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Abstract. This review is devoted to the large-scale rheology of suspensions of rigid
particles in Stokes fluid. After describing recent results on the definition of the effective
viscosity of such systems in the framework of homogenization theory, we turn to our new
results on the asymptotic expansion of the effective viscosity in the dilute regime. This
includes a new optimal proof of Einstein’s viscosity formula for the first-order expansion,
as well as the continuation of this expansion to higher orders. The essential difficulty orig-
inates in the long-range nature of hydrodynamic interactions: suitable renormalizations
are needed and are captured by means of diagrammatic expansions.

1. Introduction

Suspensions of rigid particles in fluids are omnipresent in natural phenomena and in
practical applications. They are known to display complex rheological behaviors on large
scales, including possible non-Newtonian effects, e.g. [22], which we aim to understand
and describe from a rigorous micro-macro perspective. More precisely, we consider the
macroscopic limit for a large number N � 1 of small particles of size ε � 1 in a given
tank U ⊂ Rd. Neglecting both particle and fluid inertia, we assume that particles follow
the fluid velocity and that the latter is instantaneously determined by the steady Stokes
equations with no-slip conditions at particle boundaries. Denoting by {Inε,N}n the set of

particles in U , with respective barycenters {xnε,N}n and orientations {rnε,N}n, the steady

Stokes equations for the fluid velocity uε,N ∈ H1
0 (U)d take the form

−4uε,N +∇pε,N = h, div(uε,N ) = 0, in U \ ∪nInε,N , (1.1)

where h ∈ L2(U)d stands for some internal force in U . In view of no-slip conditions, we
implicitly extend the fluid velocity uε,N inside the particles, where it corresponds to the
velocity of the particles. The rigidity of the particles then translates into

D(uε,N ) = 0, in ∪nInε,N , (1.2)

where D(u) = 1
2(∇u+ (∇u)′) stands for the symmetric gradient. Equivalently, this means

that for all n,
unε,N = V n

ε,N +Wn
ε,N (x− xnε,N ), in Inε,N ,

for some translational velocity V n
ε,N ∈ Rd and angular velocity tensor Wn

ε,N ∈ Rd×dskew. As
we neglect the inertia of the particles, Newton’s equations of motion reduce to the balance
of forces and torques, which take the form of complementary boundary conditions,

εe+
ffl
∂Inε,N

σ(uε,N , pε,N )ν = 0,ffl
∂Inε,N

(x− xnε,N )× σ(uε,N , pε,N )ν = 0, for all n, (1.3)

where εe ∈ Rd stands for some (weak) sedimentation force and σ(u, p) := 2 D(u)− p Id
is the Cauchy stress tensor. Given particle positions {Inε,N}n, the instantaneous fluid
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velocity uε,N is obtained as the unique solution of the above Stokes problem (1.1)–(1.3).
Particle positions and orientations are then updated according to

∂tx
n
ε,N = V n

ε,N , ∂tr
n
ε,N = Wn

ε,Nr
n
ε,N , for all n.

In this way, particles interact via the fluid flow that they generate, and the resulting
dynamics is reputedly complex in view of the multi-body, long-range, and singular nature
of these hydrodynamic interactions.

Heuristically, while particles constitute small rigid inclusions in the fluid and hinder its
flow, we expect homogenization to hold on large scales, leading to a notion of effective
viscosity for the suspension. This effective viscosity naturally depends on the spatial
arrangement of the particles, i.e. on the microstructure, which evolves with the fluid
flow and can thus adapt in time to external forces. This creates a possibly nonlinear
response, hence non-Newtonian effects, which are indeed well-known in applications (e.g.
shear thinning of suspensions like ketchup). The mathematical understanding of such
behaviors requires to couple homogenization with microstructure dynamics, which is still
a fascinating open problem. Taking inspiration from the physics literature, we focus here
on semi-dilute regimes and split the analysis into three steps:

• ‘Instantaneous’ effective viscosity:
Given particle positions {Inε,N}n, we expect the Stokes problem (1.1)–(1.3) defining
the fluid velocity to be approximated on large scales by an effective Stokes problem
with some effective viscosity B̄. This is by now well-understood in the framework of
homogenization theory, and we review in Section 2 our main results [10, 7, 9, 12] on the
topic. Keeping in mind the question of coupling homogenization with microstructure
dynamics, we emphasize the importance of proving homogenization under the weakest
possible assumptions on the microstructure.

• Semi-dilute expansion of the effective viscosity:
In the dilute regime, particles are sparse and interact little, hence the details of the mi-
crostructure should no longer be so relevant: we expect to expand the effective viscosity

as B̄ = Id +ϕB̄
(1)

+ . . . at low volume fraction ϕ� 1, where the different terms would
involve only reduced information on the microstructure that would be easier to track
along the dynamics. To first order, this expansion is the celebrated Einstein formula,
which has attracted considerable interest recently in the mathematical community. In
Section 3, we describe our new work [11] on the topic.

• Coupling to semi-dilute microstructure dynamics:
Coupling homogenization to microstructure dynamics remains an open problem even in
the semi-dilute regime. Only partial results are available for now, limited to mean-field
regimes so dilute that they miss the description of non-Newtonian effects, cf. [25, 28, 26].
This is the subject of ongoing work that will not be discussed further in this review.

2. Effective viscosity problem

We review recent results on the homogenization of the steady Stokes problem (1.1)–(1.3)
for given particle positions {Inε,N}n. More precisely, we shall consider a random ensemble
for the set of particles, which is obtained by ε-rescaling of a given ensemble: given a
random family {In}n of disjoint bounded subsets of Rd, with respective barycenters {xn}n,
we consider the following random set of rescaled inclusions in the reference domain U ,

Iε(U) :=
⋃
n∈Nε(U) εIn, Nε(U) := {n : εIn + εB ⊂ U}, (2.1)
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where B stands for the unit ball, and we then consider the solution uε ∈ H1
0 (U)d of the

corresponding Stokes problem
−4uε +∇pε = h, div(uε) = 0, in U \ Iε(U),
D(uε) = 0, in Iε(U),
|εIn|e+

´
ε∂In

σ(uε, pε)ν = 0, ∀n ∈ Nε(U),´
ε∂In

(x− εxn)× σ(uε, pε)ν = 0, ∀n ∈ Nε(U).

(2.2)

2.1. Structure of the equations. Before moving on to the effective viscosity problem,
we briefly comment on the Stokes problem (2.2) and emphasize that the different boundary
conditions are natural for rigid particles: indeed, the weak formulation of (2.2) takes on
the simple guise

2

ˆ
U

D(w) : D(uε) =

ˆ
U
w ·
(
h1U\Iε(U) + e1Iε(U)

)
,

for all w ∈ H1
0 (U)d with div(w) = 0 and D(w)|Iε(U) = 0.

Here, h1U\Iε(U)+e1Iε(U) corresponds to the total force, combining the internal force in the
fluid domain and the (weak) sedimentation force on the particles. This weak formulation
allows to represent

uε = πεvε, (2.3)

where vε ∈ H1
0 (U)d is the solution of the following Stokes problem without rigid particles,

−4vε +∇qε = h1U\Iε(U) + e1Iε(U), div(vε) = 0, in U,

and where πε stands for the orthogonal projection

πε : H1
0 (U)d �

{
w ∈ H1

0 (U)d : div(w) = 0, D(w)|Iε(U) = 0
}
,

with respect to the scalar product (v, w) =
´
U D(v) : D(w). Another useful way to think of

the above equations is to view rigid particles as droplets of diverging viscosity, cf. e.g. [7]:
we have uθε ⇀ uε in H1

0 (U)d as θ ↑ ∞, where uθε ∈ H1
0 (U)d is the solution of the following

Stokes problem with droplets of viscosity θ,

−div
(
2(1 + θ1Iε(U)) D(uθε)

)
+∇pθε = h1U\Iε(U) + e1Iε(U), div(uθε) = 0, in U. (2.4)

2.2. Homogenization. In the macroscopic limit ε ↓ 0, provided that the ensemble of
particles {In}n is stationary and ergodic, we expect the fluid velocity to be approximated
by some effective Stokes problem, uε ⇀ ū in H1

0 (U)d,

−div(2B̄ D(ū)) +∇p̄ = (1− ϕ)h+ ϕe, div(ū) = 0, in U, (2.5)

where B̄ is the effective viscosity tensor and where (1− ϕ)h+ ϕe is the weak limit of the
total force h1U\Iε(U) + e1Iε(U), in terms of the particle volume fraction ϕ = E [1∪nIn ].
The effective viscosity is naturally computed in terms of a cell problem: given a strain
rate E ∈ Rd×dsym with tr(E) = 0, we consider the correction ΨE := Ex + ψE of the linear
straining flow Ex that satisfies the following whole-space Stokes problem associated with
the infinite family {In}n of rigid particles,

−4ΨE +∇ΣE = 0, div(ΨE) = 0, in Rd \ ∪nIn,
D(ΨE) = 0, in ∪nIn,´
∂In

σ(ΨE ,ΣE)ν = 0, ∀n,´
∂In

(x− xn)× σ(ΨE ,ΣE)ν = 0, ∀n,

(2.6)
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and the effective viscosity in direction E is then given by the averaged dissipation rate

E : B̄E = E
[
|D(ψE) + E|2

]
. (2.7)

As usual for cell problems in stochastic homogenization, the corrector ψE solving the
infinite-volume problem (2.6) is to be constructed in the class of random fields ψ that are
almost surely in H1

loc(Rd)d such that the gradient ∇ψ is stationary, centered E [∇ψ] = 0,
and has finite second moments E[|∇ψ|2] < ∞. In particular, this entails that ψE is a.s.
sublinear at infinity and is thus indeed a “correction” to the linear straining flow Ex.

Before our first work [10] on this problem, the qualitative justification of this homog-
enization limit was still missing, surprisingly even in the periodic setting, as it required
to deal at the same time with rigidity constraints and with incompressibility. Clearly, ho-
mogenization cannot hold without further geometric assumptions on the set of particles: if
particles were to form an infinite chain, it would create macroscopic rigidity and B̄ would
be infinite in the corresponding direction. The simplest way to prohibit such behaviors is
the following, which has been largely used in previous work on the topic:

(H1) Uniform condition: assume ρn := infm:m 6=n dist(In, Im) ≥ ρ > 0 a.s. for all n.

This condition is quite restrictive and would not be preserved under microstructure dy-
namics, which motivates further generalizations. In [7], we showed that it can be replaced
by a finer moment condition on interparticle distances:

(H2) Moment condition: assume E[
∑

n ρ
−r0
n 1In ] < ∞ for some r0 = r0(d) large enough.

(We can choose r0(d) = 3
2 in dimension d = 3, and r0(d) = 0 for d > 5.)

This condition is still not preserved under microstructure dynamics in 3D, cf. [5]. To
weaken it further, the main difficulty is that we have poor control of the pressure in the
vicinity of close particles, which hinders the standard proof of homogenization by Tartar’s
oscillating test function method, cf. [7]. Intuitively, however, the presence of close particles
should not be problematic for the homogenization result: only long chains of close particles
would be. In [9], we finally succeeded in avoiding the need for any detailed control at close
particles, using instead a variational Γ-convergence approach. It holds under the following
subcritical percolation type condition, which is essentially necessary for homogenization.

(H3) Cluster condition: Given some ρ > 0, let {Kq}q be the family of connected compo-
nents of the fattened set

⋃
n In + ρB, and assume that E[

∑
q(diamKq)

r01Kq ] < ∞
for some r0 = r0(d) large enough.

We can now state homogenization under any of the above conditions (H1)–(H3). Note
that homogenization of stiff inclusions under (H3) is new even in the scalar setting.

Theorem 1 (Qualitative homogenization; see [10, 7, 9]). Assume that the ensemble of
particles {In}n is stationary and ergodic, that particles are disjoint, uniformly bounded
by In ⊂ B(xn), and uniformly C2 almost surely. Further assume that either (H1), (H2),
or (H3) holds. Then the effective viscosity (2.7) is well-defined and we have uε ⇀ ū
in H1

0 (U)d, where ū satisfies the effective Stokes problem (2.5). ♦

2.3. Further results and extensions. In [12], under suitable mixing assumptions for
the ensemble of particles {In}n, we further prove quantitative error estimates for the
homogenization limit, in form of∥∥uε − ū− ε∑E ψE( ·ε)∂E ū

∥∥
L2(Ω;H1(U))

.h ε
1
2 ×

{
1 : d > 2,

|log ε|
1
4 : d = 2,
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where
∑

E runs over an orthonormal basis of {E ∈ Rd×dsym : tr(E) = 0}. We also obtain
large-scale regularity results for the heterogeneous Stokes problem (2.2), which play a key
role in our work on sedimentation [13]. This builds on the quantitative homogenization
theory recently developed for divergence-form uniformly elliptic problems, e.g. [2, 21]. A
particular difficulty in our setting is that the field/flux structure of the Stokes prob-
lem is apparently destroyed due to rigid inclusions, in the sense that the näıve flux
σ(ΨE ,ΣE)1Rd\∪nIn is not divergence-free globally: instead, we take advantage of the rep-

resentation (2.4) to recover the relevant notion of flux; see [7, Remark 4.2].
We also mention [6] (see also [20]), where we generalize the above homogenization results

to the case of suspensions of active swimmers. Swimming particles generate dipole forces
in the fluid at small scales, which can lead to surprising rheological effects, such as a
possible drastic reduction of the effective viscosity [30].

3. Semi-dilute expansion

While the effective viscosity B̄ depends on the full microstructure {In}n, cf. (2.7), we
expect this dependence to simplify perturbatively in the dilute regime. This idea takes
its roots in the so-called effective medium expansions that emerged in the second half of
the 19th century in the physics community; see e.g. the historical account in [27]. For the
effective viscosity problem, this was pioneered by Einstein [15] in his PhD thesis, where he
predicted that the first correction to the plain fluid viscosity is proportional to the particle
volume fraction ϕ and is given by the universal formula

B̄ = Id +ϕd+2
2 Id +o(ϕ), as ϕ ↓ 0, (3.1)

in case of spherical particles. Formally, this is obtained by summing single-particle con-
tributions to the effective viscosity. The rigorous justification has attracted considerable
interest in the mathematical community over the last decade, e.g. [1, 23, 29, 24, 18], but
two main questions have remained open:

— While previous contributions start from the (unphysical) uniform condition (H1) on
interparticle distances, can one also establish Einstein’s formula (3.1) under weaker
assumptions of the form (H2) or (H3)?

— What is the optimal error bound in (3.1)? In particular, under what minimal assump-
tion is the error indeed o(ϕ)?

These questions are fully answered in our recent work [11], as described in Section 3.3
below. In link with the error bound in (3.1), there has also been interest in describing
the next-order correction to Einstein’s formula. Formally, the correction corresponds to
summing pair contributions and the main difficulty is that this sum is not absolutely
convergent: a renormalization is needed and a formal understanding was first achieved
by Batchelor and Green [4]. A few rigorous contributions have recently been devoted to
this topic [17, 19, 16], although limited to special regimes. The general description of
higher-order corrections to Einstein’s formula was first achieved in our recent work [11]
in form of a cluster expansion, as described in Sections 3.4–3.5 below. In the sequel, we
focus on spherical particles In = B(xn) for simplicity, although it is not essential.

3.1. Cluster expansion. In the dilute regime, particles are typically well-separated and
their interactions can thus formally be neglected perturbatively in the corrector prob-
lem (2.6). The so-called cluster expansion corresponds to summing contributions of inter-
actions between subsets of particles (or ‘clusters’) of increasing cardinality. For a finite
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index set S ⊂ Rd, let ψSE be the solution of the corrector problem (2.6) associated with
the finite set of particles {B(x)}x∈S ; in particular note that ψ∅

E = 0. To first order, we
then write

E : B̄E ∼ |E|2 + � E
[∑

n

(
|D(ψ

{xn}
E ) + E|2 − |E|2

)]
�+ . . .

(We use quotation marks to indicate that this quantity is a priori not well defined, as
indeed explained below.) Using the short-hand notation

δ{xn}|D(ψ#
E ) + E|2 := |D(ψ

{xn}
E ) + E|2 − |E|2

for the first-order difference, and similarly defining higher-order differences, the formal
cluster expansion takes the form

B̄ ∼ Id +
∞∑
k=1

B̄
(k)
, E : B̄

(k)
E = � E

[ ∑
S⊂{xn}n
]S=k

δS |D(ψ#
E ) + E|2

]
�. (3.2)

The main difficulty is that for all k ≥ 1 the kth cluster term B̄
(k)

is given by a series that
is not absolutely convergent due to the long-range nature of hydrodynamic interactions.
More precisely, to first order, we have

δ{xn}|D(ψ#
E ) + E|2 = 2E : D(ψ

{xn}
E ) + |D(ψ

{xn}
E )|2, (3.3)

where the single-particle solution satisfies |D(ψ
{xn}
E )| ' 〈· − xn〉−d, which entails that the

definition of the first cluster term is indeed not absolutely convergent,

E
[∑

n

∣∣δ{xn}|D(ψ#
E ) + E|2

∣∣] = ∞.

The same holds for all higher-order cluster formulas, cf. (3.2), and suitable renormalization
procedures are thus required. Note, however, that divergence issues are only borderline
and that cluster formulas can in fact be viewed as combinations of Calderón–Zygmund
kernels — this is explicit at first order in terms of the single-particle solution, cf. (3.3),
but the structure is much more complicated and non-explicit in general.

3.2. Correct scaling of cluster terms. As the kth cluster term B̄
(k)

involves contribu-
tions of k-tuples of particles, we might intuitively expect it to be of order O(ϕk), but we
argue that this cannot be true in general. By definition of the k-point density fk of the
point process, the sum over k-tuples in the cluster formula (3.2) can formally be written
as a multiple integral with respect to fk,

E : B̄
(k)
E = �

ˆ
(Rd)k

(
δ{x1,...,xk}|D(ψ#

E ) + E|2(0)
)
fk(x1, . . . , xk) dx1 . . . dxk �,

or equivalently, by stationarity,

E : B̄
(k)
E = �

ˆ
(Rd)k−1

(ˆ
Rd
δ{0,x1,...,xk}|D(ψ#

E ) + E|2
)

× fk(0, x1, . . . , xk−1) dx1 . . . dxk−1 �. (3.4)

Forgetting for now divergence issues at infinity, and defining the kth-order intensity of the
point process as

λk := ‖fk‖L∞((Rd)k) (3.5)
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(we refer to [11, Section 1.3.2] for a more careful definition with local averages), we are
led to expect, if the cluster formula makes any sense,

B̄
(k)

= O(λk).

In fact, due to long-range issues, the correct scaling is rather B̄
(k)

= O(λk|log λk|k−1) in
general. At first order, λ1 = λ is the intensity of the point process and is of order O(ϕ) as
in Einstein’s formula (3.1). For a Poisson point process, due to tensorization, higher-order
intensities are given by λk = λk, but this fails in general: for a strongly mixing point
process, we only have

λj ≤ λj ≤ λj−1.

In particular, the correction to Einstein’s formula is of order O(λ2|log λ|) in general, so
the approximation (3.1) is only valid provided λ2|log λ| = o(λ), which amounts to some
weak form of local independence for the point process.

3.3. Einstein’s formula. With the above notation, we can now state our new main re-
sult on Einstein’s formula. The novelty is the optimality of the error estimate, as well as
the generality of the result, which holds under the weakest hypotheses for which homoge-
nization is established, cf. Theorem 1.

Theorem 2 (Einstein’s formula; see Theorem 1 in [11]). Under the same assumptions as
in Theorem 1, we have

|B̄ − Id−B̄(1)| . λ2|log λ|+

{
0, under (H1),

λ
1− 1

κ
2 λ

1
κ , under (H2) or (H3) with κ = κ(r0, d),

where the first cluster term B̄
(1)

satisfies |B̄(1)| ' λ and is given by the well-defined renor-
malized cluster formula

E : B̄
(1)
E := E

[∑
n

|D(ψ
(xn)
E )|2

]
. (3.6)

In case of spherical particles, we recover Einstein’s formula B̄
(1)

= ϕd+2
2 Id. ♦

The renormalized formula (3.6) is obtained from the cluster formula (3.2) by removing
the linear term in (3.3). This is indeed natural: starting from (3.4) and expanding the
difference, the cluster formula takes the form

E : B̄
(1)
E = � λ

ˆ
Rd

2E : D(ψ
{0}
E ) �+ λ

ˆ
Rd
|D(ψ

{0}
E )|2,

where the first linear term can only be meant to vanish as the integral of a gradient. As
we shall see, this is to be understood for instance in a finite-volume approximation.

We now briefly describe our proof of the above result. The idea is to neglect particle
interactions, approximating the corrector locally by single-particle solutions, and we pro-
ceed by energy comparison. For that purpose, we denote by {Vn}n the Voronoi tessellation
associated with the point process {xn}n, that is,

Vn :=
{
z ∈ Rd : |z − xn| < inf

m:m6=n
|z − xm|

}
,

and for all n we consider the solutions ψ
{xn}
E;D and ψ

{xn}
E;N of the Dirichlet and Neumann

problems in Vn, respectively, associated with the single particle In. Comparing energies in
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Voronoi cells, we can bound the effective viscosity from above and below by infinite-volume
averages of Dirichlet and Neumann single-particle energies, respectively,{

E : B̄E ≤ |E|2 + limR↑∞ |BR|−1
∑

n:In⊂BR
´
Vn
|D(ψ

{n}
E;D)|2,

E : B̄E ≥ |E|2 + limR↑∞ |BR|−1
∑

n:In⊂BR
´
Vn
|D(ψ

{n}
E;N )|2.

As whole-space single-particle energies can also be bounded from above and below by
Dirichlet and Neumann energies, we infer∣∣∣E : B̄E − |E|2 − lim

R↑∞
|RB|−1

∑
n:In⊂RB

ˆ
Rd
|D(ψ

{n}
E )|2

∣∣∣
≤ lim

R↑∞
|RB|−1

∑
n:In⊂RB

(ˆ
Vn

|D(ψ
{n}
E;D)|2 −

ˆ
Vn

|D(ψ
{n}
E;N )|2

)
.

By elliptic regularity, the gap between Dirichlet and Neumann energies in Vn can be con-
trolled by O(ρ−dn ), so that the above is bounded by E[

∑
n ρ
−d
n 1In ]. This can be evaluated

in terms of the second-order intensity, and the conclusion follows. Note that the generality
of this proof makes it applicable to dilute systems in many other contexts; see also [14].

3.4. Higher-order cluster expansion. The main difficulty to higher-order cluster ex-
pansions is that there is no simple way to make sense of cluster formulas (3.2) due to
divergence issues. A natural idea is to start by considering finite-volume approximations
of the effective viscosity,

E : B̄LE := E
[ 

QL

|D(ψE;L) + E|2
]
,

where ψE;L satisfies the corresponding corrector problem with periodic boundary condi-

tions in the cube QL := (−1
2L,

1
2L)d. The homogenization result, cf. Theorem 1, yields in

particular B̄L → B̄ in the infinite-volume limit L ↑ ∞. For fixed L, as there is at most a
finite number of particles in QL, cluster formulas make sense for all k ≥ 1,

E : B̄
(k)
L E := E

[ ∑
S⊂{xn}n∩QL

]S=k

 
QL

δS |D(ψ#
E;L) + E|2

]
, (3.7)

and we can investigate the associated cluster expansion. It remains to prove good enough
estimates on the different terms to pass to the infinite-volume limit. In [11, Section 3], we
prove two types of estimates,

• Direct estimates: By a direct bound on cluster formulas (3.7), we can capture the scaling
in {λk}k as in Section 3.2, but the long-range decay of hydrodynamic interactions a priori
leads to a logarithmic divergence in the infinite-volume limit,

|B̄(k)
L | . λk(logL)k−1. (3.8)

• Uniform-in-L estimates: Thinking of cluster formulas as complicated non-explicit com-
binations of Calderón–Zygmund kernels, we may expect to estimate them better by
means of suitable energy estimates, carefully avoiding to take absolute values of the
kernels. Taking inspiration from our previous work [8] on the effective conductivity
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problem, this can indeed be achieved by means of a hierarchy of interpolating energy
estimates. Yet, in this way, we necessarily miss the scaling in {λk}k,

|B̄(k)
L | . Ck. (3.9)

As a direct consequence of uniform-in-L estimates, we can deduce that infinite-volume

limits B̄
(k)

:= limL↑∞ B̄
(k)
L exist, with convergence controlled by

|B̄(k)
L − B̄

(k)| . |B̄L − B̄|2−k → 0, as L ↑ ∞. (3.10)

This is shown in the same way as the fact that a sequence of functions that converge
uniformly and have uniformly bounded derivatives also have converging derivatives.

It remains to interpolate between (3.8) and (3.9) to prove corresponding estimates in the
infinite-volume limit. For this, we can think of the following shortcut: as the divergence
in (3.8) is only logarithmic, it could be compensated by any algebraic rate in (3.10). Now,
appealing to quantitative homogenization theory, e.g. [2], under an algebraic α-mixing
condition, finite-volume approximations of the effective viscosity satisfy |B̄L − B̄| . L−γ

for some γ > 0. Combined with (3.10), this yields

|B̄(k)
L − B̄

(k)| . L−2−kγ , (3.11)

so that (3.8) implies

|B̄(k)| . |B̄(k)
L |+ |B̄

(k)
L − B̄

(k)| . λk(logL)k−1 + L−2−kγ ,

and we deduce by optimization |B̄(k)| . λk|log λ|k−1. In this way, we get the following.

Theorem 3 (Higher-order cluster expansion; see Theorem 5 in [11]). Let the same as-
sumptions hold as in Theorem 1, assume (H1) for simplicity, and assume that the ensemble
of particles {In}n satisfies an α-mixing condition with algebraic rate. Then, for all K ≥ 1,
the cluster expansion of the effective viscosity holds in form of∣∣∣B̄ − Id−

K∑
k=1

B̄
(k)
∣∣∣ . 2K∑

k=K

λk+1|log λ|k, (3.12)

where cluster terms are defined by infinite-volume approximation (3.10) and satisfy

|B̄(k)| . λk|log λ|k−1. ♦

3.5. Explicit renormalization. Although Theorem 3 essentially solves the problem of
higher-order cluster expansions, it has several drawbacks:

— Cluster terms are defined by infinite-volume approximation, cf. (3.10), which only
provides an implicit renormalization of cluster formulas (3.2). In particular, from this
point of view, it is unclear whether logarithmic corrections in the estimates are actually
optimal in the above statement.

— The above relies on α-mixing and quantitative homogenization theory as a black box,
which seems however quite disconnected from the question of dilute expansions.

— The convergence rate (3.11) deteriorates dramatically for large k, which is not expected
to be optimal.

All those criticisms led us to look for an explicit understanding of renormalization of
cluster formulas, which was still open in the physics community beyond second order.
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As explained after Theorem 2, the renormalization of the first-order cluster formula
follows from the simple cancellation of the integral of a gradient in a finite-volume ap-
proximation, in form of

´
QL

D(ψ
{0}
E;L) = 0. At second order, the situation is already more

complicated and we briefly recall the formal argument by Batchelor and Green [4]: the
cluster formula (3.4) takes the form

E : B̄
(2)
E = �

ˆ
Rd

( ˆ
Rd
δ{0,y}|D(ψ#

E ) + E|2
)
f2(0, y) dy �,

or equivalently, after using corrector equations, cf. [11, Theorem 3],

E : B̄
(2)
E = �

ˆ
Rd

( ˆ
∂B
ψ
{y}
E · σ{0,y}E )ν

)
f2(0, y) dy �,

with the short-hand notation σSE := σ(ψSE + Ex,ΣS
E). This can now be decomposed as

E : B̄
(2)
E =

ˆ
Rd

(ˆ
∂B
ψ
{y}
E ·

(
σ
{0,y}
E − σ{0}E

)
ν
)
f2(0, y) dy

+ �

ˆ
Rd

(ˆ
∂B
ψ
{y}
E · σ{0}E ν

)
f2(0, y) dy �,

where the first integrand has pointwise decay |
´
∂B ψ

{y}
E · (σ{0,y}E − σ{0}E )ν| = O(〈y〉−2d),

so the first integral is absolutely convergent. Now noting that the second integrand has
vanishing integral in a finite-volume approximation,ˆ

QL

(ˆ
∂B
ψ
{y}
E;L · σ

{0}
E;Lν

)
dy =

( ˆ
QL

ψ
{y}
E;L dy

)
·
ˆ
∂B
σ
{0}
E;Lν = 0, (3.13)

we can formally replace f2(0, y) by the two-point correlation h2(0, y) = f2(0, y)− λ2, to
the effect of

E : B̄
(2)
E =

ˆ
Rd

(ˆ
∂B
ψ
{y}
E ·

(
σ
{0,y}
E − σ{0}E

)
ν
)
f2(0, y) dy

+

ˆ
Rd

(ˆ
∂B
ψ
{y}
E · σ{0}E ν

)
h2(0, y) dy. (3.14)

The second integral is now absolutely convergent provided that h2 has Dini decay (so that
y 7→ 〈y〉−d|h2(0, y)| be integrable). This renormalized formula can be justified rigorously
and leads to a fine understanding of the second cluster term.

Theorem 4 (Batchelor–Green renormalization; see Proposition 4.6 in [11]). Let the same
assumptions hold as in Theorem 1, assume (H1) for simplicity, and assume that the two-
point correlation function satisfies |h2(0, y)| ≤ C〈y〉−γ for some C, γ > 0. Then the second
cluster term defined in Theorem 3 is equivalently given by (3.14). Moreover, examination
of this renormalized formula yields the following.

• The bound |B̄(2)| . λ2|log λ| is optimal in general, in the sense that it is attained by
some point process. Yet, the logarithmic correction can be removed in some cases:

— if the point process is isotropic, we have |B̄(2)| . λ2;

— if the interparticle distance is ` := infn6=m |xn − xm| ≥ 1, we have |B̄(2)| . `−2d.

• The convergence rate (3.11) for finite-volume approximations can be improved to

|B̄(2)
L − B̄

(2)| . L−γ + logL
L . ♦
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The optimality of the logarithmic correction in the bound |B̄(2)| . λ2|log λ| is under-
stood as follows: the second term in (3.14) can be written as

´
K(y)h2(0, y) dy for some

Calderón–Zygmund kernel K. As λ2 is the sup norm of h2, cf. (3.5), the validity of the

bound |B̄(2)| . λ2 would require to control K∗ in L∞(Rd). This cannot be possible in
general and we easily construct a correlation function h2 for which it fails.

At higher orders, the renormalization of cluster formulas is more problematic as simple
cancellations like (3.13) are no longer sufficient. Using corrector equations, the kth cluster
formula (3.4) can be written as

E : B̄
(k)
E = � k+1

2

ˆ
(Rd)k−1

( ˆ
∂B
δ{x1,...,xk−1}ψ#

E · σ
{0}
E ν

)
× fk(0, x1, . . . , xk−1) dx1 . . . dxk−1 �+ . . . (3.15)

up to other similar terms that are slightly better behaved. In order to capture relevant
cancellations, we introduce in [11] some new diagrammatic decomposition of corrector

differences δ{x1,...,xk−1}ψ#
E . Instead of using the classical method of reflections, which

would yield an infinite series of terms only involving single-particle solutions, we introduce
a suitable finite decomposition involving multiparticle solutions. For instance, we write

∇δx1,x2,x3ψ(0) = + + + + + ,

where the vertex stands for evaluation at 0, where other vertices correspond to integration
variables x1, x2, x3, and where an edge between vertices x and y corresponds to a kernel
with pointwise decay 〈x − y〉−d. More precisely, edges inside a given loop of the graph
correspond to mutliparticle solutions (associated with the set of particles corresponding
to the different vertices of the loop), while all the other edges correspond to single-particle
solutions. This provides a crucial separation of variables. These diagrammatic expansions
are obtained by iterating Green’s representation formula for corrector differences; see [11,
Section 4.4.3] for details. We insert this decomposition into (3.15) and we further expand
the k-point density function fk in terms of correlation functions, e.g.

f3(0, x1, x2) = λ2 + λ
(
h2(0, x1) + h2(0, x2) + h2(x1, x2)

)
+ h3(0, x1, x2).

Assuming algebraic decay of correlations, this leads to additional couplings between the
different integration variables, with some pointwise algebraic decay 〈·〉−γ , which we shall
represent by dotted edges in the diagrams. Now the point is that our decomposition of
corrector differences precisely allows to capture relevant cancellations: whenever a graph
can be split into two subgraphs that are only connected by a simple edge, its contribution
can be shown to vanish as a boundary term in the infinite-volume limit, e.g.

, , = 0.

Starting from (3.15) and removing all such contributions, we are left with terms that all
correspond to absolutely convergent integrals, e.g.

E : B̄
(4)
E = + + + + + + + + + + . . .

The number of terms in such decompositions grows very quickly, which probably makes
them useless in practice, but it leads us to the proof of the following improved version of
Theorem 3, which is our main result in [11].
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Theorem 5 (Higher-order cluster expansion; see Proposition 4.8 in [11]). Let the same
assumptions hold as in Theorem 1, and assume (H1) for simplicity.

• Given K ≥ 1, further assuming that correlation functions hK+1, . . . , h2K+1 have some
decay C〈·〉−γ in each direction for some C, γ > 0 (which is implied by algebraic α-
mixing), the cluster expansion of the effective viscosity holds in form of (3.12), where
cluster terms are defined by infinite-volume approximation (3.10).

• For all k ≥ 1, further assuming that the correlation function hk has some decay C〈·〉−γ
in each direction for some C, γ > 0, then
— the kth cluster term is equivalently given by a renormalized formula only involving a

finite number of absolutely convergent integrals;

— it satisfies the bound |B̄(k)| . λk|log λ|k−1, which is optimal in general;
— the convergence rate (3.11) for finite-volume approximations can be improved to

|B̄(k)
L − B̄

(k)| . (logL)k−1

Lγ∧1 . ♦

3.6. Remark: a new elliptic regularity result. In order to prove the above, in [11], we
make repeated use of decay properties of solutions to Stokes problems with finite numbers
of rigid particles. More precisely, we use for instance the following mean-value property,
which seems new and might be of independent interest.

Theorem 6 (Mean-value property; see Appendix A in [11]). Let {In}n∈S be a finite collec-
tion of disjoint subsets of BR, assume that they are uniformly C2 and that for some ρ > 0
we have dist(In, Im) ≥ ρ and dist(In, ∂BR) ≥ ρ for all n 6= m. Let u ∈ H1(BR)d satisfy
the Stokes problem 

−4u+∇p = 0, div(u) = 0, in BR \ ∪n∈SIn,
D(u) = 0, in ∪n∈SIn,´
∂In

σ(u, p)ν = 0, ∀n ∈ S,´
∂In

(x− xn)× σ(u, p)ν = 0, ∀n ∈ S.

Then we have  
B
|∇u|2 ≤ C(ρ, ]S)

 
BR

|∇u|2,

where the multiplicative constant C(ρ, ]S) only depends on ρ, ]S, and on dimension d. ♦

Note that this result is false in general if ]S =∞, in link with classical counterexamples
to Lipschitz regularity, but we show in [12] that a corresponding annealed estimate then
holds upon taking a suitable ensemble average with respect to the set of particles.

3.7. Further results and extensions. In [6], we derive similar results for the effective
viscosity of active suspensions. In a work in preparation with Pertinand, we further study
Batchelor’s dilute expansion [3] for the mean settling speed of a sedimenting suspension.
The main difficulty is that, in the sedimentation problem, the long-range nature of hydro-
dynamic interactions is even more drastic: the flow disturbance at x due to a particle at y
then decays like 〈x−y〉1−d instead of 〈x−y〉−d. For this reason, a suitable renormalization
is needed even to actually define the mean settling speed, which requires a nontrivial decay
of correlations; see [13]. The dilute expansion is then particularly tricky, but the same type
of diagrammatic decompositions proves to be of crucial use in capturing cancellations.
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Poincaré Anal. Non Linéaire, 39(5):1009–1052, 2022.
[8] M. Duerinckx and A. Gloria. Analyticity of homogenized coefficients under Bernoulli perturbations

and the Clausius-Mossotti formulas. Arch. Ration. Mech. Anal., 220(1):297–361, 2016.
[9] M. Duerinckx and A. Gloria. Continuum percolation in stochastic homogenization and application to

the effective viscosity problem. Preprint, arXiv:2108.09654, 2021.
[10] M. Duerinckx and A. Gloria. Corrector equations in fluid mechanics: effective viscosity of colloidal

suspensions. Arch. Ration. Mech. Anal., 239(2):1025–1060, 2021.
[11] M. Duerinckx and A. Gloria. On Einstein’s effective viscosity formula. Preprint, arXiv:2008.03837v3,

2022.
[12] M. Duerinckx and A. Gloria. Quantitative homogenization theory for random suspensions in steady
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[27] K. Z. Markov. Elementary micromechanics of heterogeneous media. In Heterogeneous media, Model.
Simul. Sci. Eng. Technol., pages 1–162. Birkhäuser Boston, Boston, MA, 2000.
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