Lemma 4.4, the energy esti-
mate (3.49), and Lemma 1.1(iii), and further using (4.9) and the decay assumption (Mixnω)
to estimate correlation functions similarly as in (4.27), we obtain for the second boundary
contribution in (4.47),

E4
L .

1
L

ˆ L

1
(log t)ω(t) dt+

ˆ ∞
L

log t
t ω(t) dt.

It remains to estimate the remaining six right-hand side terms in (4.47). We focus on the
first term, which is the most involved, and we skip the detail for the last five ones. We
split the proof into two further substeps.

Substep 3.1. First periodization error term in (4.47): proof that∣∣∣∣L−d̊
(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν − (J yJ zy ψ̄z) · σxν

)
×
(
λ(P)h2(x, z) + h3(x, y, z)

)
dxdydz

∣∣∣∣
. ω(L)(logL)2 + 1

L

ˆ L

1
(log t)ω(t) dt. (4.48)

Decomposing
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(J yLJ
z
L;yψ̄

z
L) · σxLν − (J yJ zy ψ̄z) · σxν = (J yLJ

z
L;yψ̄

z
L) ·(σxL−σx)ν+(J yL−J

y)J zL;yψ̄
z
L ·σxν

+ J y(J zL;y − J zy )ψ̄zL · σxν + J yJ zy (ψzL − ψz) · σxν,

and appealing to the trace estimates of Lemma 3.3, we find∣∣∣ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν − (J yJ zy ψ̄z) · σxν

∣∣∣
.
( ˆ

B(x)
|D(J yLJ

z
L;yψ̄

z
L)|2

) 1
2
(ˆ

B1+ρ(x)
|D(ψxL − ψx)|2

) 1
2

+
(ˆ

B(x)
|D((J yL − J

y)J zL;yψ̄
z
L)|2

) 1
2
( ˆ

B1+ρ(x)
|D(ψx)|2

) 1
2

+
(ˆ

B(x)
|D(J y(J zL;y − J zy )ψ̄zL)|2

) 1
2
( ˆ

B1+ρ(x)
|D(ψx)|2

) 1
2

+
(ˆ

B(x)
|D(J yJ zy (ψzL − ψz))|2

) 1
2
(ˆ

B1+ρ(x)
|D(ψx)|2

) 1
2
.

We then appeal to the decay estimates of Lemma 4.4, to the periodization error estimates
of Lemma 4.5, and to the energy estimate (3.49), in form of(ˆ

B1+ρ(x)
|D(ψxL − ψx)|2

) 1
2
. L−d,

(ˆ
B1+ρ(x)

|D(J yLJ
z
L;yψ̄

z
L)|2

) 1
2
. 〈(x− y)L〉−d〈(y − z)L〉−d,( ˆ

B1+ρ(x)
|D((J yL − J

y)J zL;yψ̄
z
L)|2

) 1
2
. 〈(y − z)L〉−d

×
(
1|x−y|>L

4
〈(x− y)L〉−d + 1|x−y|≤L

4
L−d

)
,(ˆ

B1+ρ(x)
|D(J y(J zL;y − J zy )ψ̄zL)|2

) 1
2
. 〈x− y〉−d

×
(
1|y−z|>L

4
〈(y − z)L〉−d + 1|y−z|≤L

4
L−d

)
,( ˆ

B1+ρ(x)
|D(J yJ zy (ψzL − ψz))|2

) 1
2
. L−d〈x− y〉−d〈(y − z)L〉−d,

so that the above becomes∣∣∣ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν − (J yJ zy ψ̄z) · σxν

∣∣∣
. 1|x−y|>L

4
〈(x− y)L〉−d〈(y − z)L〉−d + 1|x−y|≤L

4
L−d〈(y − z)L〉−d

+ 1|y−z|>L
4
〈x− y〉−d〈(y − z)L〉−d + 1|y−z|≤L

4
L−d〈x− y〉−d.

Further using (4.9) and the decay assumption (Mixnω) to estimate correlation functions
similarly as in (4.27), we get by symmetry
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∣∣∣∣L−d̊
(QL,ρ)3

(ˆ
∂B(x)

(J yLJ
z
L;yψ̄

z
L) · σxLν − (J yJ zy ψ̄z) · σxν

)
×
(
λ(P)h2(x, z) + h3(x, y, z)

)
dxdydz

∣∣∣∣
. L−d

˚
(QL)3

1|x−y|>L
4
〈(x− y)L〉−d〈(y − z)L〉−d ω(|x− z|) dxdydz

+ L−2d

˚
(QL)3

1|x−y|≤L
4
〈(y − z)L〉−d ω(|x− z|) dxdydz. (4.49)

We start with the first right-hand side term, which is the most delicate one to estimate.
By properties of ω, we may decompose

ω(|x− z|) . 1|x−z|>L
4
ω(L) + 1|x−z|≤L

4
ω(|x− z|).

The first contribution with |x− z| > L
4 is easily estimated,

ω(L)L−d
˚

(QL)3

1|x−y|>L
4
1|x−z|>L

4
〈(x− y)L〉−d〈(y − z)L〉−d dxdydz . ω(L)(logL)2,

and we turn to the contribution with |x−z| ≤ L
4 . For that purpose, we interpolate between

two bounds for the integral with respect to y,ˆ
QL

1|x−y|>L
4
1|x−z|≤L

4
〈(x− y)L〉−d〈(y − z)L〉−d dy

. 1|x−z|≤L
4

(
〈(x− z)L〉−d log(2 + |(x− z)L|)

)
∧ 〈dist({x, z}, ∂QL)〉−d

.
(
〈x− z〉+ dist({x, z}, ∂QL)

)−d
log(2 + |x− z|),

where we further used that (x− z)L = x− z if |x− z| < L
4 . By symmetry, we then get

L−d
˚

(QL)3

1|x−y|>L
4
1|x−z|≤L

4
〈(x− y)L〉−d〈(y − z)L〉−d ω(|x− z|) dxdydz

. L−d
¨

(QL)2

(
〈x− z〉+ dist({x}, ∂QL)

)−d
log(2 + |x− z|)ω(|x− z|) dxdz

. 1
L

ˆ L

1
log(t)ω(t) dt, (4.50)

where the last bound follows from a straightforward computation, carefully distinguishing
between the cases 〈x− z〉 ≥ dist({x}, ∂QL) and 〈x− z〉 ≤ dist({x}, ∂QL). Indeed, on the
one hand, the part with 〈x− z〉 ≥ 〈dist({x}, ∂QL)〉 can be estimated by

L−d
¨

(QL)2

1dist({x},∂QL)≤〈x−z〉〈x− z〉−d log(2 + |x− z|)ω(|x− z|) dxdz

. L−d
ˆ
Q2L

(Ld−1〈y〉) 〈y〉−d log(2 + |y|)ω(|y|)dy

. 1
L

ˆ L

1
(log r)ω(r) dr,
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and on the other hand the part with 〈x− z〉 ≤ dist({x}, ∂QL) is estimated by

L−d
ˆ
QL

〈dist({x}, ∂QL)〉−d
(ˆ
{z∈QL:〈x−z〉≤dist({x},∂QL)}

log(2 + |x− z|)ω(|x− z|) dz
)
dx

. L−d
ˆ L

1
rd−1〈L− r〉−d

(ˆ L−r

1
sd−1(log s)ω(s) ds

)
dr

. 1
L

ˆ L

L/2
〈L− r〉−d

( ˆ L−r

1
sd−1(log s)ω(s) ds

)
dr + L−d

ˆ L

1
sd−1(log s)ω(s)ds

. 1
L

ˆ L/2

1
sd−1(log s)ω(s)

(ˆ L−s

L/2
〈L− r〉−ddr

)
ds+ L−d

ˆ L

1
sd−1(log s)ω(s) ds

. 1
L

ˆ L

1
(log s)ω(s) ds,

which yields the bound (4.50). It remains to estimate the second right-hand side term
in (4.49), for which we directly find

L−2d

˚
(QL)3

1|x−y|≤L
4
〈(y − z)L〉−d ω(|x− z|) dxdydz

. (logL)L−d
ˆ L

1
td−1ω(t) dt . 1

L

ˆ L

1
(log t)ω(t) dt.

Inserting these different estimates into (4.49), the claim (4.48) follows using the doubling
property of ω.

Substep 3.2. Conclusion.
The next four terms of (4.47) are estimated similarly as the first periodization error term,
and we skip most details for brevity. We solely briefly comment on the last term in (4.47),
which is slightly different as it involves second-order corrector differences. We claim that∣∣∣∣L−d˚

(QL,ρ)3

( ˆ
∂B(x)

δy,zψ∅
L · δ

y,zσxLν − δy,zψ∅ · δy,zσxν
)
f3(x, y, z) dxdydz

∣∣∣∣
. λ3(P) 1

L . (4.51)

By (4.38), and arguing similarly as for δy,zψxL, we can decompose

δy,zψ∅
L = J yLJ

z
L;yψ̄

y,z
L + J zLJ

y
L;zψ̄

y,z
L ,

δy,zψxL = J yL;xJ
z
L;x,yψ̄

x,y,z
L + J zL;xJ

y
L;x;zψ̄

x,y,z
L ,

so that, proceeding as in Substep 3.1 above, we can write δy,zψ∅
L · δy,zσxL − δy,zψ∅ · δy,zσx

as the difference of four terms, which can each be written as a telescopic sum of six
terms involving “elementary” periodization errors. The most delicate of those terms is the
following one,

L−d
˚

(QL)3

( ˆ
B(x)
|D(J yJ zy ψ̄y,z)|2

) 1
2

×
(ˆ

B1+ρ(x)
|D(J zxJ yx,z(ψ

x,y,z
L − ψx,y,z))|2

) 1
2
f3(x, y, z) dxdydz.
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By the decay estimates of Lemma 4.4, the periodization error estimates of Lemma 4.5, and
the energy estimate (3.49), and further appealing to Lemma 1.1(iii) to control f3 in terms
of the multi-point intensity, this term is bounded by

L−dλ3(P)

˚
(QL)3

〈x− y〉−d〈x− z〉−d〈y − z〉−2d〈dist(y, ∂QL)〉−d dxdydz . λ3(P) 1
L .

All the other terms can be bounded similarly, and the claim (4.51) follows. This concludes
the proof of (ii).

Step 4. Analysis of remainders.
Starting from (3.30), expanding the products, and separating the different intersection
patterns, we are led to the following, in terms of multi-point intensities,

|R3
L| . L−d

∣∣∣∣ ˆ
(QL,ρ)5

(ˆ
B(x)

D(δy,zψ∅
L ) : D(δy

′,z′ψ∅
L )
)
f5(x, y, z, y′, z′) dxdydzdy′dz′

∣∣∣∣
+L−d

∣∣∣∣ˆ
(QL,ρ)4

( ˆ
B(x)

D(δy,zψ∅
L ) : D(δy,z

′
ψ∅
L )
)
f4(x, y, z, z′) dxdydzdz′

∣∣∣∣
+L−d

∣∣∣∣ˆ
(QL,ρ)3

( ˆ
B(x)

D(δy,zψ∅
L ) : D(δz

′
ψ̂xx,L)

)
f4(x, y, z, z′) dxdydzdz′

∣∣∣∣
+L−d

ˆ
(QL,ρ)3

(ˆ
B(x)
|D(δy,zψ∅

L )|2
)
f3(x, y, z) dxdydz

+L−d
∣∣∣∣ˆ

(QL,ρ)3

( ˆ
B(x)

D(δy,zψ∅
L ) : D(δyψ̂xx,L)

)
f3(x, y, z) dxdydz

∣∣∣∣
+L−d

∣∣∣∣ˆ
(QL,ρ)3

( ˆ
B(x)

D(δy,zψ∅
L ) : D(ψ̂xx,L)

)
f3(x, y, z) dxdydz

∣∣∣∣.
As in the analysis of B̄3

L in Step 1, cancellations are unravelled by decomposing δy,zψ∅
L in

terms of single-particle contributions. We leave the details to the reader. �

4.4.3. Higher-order explicit renormalization. Finally, we turn to the general higher-order
case. The obtained renormalized formulas are not displayed in the statement as they take
the form of intricate diagrammatic expansions and require notation that will be introduced
in the proof.

Proposition 4.8 (Higher-order renormalizations). Let (Hρ) and (Hunif
ρ ) hold, and assume

for simplicity that particles are spherical with unit radius, In = B(xn). Let also the mixing
assumption (Mixnω) hold to order n = k+1 ≥ 2 with rate ω ∈ C∞b (R+) satisfying the Dini
type condition

´∞
1

1
t (log t)k−1ω(t) dt <∞. Then, the infinite-volume (k+1)th-order cluster

coefficient B̄k+1, cf. (3.13), can be expressed by means of absolutely convergent integrals.
In addition, in case of an algebraic rate ω(t) ≤ Ct−β for some C, β > 0, the following hold.
(i) Uniform estimate:

|B̄k+1
L | . λk+1(P)|log λ(P)|k.

(ii) Convergence result:

|B̄k+1
L − B̄k+1| . (logL)k

Lβ∧1 .
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(iii) Uniform remainder estimate: If (Mixnω) further holds with n = 2k+ 1 with algebraic
weight ω(t) ≤ Ct−β, then

|Rk+1
L | .

2k∑
j=k

λj+1(P)|log λ(P)|j . (4.52)
♦

Proof. Let k ≥ 1 be fixed. By definition, cf. (3.8), the periodic approximation B̄k+1
L is

given by

B̄k+1
L = 1

2(k + 1)!L−d
∑

]F=k+1

∑
n∈F

E
[ˆ

∂B(xn,L)
δF\{n}ψ∅

L · σ
F
L ν

]
,

and thus, decomposing σFL =
∑

G⊂F\{n} δ
Gσ
{n}
L for n ∈ F , we get by symmetry,

B̄k+1
L = k+1

2

k∑
l=0

(
k

l

)
L−d

6=∑
n0,n1,...,nk

E
[ˆ

∂B(xn0,L
)
δ{n1,...,nk}ψ∅

L · δ
{nl+1,...,nk}σ

{n0}
L ν

]
.

In terms of multi-point densities, cf. (1.15), recalling the choice (3.1) of the finite-volume
approximation, and using the notation (4.15), this becomes

B̄k+1
L = k+1

2

k∑
l=0

(
k

l

)
L−d

ˆ
(QL,ρ)k+1

( ˆ
∂B(x0)

δx1,...,xkψ∅
L · δ

xl+1,...,xkσx0
L ν

)
× fk+1(x0, . . . , xk) dx0 . . . dxk. (4.53)

We now need to capture enough cancellations to make these integrals absolutely summable
uniformly in the large-volume limit. For that purpose, similarly to what we did for B̄3

L in
the proof of Proposition 4.7, we shall proceed to a suitable expansion of δx1,...,xkψ∅

L in terms
one-particle contributions. For general order k, the expansion is conveniently expressed in
terms of diagrams. We split the proof into six steps.

Step 1. Diagrammatic decomposition of δx1,...,xkψ∅
L .

We start with some terminology and notation:
— We use the standard notation [k] := {1, . . . , k} and for any subset S ⊂ [k] we de-

fine xS := (xi)i∈S .
— Given a sequence I = (i1, . . . , il) of indices, the first index i1 is called the root of I, the

last index il is its endpoint, and l is its length. The associated index set is denoted by
〈I〉 := {i1, . . . , il} and we define the cardinality of I as ]I := ]〈I〉. An index i is then
said to belong to I (for short, i ∈ I) if it belongs to the index set 〈I〉, and we define
xI := x〈I〉 = (xi)i∈〈I〉. Two sequences I and J are said to be disjoint if there is no index
belonging to both, that is, 〈I〉 ∩ 〈J〉 = ∅.

— The concatenation of two sequences I = (i1, . . . , il) and J = (j1, . . . , jm) is denoted by
I ] J := (i1, . . . , il, j1, . . . , jm).

— A string of indices is defined as any sequence of distinct indices with length ≥ 1.
— Given a string I = (i1, . . . , il) and an index set S, we define the elementary contribution

of I given S as the following composition of operators,

RIL;S(x[k]) := J xi1L;xS
J xi2L;xi1

J xi3L;xi1 ,xi2
. . .J xilL;xi1 ,...,xil−1

, (4.54)

where we recall that the J zL,Y ’s are defined in (4.18).
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Figure 1. Each term in (4.57) can be represented by means of a directed
graph on the index set {0}∪[k], where edges are given by pairs of consecutive
elements in B1 ] . . .]Br with possible multiplicities and where we include
the edge (0, b) with b the root of B1. In this way, an edge to i corresponds to
an operator J xiL;xT

in (4.57). For instance, the above diagram is associated
to blocks B1 = (1) ] (2, 1), B2 = (3) ] (4, 5, 3) ] (6, 7, 5), B3 = (8), and
B4 = (9) ] (10, 11, 9).

— A block is defined as any sequence B of indices that takes the form

B = (b) ] I1 ] . . . ] Ir, (4.55)

where r ≥ 0 (for r = 0 we simply have B = (b)) and where I1, . . . , Ir are strings of
length ≥ 2 with the following property: for all 1 ≤ j ≤ r, the endpoint of Ij belongs to
(b) ] I1 ] . . . ] Ij−1 but other elements of Ij do not.

— Given a block B = (b) ] I1 ] . . . ] Ir and an index set S, we define the elementary
contribution of B given S as the following composition of operators,

CBL;S(x[k]) := J xbL;xS
RI1L;{b}(x[k])RI2L;〈(b)]I1〉(x[k]) . . .RInL;〈(b)]I1]...]In−1〉(x[k]). (4.56)

In these terms, we claim that δx1,...,xjψ∅
L can be decomposed as follows,

δx1,...,xkψ∅
L =

k∑
r=1

∑
B1,...,Br

CB1
L;∅(x[k])CB2

L;〈B1〉(x[k]) . . . CBrL;〈Br−1〉(x[k]) ψ̄
xBr
L , (4.57)

where we recall the short-hand notation ψ̄xBrL = ψ
xBr
L +Ex, and where the sum

∑
B1,...,Br

runs over all r-tuples of disjoint blocks B1, . . . , Br such that

〈B1 ] . . . ]Br〉 = [k].

Note that this sum (4.57) is obviously finite, uniformly in L. Any sequence of indices of [k]
can be viewed as a walk on the vertex set [k], thus inducing a (traversable) graph on [k]
where edges are defined by successive elements of the sequence (with possible multiplicities).
In this view, each term in (4.57) can be conveniently represented by a corresponding
diagram, cf. Figure 1; as we shall see, these graphical representations will prove crucial in
estimating the different terms.
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We turn to the proof of (4.57). More precisely, we shall prove the following seemingly
simpler statement: for all disjoint index sets S, T ⊂ [k] with S 6= ∅, we have

δxSψxTL =
∑
b∈S
J xbL;xT

δxS\{b}ψ̄xbL +
∑
I string
〈I〉⊂S

∑
c∈T
RI](c)
L;T δxS\〈I〉ψ̄xI ,xTL︸ ︷︷ ︸

♣

. (4.58)

We quickly argue that this indeed implies (4.57). First, we iteratively replace the corrector
difference ♣ in (4.58), using (4.58) itself, to the effect that

δxSψxTL

=
∑
l≥0

∑
I1,...,Il disjoint strings
〈I1〉,...,〈Il〉⊂S

∑
b∈S\〈I1]...]Il〉

∑
c1,...,cl

∀j:cj∈T∪〈I1]...]Ij−1〉

RI1](c1)
L;T (x[k])R

I2](c2)
L;T∪〈I1〉(x[k])

. . .RIl](cl)
L;T∪〈I1]...]Il−1〉(x[k])J xbL;xT∪〈I1]...]Il〉

δxS\〈I1]...]Il](b)〉ψ̄xbL

+
∑
l≥1

∑
I1,...,Il disjoint strings
〈I1〉∪...∪〈Il〉=S

∑
c1,...,cl

∀j:cj∈T∪〈I1]...]Ij−1〉

RI1](c1)
L;T (x[k])R

I2](c2)
L;T∪〈I1〉(x[k])

. . .RIl](cl)
L;T∪〈I1]...]Il−1〉(x[k])ψ̄

xS∪T
L .

In particular, recalling the notation (4.54) for elementary contributions RIL;S , and recog-
nizing the definition (4.56) of block contributions, we deduce for all disjoint index sets
S, T ⊂ [k] with S 6= ∅,∑

b∈S
J xbL;xT

δxS\{b}ψ̄xbL

=
∑
B block
〈B〉⊂S

CBL;T (x[k])

( ∑
b∈S\〈B〉

J xbL;x〈B〉
δxS\(〈B〉∪{b})ψ̄xbL

)
+
∑
B block
〈B〉=S

CBL;T (x[k])ψ̄
xS
L .

Iterating this identity, starting from (4.20) in form of

δxSψ∅
L =

∑
b∈S
J xbL δxS\{b}ψ̄xbL ,

the claim (4.57) follows.

We are left with the proof of (4.58). Given disjoint index sets S, T ⊂ [k] with S 6= ∅, in
view of (4.20), corrector differences can be decomposed as

δxSψxTL =
∑
b∈S
J xbL;xT

δxS\{b}ψ̄xb,xTL .

Decomposing ψ̄xb,xTL = ψ̄xbL + (ψxb,xTL − ψxbL ), this becomes

δxSψxTL =
∑
b∈S
J xbL;xT

δxS\{b}ψ̄xbL +
∑
b∈S
J xbL;xT

δxS\{b}(ψxb,xTL − ψxbL ), (4.59)
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and it remains to further decompose the last right-hand side term. For that purpose, in
view of Lemma 3.2, for all D ⊂ S with D 6= ∅, we note that δxS\D(ψxD,xTL −ψxDL ) satisfies

−4δxS\D(ψxD,xTL − ψxDL ) +∇δxS\D
(

ΣxD,xT
L 1QL\∪i∈D∪TB(xi) − ΣxD

L 1QL\∪b∈DB(xb)

)
= −

∑
b∈D

δ∂B(xb)δ
xS\D(σxD,xTL − σxDL )

−
∑
i∈S\D

δ∂B(xi)δ
xS\D∪{i}(σxD,xi,xTL − σxD,xiL )−

∑
i∈T

δ∂B(xi)δ
xS\DσxD,xTL ,

which then allows to write

δxS\D(ψxD,xTL −ψxDL ) =
∑
i∈S\D

J xiL;xD
δxS\D∪{i}(ψxD,xi,xTL −ψxD,xiL ) +

∑
i∈T
J xiL;xD

δxS\D ψ̄xD,xTL .

Using iteratively this identity for D exhausting S, we obtain upon recognizing the defini-
tion (4.54) of elementary contributions,∑

b∈S
J xbL;xT

δxS\{b}(ψxb,xTL − ψxbL ) =
∑
I string
〈I〉⊂S

∑
c∈T
RI](c)
L;T (x[k])δ

xS\〈I〉ψxI ,xTL .

Inserting this into (4.59), the claim (4.58) follows.

Step 2. Estimation of block contributions and graphical notation.
Let B be a block of indices with root b and endpoint f . By definition of elementary block
contributions, cf. (4.56), for any index set S that is disjoint from 〈B〉, Lemma 4.4 yields(ˆ

B(z)
|∇CBL;S(x[k])ζ|2

) 1
2
. 〈(z − xb)L〉−dDB(xB)

(ˆ
B(xf )

|∇ζ|2
) 1

2
, (4.60)

where for any sequence C = (c1, . . . , cm) we define

DC(xC) := 〈(xc1 − xc2)L〉−d . . . 〈(xcm−1 − xcm)L〉−d. (4.61)

As such contributions will be combined in intricate ways in the sequel, we introduce a
convenient graphical notation. Integration variables are represented by small black circles
and frozen variables by small white circles. The index of a frozen variable is occasionally
indicated in the corresponding circle. A solid line between two vertices i and j represents
a factor 〈(xi − xj)L〉−d. In particular, multiple edges correspond to powers of this factor.
For instance, we have

1 4 =

ˆ
(QL)2

〈(x1 − x2)L〉−d〈(x2 − x3)L〉−2d〈(x3 − x1)L〉−d〈(x3 − x4)L〉−d dx2dx3.

When evaluating integrals with borderline factors 〈(xi − xj)L〉−d, we naturally obtain
logarithmic factors, for which we shall use the short-hand notation

LL((zi)i∈J) := log
(

2 + max
i,j∈J

|(zi − zj)L|
)
. (4.62)

This is combined into our graphical notation as follows: a symbolic prefactor L in front of
a diagram indicates that a factor LL(xS) is to be included into the corresponding integral,
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where S stands for the set of all implemented indices. For instance, for any power µ ≥ 0,
we have

Lµ 1 4 =

ˆ
(QL)2

LL(x1, x2, x3, x4)µ

× 〈(x1 − x2)L〉−d〈(x2 − x3)L〉−2d〈(x3 − x1)L〉−d〈(x3 − x4)L〉−d dx2dx3.

Noting that for any γ > 0 and µ ≥ 0 a direct evaluation of integrals yields

ˆ
QL

LL(x, y, z)µ〈(x− y)L〉−d〈(y − z)L〉−γ dy .

 〈(x− z)L〉
−dLL(x, z)µ : γ > d,

〈(x− z)L〉−dLL(x, z)µ+1 : γ = d,
〈(x− z)L〉−γLL(x, z)µ+1 : γ < d,

we deduce with our graphical notation

Lµ . Lµ+1 (4.63)
Lµ . Lµ

which allows for instance to estimate graphically

1 4 . 1 4 . 1 4 = 〈(x1 − x4)L〉−d.

The counting of logarithmic factors in the sequel will be quite trivial as we shall notice
that at most one logarithmic factor appears each time a vertex disappears in the graphical
representation. This rough bound can often be improved, but it suffices for our purposes.

We need to add one more ingredient to our graphical notation. Indeed, in the sequel, we
replace the density function fk+1 in (4.53) by its expansion (4.7) in terms of correlation
functions, and we estimate the latter by appealing both to the decay assumption (Mixnω)
and to the uniform bound (4.9). This leads us to combine products of the form DC(xC)
with products of factors of the form ω((xi−xj)L)∧λpi(P) for some pi ≥ 0. In our graphical
notation, such a factor is represented by a dashed line between vertices i and j. In principle,
the value pi should be included in the notation to precise the value of the edge. For conve-
nience, we rather use a simplified notation: for a diagram with s dashed lines, a symbolic
prefactor λ◦k indicates that the dashed lines correspond to factors (ω((·)L) ∧ λpi(P))1≤i≤s
with any p1, . . . , ps ≥ 1 satisfying p1 + . . .+ ps = k, and we take the sum over the different
possible choices of such pi’s. For instance,

λ◦k 1 4 =
∑

p1,p2≥1
p1+p2=k

ˆ
(QL)2

(
ω((x1 − x2)L) ∧ λp1(P)

)(
ω((x2 − x3)L) ∧ λp2(P)

)
× 〈(x2 − x3)L〉−d〈(x3 − x1)L〉−d〈(x3 − x4)L〉−d dx2dx3.

In addition, a symbolic prefactor λ′k in front of a diagram with s dashed lines indicates that
the whole expression is multiplied by a factor λp0(P) and that the dashed lines correspond
to factors (ω((·)L)∧λpi(P))1≤i≤s with any p0, . . . , ps ≥ 1 satisfying p0 + . . .+ps = k, where
we again take the sum over all possible choices. In other words,

(
λ′k
)

=
k∑
p=1

λp(P)×
(
λ◦k−p

)
.
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As obviously ω((·)L) ∧ λpi(P) ≤ λpi(P), we get with our notation

λ◦k ≤ λ′k = λk(P) (4.64)

Next, we combine this with the notation L for logarithmic factors: in front of a diagram
with a prefactor λ◦k, a symbolic prefactor L indicates that either a factor L(xS) is to be
included into the corresponding integral, where S stands for the set of implemented indices,
or that one of the factors ω((xi − xj)L) ∧ λpi(P) is to be replaced by(

ω((xi − xj)L)LL(xi, xj)
)
∧
(
λpi(P)|log λ(P)|

)
,

and we take the sum over the two choices. Powers of L are defined accordingly: for instance,
for any µ ≥ 0,

Lµλ◦k 1 4 =
∑

µ0,µ1,µ2≥0
µ0+µ1+µ2=µ

∑
p0,p1,p2≥1
p0+p1+p2=k

ˆ
(QL)2

LL(x1, x2, x3, x4)µ0

×
((
ω((x1 − x2)L)LL(x1, x2)µ1

)
∧
(
λp1(P)|log λ(P)|µ1

))
×
((
ω((x2 − x3)L)L(x2, x3)µ2

)
∧
(
λp2(P)|log λ(P)|µ2

))
× 〈(x2 − x3)L〉−d〈(x3 − x1)L〉−d〈(x3 − x4)L〉−d dx2dx3.

When L is in front of a diagram with a prefactor λ′k, we add the possibility of multiplying
the whole expression by a factor |log λ(P)|: for all µ ≥ 0, this means

(
Lµλ′k

)
=

µ∑
ν=0

k∑
p=1

λp(P)|log λ(P)|ν ×
(
Lµ−νλ◦k−p

)
.

In case of an algebraic rate ω(t) = Ct−β for some β ∈ (0, d), a direct evaluation of integrals
yields, for all λ > 0 and µ, ν ≥ 0,
ˆ
QL

LL(x, y, z)µ〈(x− y)L〉−d
((
ω((y − z)L)LL(y, z)ν

)
∧
(
λ|log λ|ν

))
dy

.
(
ω((x− z)L)LL(x− z)µ+ν+1

)
∧
(
λ|log λ|µ+ν+1

)
.

With our graphical notation, recalling Lemma 1.1(ii), this estimate and similar computa-
tions yield for all µ ≥ 0,

Lµλ◦k . Lµ+1λ◦k (4.65)
Lµλ◦k . Lµλ◦k
Lµλ◦k . Lµ+1λ′k

Lµλ◦k . Lµ+1λ′k

which allows for instance to estimate graphically

Lµλ◦k 1 4 . Lµ+1λ′k 1 4 . Lµ+2λ′k 1 4

≤ λk(P)〈(x1 − x4)L〉−d
(
|log λ(P)|+ LL(x1, x4)

)µ+2
.

This notation will be used abundantly in the sequel.
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Step 3. Partial integration on blocks.
Let B be a block of indices with root b and endpoint f . We shall establish the following
key estimate for partial integrals on B: for all α, β ∈ 〈B〉,
ˆ

(QL)]〈B〉\{b,f,α,β}
DB(xB) dx〈B〉\{b,f,α,β} .B LL(xb, xf , xα, xβ)]〈B〉\{b,f,α,β}

×
(
D(α,b,f,β)(x[k]) +D(α,f,b,β)(x[k])〈(xb − xf )L〉−d

)
∧
(
D(α,f,b,β)(x[k]) +D(α,b,f,β)(x[k])〈(xb − xf )L〉−d

)
. (4.66)

With the above graphical notation, if b, f, α, β are all distinct, this can be written as

b f

α

β

. L]B−4

(
b f

α

β

+ b f

α

β

)
∧
(

b f

α

β

+ b f

α

β

)
, (4.67)

where henceforth gray squares stand for integration on a generic block. As these estimates
will be abundantly used in the sequel, we also display the important special case when one
further integrates over b or f , which is deduced by applying (4.63),

b

α

β

. L]B−3
b

α

β

and f

α

β

. L]B−3 f

α

β

(4.68)

and we further display the special cases when α = β,

b f

α

. L]B−3

b f

α

∧
b f

α

(4.69)

b

α

. L]B−2

b

α

(4.70)

f

α

. L]B−2

f

α

(4.71)

b f . L]B−2
b f (4.72)

We shall in fact prove a much more precise estimates, see (4.75) below, but the above
convenient estimates will be enough for our purposes. Powers of the logarithmic factor in
each of these estimates is equal to the difference between the numbers of vertices in the
left-hand side and in the right-hand side: indeed, in view of (4.63), each vertex that is
integrated yields at most one logarithmic factor. This could in fact be improved in (4.70)–
(4.72) based on (4.75), but we shall not need such refinements.

Before turning to the proof, we make a notational comment. A special role is of course
played in the above estimates by the root b and by the endpoint f of the block. In the
sequel, even when vertices are not labeled explicitly, as e.g. in (4.75), we take the convention
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that the root and the endpoint are always drawn respectively on the left and on the right
sides of the square (or at one of these two locations in case they coincide), while all other
distinguished vertices are drawn indistinctly on the upper and lower sides.

We turn to the proof of (4.66). For that purpose, we shall study geometric properties of the
graph G associated with the block B. Letting B = (b1, b2, . . . , bl) with b1 = b and bl = f ,
we recall that we define vertices of G as the elements of the index set 〈B〉 = {bi}1≤i≤l,
and edges of G as pairs of consecutive indices (bi, bi+1) with 1 ≤ i < l. Note that G
is connected and may have multiple edges but no self-loop. We shall repeatedly use the
following observation: as edges of G are defined from the block B, we note that b and f
have odd degree ≥ 3 and that other vertices have even degree ≥ 2 (where the degree of
a vertex is the number of unoriented edges containing that vertex; see e.g. Figure 2). We
split the proof into three further substeps.

Substep 3.1. Cyclic estimate.
In the spirit of (4.61), for a graph H on the index set [k], we define

DH(x[k]) :=
∏

(i,j)∈H

〈(xi − xj)L〉−d, (4.73)

where the notation (i, j) ∈ H means that (i, j) is an edge of H. Provided that H is Eulerian
(that is, provided that H is connected and that each vertex has even degree), we claim that
for all vertices α, β, γ ∈ 〈H〉,
ˆ

(QL)]H\{α,β,γ}
DH(x[k]) dx〈H〉\{α,β,γ}

.H L]H\{α,β,γ}
(

α γ

β

+
α γ

β

+
α γ

β

+
α γ

β )
. (4.74)

We will use standard terminology from graph theory, which we recall here for clarity: a
walk is a sequence of edges joining a sequence of vertices; a trail is a walk in which all edges
are distinct (taking edge multiplicity into account); a path is a trail in which all vertices
are also distinct; a circuit is a trail in which the first and last vertices coincide; a cycle is
a circuit in which only the first and last vertices coincide.

We turn to the proof of (4.74) and we argue by induction on the size of H. Assume
that α, β, γ are distinct (the cases α = β 6= γ and α = β = γ can be treated similarly and
are skipped for brevity). The result is straightforward if ]H = 3 as no integral is performed
in that case. We turn to the case ]H > 3. As H is Eulerian, there is a circuit that covers H
(that is, a circuit that visits every edge of H exactly once). Removing some subcircuits, we
deduce that one of the following two possibilities must hold up to a permutation of α, β, γ:
(a) either there is a cycle C visiting α, β, γ;
(b) or there is a cycle C1 visiting α, β and a cycle C2 visiting α, γ such that vertices of C1

and C2 are all distinct except α.
Both cases can be treated similarly and we focus on the first one for brevity. Let C be a
cycle visiting α, β, γ. Denote by H′ the (possibly empty) subgraph of H induced by the
complement of the edge set of the cycle C. As H is Eulerian and as C is a cycle, we notice
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that H′ is the union of Eulerian subgraphs H′1, . . . ,H′s that are edge-disjoint. We may then
decompose

DH(x[k]) = DC(x[k])DH′1
(x[k]) . . . DH′s(x[k]).

For all 1 ≤ i ≤ s, there is a vertex ji of H′i that also belongs to the cycle C. Summing
separately over repeated variables, we may then estimateˆ

(QL)]H\{α,β,γ}
DH(x[k]) dx〈H〉\{α,β,γ}

.
ˆ

(QL)]C\{α,β,γ}
DC(x[k])

( s∏
i=1

ˆ
(QL)]H

′
i
−1
DH′i

(x[k]) dx〈H′i〉\{ji}

)
dx〈C〉\{α,β,γ}.

As the H′i’s are strict Eulerian subgraphs of H, an induction argument allows to assume that
the claim (4.74) is already known to hold for H replaced by any of the H′i’s. In particular,
upon integration, this entailsˆ

(QL)]H
′
i
−1
DH′i

(x[k]) dx〈H′i〉\{ji} . L
]H′i−1.

The above then reduces toˆ
(QL)]H\{α,β,γ}

DH(x[k]) dx〈H〉\{α,β,γ} . L
∑
i(]H

′
i−1)

ˆ
(QL)]C\{α,β,γ}

DC(x[k]) dx〈C〉\{α,β,γ},

where the right-hand side is now simply an integral of the form

α

β

γ· ··

··· ·· ·

Using (4.63) to evaluate the integrals, noting that the number of appearing logarithmic
factors is bounded by the length of C minus 3 and that the length of C is bounded by the
total number of vertices minus the number of vertices not in the cycle (that is,

∑
i(]H

′
i−1)),

the claim (4.74) follows. More precisely, we obtain in this way the first right-hand side
term in (4.74), while other terms correspond to case (b) above.

Substep 3.2. Path decomposition of the graph G associated with a block B.
We show that, if b 6= f , there exist three edge-disjoint trails L1,L2,L3 that cover G (that
is, the union of their vertex sets is the vertex set of G and the disjoint union of their edge
sets is the edge set of G). We refer to Figure 2 for an illustrative example.

As b and f have odd degree ≥ 3 and as all other vertices of G have even degree, we can
find a trail L1 from b to f . Without loss of generality, we can assume that b and f are
visited only once by L1. Then consider the subgraph G′ of G induced by the complement
of the edge set of L1. By construction, all vertices of G′ now have even degree, and the
definition of the block B ensures that G′ must be connected. This allows to find two other
disjoint trails L2,L3 from b to f in G′.

Next, assume that a vertex α ∈ 〈G〉 is not visited by any of the three constructed trails
L1,L2,L3. Recalling that G is connected, a degree argument as above ensures that there
exists a circuit K from α to itself that is disjoint from the trails L1,L2,L3 and that crosses
at least one of them. A detour via K is then easily added to those trails in such a way
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1

2

3

4

5

6

7

Figure 2. This graph represents the block B = (1) ] (2, 3, 1) ] (4, 3) ]
(5, 2)] (6, 4)] (7, 6). The path decomposition of Substep 2.3 can be chosen
in this case as L1 = (1, 2, 6), L2 = (1, 4, 7, 6), and L3 = (1, 3, 2, 5, 3, 4, 6).

that they remain disjoint and that at least one of them now visits α. Repeating this
construction, we are led to edge-disjoint trails L1,L2,L3 that visit all vertices of G.

Finally, consider the subgraph G′′ of G induced by the complement of the union of the
edge sets of L1,L2,L3. By construction, all vertices of G′′ have even degree, which allows
to write G′′ as a union of edge-disjoint circuits. Adding detours via these circuits, we can
assume that the trails L1,L2,L3 cover the whole graph G, and the claim follows.

Substep 3.3. Proof of (4.66).
Let L1,L2,L3 be three covering edge-disjoint trails from b to f as constructed above. Given
a vertex α, distinguishing between the number of paths from b to f to which α belongs,
and removing cycles, we get the following four possibilities:
(a) either there exists a cycle C from b or from f that visits α and there exist three paths

K1,K2,K3 from b to f , such that C,K1,K2,K3 are edge-disjoint and cross each other
only at b or f ;

(b) or there exists a path K1 from b to f that visits α and there exist two other paths
K2,K3 from b to f that do not, such that K1,K2,K3 are edge-disjoint and cross each
other only at b or f ;

(c) or there exist two paths K1,K2 from b to f that visit α and there exists another path
K3 from b to f that does not, such that K1,K2,K3 are edge-disjoint and cross each
other only at α, b or f ;

(d) or there exist three paths K1,K2,K3 from b to f that visit α and that are edge-disjoint
and cross each other only at α, b and f .

Given another vertex β, and distinguishing between corresponding cases, we obtain three
distinguished paths K1,K2,K3 from b to f that may visit or not α and β, in different
possible orders, and we obtain up to two cycles C1,C2 from b or f visiting α or β. The
subgraph of G induced by the complement of the union of the edge sets of those three
paths and possible cycles is necessarily a disjoint union of Eulerian graphs and can be
removed by duplicating variables as in Substep 3.1. It remains to consider the union of
those three paths and possible cycles. Considering different patterns and using (4.63) to
estimate consecutive edges along each path between frozen vertices b, f, α, β, we are led to

. L]B−4

(
+ + + + + + sym.

)
, (4.75)
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where for brevity “sym.” stands for the sum of all other graphs obtained by reflecting the
six pictured graphs with respect to the vertical axis, the horizontal axis, or both (which
corresponds to permuting α and β, b and f , or both). In fact, the analysis of all possible
patterns produces a larger number of terms, but we claim that all others are bounded by
the above. For instance, another possible pattern corresponds to the case of three paths
K1,K2,K3 from b to f visiting both α and β, where K1,K2 visit α before β while K3 visit
them in reverse order: we claim that the corresponding contribution can be bounded as
follows,

. (4.76)

which is indeed bounded by the right-hand side of (4.75). This bound follows from

.

which is itself nothing but the triangle inequality 〈(x1−x3)L〉 ≤ 〈(x1−x2)L〉+〈(x2−x3)L〉
post-processed into 〈(x1 − x3)L〉 ≤ 2〈(x1 − x2)L〉〈(x2 − x3)L〉 and put to the power −d. A
straightforward similar inspection of all other possible patterns shows that the bound (4.75)
indeed holds; we skip the detail for brevity.

Finally, removing a few edges in (4.75), we are led in particular to the claim (4.67). The
claims (4.68)–(4.72) follow as straightforward corollaries after integrations using (4.63).

Step 4. Approximate cancellation of translation-invariant averages on given blocks.
Let B be a block of indices with root b and endpoint f , and let S, T be disjoint index sets
with (S ∪ T ) ∩ 〈B〉 = ∅. Let m := ]B and s := ]S. For all xB, xS , let ζxSL;xB

∈ H1
per(QL)d

satisfy (4.17) at z = xf , and assume that ζL is equivariant under translations in the sense
that

ζ
xS+[z]S
L;xB+[z]B

(·+ z) = ζxSL;xB
, for all z ∈ Rd,

where [z]B (resp. [z]S) stands for the element of (Rd)m (resp. (Rd)s) with all coordinates
equal to z. Then, for any function h on (QL)m+s that is translation-invariant in the
sense that h(xB + [z]B, xS + [z]S) = h(xB, xS) for all z ∈ Rd, we have for any linear
functional F : H1

per(QL)d → R,∣∣∣∣ˆ
(QL)m+s

F
[
CBL;T (x[k])ζ

xS
L;xB

]
h(xB, xS) dxBdxS

∣∣∣∣
≤

ˆ
QL

(ˆ
(QL+xb)m+s−1\(QL)m+s−1

∣∣∣F[CBL;T (x[k])ζ
xS
L;xB

]∣∣∣
×
(
|hL(xB, xS)|+ |h(xB, xS)|

)
dx〈B〉\{b}dxS

)
dxb, (4.77)

where we have defined the periodization hL(z) := h(zL) where zL ∈ (QL)m+s stands for
the reduction of z ∈ (Rd)m+s modulo (LZd)m+s. Note that we do not obtain an exact
cancellation in general for such a symmetric average on a block, but this bound reduces it
to a boundary term.

We turn to the proof of (4.77). Set for abbreviation C := 〈B〉 \ {b}. By definition of
elementary block contributions, cf. (4.56), we can write

CBL;T (x[k])ζ
xS
L;xB

= J xbL;xT
ξxC ;xS
L;xb

, (4.78)
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for some function ξxC ;xS
L;xb

that satisfies (4.17) at z = xb and is such that ξL is equivariant
under translations. The left-hand side of (4.77) then becomes
ˆ

(QL)m+s

F
[
CBL;T (x[k])ζ

xS
L;xB

]
h(xB, xS) dxBdxS

=

ˆ
(QL)m+s

F
[
J xbL;xT

ξxC ;xS
L;xb

]
h(xb, xC , xS) dxbdxCdxS ,

and thus, using the equivariance of ξ under translations,
ˆ

(QL)m+s

F
[
CBL;T (x[k])ζ

xS
L;xB

]
h(xB, xS) dxBdxS

=

ˆ
(QL)m+s

F
[
J xbL;xT

(
ξ
xC−[xb]C ;xS−[xb]S
L;0 (· − xb)

)]
h(xb, xC , xS) dxbdxCdxS .

Replacing h by its periodization hL (which we can on (QL)m+s), changing variables and
using periodicity, the above becomes in these terms,
ˆ

(QL)m+s

F
[
CBL;T (x[k])ζ

xS
L;xB

]
h(xB, xS) dxBdxS

=

ˆ
(QL)m+s

F
[
J xbL;xT

(
ξxC ;xS
L;0 (· − xb)

)]
hL(xb, xC + [xb]C , xS + [xb]S) dxbdxCdxS .

If hL(xb, xC + [xb]C , xS + [xb]S) were replaced by h(0, xC , xS) in the integrand, the cancel-
lation property of Lemma 4.3 would precisely entail that the integral vanishes (this would
have been the case if we had considered a periodization in law of I rather than (3.1)).
Adding and subtracting h(0, xC , xS), we deduceˆ

(QL)m+s

F
[
CBL;T (x[k])ζ

xS
L;xB

]
h(xB, xS) dxBdxS

=

ˆ
(QL)m+s

F
[
J xbL;xT

(
ξxC ;xS
L;0 (· − xb)

)]
×
(
hL
(
xb, xC + [xb]C , xS + [xb]S

)
− h(0, xC , xS)

)
dxbdxCdxS .

If xb, xC , xS are such that (xb, xC + [xb]C , xS + [xb]S) ∈ (QL)m+s, then the definition of
the periodization hL and the translation invariance of h imply that the integrand vanishes.
This leads us to the bound∣∣∣∣ ˆ

(QL)m+s

F
[
CBL;T (x[k])ζ

xS
L;xB

]
h(xB, xS) dxBdxS

∣∣∣∣
≤

ˆ
QL

( ˆ
(QL)m+s−1\(QL−xb)m+s−1

∣∣∣F[J xbL;xT

(
ξxC ;xS
L;0 (· − xb)

)]∣∣∣
×
(∣∣hL(xb, xC + [xb]C , xS + [xb]S

)∣∣+ |h(0, xC , xS)|
)
dx〈B〉\{b}dxS

)
dxb.

Using again (4.78) and the equivariance of ξ, the claim (4.77) follows.

Step 5. Uniform estimates: proof of (i).
The starting point is the decomposition (4.53) of B̄k+1

L . For brevity, we shall focus on the
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term corresponding to l = k in (4.53), that is,

C̄k+1
L := k+1

2 L−d
ˆ

(QL,ρ)k+1

(ˆ
∂B(x0)

δx1,...,xkψ∅
L · σ

x0
L ν

)
fk+1(x0, . . . , xk) dx0 . . . dxk,

while the other terms are simpler to estimate due to the additional decay given by the
factor δxl+1,...,xkσx0

L . Inserting the diagrammatic decomposition (4.57), we get

C̄k+1
L = k+1

2

k∑
r=1

∑
B1,...,Br

C̄k+1;r
L (B1, . . . , Br),

where we recall that the sum runs over all r-tuples of disjoint blocks B1, . . . , Br such that
〈B1 ] . . . ]Br〉 = [k], and where we have set for abbreviation

C̄k+1;r
L (B1, . . . , Br)

:= L−d
ˆ

(QL,ρ)k+1

( ˆ
∂B(x0)

(
CB1
L;∅(x[k])CB2

L;〈B1〉(x[k]) . . . CBrL;〈Br−1〉(x[k])ψ̄
xBr
L

)
· σx0

L ν

)
× fk+1(x0, x[k]) dx0dx[k].

Let such B1, . . . , Br be fixed. Replacing fk+1 by its expansion (4.7) in terms of correlation
functions, we find

C̄k+1;r
L (B1, . . . , Br) =

∑
π

L−d
ˆ

(QL,ρ)k+1

( ∏
H∈π

h]H(xH)

)
×
( ˆ

∂B(x0)

(
CB1
L;∅(x[k])CB2

L;〈B1〉(x[k]) . . . CBrL;〈Br−1〉(x[k])ψ̄
xBr
L

)
· σx0

L ν

)
dx0dx[k], (4.79)

where π runs over all partitions of the index set {0} ∪ [k] and where H runs over all cells
of the partition π.

We shall say that a partition π of {0}∪[k] is covering forB1, . . . , Br if there is no ‘separating’
index 1 ≤ α ≤ r such that each cell H ∈ π is included either in {0} ∪

⋃α−1
i=1 〈Bi〉 or in⋃r

i=α〈Bi〉. We denote by K(B1, . . . , Br) the set of such partitions. Using the approximate
cancellation property (4.77), and further noting as in (4.42) that

ˆ
QL

( ˆ
∂B(x0)

(
CB1
L;∅(x[k])CB2

L;〈B1〉(x[k]) . . . CBrL;〈Br−1〉(x[k])ψ
xBr
L

)
· σx0

L ν

)
dx0 = 0, (4.80)

we note that only covering partitions produce nontrivial terms in (4.79): contributions
from non-covering partitions either vanish or are reduced to boundary terms. Therefore,
we naturally decompose

|C̄k+1;r
L (B1, . . . , Br)|

≤
∑

π∈K(B1,...,Br)

|C̄k+1;r
L (B1, . . . , Br;π)|+

∑
π/∈K(B1,...,Br)

|C̄k+1;r
L (B1, . . . , Br;π)|,
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where we have set for abbreviation

C̄k+1;r
L (B1, . . . , Br;π) := L−d

ˆ
(QL,ρ)k+1

( ∏
H∈π

h]H(xH)

)
×
( ˆ

∂B(x0)

(
CB1
L;∅(x[k])CB2

L;〈B1〉(x[k]) . . . CBrL;〈Br−1〉(x[k])ψ̄
xBr
L

)
· σx0

L ν

)
dx0dx[k].

We split the proof into two further substeps, separately considering the two types of con-
tributions.

Substep 5.1. Main contributions: in case of an algebraic rate ω(t) ≤ Ct−β for some
C, β > 0, we have for all π ∈ K(B1, . . . , Br),

|C̄k+1;r
L (B1, . . . , Br;π)| . λk+1(P)|log λ(P)|k. (4.81)

Without loss of generality, we may assume β ∈ (0, d) (so we can appeal to (4.65)). Using the
boundary conditions for ψx0

L and the incompressibility constraints to smuggle in arbitrary
constants in the different factors, and then appealing to the trace estimates of Lemma 2.3,
we find

|C̄k+1;r
L (B1, . . . , Br;π)| . L−d

ˆ
(QL,ρ)k+1

( ∏
H∈π
|h]H(xH)|

)

×
( ˆ

B(x0)

∣∣∣∇CB1
L;∅(x[k])CB2

L;〈B1〉(x[k]) . . . CBrL;〈Br−1〉(x[k])ψ̄
xBr
L

∣∣∣2) 1
2

dx0dx[k].

For all 1 ≤ l ≤ r, denote by bl the root of Bl and by fl its endpoint, and set for notational
convenience f0 := 0. Iterating the bound (4.60), we then get

|C̄k+1;r
L (B1, . . . , Br;π)| . L−d

ˆ
(QL,ρ)k+1

( ∏
H∈π
|h]H(xH)|

)

×
( r∏
l=1

〈(xfl−1
− xbl)L〉

−dDBl(xBl)

)
dx0dx[k]. (4.82)

Next, we examine the structure of the product of correlation functions. Given a cov-
ering partition π ∈ K(B1, . . . , Br), we can construct a sequence of intertwined pairings
(mi,m

′
i)1≤i≤s (for some integer s ≥ 1) such that

— (mj)1≤j≤s and (m′j)1≤j≤s are increasing, m1 = 0, and m′s = r;
— m′i−1 < mi+1 for all 1 < i < s, and mi ≤ m′i−1 for all 1 < i ≤ s;
— for all i there is a cell H ∈ π such that H ∩ 〈Bmi〉 6= ∅ and H ∩ 〈Bm′i〉 6= ∅ (with the

understanding that B0 = {0}).
The construction is as follows: Starting from m1 = 0, we define m′1 as the maximum
index m such that there is H ∈ π with {0} ∩H 6= ∅ and 〈Bm〉 ∩H 6= ∅, which is well-
defined by the covering assumption for π with index α = 1. Oncemi andm′i are defined for
some i ≥ 1, if m′i < r, we define m′i+1 as the maximum index m such that there is H ∈ π
with ({0}∪

⋃
l≤m′i
〈Bl〉)∩H 6= ∅ and 〈Bm〉 ∩H 6= ∅, which is well-defined by the covering

assumption for π with index α = m′i+1 ≤ r and satisfiesm′i+1 > m′i by construction. Next,
we define mi+1 as the minimum index m such that there is H ∈ π with 〈Bm〉∩H 6= ∅ and
〈Bm′i+1

〉∩H 6= ∅. We continue the construction until m′s = r is reached. We claim that by
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construction we have m′i−1 < mi+1 ≤ m′i for all i (which, since (m′j)j is increasing, implies
that (mj)j is increasing as well). On the one hand, we indeed havemi+1 ≤ m′i by definition
of m′i+1. On the other hand, we must have mi+1 > m′i−1 since the inequality mi+1 ≤ m′i−1

would imply m′i = m′i+1 and contradict the strict monotonicity of the sequence (m′j)j .

With this construction of intertwined pairings (mi,m
′
i)1≤i≤s, we can choose a sequence

of distinct blocks (Hi)1≤i≤s of π such that 〈Bmi〉 ∩Hi 6= ∅ and 〈Bm′i〉 ∩Hi 6= ∅ for all i
(recall that B0 = {0}). We may then pick indices ji, j′i ∈ {0}∪ [k] such that ji ∈ 〈Bmi〉∩Hi

and j′i ∈ 〈Bm′i〉 ∩ Hi for all i. In these terms, appealing both to (4.9) and to the decay
assumption (Mixnω) with n = k + 1, the product of correlation functions in (4.82) can be
bounded for instance as follows (up to integration, as in (4.27)),∏

H∈π
|h]H(xH)| . λp0(P)

s∏
i=1

(
ω(xji − xj′i) ∧ λpi(P)

)
, (4.83)

for some p0, . . . , ps ≥ 1 with
∑s

i=0 pi = k+ 1. We then define the following concatenations
of blocks between paired indices: for 1 ≤ i < s,

Ai := (fm′i−1
) ]Bm′i−1+1 ] . . . ]Bmi+1−1 ] (bmi+1), A′i := Bmi+1 ] . . . ]Bm′i ,

with the convention m′0 := 0, and

As := (fm′s−1
) ]Bm′s−1+1 ] . . . ]Bms , A′s := ∅.

In these terms, inserting (4.83) into (4.82), the integral can be reorganized as

|C̄k+1;r
L (B1, . . . , Br;π)| . λp0(P)

× L−d
ˆ

(QL,ρ)k+1

( s∏
i=1

DAi(xAi)DA′i
(xA′i)

(
ω(xji − xj′i) ∧ λpi(P)

))
dx0dx[k].

We emphasize that the coupled indices ji’s and j′i’s belong to A′i’s and can thus intersect
Ai’s only at their endpoints. In terms of the graphical representation introduced in Step 3,
the latter integral can be represented generically in the following way,

|C̄k+1;r
L (B1, . . . , Br;π)| (4.84)

. L−dλ′k+1
. . . . . . . . . . . . . . .

. . .

. . . . . . . . .

. . .
. . . . . .

A1 A′1 A2 A′2 A′s−1
As

where we further delineate the concatenations of blocks Ai’s and A′i’s. In particular, note
these take the generic forms

Ai ≡ . . .

A′i ≡ . . . or

where the second possibility for A′i corresponds to the case when mi+1 = m′i. In order
to estimate (4.84), we first perform integration on Ai’s and A′i’s: using (4.67)–(4.72) to
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estimate the integral on each block, and using (4.63) to estimate consecutive edges, we find

. . . . L[]] . . . . L[]]

. . . . L[]] . . . . L[]]

. L[]]
(

+
)

where henceforth we use the short-hand notation L[]] for a power of the logarithmic factor
that can change from an occurrence to another and stands for the difference between
the numbers of vertices in the left-hand side and in the right-hand side. Inserting this
into (4.84), we are led to

|C̄k+1;r
L (B1, . . . , Br;π)| . L−dL[]]λ′k+1

. . .

. . .

(4.85)

where for abbreviation hatched boxes are given by

:= +

which we obtain by reorganizing the graphs as follows,

2 3

1

4

≡
2

4 1

3

and 3 2

1

4

≡
3

4 1

2

It remains to evaluate the right-hand side in (4.85). Using the graphical rules (4.63), (4.64),
and (4.65), and noting that that direct integrations yield

. and Lµλ◦k+1 . Lµ+1λ′k+1

we can estimate

Lµλ′k+1 = Lµλ′k+1

(
+

)
. Lµ+1λ′k+1

(
+

)
. Lµ+2λ′k+1

(
+

)
. Lµ+3λ′k+1

. Lµ+4λ′k+1

Iterating this estimate, the right-hand side of (4.85) can now be estimated as follows,

|C̄k+1;r
L (B1, . . . , Br;π)| . L−dL[]]λ′k+1

As the number of vertices in the left-hand side is equal to k + 1 while only one vertex
remains in the right-hand side, recalling our notation for L and λ′k, and noting that free
integration yields = Ld, we get

|C̄k+1;r
L (B1, . . . , Br;π)| . L−dLkλ′k+1 = λk+1(P)|log λ(P)|k,

that is, (4.81).
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Substep 5.2. Boundary terms: in case of an algebraic rate ω(t) ≤ Ct−β for some C, β > 0,
we have for all π /∈ K(B1, . . . , Br),

|C̄k+1;r
L (B1, . . . , Br;π)| .


(
λk+1(P)|log λ(P)|k−1

)
∧ (logL)k−1

Lβ∧1 : β 6= 1,(
λk+1(P)|log λ(P)|k

)
∧ (logL)k

L : β = 1.
(4.86)

By definition, given π /∈ K(B1, . . . , Br), we can consider the largest separating index α ≤ r
such that each cell H ∈ π is included either in {0} ∪

⋃α−1
i=1 〈Bi〉 or in

⋃r
i=α〈Bi〉. Setting

B̂ := Bα ] . . .]Br, the choice of α ensures that π can be restricted to a partition π̂ of the
index subset 〈B̂〉 ⊂ [k] such that π̂ is covering for Bα, . . . , Br. Arguing as in (4.82) and
estimating the integrals over the first blocks {0}, B1, . . . , Bα−1 brutally as in Section 3.8
without taking any advantage of the decay of correlation functions, we get

|C̄k+1;r
L (B1, . . . , Br;π)| . (logL)α

( ∏
H∈π\π̂

λ]H(P)

)

× L−d
ˆ
QL

(ˆ
(QL+xb)]B̂−1\(QL)]B̂−1

( ∏
H∈π̂
|h]H(xH)|

)
DB̂(xB̂) dx〈B̂〉\{b}

)
dxb

It remains to show that the remaining integral is a boundary term that is algebraically
small as L ↑ ∞, so that in particular the logarithmic prefactor (logL)α plays no role. For
that purpose, we first note that

1
(QL+xb)]B̂−1\(QL)]B̂−1(x〈B̂〉\{b}) ≤

∑
j∈〈B̂〉\{b}

1(QL+xb)\QL(xj),

so the above can be bounded by

|C̄k+1;r
L (B1, . . . , Br;π)| . (logL)α

( ∏
H∈π\π̂

λ]H

) ∑
j∈〈B̂〉\{b}

× L−d
ˆ
QL

ˆ
(QL+xb)\QL

( ˆ
(QL+xb)]B̂−2

( ∏
H∈π̂
|h]H(xH)|

)
DB̂(xB̂)dx〈B̂〉\{b,j}

)
dxjdxb.

As π̂ is covering for Bα, . . . , Br, that is, π̂ ∈ K(Bα, . . . , Br), similar arguments based on the
graphical representation as in Substep 5.1 allow to estimate the integral over 〈B̂〉 \ {b, j},
to the effect of

|C̄k+1;r
L (B1, . . . , Br;π)|

. (logL)α
∑

j∈〈B̂〉\{b}

L−d
ˆ
QL

ˆ
(QL+xb)\QL

(
L]B̂−2λ′k+1 b j

)
dxjdxb. (4.87)
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In order to estimate this integral, we note that

L−d
ˆ
QL

ˆ
(QL+xb)\QL

(
λ◦k+1 b j

)
dxjdxb

= L−d
ˆ
QL

ˆ
(QL+xb)\QL

〈(xb − xj)L〉−d
(
ω((xb − xj)L) ∧ λk+1(P)

)
dxjdxb

= L−d
ˆ
QL

ˆ
QL\(QL−xb)

〈y〉−d
(
ω(y) ∧ λk+1(P)

)
dydxb

= L−d
ˆ
QL

〈y〉−d
(
ω(y) ∧ λk+1(P)

)
|QL \ (QL − y)| dy,

and thus, using (4.30) in form of L−d|QL \ (QL − y)| . |y|L ∧ 1, in case of an algebraic rate
ω(t) ≤ Ct−β for some C, β > 0,

L−d
ˆ
QL

ˆ
(QL+xb)\QL

(
λ◦p b j

)
dxjdxb . L−1

ˆ
QL

〈y〉1−d
(
ω(y) ∧ λp(P)

)
dy

.

{
λp(P) ∧ L−β∧1 : β 6= 1,(
λp(P)|log λ(P)|

)
∧ logL

L : β = 1.

Now turning back to the right-hand side in (4.87), repeating the above computation after
including logarithmic factors, and noting that α + ]B̂ ≤ ]B = k + 1, the claim (4.86)
follows.

Step 6. Strategy for (ii) and (iii).
Both for (ii) and (iii), the arguments are similar to what we already did so far, and require
no new insight. We omit lengthy details for brevity.

We start with (ii). In view of the estimation (4.86) for boundary terms, it remains to
estimate the convergence of terms corresponding to covering partitions in (4.79) in the
large-volume limit. For that purpose, we appeal to the periodization error estimates of
Lemma 4.5, as in the proof of Proposition 4.6(ii).

We turn to (iii). The starting point is the refined estimate (3.30) on Rk+1
L . In the spirit

of the proof of Proposition 4.6(iii), a decomposition of the right-hand side in (3.30) can be
performed in the same way as what we did above for B̄k+1

L . �

4.5. Optimality of the bound on B̄2. This section is devoted to the proof of Theorem 7,
which shows that logarithmic factors are optimal in general in our estimation of cluster
coefficients, e.g. Proposition 4.8(i). As will be clear in the proof below, logarithmic factors
are related to the lack of continuity of the Helmholtz projection in L∞(Rd).

Proof of Theorem 7. Let Assumptions (Hρ), (Hunif
ρ ), and (Indep) hold, and assume that

the correlation function satisfies the Dini condition (4.5). We split the proof into two steps.

Step 1. Proof of (i).
Appealing to Proposition 4.6 in form of the explicit formula (4.21) for B̄2, and estimating
the second right-hand side term as in the proof of Proposition 4.6(i), we find∣∣∣∣E : B̄2E −

ˆ
Rd

E
[ˆ

∂I◦
ψz · σ0ν

]
h2(0, z) dz

∣∣∣∣ . λ2(P), (4.88)
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where σ0 and ψz are associated respectively with single particles at I◦ and at z + I◦′,
where I◦ and I◦′ are iid copies of the same random shape. Replacing ψz by its Taylor
expansion, using the boundary conditions for σ0, and using standard decay properties
of ψz, we find ∣∣∣∣ˆ

∂I◦
ψz · σ0ν −D(ψz)(0) :

ˆ
∂I◦

σ0ν ⊗ x
∣∣∣∣ . 〈z〉−d−1.

Inserting this into (4.88) together with (4.9), and recalling the short-hand notation

E : B̂1E = 1
2E
[ˆ

∂I◦
Ex · σ◦ν

]
= E

[ˆ
Rd
|D(ψ◦)|2

]
,

cf. (2.6), we get∣∣∣∣E : B̄2E − (2B̂1E) :
(ˆ

Rd
E [D(ψz)(0)]h2(0, z) dz

)∣∣∣∣ . λ2(P). (4.89)

Next, we further analyze D(ψz)(0). In view of Lemma 3.1, we note that ψz satisfies in Rd,

−4ψz +∇(Σz1Rd\(z+I◦′)) = −δ∂(z+I◦′)σ
zν.

In terms of the Stokeslet G for the free Stokes equation, Green’s representation formula
then yields

∇iψz(0) = −
ˆ
∂(z+I◦′)

∇iG(−·)σzν.

Replacing ∇iG by its Taylor expansion, using the boundary conditions for σz, and using
standard decay properties of G, we find∣∣∣∣∇iψz(0)−∇2

ijG(−z)
ˆ
∂(z+I◦′)

(· − z)j σzν
∣∣∣∣ . 〈z〉−d−1,

and therefore, taking the expectation, noting that σz = σ0(· − z), and recognizing B̂1E
again, ∣∣∣E [∇iψzk(0)]− (2B̂1E)lj∇2

ijGkl(−z)
∣∣∣ . 〈z〉−d−1.

Inserting this into (4.89) together with (4.9) again, we get∣∣∣∣E : B̄2E − (2B̂1E)lj(2B̂
1E)ki

(
p. v.

ˆ
Rd
∇2
ijGkl(z)h2(0, z) dz

)∣∣∣∣ . λ2(P), (4.90)

where the notation p. v. stands for the principal value. It remains to analyze the integral
term in the left-hand side. As h2 satisfies the Dini condition (4.5), this integral is absolutely
summable. Further assuming that the point process P is statistically isotropic, the correla-
tion function h2(0, ·) is radial. By symmetry, this entails p. v.

´
Rd ∇

2
ijGkl(z)h2(0, z) dz = 0,

and the conclusion (i) follows.

Step 2. Proof of (ii).
In view of (4.90), as 2B̂1E does not vanish, it suffices to construct a point process P that
satisfies Assumptions (Hρ) and (Hunif

ρ ), has decay of correlations (4.5) with algebraic
rate ω(t) ≤ Ct−β for some C, β > 0, and satisfies the local independence condition λ2(P) '
λ(P)2 � 1, such that the integral term in the left-hand side of (4.90) satisfies∣∣∣∣ p. v.ˆ

Rd
∇2G(z)h2(0, z) dz

∣∣∣∣ & λ(P)2|log λ(P)|, (4.91)
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with the logarithmic factor. We shall consider spherical particles, I◦ = B, and we start
with the construction of the correlation function h2.

For that purpose, first note that we can find a smooth bounded function g : Sd−1 → [0, 1]
such that ∣∣∣∣ ˆ

∂B
∇2G(e) g(e) dθ(e)

∣∣∣∣ & 1, (4.92)

where dθ stands for the Lebesgue measure on ∂B, and we then define

h(z) :=
g( z
|z|)

1 + λ2|z|2d+1
.

Using (4.92), a computation in spherical coordinates yields∣∣∣∣ ˆ
|z|>2(1+ρ)

∇2G(z)h(z) dz

∣∣∣∣
=

( ˆ ∞
2(1+ρ)

r−1(1 + λ2r2d+1)−1dr

)∣∣∣∣ˆ
∂B
∇2G(e) g(e) dθ(e)

∣∣∣∣
& |log λ|,

which proves (4.91) if the point process is chosen with intensity λ(P) = λ and with two-
point correlation function h2 given by

h2(x, y) + λ2 := λ2(h(x− y) + 1)1|x−y|>2(1+ρ).

In particular, this choice also yields

h2(0, z)1|z|>2(1+ρ) ≥ 0, sup
z

ˆ
Q(z)
|h2(0, ·)| . λ2, |h2(0, z)| . 〈z〉−2d−1.

It remains to prove that this choice of h2 can be realized as the correlation function of a
point process with intensity λ(P) = λ and satisfying (Hρ) and (Hunif

ρ ): this is precisely
the subject of Proposition 4.9 below. �

The construction of a point process with given intensity and given two-point density
function is easily done under suitable positivity conditions, e.g. following [42]. In the
present setting, more care is needed to further ensure stationarity and ergodicity of the
constructed point process. Note that we use here a sufficient positivity condition that is
much stronger than the one in [42], but is easier to handle and suffices for our purposes.

Proposition 4.9 (Realizability of point processes). Let λ, ρ > 0 and let h ∈ L∞(Rd) be
nonnegative with h(x) → 0 uniformly as |x| ↑ ∞. Then, there exists a strongly mixing
stationary point process P = {xn}n on Rd with intensity λ and two-point density

f2(x, y) := λ2(h(x− y) + 1)1|x−y|>2(1+ρ), (4.93)

such that |xn − xm| ≥ 2(1 + ρ) almost surely for all n 6= m. ♦

Proof. LetMρ denote the set of locally finite point sets {zn}n with |zn−zm| ≥ 2(1+ρ) for
all n 6= m. It is easily checked thatMρ is compact for the topology of convergence of point
sets restricted to compact domains (this coincides with the vague topology when viewing
point sets {zn}n as measures

∑
n δzn). Consider the space V := C(Mρ), and denote by V0
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the dense vector subset of polynomials with continuous coefficients on Mρ, that is, the
subset of functions PN :Mρ → R of the form

PN ({zn}n) = PN0 +
N∑
k=1

6=∑
n1,...,nk

PNk (zn1 , . . . , znk), (4.94)

with PN0 ∈ R and PNk ∈ Cc(Skρ ) for 1 ≤ k ≤ N , where we use the short-hand notation

Skρ :=
{

(z1, . . . , zk) ∈ (Rd)k : |zn − zm| ≥ 2(1 + ρ) for all n 6= m
}
.

In order to construct a point process with the two-point density f2 given by (4.93), we shall
further prescribe all its multi-point density functions. For convenience, these are chosen in
form of Mayer cluster expansions with vanishing higher-order correlations: for all k ≥ 1,

fk(z1, . . . , zk) := λk 1Skρ (z1, . . . , zk)

×
(

1 +

k/2∑
j=1

1

2jj!

6=∑
1≤n1,...,n2j≤k

h(zn1 − zn2) . . . h(zn2`−1
− zn2j )

)
. (4.95)

Next, we define in these terms a linear map L : V0 → R as follows: for any polynomial PN
of the form (4.94), we set

L(PN ) := PN0 +

N∑
k=1

ˆ
Skρ

PNk fk. (4.96)

We argue that L is a positive linear functional on V0, hence it is also continuous on V0

with respect to the topology of V . Indeed, for any polynomial PN of the form (4.94)
with PN ≥ 0 pointwise, if we evaluate it at the points of a Poisson point process with
intensity λ, and if we compute the expectation, we find

PN0 +

N∑
k=1

λk
ˆ
Skρ

PNk ≥ 0,

hence, noting that the positivity of h entails fk ≥ λk1Skρ for all k ≥ 1, we get

L(PN ) ≥ PN0 +
N∑
k=1

λk
ˆ
Skρ

PNk ≥ 0,

thus proving the claimed positivity.

As V0 is dense in V , we can extend L uniquely into a positive linear functional L : V → R.
Next, by the Riesz–Markov–Kakutani representation theorem, there exists a random ele-
ment inMρ, that is, a random point process P = {xn}n, such that

E [P (P)] = L(P ) for all P ∈ V .
Testing this relation with polynomials, and using (4.96), we deduce that for all k ≥ 1 the
k-point density function of the point process P coincides with fk. In particular, it has
intensity f1 = λ and two-point density f2(x, y) = λ2(h(x− y) + 1)1|x−y|>2(1+ρ) as desired.
In addition, L is translation-invariant by definition, hence P is stationary.

It remains to check that P is strongly mixing. For that purpose, we compute the covariance
of σ(P)-measurable random variables. Choose a polynomial PN of the form (4.94), and



ON EINSTEIN’S EFFECTIVE VISCOSITY FORMULA 119

let R > 0 be such that PNk is supported in (BR)k for all 1 ≤ k ≤ N . For |x| > 2R, as we
have BR ∩ (x+BR) = ∅, we can compute

Cov
[
PN (P + x);PN (P)

]
= (PN0 )2 +

∑
k≥1

k∑
j=0

ˆ
Skρ

(
PNj (·+ x, . . . , ·+ x)⊗ PNk−j

) (
fk − fj ⊗ fk−j

)
.

The definition (4.95) of fk easily leads to∣∣∣∣ˆ
Skρ

(
PNj (·+ x, . . . , ·+ x)⊗ PNk−j

) (
fk − fj ⊗ fk−j

)∣∣∣∣
.
(

sup
z∈B2R

h(x+ z)
)

(2λ)k
(
1 + ‖h‖L∞(Rd)

) k
2
−1‖PNj ‖L1((Rd)j)‖P

N
k−j‖L1((Rd)k−j).

As by assumption h(x) → 0 uniformly as |x| ↑ ∞, we get Cov
[
PN (P + x);PN (P)

]
→ 0.

By a density argument, the same holds if PN is replaced by any element of V , which proves
that P is strongly mixing. �
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5. Conclusion: summing up the main results

In this last section, we recall, reformulate, and comment on our main findings on the va-
lidity of Einstein’s formula and of higher-order cluster expansions for the effective viscosity,
as obtained in Sections 2, 3, and 4.

5.1. Cluster expansion of the effective viscosity in the model-free setting. We
start with the validity of Einstein’s formula and the associated error estimates as proved in
Section 2, cf. Theorem 1. The three important features of this result are the generality in
terms of probabilistic assumptions (mere qualitative ergodicity under Assumption (Hunif

ρ )),
the sharpness of the error estimate (5.1), and the possibility for particles to touch (under
Assumption (Hmom

ρ,κ ) or (Hperc
ρ,κ )).

Theorem 8 (Einstein’s formula). Under Assumption (Hρ) and either Assumption (Hunif
ρ ),

(Hmom
ρ,κ ), or (Hperc

ρ,κ ), for some ρ > 0 and κ > 1, we have

|B̄− (Id +B̄1)| .ρ λ2(P) log
(
2 + λ(P)

λ2(P)

)
(5.1)

+

{
0 : in case of (Hunif

ρ ),
Kκ λ2(P)1− 1

κλ(P)
1
κ : in case of (Hmom

ρ,κ ) or (Hperc
ρ,κ ),

where B̄1 satisfies
|B̄1| ' λ(P),

and is defined for all E ∈Msym
0 by

E : B̄1E :=
∑
n

E
[
10∈In
|In|

ˆ
Rd
|D(ψ

{n}
E )|2

]
, (5.2)

where ψ{n}E is the unique decaying solution of the single-particle problem (1.5). In particu-
lar, the estimate |B̄− (Id +B̄1)| = o(λ(P)) holds provided the point process P satisfies the
weak local independence condition λ2(P) = o(λ(P)/|log λ(P)|). ♦

In order to address the optimality of this estimate, one needs to identify the next term
in the expansion. In Sections 3 and 4, we have further investigated higher-order expan-
sions of the effective viscosity in form of cluster expansions. The upcoming result, which
summarizes Theorems 5 and 6 in Section 4, gives the optimal order of magnitude of the
cluster coefficients and of the remainder. The two important features of this result are the
generality of the point processes (to be compared with results in Section 5.2 below) and
the sharpness of the estimates. The main achievement is the explicit understanding of the
needed renormalizations to all orders, solving a problem that was still open in the physics
community.

Theorem 9 (Cluster expansion in general dilute setting). On top of Assumptions (Hρ)
and (Hunif

ρ ), assume that the inclusion process is α-mixing in the sense of (Mix) with
algebraic rate ω. Then, for all k ≥ 1, the following holds for the effective viscosity,∣∣∣∣B̄ − Id−

k∑
j=1

1

j!
B̄j

∣∣∣∣ .k 2k+1∑
l=k+1

λl(P)|log λ(P)|l−1,

|B̄j | .j λj(P)|log λ(P)|j−1, for all 1 ≤ j ≤ k,
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where the cluster coefficients {B̄j}j are defined in (3.13) by means of finite-volume approx-
imations. If in addition the independence assumption (Indep) holds for particle shapes,
renormalized formulas can be given for cluster coefficients in form of absolutely convergent
multiple integrals, cf. Section 4.4, and the following quantitative convergence result holds
for finite-volume approximations {B̄j

L}j: in case of an algebraic α-mixing rate ω(t) ≤ Ct−β
for some C, β > 0,

|B̄j
L − B̄j | .j (logL)j−1

Lβ∧1 . ♦

Note that the bound on B̄2 in Theorem 9 coincides with the estimate on the remainder
in Theorem 8, which contrasts with the results of Lemma 1.2 in the short-range setting
by a logarithmic correction. Optimality of the latter is addressed in Theorem 7, which we
presently recall.

Theorem 10 (Optimality of estimates on B̄2).
(i) Isotropic setting: On top of Assumptions (Hρ), (Hunif

ρ ), and (Indep), assume that
the 2-point correlation function h2(x, y) := f2(x, y) − λ(P)2 satisfies the following
decay assumption, ¨

B(x)×B(y)
|h2| ≤ ω(|x− y|),

with some rate ω satisfying the Dini condition
´∞

1 t−1ω(t) dt <∞. If in addition the
point process P is statistically isotropic, which entails that the correlation function is
radial, then the following improved estimate holds,

|B̄2| . λ2(P).

(ii) Optimality in the general setting: There exists an inclusion process I that satisfies
Assumptions (Hρ), (Hunif

ρ ), (Indep), and (4.5), as well as the local independence
condition λ2(P) ' λ(P)2 � 1, such that we have

|B̄2| ' λ2(P)|log λ2(P)|. ♦

Based on the explicit renormalization of higher-order cluster coefficients, it appears that
Theorem 10(ii) readily extends to higher orders, demonstrating the optimality of cluster
estimates in Theorem 9.

To conclude this section, let us apply and confront Theorems 8, 9, and 10 to some specific
families of inclusion processes displaying multi-point intensities with different scaling laws.
We start with the construction.
• Construction of inclusion processes {Iβ,λ}β,λ: We define a family of point processes
{Pβ,λ}β,λ with parameters 0 ≤ β ≤ 1 and 0 < λ � 1 as follows. Consider a hardcore
Poisson process P ′ = {x′n}n with radius 6 and with intensity λ(P ′) = λ, see e.g. [16,
Section 3.4] using Penrose’s graphical construction [56]. Next, independently choose a
sequence {yn}n of iid random points that are uniformly distributed in B4 \B3, and, given
β ∈ [0, 1], also independently choose a sequence {bn,β}n of iid Bernoulli variables with
parameter λβ = P [bn,β = 1]. The desired point processes and spherical inclusion processes
are then defined by

Pβ,λ := P ′ ∪
{
x′n + yn : bn,β = 1

}
, Iβ,λ :=

⋃
x∈Pβ,λ B(x).

• Properties of the processes: Iβ,λ satisfies (Hρ) and (Hunif
ρ ) (with ρ = 1) as well as (In-

dep). In addition, the point process Pβ,λ is statistically isotropic and α-mixing with
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exponential rate uniformly with respect to β, λ (e.g. [15, Proposition 1.4 (iii)] and [16,
Proposition 3.5]), so that Theorem 9 applies. A direct computation shows that the multi-
point intensities scale as follows,

λ(Pβ,λ) ' λ, λ2(Pβ,λ) ' λ1+β, λ3(Pβ,λ) ' λ2+β,

and more generally λ2k(Pβ,λ) 'k λk(1+β) and λ2k+1(Pβ,λ) 'k λ1+k(1+β). In particular the
minimal local independence condition λ3(Pβ,λ)� λ2(Pβ,λ)� λ(Pβ,λ) holds for β > 0.

• Second-order cluster expansion: We denote by B̄β,λ the effective viscosity associated
with Iβ,λ. Theorem 9 implies that∣∣B̄β,λ −

(
Id +B̄1

β,λ + 1
2B̄

2
β,λ

)∣∣ . λ2+β|log λ|2,

where |B̄1
β,λ| ' λ and |B̄2

β,λ| ' λ1+β (cf. (2.6) and Theorem 10(i)). In particular, dis-
carding B̄2

β,λ in the above yields the following (completely new) sharp error estimate for
Einstein’s formula in this setting: for all 0 ≤ β ≤ 1 and λ� 1,

|B̄β,λ − (Id +B̄1
β,λ)| ' λ1+β ' |B̄1

β,λ|1+β.

In this example, Einstein’s formula is thus accurate whenever β > 0, which illustrates
the full range of the local independence condition λ2(Pβ,λ) = o(λ(Pβ,λ)/|log λ(Pβ,λ)|) in
Theorem 8.

5.2. Summability of the cluster expansions for specific dilution procedures.
Next, we consider the following two specific one-parameter dilution procedures, for which
our results can be substantially strengthened using the uniform `1− `2 energy estimates of
Theorem 3.7: more precisely, logarithmic corrections in cluster estimates can be removed
in that case and the full cluster expansion is absolutely converging.
(Dilat) Dilution by geometric dilation: Given a point process P = {xn}n and ran-

dom inclusions In = xn + I◦n satisfying (Hρ), we consider the dilated pro-
cess Ps = {sxn}n and the corresponding inclusions In,s = sxn + I◦n. The lat-
ter has minimal distance `(Ps) = s`(P) ' s, still satisfies (Hρ), and further
satisfies (Hunif

ρ ) with minimal interparticle distance

inf
n6=m

dist(In,s, Im,s) ≥ inf
n6=m
|sxn − sxm| − 2 ≥ s`(P)− 2 & s, (5.3)

provided s� 1. Its multi-point intensities take the form

λj(Ps) = s−jdλj(P) for all j ≥ 1.

(Delet) Dilution by random deletion: Given a point process P = {xn}n and random in-
clusions In = xn+I◦n satisfying (Hρ) and (Hunif

ρ ), the Bernoulli deletion scheme
consists in keeping each inclusion only with given probability p ∈ [0, 1]. More
precisely, we attach to the inclusions iid Bernoulli variables {b(p)n }n, independent
of P, I, with parameter

p = P
[
b(p)n = 1

]
,

and we define the corresponding decimated process

P(p) := {xn}n∈N(p) , I(p) :=
⋃
n∈N(p) In, where N (p) := {n : b

(p)
n = 1}.
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This decimated process still satisfies (Hρ) and (Hunif
ρ ), and its multi-point in-

tensities are given by

λj(P(p)) = pjλj(P) for all j ≥ 1.

In these one-parameter settings, dilute expansions of the effective viscosity amount to
expansions with respect to the dilution parameters s−1 or p. Given a random set of
particles I =

⋃
n In centered at the points of P = {xn}n, we shall consider both dilution

procedures at once, defining the dilated decimated process

P(p)
s := {xn,s}n∈N(p) , I(p)

s :=
⋃
n∈N(p) In,s, xn,s := sxn, In,s := xn,s + I◦n.

As a consequence of Theorem 4, together with (3.86)–(3.87) in Section 3.7, we obtain
the following summability result and estimates for the cluster expansion of the effective
viscosity B̄

(p)
s associated with I(p)

s . In particular, it shows that the scaling of cluster
coefficients coincides in this case with that of Lemma 1.2 for the short-range setting:
indeed, we have |B̄(p),j

s | = pj |B̄j
s| .j (ps−d)j ' λj(P(p)

s ). We emphasize that no mixing
assumption is required here.

Theorem 11 (Cluster expansion for one-parameter dilution procedures). Under Assump-
tions (Hρ) and (Hunif

ρ ), for the specific dilution models (Dilat) and (Delet) above, with
dilation parameter s and Bernoulli parameter p, the cluster expansion of the effective viscos-
ity is uniformly summable in the following sense: there exists a constant C (only depending
on d, ρ) such that for all 0 ≤ ps−d < 1

C the effective viscosity satisfies

B̄(p)
s = Id +

∞∑
j=1

pj

j! B̄
j
s, |B̄j

s| ≤ j! (Cs−d)j for all j ≥ 1, (5.4)

where the cluster coefficients {B̄j
s}j are defined in (3.13) by means of finite-volume approx-

imations. ♦

Remarks 5.1 (Analyticity with respect to dilution parameters).
(a) In case of the random deletion model (Delet), the expansion (5.4) yields the local

analyticity of p 7→ B̄(p) at p = 0. Local analyticity can, in fact, be established on the
whole interval 0 ≤ p ≤ 1; the reader is referred to [14] for a similar result in the scalar
setting using an observation by Mourrat [52].

(b) In case of the dilation model (Dilat), the expansion (5.4) does not yield the analyticity
of the map s−d 7→ B̄s since the rescaled coefficients {sdjB̄j

s}j also depend on s. By
means of multipole expansions, the maps s−1 7→ sdjB̄j

s can be checked to be analytic
themselves, as well as s−1 7→ B̄s. For a more direct approach to expansions in s−1, we
refer to the recent work [58] in the scalar setting; see also [9]. ♦

To illustrate Remark 5.1(b), we display the first term of the monopole expansion for the
second-order coefficient B̄2

s. In particular, as is natural, we note that B̄2
s can be expressed

to leading order in terms of the single-particle problem only, and it coincides with the
formula obtained in [26, Proposition 5.6] in case of spherical inclusions.

Proposition 12 (Leading order of monopole expansion). On top of Assumptions (Hρ)
and (Hunif

ρ ), assume that particles have independent shapes, cf. (Indep), and that the
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two-point correlation function h2 = f2 − λ(P)2 satisfies the decay assumption¨
B(x)×B(y)

|h2| ≤ ω(|x− y|),

with some rate ω satisfying the Dini condition
´∞

1 t−1ω(t) dt < ∞. Consider the dilated
process Ps, cf. (Dilat), and the associated second-order cluster coefficient B̄2

s defined in
Theorem 11. Then, we have ∣∣B̄2

s − s−2dB̄2,1
∣∣ . s−2d−1,

and the leading-order contribution B̄2,1 is given by the following reduced formula,

E : B̄2,1E = (2B̂1E) :
(

p. v.

ˆ
Rd
G(z)h2(0, z) dz

)
(2B̂1E),

where B̂1E is defined in (2.6), where the notation p. v. stands for the principal value, and
where the 4-tensor field G is given by M : G(z)M = MjkMlm∇2

kmGjl(z) in terms of the
standard Stokeslet

G(z) =
|z|2−d

2(d− 2)|∂B|

(
Id +(d− 2)

z ⊗ z
|z|2

)
.

In case of spherical particles, In = B(xn), we thus have

E : B̄2,1E = (d+ 2)2|B| p. v.

ˆ
Rd

(
d+ 2

2

(z · Ez)2

|z|d+4
− |Ez|

2

|z|d+2

)
h2(0, z) dz. ♦

Proof. Starting from the renormalized formula (4.21) in Proposition 4.6, repeating the
proof of (4.90) to decompose the first contribution, and using (4.26) to estimate the second
one, we are led to∣∣∣∣E : B̄2

sE − (2B̂1E)lj(2B̂
1E)ki

(
p. v.

ˆ
Rd
∇2
ijGkl(z)h2(0, z) dz

)∣∣∣∣
.

ˆ
Rd
〈z〉−d−1|h2,s(0, z)| dz +

ˆ
Rd
〈z〉−2df2,s(0, z) dz.

Using that the two-point density and the correlation for the dilated process Ps take the
form

f2,s(0, z) = s−2df2(0, s−1z), h2,s(0, z) = s−2dh2(0, s−1z),

and changing variables, the conclusion follows by scaling. In case of spherical particles, we
appeal to the proof of Proposition 2 for the explicit computation of B̂1E. �

Finally, we revisit a recent result by Gérard-Varet [25] that displays to second order
similar estimates as for the random deletion procedure, cf. (5.4), but only assuming some
specific structure of the multi-point densities up to order 5, thus contrasting with Theo-
rem 11. As a corollary of Proposition 4.8, we establish the following result, which consti-
tutes an extension of [25] to higher orders with new, optimal error bounds. Note indeed
that for k = 2 the result (5.5) below yields an error bound O(p3), which improves on the
bound O(p

5
2 ) obtained in [25].

Corollary 13. Let P satisfy Assumptions (Hρ) and (Hunif
ρ ), and let I satisfy the inde-

pendence assumption (Indep). Given k ≥ 2, assume that there exists 0 < p ≤ 1 such that
the multi-point density functions of P can be written as fj = pjf◦j for all 1 ≤ j ≤ 2k+1, for
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some functions (f◦j )1≤j≤2k+1. Further define functions (h◦j )1≤j≤2k+1 through the correla-
tion/density relation (4.8) starting from (f◦j )1≤j≤2k+1 and assume that they satisfy (Mixnω)
to order n = 2k + 1 with algebraic rate ω. Then, we have∣∣∣B̄− Id−

k∑
j=1

1
j!B̄

j
∣∣∣ .k pk+1, |B̄j | .j pj for all 1 ≤ j ≤ k. (5.5)

where the multiplicative constants are independent of p. ♦

Proof. The assumption fj = pjf◦j entails hj = pjh◦j , where h
◦
j is assumed to satisfy (Mixnω).

Further writing (f◦j )j in terms of (h◦j )j by means of (4.7), the assumption (Mixnω) for the
latter yields

λ◦j := sup
z1,...,zj

 
Q(z1)×...×Q(zj)

f◦j .j 1,

where the bound only depends on j, ω, and on the constant function f◦1 . In this setting,
the bounds of Proposition 4.8(i)–(iii) now take the form

|B̄j | . pj λ̄◦j | log λ◦|j−1,

|Rk+1| .
2k+1∑
j=k

pj+1λ̄◦j+1| log λ◦|j . pk+1,

and the conclusion readily follows. �
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Appendix A. Stokeslet estimates with rigid inclusions

This appendix is dedicated to the proofs of several estimates on the behavior of the
fluid velocity generated by a localized force dipole in the presence of a finite number of
rigid inclusions. In other words, it concerns the Stokeslet for the Stokes problem with rigid
inclusions, and we shall prove in particular Lemmas 3.8, 4.4, and 4.5.

A.1. Main results. For convenience, we start by recalling the notation of Section 4.3.2.
Given a set Y ⊂ QL of “background” positions with

dist(B(y), B(y′)) > 2ρ, dist(B(y), ∂QL) > ρ, for all y, y′ ∈ Y, y 6= y′, (A.1)

we denote by ψYL ∈ H1
per(QL)d the solution of the following periodic corrector problem,

using the short-hand notation σYL := σ(ψYL + Ex,ΣY
L ),

−4ψYL +∇ΣY
L = 0, in QL \ ∪y∈YB(y),

div(ψYL ) = 0, in QL \ ∪y∈YB(y),
D(ψYL + Ex) = 0, in ∪y∈YB(y),´
∂B(y) σ

Y
L ν = 0, ∀y ∈ Y,´

∂B(y) Θ(x− y) · σYL ν = 0, ∀Θ ∈Mskew, ∀y ∈ Y.

Next, we turn to our notation for elementary single-particle contributions or so-called
Stokeslets {J zL;Y }z,Y : Given a “tagged” position z ∈ QL, given (ζ, P ) ∈ H1(B1+ρ(z))

d ×
L2(B1+ρ(z) \B(z)) satisfying the following Stokes equations in a neighborhood of B(z),

−4ζ +∇P = 0, in B1+ρ(z) \B(z),
div(ζ) = 0, in B1+ρ(z) \B(z),
D(ζ) = 0, in B(z),´
∂B(z) σ(ζ, P )ν = 0,´
∂B(z) Θ(x− z) · σ(ζ, P )ν = 0, ∀Θ ∈Mskew,

(A.2)

and given a finite subset Y ⊂ QL of “background” positions satisfying (A.1), we define
J zL;Y ζ ∈ H1

per(QL)d as the solution of the following Stokes problem with force dipole
localized around z and rigid inclusions around points of Y ,

−4J zL;Y ζ +∇QzL;Y ζ = −δ∂BL(z)σ(ζ, P )ν, in QL \ ∪y∈YB(y),

div(J zL;Y ζ) = 0, in QL \ ∪y∈YB(y),

D(J zL;Y ζ) = 0, in ∪y∈Y \Y zB(y),´
∂B(y) σ(J zL;Y ζ,QzL;Y ζ)ν = 0, ∀y ∈ Y \ Yz,´
∂B(y) Θ(x− y) · σ(J zL;Y ζ,QzL;Y ζ)ν = 0, ∀Θ ∈Mskew, ∀y ∈ Y \ Yz,
J zL;Y ζ = Vz + Θz(x− z), in ∪y∈YzB(y),

for some Vz ∈ Rd,Θz ∈Mskew,∑
y∈Yz

´
∂B(y) σ(J zL;Y ζ,QzL;Y ζ)ν

=
∑

y∈Yz
´
B(y)∩∂BL(z) σ(ζ, P )ν,∑

y∈Yz
´
∂B(y) Θ(x− z) · σ(J zL;Y ζ,QzL;Y ζ)ν

=
∑

y∈Yz
´
B(y)∩∂BL(z) Θ(x− z) · σ(ζ, P )ν, ∀Θ ∈Mskew,

(A.3)
where we recall that BL(z) = (B(z) + LZd) ∩ QL stands for the periodization of the
ball B(z) in QL, where we have set Yz := {y ∈ Y : B(y) ∩ BL(z) 6= ∅}, and where we
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have implicitly extended (ζ, P ) periodically to B1+ρ(z) +LZd. The solution J zL;Y ζ is only
defined up to a rigid motion in QL, which we fix by further choosingˆ

QL

J zL;Y ζ = 0,

ˆ
QL

∇J zL;Y ζ ∈ Msym
0 .

Note that J zL;Y ζ depends of course on the pair (ζ, P ), not only on ζ, but we leave the
pressure field implicit in the notation for convenience. We refer to Section 4.3.2 for moti-
vation of the above equations (A.3), and we recall that it reduces to the following simpler
equations when {z} ∪ Y satisfies (A.1) (meaning that z neither gets close to background
positions Y nor to the cell boundary ∂QL),

−4J zL;Y ζ +∇QzL;Y ζ = −δ∂B(z)σ(ζ, P )ν, in QL \ ∪y∈YB(y),

div(J zL;Y ζ) = 0, in QL \ ∪y∈YB(y),

D(J zL;Y ζ) = 0, in ∪y∈YB(y),´
∂B(y) σ(J zL;Y ζ,QzL;Y ζ)ν = 0, ∀y ∈ Y,´
∂B(y) Θ(x− y) · σ(J zL;Y ζ,QzL;Y ζ)ν = 0, ∀Θ ∈Mskew, ∀y ∈ Y.

(A.4)

We further define
J zLζ := J zL;∅ζ,

for which the Stokes problem (A.3) reduces to

−4J zLζ +∇QzLζ = −δ∂BL(z)σ(ζ, P )ν, div(J zLζ) = 0, in QL, (A.5)

and we define J zY ζ,J zζ as the corresponding operators on whole space, that is, with BL(z)

and QL replaced by B(z) and Rd, respectively, in (A.3) and (A.5).
With the above notation, we start by recalling the statement of Lemma 4.4 regarding the

optimal decay properties of the Stokeslets {J zL;Y }z,Y . Note that Lemma 3.8 is a particular
case of this result, using notation (4.15), when {z}∪Y satisfies (A.1). The proof is displayed
in Section A.2.

Lemma A.1 (Decay of Stokeslets with rigid inclusions). Let z ∈ Rd, let (ζ, P ) satisfy (A.2)
at z, and let Y ⊂ QL satisfy (A.1). Then, we have for all x ∈ QL,(ˆ

BL(x)
|D(J zL;Y ζ)|2

) 1
2
.]Y 〈(x− z)L〉−d

(ˆ
B1+ρ(z)

|D(ζ)|2
) 1

2
, (A.6)

(ˆ
B(x)
|D(J zY ζ)|2

) 1
2
.]Y 〈x− z〉−d

(ˆ
B1+ρ(z)

|D(ζ)|2
) 1

2
. ♦

A similar argument leads us to the following version of the mean-value property for
Stokes equations in the presence of a finite number of rigid inclusions. The proof is dis-
played in Section A.3.

Lemma A.2 (Mean-value property with rigid inclusions). Let Y ⊂ QL satisfy (A.1) and
let w ∈ H1(QL)d satisfy the following free steady Stokes equations in QL,

−4w +∇P = 0, in QL \ ∪y∈YB(y),
div(w) = 0, in QL \ ∪y∈YB(y),
D(w) = 0, in ∪y∈YB(y),´
∂B(y) σ(w,P )ν = 0, ∀y ∈ Y,´
∂B(y) Θ(x− y) · σ(w,P )ν = 0, ∀y ∈ Y, ∀Θ ∈Mskew.

(A.7)
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Then, we have for all B(x) ⊂ QL,ˆ
BL(x)

|D(w)|2 .]Y 〈dist(x, ∂QL)〉−d
ˆ
QL

|D(w)|2. (A.8)
♦

Finally, we recall the statement of Lemma 4.5 regarding the error J zL;Y − J zY between
periodized and whole-space Stokeslets. The proof makes heavy use of the above mean-
value property and is displayed in Section A.4. The stated bounds are not optimal: finer
estimates are given in the proof, but this simplified statement is good enough for our
purposes.

Lemma A.3 (Periodization error). Let z ∈ QL, let (ζ, P ) satisfy (A.2) at z, and let Y ⊂
QL be a finite subset such that {z} ∪ Y satisfies (A.1). Then, we have for all x ∈ QL(ˆ

BL1+ρ(x)
|D(J zL;Y ζ − J zY ζ)|2

) 1
2
.]Y

(ˆ
B1+ρ(z)

|D(ζ)|2
) 1

2

×
(
1|x−z|>L

4
〈(x− z)L〉−d + 1|x−z|≤L

4
〈dist(Y \ {x, z}, ∂QL)〉−d

)
, (A.9)

where we recall the notation dist(∅, ∂QL) = L and BL
r (z) = (Br(z) + LZd) ∩ QL. In

addition,( ˆ
BL1+ρ(x)

|D(ψYL − ψY )|2
) 1

2
.]Y

(
〈dist(x, ∂QL)〉+ 〈dist(Y \ {x}, ∂QL)〉

)−d
. (A.10)

♦

In the above three lemmas, the multiplicative constants in the estimates crucially depend
on the finite number of rigid particles: in Lemma A.1, for instance, a quick inspection of the
proof shows that the multiplicative constant can be bounded by C]H(]H)!3/2. Although
these deterministic results fail in general for an unbounded number of rigid inclusions,
we refer the reader to [19] where corresponding results are proved to hold in a suitable
annealed sense in case of a stationary and ergodic random ensemble of rigid inclusions.

A.2. Decay of Stokeslets with rigid inclusions. This section is devoted to the proof
of Lemma A.1 (hence of Lemmas 3.8 and 4.4). We argue by comparing J zL;Y ζ to J zL;Yz

ζ

(recall Yz = {y ∈ Y : B(y) ∩ BL(z) 6= ∅}), which is a variant of the solution J zLζ of the
corresponding problem without rigid inclusions. Equation (A.3) for J zL;Yz

ζ reads

−4J zL;Yz
ζ +∇QzL;Yz

ζ = −δ∂BL(z)σ(ζ, P )ν, in QL \ ∪y∈YzB(y),

div(J zL;Yz
ζ) = 0, in QL \ ∪y∈YzB(y),

J zL;Yz
ζ = Vz + Θz(x− z), in ∪y∈YzB(y)

for some Vz ∈ Rd,Θz ∈Mskew,∑
y∈Yz

´
∂B(y) σ(J zL;Yz

ζ,QzL;Yz
ζ)ν

=
∑

y∈Yz
´
B(y)∩∂BL(z) σ(ζ, P )ν,∑

y∈Yz
´
∂B(y) Θ(x− z) · σ(J zL;Yz

ζ,QzL;Yz
ζ)ν

=
∑

y∈Yz
´
B(y)∩∂BL(z) Θ(x− z) · σ(ζ, P )ν, ∀Θ ∈Mskew.

(A.11)

We split the proof into three steps: we first apply elliptic regularity to unravel the decay
properties of J zL;Yz

ζ in the first step, and then estimate the difference J zL;Y ζ − J zL;Yz
ζ in

the last two steps. Let z ∈ QL, let ζ satisfy (A.2) at z, and let Y ⊂ QL satisfy (A.1).
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Step 1. Proof that for all x ∈ QL,( ˆ
BL(x)

|D(J zL;Yzζ)|2
) 1

2
. 〈(x− z)L〉−d

( ˆ
B1+ρ(z)

|D(ζ)|2
) 1

2
. (A.12)

The argument is based on elliptic regularity via a duality argument, in a form that is
similar to the proof of Theorem 3.7 in Section 3.5.2. By an energy estimate for J zL;Yz

ζ, the
claim (A.12) is trivial if |(x− z)L| . 1, and we shall focus on the case when

r := 1
2 |(x− z)L| > 2(1 + ρ). (A.13)

By definition (A.11), we then note that J zL;Yz
ζ satisfies the free steady Stokes equation

in BL
r (x) = (Br(x) + LZd) ∩ QL, which is the periodization of the ball Br(x) in QL.

Elliptic regularity in form of Lemma 2.4 then yields
ˆ
BL(x)

|D(J zL;Yzζ)|2 . r−d
ˆ
BLr (x)

|D(J zL;Yzζ)|2. (A.14)

Next, by duality, the right-hand side can be written as

ˆ
BLr (x)

|D(J nL;Yzζ)|2 = sup

{(ˆ
QL

h : D(J zL;Yzζ)
)2

: h ∈ L2(QL)d×dsym ,

‖h‖L2(QL) = 1, supph ⊂ BL
r (x)

}
. (A.15)

Given a test function h ∈ L2(QL)d×dsym with supph ⊂ BL
r (x), let wL;h ∈ H1

per(QL)d be the
solution of the auxiliary Stokes problem

−4wL;h +∇QL;h = div(h), in QL \ ∪y∈YzB(y),
div(wL;h) = 0, in QL \ ∪y∈YzB(y),
wL;h = Vz + Θz(x− z), in ∪y∈YzB(y),

for some Vz ∈ Rd,Θz ∈Mskew,∑
y∈Yz

´
∂B(y) σ(wL;h, QL;h)ν = 0,∑

y∈Yz
´
∂B(y) Θ(x− z) · σ(wL;h, QL;h)ν = 0, ∀Θ ∈Mskew.

(A.16)
These equations are indeed well-posed since by (A.13) the support BL

r (x) of the force
term h does not intersect the rigid inclusions ∪y∈YzB(y). In view of Lemma 3.1, wL;h

satisfies the following relation in QL,

−4wL;h +∇
(
1QL\∪y∈YzB(y)QL;h

)
= div(h)−

∑
y∈Yz

δ∂B(y)σ(wL;h, QL;h)ν. (A.17)

Similarly the defining equation (A.11) for J zL;Yz
ζ yields in QL,

−4J zL;Yzζ +∇
(
1QL\∪y∈YzB(y)QzL;Yz

)
= −1QL\∪y∈YzB(y)δ∂BL(z)σ(ζ, P )ν

−
∑
y∈Yz

δ∂B(y)σ(J zL;Yzζ,Q
z
L;Yzζ)ν. (A.18)
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Testing (A.17) with J zL;Yz
ζ and (A.18) with wL;h, we are led to

ˆ
QL

h : D(J zL;Yzζ) =

ˆ
∂BL(z)\∪y∈YzB(y)

wL;h · σ(ζ, P )ν

+
∑
y∈Yz

ˆ
∂B(y)

wL;h · σ(J zL;Yzζ,Q
z
L;Yzζ)ν +

∑
y∈Yz

ˆ
∂B(y)

J zL;Yzζ · σ(wL;h, QL;h)ν,

and thus, using the boundary conditions in (A.11) and (A.16),ˆ
QL

h : D(J zL;Yzζ) =

ˆ
∂BL(z)

wL;h · σ(ζ, P )ν.

Recalling that (ζ, P ) satisfies (A.2) and is implicitly extended by QL-periodicity, using the
boundary conditions and the incompressibility constraints to smuggle in arbitrary constants
in the different factors, as in the proof of (3.35), and appealing to the trace estimates of
Lemma 2.3, we find(ˆ

QL

h : D(J zL;Yzζ)
)2
.
(ˆ

BL(z)
|D(wL;h)|2

)(ˆ
B1+ρ(z)

|D(ζ)|2
)
. (A.19)

Since equation (A.16) entails that wL;h satisfies the free steady Stokes equation in BL
r (z),

elliptic regularity in form of Lemma 2.4 yieldsˆ
BL(z)

|D(wL;h)|2 . r−d
ˆ
QL

|D(wL;h)|2,

and thus, combining this with an energy estimate for (A.16),ˆ
BL(z)

|D(wL;h)|2 . r−d
ˆ
QL

|h|2.

Combining this with (A.14), (A.15), and (A.19), the claim (A.12) follows.

Step 2. Proof that for all x ∈ QL,ˆ
BL(x)

|D(J zL;Y ζ)|2 .
( ∑
y∈{x}∪(Y \Yz)

〈(y − z)L〉−2d

)ˆ
B1+ρ(z)

|D(ζ)|2. (A.20)

In view of Lemma 3.1, the defining equation (A.3) for J zL;Y ζ yields in QL,

−4J zL;Y ζ +∇
(
1QL\∪y∈Y B(y)QzL;Y

)
= −1QL\∪y∈YzB(y)δ∂BL(z)σ(ζ, P )ν

−
∑
y∈Y

δ∂B(y)σ(J zL;Y ζ,QzL;Y ζ)ν. (A.21)

Subtracting (A.18) entails in QL

−4(J zL;Y ζ − J zL;Yzζ) +∇
(
1QL\∪y∈Y B(y)QzL;Y − 1QL\∪y∈YzB(y)QzL;Yz

)
= −

∑
y∈Y \Yz

δ∂B(y)σ(J zL;Y ζ,QzL;Y ζ)ν

−
∑
y∈Yz

δ∂B(y)

(
σ(J zL;Y ζ,QzL;Y ζ)ν − σ(J zL;Yzζ,Q

z
L;Yzζ)ν

)
. (A.22)
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Testing this equation with J zL;Y ζ−J zL;Yz
ζ itself, and using the boundary conditions in (A.3)

and (A.11), we obtain the energy identity

2

ˆ
QL

|D(J zL;Y ζ − J zL;Yzζ)|2 =
∑

y∈Y \Yz

ˆ
∂B(y)

J zL;Yzζ · σ(J zL;Y ζ,QzL;Y ζ)ν.

Further using the boundary conditions and the incompressibility constraints to smuggle in
arbitrary constants in the different factors, as in the proof of (3.35), and appealing to the
trace estimates of Lemma 2.3, we deduce

ˆ
QL

|D(J zL;Y ζ − J zL;Yzζ)|2 .
∑

y∈Y \Yz

(ˆ
B(y)
|D(J zL;Yzζ)|2

) 1
2
( ˆ

B1+ρ(y)
|D(J zL;Y ζ)|2

) 1
2
.

Decomposing J zL;Y ζ = (J zL;Y ζ − J zL;Yz
ζ) + J zL;Yz

ζ in the last factor, using the triangle
inequality and Young’s inequality, we are led to

ˆ
QL

|D(J zL;Y ζ − J zL;Yzζ)|2 .
∑

y∈Y \Yz

ˆ
B1+ρ(y)

|D(J zL;Yzζ)|2.

The triangle inequality then yields for all x ∈ QL,
ˆ
BL(x)

|D(J zL;Y ζ)|2 .
ˆ
BL(x)

|D(J zL;Yzζ)|2 +

ˆ
QL

|D(J zL;Y ζ − J zL;Yzζ)|2

.
ˆ
BL(x)

|D(J zL;Yzζ)|2 +
∑

y∈Y \Yz

ˆ
B1+ρ(y)

|D(J zL;Yzζ)|2,

which yields the claim (A.20) in combination with (A.12).

Step 3. Conclusion.
We argue by induction on the cardinality of Y \ Yz for (A.6). If ](Y \ Yz) = 0, that is,
if Y = Yz, the conclusion (A.6) already follows from (A.12). Given n ≥ 1, we assume
that (A.6) holds whenever ](Y \ Yz) < n, and we shall show that it also holds when
](Y \ Yz) = n. Let Y ⊂ QL be fixed with ](Y \ Yz) = n. For any S ⊂ Y \ Yz, the same
argument as for (A.22) yields in QL \ ∪y∈SB(y)

−4(J zL;Y ζ − J zL;Yz∪Sζ) +∇
(
1QL\∪y∈Y B(y)QzL;Y − 1QL\∪y∈Yz∪SB(y)QzL;Yz∪S

)
= −

∑
y∈Y \(Yz∪S)

δ∂B(y)σ(J zL;Y ζ,QzL;Y ζ)ν

−
∑
y∈Yz

δ∂B(y)σ
(
J zL;Y ζ − J zL;Yz∪Sζ,Q

z
L;Y ζ −QzL;Yz∪Sζ

)
ν.

As J zL;Y ζ − J zL;Yz∪Sζ is further rigid in ∪y∈SB(y), this implies, by definition of {J yL;S}y,

J zL;Y ζ − J zL;Yz∪Sζ =
∑

y∈Y \(Yz∪S)

J yL;SJ
z
L;Y ζ +

∑
y∈Yz

J yL;S(J zL;Y ζ − J zL;Yz∪Sζ),
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which we may further decompose as

J zL;Y ζ − J zL;Yz∪Sζ =
∑

y∈Y \(Yz∪S)

J yL;S(J zL;Y ζ − J zL;Yz∪S∪{y}ζ)

+
∑

y∈Y \(Yz∪S)

J yL;SJ
z
L;Yz∪S∪{y}ζ +

∑
y∈Yz

J yL;S(J zL;Y ζ − J zL;Yz∪Sζ).

Iterating this identity, we find

J zL;Y ζ − J zL;Yzζ =

n∑
l=1

6=∑
y1,...,yl∈Y \Yz

J y1

L J
y2

L;{y1} . . .J
yl
L;{y1,...,yl−1}J

z
L;Yz∪{y1,...,yl}ζ

+
n∑
l=1

6=∑
y1,...,yl−1∈Y \Yz

∑
y∈Yz

J y1

L J
y2

L;{y1} . . .J
yl−1

L;{y1,...,yl−2}J
y
L;{y1,...,yl−1}

×
(
J zL;Y ζ − J zL;Yz∪{y1,...,yl−1}ζ

)
.

We now appeal to the induction hypothesis in form of (A.6) for the terms J yL;{y1,...,yj} and
J zL;Yz∪{y1,...,yj} for all 1 ≤ j < n and y ∈ Y , to the suboptimal decay estimate (A.20) for
J zL;Yz∪{y1,...,yn} (which only appears in the first right-hand sum when l = n). Recalling that
|(y−z)L| ≤ 2 for all y ∈ Yz, this yields for all x ∈ QL, after straightforward simplifications,(ˆ

BL(x)
|D(J zL;Y ζ − J zL;Yzζ)|2

) 1
2
.n

(ˆ
B1+ρ(z)

|D(ζ)|2
) 1

2

×
n∑
l=0

6=∑
y1,...,yl∈Y \Yz

〈(x− y1)L〉−d〈(y1 − y2)L〉−d . . . 〈(yl − z)L〉−d.

The conclusion (A.6) now follows from the bound 〈(a− b)L〉−d〈(b− c)L〉−d . 〈(a− c)L〉−d
for all a, b, c ∈ QL. �

A.3. Mean-value property with rigid inclusions. This section is devoted to the proof
of Lemma A.2. We split the proof into two steps. Let Y ⊂ QL satisfy (A.1) and let
(w,P ) ∈ H1(QL)d × L2(QL) satisfy (A.7) in QL.

Step 1. Proof that for all x ∈ QL,ˆ
BL(x)

|D(w)|2 .]Y
( ∑
y∈{x}∪Y

〈dist(y, ∂QL)〉−d
) ˆ

QL

|D(w)|2. (A.23)

For that purpose, we shall compare w to the solution w̃ ∈ w+H1
per(QL)d of the free steady

Stokes equations without rigid particles in QL,

−4w̃ +∇P̃ = 0, div(w̃) = 0, in QL. (A.24)

In view of Lemma 3.1, the equations (A.7) for w yield the following relation in QL,

−4w +∇(1QL\∪y∈Y B(y)P ) = −
∑
y∈Y

δ∂B(y)σ(w,P )ν.
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Subtracting (A.24), we deduce that the difference w − w̃ ∈ H1
per(QL) satisfies

−4(w − w̃) +∇
(
1QL\∪y∈Y B(y)P − P̃

)
= −

∑
y∈Y

δ∂B(y)σ(w,P )ν. (A.25)

Testing this equation with w − w̃ and using the boundary conditions in (A.7), we obtain
the energy identity

2

ˆ
QL

|D(w − w̃)|2 =
∑
y∈Y

ˆ
∂B(y)

w̃ · σ(w,Q)ν.

Further using the boundary conditions and the incompressibility constraints to smuggle in
arbitrary constants in the different factors, as in the proof of (3.35), and appealing to the
trace estimates of Lemma 2.3, we getˆ

QL

|D(w − w̃)|2 .
∑
y∈Y

(ˆ
B(y)
|D(w̃)|2

) 1
2
( ˆ

B1+ρ(y)
|D(w)|2

) 1
2
. (A.26)

Decomposing w = (w− w̃)+ w̃ in the last factor, using the triangle inequality and Young’s
inequality, we are led to ˆ

QL

|D(w − w̃)|2 .
∑
y∈Y

ˆ
B1+ρ(y)

|D(w̃)|2.

and thus, by the triangle inequality, for all x ∈ QL,ˆ
BL(x)

|D(w)|2 .
ˆ
BL(x)

|D(w̃)|2 +
∑
y∈Y

ˆ
B1+ρ(y)

|D(w̃)|2. (A.27)

Rather decomposing w̃ = w− (w− w̃), we note that (A.26) also yields the energy estimateˆ
QL

|D(w̃)|2 .
ˆ
QL

|D(w)|2. (A.28)

As w̃ satisfies the free steady Stokes equations in QL, cf. (A.24), the mean-value property
of Lemma 2.4 yields for all x ∈ QL,ˆ

BL(x)
|D(w̃)|2 . 〈dist(x, ∂QL)〉−d

ˆ
QL

|D(w̃)|2,

and thus, combined with (A.28),ˆ
BL(x)

|D(w̃)|2 . 〈dist(x, ∂QL)〉−d
ˆ
QL

|D(w)|2. (A.29)

Inserting this into (A.27), the claim (A.23) follows.

Step 2. Conclusion.
Given S ⊂ Y , we denote by wS ∈ w + H1

per(QL)d the solution of the free steady Stokes
problem with rigid inclusions at points of S only,

−4wS +∇PS = 0, in QL \ ∪y∈SB(y),
div(wS) = 0, in QL \ ∪y∈SB(y),
D(wS) = 0, in ∪y∈SB(y),´
∂B(y) σ(wS , PS)ν = 0, ∀y ∈ S,´
∂B(y) Θ(x− y) · σ(wS , PS)ν = 0, ∀y ∈ S, ∀Θ ∈Mskew.

(A.30)
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In particular, we recover wY = w and w∅ = w̃ as defined in (A.24). The result (A.23) of
Step 1 yields in this case, for all x ∈ QL,ˆ

BL(x)
|D(wS)|2 .]S

( ∑
y∈{x}∪S

〈dist(y, ∂QL)〉−d
) ˆ

QL

|D(wS)|2.

Noting that a similar argument as for (A.28) further yields the energy estimate
ˆ
QL

|D(wS)|2 .
ˆ
QL

|D(w)|2,

we deduce for all x ∈ QL,ˆ
BL(x)

|D(wS)|2 .]S
( ∑
y∈{x}∪S

〈dist(y, ∂QL)〉−d
) ˆ

QL

|D(w)|2. (A.31)

We shall now decompose w in terms of this sequence (wS)S⊂Y . Arguing as for (A.25), we
note that for any S ⊂ Y the following relation holds in QL \ ∪y∈SB(y),

−4(w − wS) +∇(P − PS) = −
∑
y∈Y \S

δ∂B(y)σ(w,P )ν.

As w − wS is rigid in ∪y∈SB(y), this allows to decompose

w − wS =
∑
y∈Y \S

J yL;Sw,

and thus, iterating this identity and starting with w∅ = w̃,

w = w̃ +

]Y∑
l=1

6=∑
y1,...,yl∈Y

J y1

L J
y2

L;{y1} . . .J
yl
L;{y1,...,yl−1}w{y1,...,yl}.

Appealing to the decay estimates for {J yL;S}y,S in Lemma A.1, and to (A.29) and (A.31),
we get after straightforward simplifications, for all x ∈ QL,
ˆ
BL(x)

|D(w)|2 .]Y
ˆ
QL

|D(w)|2

×
]Y∑
l=0

6=∑
y1,...,yl∈Y

〈(x− y1)L〉−2d〈(y1 − y2)L〉−2d . . . 〈(yl−1 − yl)L〉−2d〈dist(yl, ∂QL)〉−d.

Using the trivial bound 〈(a − b)L〉−d〈(b − c)L〉−d . 〈(a − c)L〉−d for all a, b, c ∈ QL,
and noting that the infimum over c ∈ ∂QL further yields 〈(a − b)L〉−d〈dist(b, ∂QL)〉−d .
〈dist(a, ∂QL)〉−d, the conclusion (A.8) follows. �

A.4. Periodization errors. This section is devoted to the proof of Lemma A.3. We split
the proof into three steps. Let z ∈ QL, let ζ satisfy (A.2) at z, and let Y ⊂ QL be such
that {z} ∪ Y satisfies (A.1).
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Step 1. Proof that for all x ∈ QL,ˆ
BL1+ρ(x)

|D(J zL;Y ζ − J zY ζ)|2 .]Y
ˆ
B1+ρ(z)

|D(ζ)|2

×min

{
〈(x− z)L〉−2d ∧

(
〈dist(x, ∂QL(a))〉−d〈dist(z, ∂QL(a))〉−d

)
:

a ∈ Rd, x, z ∈ QL(a), Y ⊂ QL(a)

}
. (A.32)

It suffices to prove this estimate for a = 0, that is,ˆ
BL1+ρ(x)

|D(J zL;Y ζ − J zY ζ)|2 .]Y
ˆ
B1+ρ(z)

|D(ζ)|2

×
(
〈(x− z)L〉−2d ∧

(
〈dist(x, ∂QL)〉−d〈dist(z, ∂QL)〉−d

))
,

as the claim (A.32) then follows by translating the underlying cell QL, which does in-
deed not change the equations provided that the translated cell still contains the relevant
points x, z, Y . Further noting that Lemma A.1 together with the triangle inequality yieldsˆ

BL1+ρ(x)
|D(J zL;Y ζ − J zY ζ)|2 .]Y 〈(x− z)L〉−2d

ˆ
B1+ρ(z)

|D(ζ)|2,

it only remains to prove for all x ∈ QL,ˆ
BL1+ρ(x)

|D(J zL;Y ζ − J zY ζ)|2 .]Y 〈dist(x, ∂QL)〉−d〈dist(z, ∂QL)〉−d
ˆ
B1+ρ(z)

|D(ζ)|2.

(A.33)
As {z} ∪ Y satisfies (A.1), we recall that J zL;Y ζ satisfies the simpler Stokes problem (A.4)
(and likewise for J zY ζ). The difference J zL;Y ζ − J zY ζ then satisfies the free steady Stokes
equations (A.7). Applying the mean-value property of Lemma A.2 to this equation, we get
for all x ∈ QL,ˆ

BL1+ρ(x)
|D(J zL;Y ζ − J zY ζ)|2 .]Y 〈dist(x, ∂QL)〉−d

ˆ
QL

|D(J zL;Y ζ − J zY ζ)|2. (A.34)

In order to estimate the last integral, taking some inspiration from the proof of (2.40),
we note that it is convenient to further compare J zL;Y ζ and J zY ζ to the solution of the
corresponding Neumann problem in QL: we define J zN ;Y ζ ∈ H1(QL)d as the solution of

−4J zN ;Y ζ +∇QzN ;Y ζ = −δ∂BL(z)σ(ζ, P )ν, in QL \ ∪y∈YB(y),

div(J zN ;Y ζ) = 0, in QL \ ∪y∈YB(y),

σ(J zN ;Y ζ,QzN ;Y ζ)ν = 0, on ∂QL,
D(J zN ;Y ζ) = 0, in ∪y∈YB(y),´
∂B(y) σ(J zN ;Y ζ,QzN ;Y ζ)ν = 0, ∀y ∈ Y,´
∂B(y) Θ(x− y) · σ(J zN ;Y ζ,QzN ;Y ζ)ν = 0, ∀y ∈ Y, ∀Θ ∈Mskew.

(A.35)

In these terms, we start by estimatingˆ
QL

|D(J zL;Y ζ − J zY ζ)|2 ≤ 2

ˆ
QL

|D(H1)|2 + 2

ˆ
QL

|D(H2)|2, (A.36)
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where we have set for abbreviation

H1 := J zL;Y ζ − J zN ;Y ζ, H2 := J zY ζ − J zN ;Y ζ.

We denote by P1, P2 the corresponding pressure differences. In view of (A.4) and (A.35),
(H1, P1) satisfies

−4H1 +∇P1 = 0, in QL \ ∪y∈YB(y),
div(H1) = 0, in QL \ ∪y∈YB(y),
σ(H1, P1)ν = σ(J zL;Y ζ,QzL;Y ζ)ν, on ∂QL,
D(H1) = 0, in ∪y∈YB(y),´
∂B(y) σ(H1, P1)ν = 0, ∀y ∈ Y,´
∂B(y) Θ(x− y) · σ(H1, P1)ν = 0, ∀y ∈ Y, ∀Θ ∈Mskew,

(A.37)

for which the energy identity takes the form

2

ˆ
QL

|D(H1)|2 =

ˆ
∂QL

H1 · σ(J zL;Y ζ,QzL;Y ζ)ν,

hence, recalling H1 = J zL;Y ζ − J zN ;Y ζ and the periodicity of J zL;Y ζ,

2

ˆ
QL

|D(H1)|2 = −
ˆ
∂QL

J zN ;Y ζ · σ(J zL;Y ζ,QzL;Y ζ)ν. (A.38)

By Lemma 3.1 and (A.11), J zL;Y ζ satisfies in QL

−4J zL;Y ζ +∇
(
1Rd\∪y∈Y B(y)QzL;Y

)
= −δ∂B(z) σ(ζ, P )ν −

∑
y∈Y

δ∂B(y)σ(J zL;Y ζ,QzL;Y ζ)ν,

whereas, by (A.35), J zN ;Y ζ satisfies

−4J zN ;Y ζ +∇
(
1Rd\∪y∈Y B(y)QzN ;Y

)
= −δ∂B(z)σ(ζ, P )ν −

∑
y∈Y

δ∂B(y)σ(J zN ;Y ζ,QzN ;Y ζ)ν.

Testing the first relation with J zN ;Y ζ, testing the second one with J zL;Y ζ, and using bound-
ary conditions, we findˆ

∂QL

J zN ;Y ζ · σ(J zL;Y ζ,QzL;Y ζ)ν

= 2

ˆ
D(J zN ;Y ζ) : D(J zL;Y ζ) +

ˆ
∂B(z)

J zN ;Y ζ · σ(ζ, P )ν

=

ˆ
∂B(z)

(J zN ;Y ζ − J zL;Y ζ) · σ(ζ, P )ν,

so that identity (A.38) becomes

2

ˆ
QL

|D(H1)|2 =

ˆ
∂B(z)

H1 · σ(ζ, P )ν. (A.39)

Using the boundary conditions and the incompressibility constraint to smuggle in arbitrary
constants in the different factors, as in the proof of (3.35), and appealing to the trace
estimates of Lemma 2.3, we findˆ

QL

|D(H1)|2 .
( ˆ

B(z)
|D(H1)|2

) 1
2
(ˆ

B1+ρ(z)
|D(ζ)|2

) 1
2
.
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Applying the mean-value property of Lemma A.2 to equation (A.37) for H1, and using
Young’s inequality, we deduceˆ

QL

|D(H1)|2 . 〈dist(z, ∂QL)〉−d
ˆ
B1+ρ(z)

|D(ζ)|2. (A.40)

Likewise, repeating the argument in favor of (A.39), this time for H2, we obtain

2

ˆ
QL

|D(H2)|2 =

ˆ
∂B(z)

H2 · σ(ζ, P )ν +

ˆ
∂QL

J zY ζ · σ(J zY ζ,QzY ζ)ν,

or equivalently, using the free steady Stokes equations for J zY ζ in Rd \QL and integrating
by parts to reformulate the second right-hand side term,

2

ˆ
QL

|D(H2)|2 =

ˆ
∂B(z)

H2 · σ(ζ, P )ν − 2

ˆ
Rd\QL

|D(J zY ζ)|2

≤
ˆ
∂B(z)

H2 · σ(ζ, P )ν.

Arguing as for H1, we may then deduceˆ
QL

|D(H2)|2 . 〈dist(z, ∂QL)〉−d
ˆ
B1+ρ(z)

|D(ζ)|2.

Combined with (A.34), (A.36), and (A.40), this yields the claim (A.33).

Step 2. Proof of (A.9).
We claim that the conclusion (A.9) is a simple post-processing of (A.32). As (A.9) trivially
follows from (A.32) if |x − z| > L

4 , it remains to consider the case when |x− z| ≤ L
4 . In

that case, we can choose q ∈ L
4 Z

d with |q|∞ ≤ L
4 such that x, z ∈ Q 1

2
L(q). We then

construct a translation vector a componentwise: First, for all directions 1 ≤ i ≤ d with
qi = 0, we set ai := 0. Second, for all i with qi = L

4 , we set ai := dist(Y \ {x, z}, P i,−L ),
where P i,−L is the cubic facet {v ∈ ∂QL : vi = −L

2 }. Third, for all i with qi = −L
4 , we

set ai := −dist(Y \ {x, z}, P i,+L ), where P i,+L is the facet {v ∈ ∂QL : vi = L
2 }. With this

construction of a, we find that Y \ {x, z} is included in the translated cube QL(a) (and
actually intersects its boundary). Moreover, we find

dist(x, ∂QL(a)) ≥ dist(x, ∂QL) + inf
i
|ai| ≥ dist(x, ∂QL) + dist(Y \ {x, z}, ∂QL),

and similarly

dist(z, ∂QL(a)) ≥ dist(z, ∂QL) + dist(Y \ {x, z}, ∂QL).

In particular, we get

〈dist(x, ∂QL(a))〉−d〈dist(z, ∂QL(a))〉−d ≤ 〈dist(Y \ {x, z}, ∂QL)〉−2d,

so that the conclusion (A.9) indeed follows from (A.32).

Step 3. Proof of (A.10).
We shall prove the following refined version of (A.10): for all x ∈ QL,ˆ

BL1+ρ(x)
|D(ψYL − ψY )|2 . min

{
〈dist(x, ∂QL(a))〉−d〈dist(Y, ∂QL(a))〉−d :

a ∈ Rd, x ∈ QL(a), Y ⊂ QL(a)
}
. (A.41)
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Arguing similarly as in Step 2, it is easily seen that the translation a can be suitably chosen
so that this estimate yields the conclusion (A.10). In order to prove (A.41), it suffices, in
fact, to prove it for a = 0, that is,ˆ

BL1+ρ(x)
|D(ψYL − ψY )|2 . 〈dist(x, ∂QL)〉−d〈dist(Y, ∂QL)〉−d, (A.42)

as the claim (A.41) then follows by translating the underlying cell QL, which does indeed
not change the equations provided that the translated cell still contains x, Y .

We turn to the proof of (A.42). As the difference ψYL − ψY satisfies a free steady Stokes
problem of the form (A.7), we may apply the mean-value property of Lemma A.2 to the
effect that for all x ∈ QL,ˆ

BL1+ρ(x)
|D(ψYL − ψY )|2 . 〈dist(x, ∂QL)〉−d

ˆ
QL

|D(ψYL − ψY )|2. (A.43)

In order to estimate the last integral, we argue similarly as in Step 1 by further comparing
ψYL , ψ

Y to the solution of the corresponding Neumann problem in QL: we define ψYN ∈
H1(QL)d as the solution of

−4ψYN +∇ΣY
N = 0, in QL \ ∪y∈YB(y),

div(ψYN ) = 0, in QL \ ∪y∈YB(y),
σ(ψYN ,Σ

Y
N )ν = 0, on ∂QL,

D(ψYN + Ex) = 0, in ∪y∈YB(y),´
∂B(y) σ(ψYN ,Σ

Y
N )ν = 0, ∀y ∈ Y,´

∂B(y) Θ(x− y) · σ(ψYN ,Σ
Y
N )ν = 0, ∀y ∈ Y, ∀Θ ∈Mskew.

In these terms, we start by estimatingˆ
QL

|D(ψYL − ψY )|2 ≤ 2

ˆ
QL

|D(G1)|2 + 2

ˆ
QL

|D(G2)|2, (A.44)

where we have set for abbreviation

G1 := ψYL − ψYN , G2 := ψY − ψYN .
We denote by R1, R2 the corresponding pressure differences. Similarly as in Step 1, energy
identities take the form

2

ˆ
QL

|D(G1)|2 =
∑
y∈Y

ˆ
∂B(y)

E(x− y) · σ(G1, R1)ν,

2

ˆ
QL

|D(G2)|2 =
∑
y∈Y

ˆ
∂B(y)

E(x− y) · σ(G2, R2)ν − 2

ˆ
Rd\QL

|D(ψY )|2,

and we deduce by means of trace estimates, for both i = 1, 2,ˆ
QL

|D(Gi)|2 .
∑
y∈Y

( ˆ
B1+ρ(y)

|D(Gi)|2
) 1

2
.

Hence, applying the mean-value property of Lemma A.2 to G1, G2, together with Young’s
inequality, ˆ

QL

|D(Gi)|2 .]Y
∑
y∈Y
〈dist(y, ∂QL)〉−d.



ON EINSTEIN’S EFFECTIVE VISCOSITY FORMULA 139

Combined with (A.43) and (A.44), this yields the claim (A.42), and concludes the proof.
�

Appendix B. Finite-volume approximation of the effective viscosity

This appendix is devoted to the proof of an algebraic convergence rate for the finite-
volume approximation B̄L of the effective viscosity B̄ under an algebraic α-mixing condi-
tion, as announced in Remark 4.1.

Proposition B.1 (Convergence rate for B̄L). On top of Assumption (Hρ), assume that
the algebraic mixing condition (Mix) holds. Then there exists γ ∈ (0, β) (only depending
on d, ρ and on the mixing exponent β) such that for all L,

|B̄L − B̄| . L−γ . ♦

The proof displayed below closely follows the monograph [3] by Armstrong, Kuusi, and
Mourrat (albeit in the more general version [4] for α-mixing coefficients) based on the orig-
inal argument [5] by Armstrong and Smart. We identify a suitable subadditive quantity J
that satisfies all the requirements of [4, 3] in the present Stokes context: the definition (B.4)
and Lemma B.2 below constitute the only new insight wrt [3], and the conclusion follows
from elementary adaptations of the arguments in [4, 3]. Although we could have used the
same subadditive quantity as in [3], we have chosen to use a subadditive quantity J built
on the approximations (2.9) and (2.10) that we used to prove Einstein’s formula, that is,
in the form of (B.3) below. This choice, which is specific to our problem, makes some of
the upcoming arguments technically simpler than in [3], in particular avoiding the use of
convex duality.

Let E ∈ M0 be fixed with |E| = 1. We say that a bounded domain U ⊂ Rd is suitable
if dist(I ∩ U, ∂U) > ρ. We consider the following weakly closed subsets of H1(U)d,

H(U) :=
{
u ∈ H1(U)d : div(φ) = 0, and D(φ+ Ex) = 0 on I ∩ U

}
,

H◦(U) := H1
0 (U)d ∩H(U),

and the following minimization problems (note that only the symmetrized gradient D(ψ∗(U))
is uniquely defined in the first line),

ψ∗(U) := arg min
{ˆ

U
|D(φ)|2 : φ ∈ H(U)

}
, (B.1)

ψ◦(U) := arg min
{ˆ

U
|D(φ)|2 : φ ∈ H0(U)

}
. (B.2)

Recalling that the fattened inclusions {In+ρB}n are disjoint, we define the modified cubes

UL(x) :=

(
QL(x) \

⋃
n:xn /∈QL(x)

(In + ρB)

)⋃( ⋃
n:xn∈QL(x)

(In + ρB)

)
,

which satisfy by definition QL−2(1+ρ) ⊂ UL(x) ⊂ QL+2(1+ρ) and I ∩ ∂UL(x) = ∅. The
family {UL(x)}x∈LZd constitutes a partition of Rd. Setting UL = UL(0), we then consider
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the following alternative finite-volume approximations of the effective viscosity B̄,

E : B̃L,∗E = 1 + E
[ 

UL

|D(ψ∗(UL))|2
]
,

E : B̃L,◦E = 1 + E
[ 

UL

|D(ψ◦(UL))|2
]
. (B.3)

Since H◦(UL) ⊂ H(UL), we have E : B̃L,∗E ≤ E : B̃L,◦E. We then define a random set
function J for suitable sets U via

J(U) :=

 
U
|D(ψ◦(U))|2 − |D(ψ∗(U))|2. (B.4)

The following lemma collects elementary properties of J . In particular, item (iii) states
that U 7→ |U |J(U) is subadditive.

Lemma B.2 (Properties of J).
(i) Recalling the definition (B.3) of finite-volume approximations B̃L,∗, B̃L,◦ of the effec-

tive viscosity, there exists C > 0 such that

E : B̃L,∗E − CL−1 ≤ E : B̄E ≤ E : B̃L,◦E + CL−1, (B.5)

E : B̃L,∗E − CL−1 ≤ E : B̄L+2(1+ρ)E ≤ E : B̃L,◦E + CL−1. (B.6)

(ii) For all suitable U ,

J(U) =

 
U
|D(ψ◦(U)− ψ∗(U))|2. (B.7)

(iii) For all disjoint suitable sets U1, . . . , Uk, setting U = int
(⋃

j U
j
)
,

|U |J(U) ≤
k∑
j=1

|U j |J(U j). (B.8)

In addition, setting δψ(U) := ψ◦(U)− ψ∗(U),
k∑
j=1

‖D(δψ(U)− δψ(U j))‖2
L2(Uj)

=
k∑
j=1

|U j |(J(U j)− J(U)). (B.9)
♦

Proof. We split the proof into three steps.

Step 1. Proof of (i).
We start with the proof of (B.6), that is, the comparison of B̃L,∗, B̃L,◦ with the periodic
approximation B̄L+2(1+ρ). First, we extend ψ◦(UL) by zero on QL+2(1+ρ) \ U−L , which
makes it a QL+2(1+ρ)-periodic function, and thus an admissible test function in (??), 

QL+2(1+ρ)

|D(ψL+2(1+ρ))|2 ≤
 
QL+2(1+ρ)

|D(ψ◦(UL))|2

=
|UL|

(L+ 2(1 + ρ))d

 
U−L

|D(ψ◦(U
−
L ))|2,

which yields, in view of
∣∣L−d|UL| − 1

∣∣ . L−1, 
QL+2(1+ρ)

|D(ψL+2(1+ρ))|2 ≤
 
UL

|D(ψ◦(UL))|2(1 + CL−1).
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Second, as the restriction ψL+2(1+ρ)|UL belongs to H(UL) and is thus an admissible test
function in (B.1), we similarly obtain 
UL

|D(ψ∗(UL))|2 ≤
 
UL

|D(ψL+2(1+ρ))|2 ≤
(L+ 2(1 + ρ))d

|UL|

 
QL+2(1+ρ)

|D(ψL+2(1+ρ))|2

≤ (1 + CL−1)

 
QL+2(1+ρ)

|D(ψL+2(1+ρ))|2.

The claim (B.6) follows from the combination of these two estimates with the following
energy bounds, cf. (3.50),

E
[ 

QL+2(1+ρ)

|D(ψL+2(1+ρ))|2
]

+ E
[ 

UL

|D(ψ◦(UL))|2
]

+ E
[
|D(ψ)|2

]
. λ(P). (B.10)

We turn to the proof of (B.5). Since the restriction ψ|UL belongs to H(UL) and is thus an
admissible test function in (B.1), we find by stationarity of D(ψ),

E
[ 

UL

|D(ψ∗(UL))|2
]
≤ E

[ 
UL

|D(ψ)|2
]
≤ E

[
Ld

|UL|

 
QL

|D(ψ)|2
]

≤ (1 + CL−1)E
[
|D(ψ)|2

]
. (B.11)

For the converse inequality, we appeal to a cut-and-paste argument. The starting point is
the following convergence, cf. [18],

E
[
|D(ψ)|2

]
= lim

k↑∞
E
[ 

UkL

|D(ψ◦(UkL))|2
]
.

Since ψ̃◦(UkL) :=
∑

j ψ◦(UL(zj))1UL(zj) belongs toH0(UkL), where {UL(zj)}j is a partition
of UkL, we obtain for all k, by stationarity of z 7→ UL(z),

E
[ 

UkL

|D(ψ◦(UkL))|2
]
≤

∑
j

E
[
|UL(zj)|
|UkL|

 
UL(zj)

|D(ψ◦(UL(zj)))|2
]

≤ (1 + CL−1)E
[ 

UL

|D(ψ◦(UL))|2
]
. (B.12)

The claim (B.5) follows from the combination of these three properties with the above
energy bounds (B.10).

Step 2. Proof of (ii).
By definition,

J(U) =

 
U

D
(
ψ◦(U)− ψ∗(U)

)
: D
(
ψ◦(U) + ψ∗(U)

)
.

Since ψ◦(U), ψ∗(U) ∈ H(U), the difference ψ◦(U)−ψ∗(U) is a suitable test function for the
Euler-Lagrange equation of the minimization problem (B.1) defining ψ∗(U), which yieldsˆ

U
D
(
ψ◦(U)− ψ∗(U)

)
: D(ψ∗(U)) = 0,

and the claim (B.7) follows.

Step 3. Proof of (iii).
We start with the proof of (B.8). Since the minimization problem (B.2) defines a sub-
additive set function due to the gluing property of H0(U), and since the minimization
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problem (B.1) defines a superadditive function due to the restriction property of H(U),
the function J is subadditive as the difference of a subadditive and of a superadditive
function.

We turn to the proof of (B.9). The starting point is (B.7) for U j , which yields

|U j |J(U j)−
ˆ
Uj
|D(δψ(U))|2 =

ˆ
Uj

D(δψ(U j)− δψ(U)) : D(δψ(U j) + δψ(U))

=

ˆ
Uj
|D(δψ(U j)− δψ(U))|2

+ 2

ˆ
Uj

D(δψ(U j)− δψ(U)) : D(δψ(U)). (B.13)

We decompose the second right-hand side term into 2
∑4

k=1 Ik,j , in terms of

I1,j =

ˆ
Uj

D(ψ◦(U
j)− ψ◦(U)) : D(ψ◦(U)),

I2,j = −
ˆ
Uj

D(ψ◦(U
j)− ψ◦(U)) : D(ψ∗(U)),

I3,j =

ˆ
Uj

D(ψ∗(U)) : D(ψ◦(U)− ψ∗(U)),

I4,j = −
ˆ
Uj

D(ψ∗(U
j)) : D(ψ◦(U)− ψ∗(U)).

Since ψ◦(U)|Uj , ψ∗(U)|Uj ∈ H(U j), the difference (ψ◦(U) − ψ∗(U))|Uj is a suitable test
function for the Euler-Lagrange equation for ψ∗(U j), which yields I4,j = 0. Likewise, since
ψ◦(U),

∑
j ψ◦(U

j)1Uj ∈ H0(U) ⊂ H(U), we find both
∑

j I1,j = 0 and
∑

j I2,j = 0. In
addition, since ψ◦(U), ψ∗(U) ∈ H(U), we find

∑
j I3,j = 0. This entails∑

j

ˆ
Uj

D(δψ(U j)− δψ(U)) : D(δψ(U)) = 0.

Summing (B.13) over j, inserting the above, and recalling the identity (B.7), the claim (B.9)
follows. �

For all n ≥ 0 we set Un := U3n and define the discrepancy

τn := E [J(Un)]− E
[
J(Un+1)

]
. (B.14)

In contrast with [3], the set Un is now random, so that subbadditivity does not directly
imply τn ≥ 0. This is however true up to an error O(3−n), as we briefly argue. Choose a
partition {Unj := U3n(zj)}j of the set Un+1. Taking the expectation of (B.9) applied to
this decomposition of Un+1, we find

0 ≤ E
[∑

j

‖D(δψ(Un+1)− δψ(Unj ))‖2
L2(Unj )

]
=
∑
j

E
[
|Unj |(J(Unj )− J(Un+1))

]
, (B.15)

whereas by the deterministic bounds |3d|Un| − |Un+1|| . 3n(d−1) and J(Unj ) . 1 we have
for some constant C ' 1,∑

j

E
[
|Unj |(J(Unj )− J(Un+1))

]
. 3nd

(
E
[
J(Un)

]
− E

[
J(Un+1)

]
+ C3−n

)
. (B.16)
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The combination of (B.15) and (B.16) yields the claim in form of

τ̄n := τn + C3−n ≥ 0. (B.17)

The crux of the approach is the following control of the variance of averages of D(δψ(U))
in terms of τn. In view of Lemma B.2, the proof is identical to that of [3, Lemma 2.13]
(albeit in the α-mixing version of [4], further arguing as in (B.17) and absorbing the
additional error term).

Lemma B.3. There exist C, ε > 0 (only depending on d, ρ, β) such that for all n,

Var

[ 
Un

D(δψ(Un))

]
≤ C3−εn + C

n∑
m=0

3−ε(n−m)τ̄m. ♦

Recall the following version of Korn’s inequality: for any bounded domain D ⊂ Rd, for
all divergence-free fields v ∈ L2(D), we have

inf
κ∈Rd

Θ∈Mskew

ˆ
D
|v(x)− κ−Θx|2 dx .D ‖D(v)‖2H−1(D),

where the multiplicative constant only depends on the regularity of D. In contrast with
Poincaré’s inequality, the infimum over Θ ∈Mskew allows to have the symmetrized gradient
in the right-hand side instead of the full gradient. By the so-called multiscale Poincaré in-
equality in [3, Proposition 1.12], using the above Korn inequality instead of [3, Lemma 1.13],
Lemma B.3 yields the following estimate as in [3, Lemma 2.15]. This is simpler than the
statement in [3] since there is no convex duality involved.

Lemma B.4. There exist C, ε > 0 (only depending on d, ρ, β) such that for all n,

E
[

inf
κ∈Rd

Θ∈Mskew

 
Un+1

|δψ(Un+1)(x)− κ−Θx|2 dx
]
≤ C32n

(
3−εn +

n∑
m=0

3−ε(n−m)τ̄m

)
. ♦

Next, we deduce the following estimate on J as in [3, Lemma 2.16] by means of the
Caccioppoli inequality. As the latter inequality in the present Stokes context involves the
pressure, the proof slightly differs from [3] and is included below.

Lemma B.5. There exist C, ε > 0 (only depending on d, ρ, β) such that for all n,

E [J(Un)] ≤ C3−εn + C

n∑
m=0

3−ε(n−m)τ̄m. ♦

Proof. Caccioppoli’s inequality in form of e.g. [19, Section 4.4, Step 1] yields for all K ≥ 1,
for any constants c ∈ R, κ ∈ Rd, and Θ ∈Mskew,
 
Un
|D(δψ(Un+1))|2 . K23−2n

 
Un+1

|δψ(Un+1)(x)− κ−Θx|2dx

+K−2

 
Un+1

|δΣ(Un+1)− c|21Rd\I , (B.18)

where δΣ(Un+1) is the difference of the pressures associated with ψ◦(U
n+1), ψ∗(Un+1).

Appealing to a local pressure estimate in form of e.g. [19, Lemma 3.3], and recalling
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Lemma B.2(ii), we find

inf
c∈R

 
Un+1

|δΣ(Un+1)− c|21Rd\I .
 
Un+1

|D(δψ(Un+1))|2 = J(Un+1). (B.19)

Taking the infimum over c, κ,Θ in (B.18), taking the expectation, inserting (B.19), and
using Lemma B.4, we obtain

E
[ 

Un
|D(δψ(Un+1))|2

]
. K2

(
3−εn +

n∑
m=0

3−ε(n−m)τ̄m

)
+K−2E

[
J(Un+1)

]
,

and thus, in view of (B.17),

E
[ 

Un
|D(δψ(Un+1))|2

]
. K2

(
3−εn+

n∑
m=0

3−ε(n−m)τ̄m

)
+K−2(E [J(Un)]+3−n). (B.20)

Next, we argue that

E [J(Un)] . E
[ 

Un
|D(δψ(Un+1))|2

]
+ τ̄n. (B.21)

For that purpose, we first note that the definition of J yields

E [J(Un)]− E
[ 

Un
|D(δψ(Un+1))|2

]
= E

[ 
Un

D(δψ(Un)− δψ(Un+1)) : D(δψ(Un) + δψ(Un+1))

]
. E

[ 
Un
|D(δψ(Un)− δψ(Un+1))|2

] 1
2(

E [J(Un)] + E
[
J(Un+1)

] ) 1
2
.

In order to control the first factor, we appeal to (B.15) and (B.16) in form of

E
[∑

j

‖D(δψ(Unj )− δψ(Un+1))‖2
L2(Unj )

]
. 3ndτ̄n.

Further using the definition (B.17) of τ̄n to reformulate the second factor, we deduce

E [J(Un)]− E
[ 

Un
|D(δψ(Un+1))|2

]
. (τ̄n)

1
2
(
E [J(Un)] + τ̄n

) 1
2 ,

and the claim (B.21) follows.

Choosing K ' 1 large enough, (B.20) and (B.21) combine to

E [J(Un)] . E
[ 

Un
|D(δψ(Un+1))|2

]
+ τ̄n . 3−(ε∧1)n +

n∑
m=0

3−β(n−m)τ̄m,

and the conclusion follows. �

We may now proceed to the proof of Proposition B.1, which follows from Lemma B.5
by iteration.
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Proof of Proposition B.1. Set Fn := 3−
1
2
εn∑n

m=0 3
1
2
εmE [J(Um)]. In terms of τn, recog-

nizing a telescoping sum, we find

Fn − Fn+1 = 3−
1
2
εn

n∑
m=0

3
1
2
εmE [J(Um)]− 3−

1
2
ε(n+1)

n+1∑
m=0

3
1
2
εmE [J(Um)]

= 3−
1
2
εn

n∑
m=0

3
1
2
εmτm − 3−

1
2
ε(n+1)E

[
J(U0)

]
,

and thus, using (B.17) and E
[
J(U0)

]
. 1,

Fn − Fn+1 ≥ 3−
1
2
εn

n∑
m=0

3
1
2
εmτ̄m − C3−

1
2
εn. (B.22)

Similarly, we find

Fn+1 ≤ 3−
1
2
ε(n+1)

n+1∑
m=1

3
1
2
εmE [J(Um)] + C3−

1
2
ε(n+1)

≤ 3−
1
2
ε(n+1)

n+1∑
m=1

3
1
2
εm
(
E
[
J(Um−1)

]
+ C3−(m−1)

)
+ C3−

1
2
ε(n+1)

≤ Fn + C3−
1
2
εn,

which, by Lemma B.5, turns into

Fn+1 ≤ C3−
1
2
εn

n∑
m=0

3
1
2
εm
(

3−εm +

m∑
k=0

3−ε(m−k)τ̄k

)
+ C3−

1
2
εn

≤ C3−
1
2
εn + C3−

1
2
εn

n∑
m=0

C3
1
2
εmτ̄m.

Combining this with (B.22), we obtain

Fn+1 ≤ C(Fn − Fn+1) + C3−
1
2
εn,

and thus
Fn+1 ≤

C

C + 1
(Fn + 3−

1
2
εn).

By iteration, this yields Fn ≤ C3−γn for some γ > 0, and thus E [J(Un)] ≤ C3−γn and
τn ≤ C3−γn. Since E [J(Un)] = E : (B̃3n,◦ − B̃3n,∗)E, this implies

0 ≤ E : (B̃L,◦ − B̃L,∗)E ≤ L−γ . (B.23)

Combined with Lemma B.2(i), this yields the conclusion. �
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